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The continuity vs discontinuity of the elastic/plastic curvature & curvature rate, and strain & strain rate
tensors is examined at non-moving surfaces of discontinuity, in the context of a field theory of crystal
defects (dislocations and disclinations). Tangential continuity of these tensors derives from the conserva-
tion of the Burgers and Frank vectors over patches bridging the interface, in the limit where such patches
contract onto the interface. However, normal discontinuity of these tensors remains allowed, and Kirch-
hoff-like compatibility conditions on their normal discontinuities across the concurring interfaces are
derived at multiple junctions. In a simple plane case and in the absence of surface-disclinations, the com-
patibility of the normal discontinuities in the elastic curvatures assumes the form of a Young’s law
between the grain-to-grain disorientations and the sines of the dihedral angles. Complete continuity of
the plastic strain rate tensor at triple junctions also derives from the compatibility of the normal discon-
tinuities in the plastic strain rates in such conditions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In crystalline media, grain boundaries are rotational defects
resulting in certain discontinuities of the elastic/plastic strain
and/or curvature fields. Modeling efforts at describing grain
boundaries include dislocation-based and disclination-based
approaches (see respectively (Frank, 1950; Bilby, 1955) and (Li,
1972; Shih and Li, 1975; Gertsman et al., 1989)) and atomistic
simulations (Sutton et al., 1983). In dislocation-based models,
surface-dislocation densities are considered as the source of
disorientation between grains, i.e. an arbitrary disorientation is
accommodated by an appropriate distribution of surface-disloca-
tions. Such approaches may be successful in predicting geometrical
properties of grain boundaries, such as the coupling factor relating
the normal tilt boundary motion to an imposed shear displacement
(Cahn et al., 2006). However, surface-dislocations-based models are
limited to small misorientation angles. Indeed, as implied by
Frank’s equation, the distance between surface-dislocations
decreases when the misorientation angle increases, to the point
where dislocation core overlapping occurs (Li, 1972). In addition,
surface-dislocations are singularly supported by an infinitely thin
interface, a premise at odds with the atomistic rendering of grain
boundaries, which features elementary structures spreading over
a finite-width layer, perhaps as thin as a nanometer, but definitely
not vanishingly thin (Sutton et al., 1983).
ll rights reserved.
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Being themselves rotational defects, disclinations may seem to
be more appropriate than dislocations for grain boundary modeling
(Li, 1972). Discrete disclination dipole walls were indeed
introduced to represent grain boundaries (Li, 1972; Shih and Li,
1975; Gertsman et al., 1989). These models are built on linear
arrays of discrete disclination dipoles, for which closed-form
expressions of the elastic energy, strain and curvature fields were
first derived by Huang and Mura (1970) and de Wit (1973).
However, this approach suffers from several limitations. In the first
place, it only describes relative misorientation with respect to
reference boundaries – corresponding to cusps in the variation of
the grain boundary energy with misorientation. Second, it also
confines the disclination distribution to the plane of the interface
where it exhibits discontinuities. It may again seem paradoxical
to attempt modeling of a thin, but non vanishingly small, material
layer where the crystal lattice encounters a finite rotation, by using
a crystal defect distribution supported by an infinitely thin
interface.

The aim of the present work is to contribute to a non-singular
description of grain boundaries, by dismissing surface-defects per-
taining to an infinitely thin interface, and using a volumetric field
representation of dislocations and disclinations by their aerial den-
sity (Nye, 1953; de Wit, 1970). A continuous elasto-plastic theory
of crystal defect (dislocation and disclination) fields was recently
proposed, in which disclination dipoles are indeed seen as objects
extended in space and used to model high-angle tilt boundary seg-
ments with a finite thickness (Fressengeas et al., 2011). In this the-
ory, the material displacements as well as the density and motion
of dislocations/disclinations can be derived uniquely from initial
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1 By virtue of Stokes’ theorem:
R

C U � dl ¼
R

S curlU � n dS on a closed curve C
surrounding surface S of normal n. In compatible theory, the distortion tensor U is a
gradient and its line integral along curve C is zero on the left hand side. Thus, from the
right hand side, the compatibility condition (9) is satisfied with sufficient continuity.
In the presence of a net content of dislocations threading S, a discontinuity in the
elastic displacement arises, and the closure defect of circuit C : b ¼

R
C Ue � dl is non

zero. b is referred to as the Burgers vector of the dislocations threading S. It
characterizes the incompatibility in the elastic displacement along circuit C. The left
Eqs. (14), (15) are now satisfied, and the net dislocation content is also characterized
in a continuous manner by Nye’s tensor a.
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and boundary conditions, provided constitutive information for
elasticity and the dislocation/disclination velocities is supplied. In
the present paper, our specific intent is to clarify the issue of con-
tinuity vs discontinuity of the elastic/plastic strain and curvature
tensor fields across a surface of discontinuity, in the framework
of this theory. Although discontinuities in these fields are allowed,
necessary tangential continuity conditions on the elastic strain and
curvature tensors will be derived at smooth interfaces, and some of
their implications investigated. In doing so, we clearly benefit from
earlier investigation of the continuity conditions on the plastic dis-
tortion rate in the field theory of dislocations (Acharya, 2007).
Interfaces with kinks or ledges, as occurs in phase transformation,
are beyond the scope of the present investigation, although they
can be treated using discrete disclination dipoles (see for example
the review (Romanov and Kolesnikova, 2009)), because character-
ization of such features in a continuous framework requires defin-
ing crystal defects of higher order than dislocations and
disclinations (Acharya and Fressengeas, 2012).

The paper is organized as follows. In Section 2, notation conven-
tions are settled. For completeness, a brief review of the incompat-
ible elastic defect theory (de Wit, 1970) is provided in Section 3. In
Section 4, the existence in this framework of tangential continuity
conditions on the elastic/plastic strain and curvature at material
surfaces of discontinuity is shown. Kirchhoff-type compatibility
conditions on the normal discontinuities at multiple junctions
are derived in Section 5. Illustration of these concepts is proposed
in Section 6 with the two-dimensional case of triple junctions built
from tilt boundaries. Concluding remarks follow.

2. Notations

A bold symbol denotes a tensor. When there may be ambiguity,
an arrow is superposed to represent a vector: ~V. The symmetric
part of tensor A is denoted fAg. Its skew-symmetric part is gAf.
The tensor A � B, with rectangular Cartesian components AikBkj, re-
sults from the dot product of tensors A and B, and A� B is their
tensorial product, with components AijBkl. A : represents the trace
inner product of the two second order tensors A : B ¼ AijBij, in rect-
angular Cartesian components, or the product of a higher order
tensor with a second order tensor, e.g., A : B ¼ AijklBkl. The cross
product of a second-order tensor A and a vector V, the div and
curl operations for second-order tensors are defined row by row,
in analogy with the vectorial case. For any base vector ei of the ref-
erence frame:

ðA� VÞt � ei ¼ ðAt � eiÞ � V ð1Þ
ðdivAÞt � ei ¼ divðAt � eiÞ ð2Þ
ðcurlAÞt � ei ¼ curlðAt � eiÞ ð3Þ

In rectangular Cartesian components:

ðA� VÞij ¼ ejklAikVl ð4Þ
ðdivAÞi ¼ Aij;j ð5Þ
ðcurlAÞij ¼ ejklAil;k ð6Þ

where ejkl is a component of the third-order alternating Levi–Civita
tensor X. A vector ~A is associated with tensor A by using its trace
inner product with tensor X:

ð~AÞk ¼ �
1
2
ðA : XÞk ¼ �

1
2

eijkAij ð7Þ

A superposed dot represents a material time derivative. In the
component representation, the spatial derivative with respect to
a Cartesian coordinate is indicated by a comma followed by the
component index.
3. Review of the incompatible elasto-static defect theory

In the framework of the field models (de Wit, 1970; Fressengeas
et al., 2011), the displacement vector u is defined continuously at
any point of a simply-connected body undergoing elasto-plastic
deformation. Hence, it is required that the displacement field rep-
resent a consistent shape change, possibly defined between atoms,
below interatomic distance. Therefore, the total distortion tensor U
is defined as the gradient of the displacement:

U ¼ gradu ð8Þ

As such, it is curl-free:

curlU ¼ 0 ð9Þ

This equation is a necessary condition for the integrability of the
distortion U, referred to as the compatibility condition for U.
Conversely, Eq. (9) is sufficient to assure the existence of a sin-
gle-valued continuous solution u to Eq. (8), up to a constant
translation. Generally, in the presence of dislocations, the plastic,
Up, and elastic, Ue, components of the total distortion are not
curl-free. Indeed, the plastic distortion tensor has an incompatible
part, U?p , associated with the presence of Nye’s dislocation density
tensor a (Nye, 1953). An opposite incompatible elastic distortion of
the lattice, U?e , also arises to maintain lattice continuity. Curl-free
compatible components, Uke and Ukp, may additionally exist to
satisfy the balance of momentum and boundary conditions, and
the following relations are therefore satisfied:

U ¼ Ue þ Up ð10Þ

Ue ¼ U?e þ Uke ð11Þ

Up ¼ U?p þ Ukp ð12Þ

0 ¼ U?e þ U?p ð13Þ

curlU?e ¼ �curlU?p ¼ a ð14Þ

Composing Eqs. (10)–(12) allows showing that Eq. (13) is
needed to ensure satisfaction of the compatibility condition (9).
The right-hand-side incompatibility Eq. (14) defines the incompat-
ible plastic distortion U?p associated with the presence of a, while
the left-hand-side equation provides the incompatible elastic dis-
tortion U?e offsetting the latter to ensure the continuity of matter.1

Since Uke and Ukp are curl-free, Eq. (14) is still true when U?e and U?p
are respectively replaced with Ue and Up:

curlUe ¼ �curlUp ¼ a ð15Þ

Therefore, to ensure that the incompatible part U?p vanishes
identically throughout the body when a ¼ 0, Eq. (14) must be aug-
mented with the side conditions divU?p ¼ 0 and U?p � n ¼ 0 on the
boundary with unit normal n (see for example Acharya and Roy,
2006). Defining the strain tensor � as the symmetric part of the dis-
tortion U, the rotation tensor x as its skew-symmetric part and the
associated rotation vector ~x as:
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~x ¼ �1
2
x : X ð16Þ

Eq. (9) becomes:

curl�þ divð~xÞI� gradt~x ¼ 0 ð17Þ

where I is the identity tensor. Transposing, then taking the curl of
Eq. (17) leads to:

curlcurlt� ¼ 0 ð18Þ

This relation is the classical Saint–Venant compatibility condi-
tion for the strain �. It is a necessary condition for the integrability
of the displacement u. The trace of Eq. (17) similarly yields the nec-
essary condition:

divð~xÞ ¼ 0 ð19Þ

which is a compatibility condition for the rotation ~x. Applying the
same curl-trace procedure to the elastic restriction of Eq. (15), we
obtain from the curl operation, with self-evident notations, an
equation parallel to Eq. (17):

curl�e þ divð ~xeÞI� gradt ~xe ¼ a ð20Þ

and a similar equation for the plastic part of Eq. (15):

curl�p þ divð ~xpÞI� gradt ~xp ¼ �a ð21Þ

From the trace operation, we find an equation parallel to Eq.
(19):

divð ~xeÞ ¼ �divð ~xpÞ ¼
1
2

trðaÞ ð22Þ

Motivated by the Saint–Venant compatibility condition (18), we
transpose Eqs. (20), (21) and further rearrange with the help of Eq.
(22), to obtain:

grad ~xe ¼ curlt �e þ K ð23Þ

grad ~xp ¼ curlt �p � K ð24Þ

K ¼ 1
2

trðaÞI� at ð25Þ

At this point, we can define the elastic, je, and plastic, jp, cur-
vature tensors as:

je ¼ grad ~xe ð26Þ
jp ¼ grad ~xp ð27Þ
grad~x ¼ je þ jp ð28Þ

and take the curl of Eqs. (23), (24), to find:

curlje ¼ curlcurlt �e þ curlK ¼ 0 ð29Þ

curljp ¼ curlcurlt �p � curlK ¼ 0 ð30Þ

Hence, in the elasto-plastic theory of dislocations, the elastic
and plastic curvatures (je;jp) are curl-free and integrable quanti-
ties. K is referred to as Nye’s curvature tensor (Nye, 1953). (je;jp)
are also known as the elastic and plastic bend-twist tensors,
respectively.

If (je;jp) are not supposed to be curl-free anymore, i.e. if the
possibility of a rotational incompatibility is acknowledged, then
the rotation vectors ð ~xe; ~xpÞ do not exist, and a non-zero tensor
h such that

h ¼ �curljp ¼ curlje ð31Þ

can be defined. h is the disclination density tensor, and Eq. (31) is
part of the theory of crystal defects. It replaces Eqs. (29), (30), which
pertain to the theory of dislocations. On the one hand, Eq. (31)
means that an incompatible plastic curvature, j?p , is associated with
the presence of the disclination density h and, on the other hand,
that the incompatible elastic curvature, j?e is needed to ensure
the continuity of matter in the presence of this density. As already
discussed for Eqs. (14), (15) in the case of translational incompati-
bility, to ensure that the incompatible parts (j?e ;j

?
p ) vanish identi-

cally throughout the body when h ¼ 0, Eq. (31) must be replaced
with:

h ¼ �curlj?p ¼ curlj?e ð32Þ

augmented with the side conditions divj?e ¼ divj?p ¼ 0 and
j?e � n ¼ j?p � n ¼ 0 on the boundary with unit normal n. These con-
ditions ensure uniqueness of the solution to Eq. (32), while solu-
tions to Eq. (31) are known up to a gradient. The continuity
condition for disclinations:

divh ¼ 0 ð33Þ

follows directly from Eqs. (31), (32). Since the rotation vectors
ð ~xe; ~xpÞ do not exist in the theory of crystal defects, the correspond-
ing elastic and plastic distortion tensors Ue and Up are also unde-
fined. Substituting the elastic and plastic curvatures (je;jp),
which now include an incompatible part, for (grad ~xe;grad ~xp) in
Eqs. (20), (21), leads to the modified equations:

curl�e ¼ þaþ jt
e � trðjeÞI ð34Þ

curl�p ¼ �aþ jt
p � trðjpÞI ð35Þ

Eq. (35) defines the incompatible plastic strain associated with
the dislocation density tensor a in the concurrent presence of plas-
tic curvature, while Eq. (34) specifies the incompatible elastic
strain needed to ensure the continuity of matter in the presence
of dislocations and disclinations. In the theory of crystal defects,
the Frank’s and Burgers vectors for a close circuit C bounding a sur-
face S are defined as (de Wit, 1970):

X ¼
Z

C
je � dr ð36Þ

b ¼
Z

C
ð�e � je � rÞ � dr ð37Þ

They can be related to the dislocation and disclination density
tensors a and h by applying Stokes’ theorem to the surface S (de
Wit, 1970):

X ¼
Z

S
h � ndS ð38Þ

b ¼
Z

S
ða� h� rÞ � ndS ð39Þ
4. Tangential continuity of the elastic curvature at surfaces of
discontinuity

In this Section, we assume the existence of a smooth surface of
discontinuity I , i.e. without discontinuities in its tangent plane ori-
entation field, separating the body D into two domains Dþ and D�.
For the sake of simplicity, this interface I is assumed to remain at-
tached to the material. At any point P on I , the normal vector n to
the interface is oriented from D� toward Dþ, and we denote by l
and t ¼ n� l two unit vectors belonging to the tangent plane to
the interface (see Fig. 1). I may be used to model a grain boundary
in a polycrystal. In this case, the grain boundary is seen as having
no width. Continuum mechanics requires that the displacement
u and traction vector T � n be continuous across the interface.
Hence, if ½x� ¼ xþ � x� denotes a discontinuity in the variable x



Fig. 1. Burgers circuit across an interface I separating the body D into domains
D�;Dþ . n is the unit normal to the interface, and t ¼ n� l the normal to the
bounded surface S.

2 The occurrence of a normal discontinuity of the elastic curvature tensor implies
that the continuity required in Eq. (31) for the calculation of the disclination density
tensor may not be satisfied for three of its components. Thus, discontinuity of the
involved disclination densities may occur at the interface.
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through the interface I ; ½u� ¼ 0 and ½T � n� ¼ 0. The continuity of the
traction vector is reflected as well by the continuity of the normal
part, Tn ¼ T � n� n, of the stress tensor: ½Tn� ¼ 0. However, the tan-
gential part of the stress tensor, Tt ¼ T� Tn, may be discontinuous
across the interface. This discontinuity is expressed by:

9l 2 I ; ½T� � l – 0 ð40Þ

which implies that:

½T� � n – 0 ð41Þ

In contrast, the continuity of the displacement at the interface
requires tangential continuity of the total distortion U ¼ gradu:

8l 2 I ; ½U� � l ¼ 0 ð42Þ

a condition also rendered as:

½U� � n ¼ 0 ð43Þ

or, in terms of the normal and tangential parts of the distortion, ½Un�
and ½Ut �, as:

½Ut � ¼ ½U� � ½Un� ¼ ½U� � ½U� � n� n ¼ 0 ð44Þ

This tangential continuity condition is known as Hadamard’s
compatibility condition (Hadamard, 1903). It does not impose
any requirement on the normal discontinuity ½Un� across the inter-
face. Of course, it is also silent on the continuity vs discontinuity of
the elastic/plastic curvature and strain tensors at the interface. We
show below that, if the choice is made to represent continuously
the incompatibility arising from the presence of lattice defects in
the interface area, additional continuity conditions on the elastic
curvature and strain arise at the interface.

Indeed, let us consider a rectangular closed circuit C lying across
the interface and bounding a surface S oriented by t, in the manner
shown in Fig. 1. Rewriting Eqs. (36), (38) in the present context, the
net Frank vector X of the disclinations threading S is such that:

8l 2 I ; X ¼
Z

C
je � dr ¼

Z
S

h � tdS ð45Þ

Provisionally, the distribution of disclinations in S is assumed to
include not only a continuous distribution of disclinations h in each
domain D� and Dþ, but also a singular distribution hðIÞ along the
interface I . This singular term represents ‘‘surface-disclinations’’
through a density of (adimensional) Frank vectors per m in the
direction l. If the circuit C is collapsed onto point P by letting hþ

and h� tend to zero, and L shrinks along the direction l, Eq. (45)
becomes:

8l 2 I ; ½je� � l ¼ hðIÞ � t ð46Þ

Essentially, the bulk density h distributed in Dþ and D�

disappears in this limit. Thus, Eq. (46) provides the density hðIÞ of
surface-disclinations needed to accommodate a tangential discon-
tinuity of the elastic curvature ½je� in no width across the interface.
It has no implication on its normal discontinuity. However, if the
choice is made to describe the interface in a continuous manner
and a small resolution length scale is used to render the fine struc-
ture of the boundary, then the surface-disclination concept must be
surrendered. This modeling choice amounts to acknowledging that
the accommodation of a finite variation of the tangential part of the
elastic curvature takes place in a finite material layer, perhaps as
thin as a few nanometers and containing a few atomic rows, but
non discrete. In this case, Eq. (46) becomes:

8l 2 I ; ½je� � l ¼ 0 ð47Þ

The meaning of Eq. (47) is that, in the absence of surface-discli-
nations, tangential continuity of the elastic curvature tensor is re-
quired in a continuous model. Eq. (47) is equally transcribed as:

½je� � n ¼ 0 ð48Þ

or in terms of its normal and tangential components, ½je�n and ½je�t ,
as:

½je�t ¼ ½je� � ½je�n ¼ ½je� � ½je� � n� n ¼ 0 ð49Þ

Continuity of the normal component of the elastic curvature
tensor is not required by Eq. (48), nor is it accommodated by the
surface-disclination density in Eq. (46).2 The continuity of the tan-
gential component of the elastic curvature implies that spatial corre-
lations are existing between the lattice rotations of the neighboring
grains, because limiting values of the curvature from the left and
from the right of the interface must be equal. Since it is not accom-
modated at the interface by surface-disclinations, a finite variation of
the tangential component of the elastic curvature over the boundary
area must be accommodated by the bulk disclination density h in a
layer across the interface. However, the width of this layer is not im-
plied by Eq. (48). It may be derived from dynamic calculations in the
framework of the nonlocal elasto-plastic model (Fressengeas et al.,
2011). Experimental evidence of such a length scale was provided
in various materials after diverse strain paths, in the form of the scal-
ing range for the power law dependence of the probability density of
a certain grain misorientation vs the inter-granular distance (Beausir
et al., 2009).

Similar continuity constraints can be obtained for the plastic
curvature and plastic curvature rate. Indeed, since the total rota-
tion ~x is compatible, taking the line integral of Eq. (28) along the
closed circuit C shows that:

8l 2 I ;
Z

C
jp � dr ¼ �

Z
C
je � dr ð50Þ

Hence, it is straightforward to show from Eqs. (47), (48), (50)
that tangential continuity of the plastic curvature is also required:

½jp� � n ¼ 0 ð51Þ

when surface-disclinations are absent. For small rotations, the der-
ivation with respect to time of Eq. (51) involves only partial time
derivatives. Thus, tangential continuity also holds for the plastic
curvature rate:

½ _jp� � n ¼ 0 ð52Þ

This rate condition may also be obtained by integrating the
transport equation of disclinations (Fressengeas et al., 2011) over
a ‘‘pillbox’’ set across an arbitrary area patch, in the limit when
such a patch contracts onto a surface of discontinuity in the mate-
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rial (see a derivation in (Acharya, 2007), in the context of disloca-
tion transport). A derivation of Eq. (48) was also proposed recently
in Upadhyay et al. (2011).

The conservation of the Burgers vectors content across the
interface also gives rise to additional tangential continuity condi-
tions. Indeed, using Eqs. (37), (39), the net Burgers vector b of
the dislocations threading S is such that:

8l 2 I ; b ¼
Z

C
ð�e � je � rÞ � dr ¼

Z
S
ða� h� rÞ � tdS ð53Þ

We assume that a continuous distribution of dislocations and
disclinations is existing in the domains D� and Dþ and also, provi-
sionally, singular distributions aðIÞ and hðIÞ along the interface I .
The term aðIÞ represents surface-dislocations through a density of
Burgers vectors per m in the direction l. When the circuit C col-
lapses onto point P in the limit, when Hþ; h� and L tend to zero,
Eq. (53) becomes

8l 2 I ; ½�e � je � r0� � l ¼ ðaðIÞ � hðIÞ � r0Þ � t ð54Þ

where r0 denotes the location of point P in the reference frame. In a
way similar to Eqs. (46), (54) provides information on the density of
surface-dislocations and surface-disclinations needed to accommo-
date a discontinuity in the elastic displacement in no width across
the interface I . Now, if the choice is made to describe the interface
in a continuous manner, the surface-defect concept must be surren-
dered and Eq. (54) reduces to:

8l 2 I ; ½�e � je � r0� � l ¼ 0 ð55Þ

Eq. (55) describes the tangential continuity of the tensor
�e � je � r0 at the interface. An equivalent form, similar to Eq.
(48), is:

½�e � je � r0� � n ¼ 0 ð56Þ

or in terms of the normal and tangential components ½�e � je � r0�n
and ½�e � je � r0�t:

½�e � je � r0�t ¼ ½�e � je � r0� � ½�e � je � r0�n
¼ ½�e � je � r0� � ½�e � je � r0� � n� n ¼ 0 ð57Þ

The normal component ½�e � je � r0�n is left unconstrained by
Eq. (56). Note that, since the total displacement and rotation of
the body are compatible, the following integral is zero:

8l 2 I ;
Z

C
ð�� grad~x� rÞ � dr ¼ 0 ð58Þ

Substracting Eq. (37) from Eq. (58), it is found that an alterna-
tive form of the Burgers vector is:

b ¼ �
Z

C
ð�p � jp � rÞ � dr ð59Þ

Then, following the above line of reasoning, an alternative relation
to Eq. (56), using the plastic strain and curvature tensors is found:

½�p � jp � r0� � n ¼ 0 ð60Þ

At small transformations, a derivation of Eq. (60) with respect to
time involves only partial time derivatives, and the following result
on the plastic strain rate and curvature rate is obtained:

½ _�p � _jp � r0� � n ¼ 0 ð61Þ

If the reference point is chosen in the interface, such that r0 ¼ 0,
Eqs. (56), (60), (61) condense into simpler relations involving only
the strain component of the incompatibility. We note that Eq. (60)
was given in this simplified form by Hirth as early as 1972 (Hirth,
1972), on the basis of heuristic arguments. The curvature-induced
incompatible plastic displacement jp � r0 and the related disclina-
tions were not considered in this paper, where dislocation-based
modeling of grain boundaries was discussed. In such context, tan-
gential continuity should apply not only to the symmetric part of
the plastic distortion rate tensor (the plastic strain rate tensor)
but also to its skew-symmetric part (the plastic rotation rate ten-
sor) (Acharya, 2007). Indeed, the tangential continuity conditions
(56), (60), (61) differ from their counterparts in the theory of dislo-
cation fields (Acharya, 2007; Beausir et al., 2009; Mach et al.,
2010), because the elastic/plastic rotation and rotation rate tensors
are undefined in a theory of crystal defects involving disclinations.
Stated differently, the tangential continuity conditions (48), (51),
(52) do not hold in the theory of dislocation fields because the elas-
tic/plastic curvature and curvature rate tensors are assumed to be
integrable in the latter.

5. Compatibility conditions at multiple junctions

Consider a multiple junction J where N interfaces, with respec-
tive discontinuities in the elastic curvature ½je�i; i 2 ð1;NÞ, connect
along a single line. In practice, mostly triple-junctions ðN ¼ 3Þ are
observed when the interfaces represent grain boundaries. If the
choice of continuous modeling is made, closure requires that the
sum of all discontinuities vanish at the multiple junction:

XN

i¼1

½je�i ¼ 0 ð62Þ

XN

i¼1

½�e � je � r0�i ¼ 0 ð63Þ

Indeed, the same grain is used to start and finish a closed circuit
about a multiple junction. Summing the relations (49) for all inter-
faces, and using Eq. (62), it is seen that the normal discontinuities
in the elastic curvature need to satisfy a Kirchhoff-like compatibil-
ity condition at the multiple junction:

XN

i¼1

½je�i � ni � ni ¼ 0 ð64Þ

Similarly, for a multiple junction located at r0, it can be shown from
Eqs. (57), (63) that the normal discontinuities ½�e � je � r0�n must
satisfy the compatibility condition:

XN

i¼1

½�e � je � r0�i � ni � ni ¼ 0 ð65Þ

Additional compatibility conditions are obtained for the normal
discontinuities in the plastic curvature and curvature rate:

XN

i¼1

½�p � jp � r0�i � ni � ni ¼ 0 ð66Þ

XN

i¼1

½ _�p � _jp � r0�i � ni � ni ¼ 0 ð67Þ
6. Tilt boundaries and two-dimensional triple junctions

To illustrate the above results, let us consider a distribution of
pure wedge disclinations and edge dislocations, as exemplified in
(Fressengeas et al., 2011). In an orthonormal reference frame
ðe1; e2; e3Þ, let the disclination tensor be: h ¼ h33e3 � e3, all compo-
nents other than h33 being zero. Hence, the Frank vector of the
wedge disclination distribution is X ¼ h33e3 per unit surface, while
its line vector is e3. In this simple setting, the continuity condition
(33) implies: h33;3 ¼ 0. Thus, the wedge disclination density h33 de-
pends only on the coordinates ðx1; x2Þ : h33 ¼ h33ðx1; x2Þ. In compo-
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nent form, the rotational incompatibility Equation (31) reads:
hij ¼ �ejkljp

il;k ¼ ejklje
il;k. In the present case, it reduces to:

h33 ¼ jp
31;2 � jp

32;1 ¼ je
32;1 � je

31;2 ð68Þ

Hence the only relevant elastic and plastic curvatures are:
ðje

31;je
32Þ and ðjp

31;j
p
32Þ. A plane dislocation distribution involving

the edge densities a13 and a23 : a13 ¼ a13ðx1; x2Þ; a23 ¼ a23ðx1; x2Þ
is consistent with this disclination distribution, in the sense that
it allows satisfying the equilibrium and continuity equations (Fres-
sengeas et al., 2011). If the other dislocation densities are absent at
initial time, they are also dynamically consistent, meaning that the
dislocation and disclination transport equations can be consis-
tently satisfied. Further, transport of these edge dislocations in
the plane ðe1; e2Þ induces a plane plastic strain state ð�p

11; �
p
12; �

p
22Þ,

with the strain rates:

_�p
11 ¼ �a13Va

2 ð69Þ

_�p
12 ¼ _�p

21 ¼
1
2

a13Va
1 � a23Va

2

� �
ð70Þ

_�p
22 ¼ þa23Va

1 ð71Þ

The relations (69), (71), where the terms Va
i ði ¼ 1;2Þ denote the

components of the dislocations velocity, indicate that non-glide
motion of the edge dislocations ða13;a23Þ, e.g. climb, is involved
in the extension rates ð _�p

11; _�p
22Þ, whereas glide is responsible for

_�p
12 in Eq. (70) (Fressengeas et al., 2011).

Assume now that an interface I is existing between the crystals
ðD�;DþÞ, with normal n ¼ e2 oriented from D� toward Dþ. Provi-
sionally, let us also allow the possible existence of surface-disloca-
tion and surface-disclination distributions ðaðIÞ; hðIÞÞ in the
interface. Then, specializing Eq. (46), any tangential discontinuity
of the elastic curvature along the interface: ½je

31� is found to be
accommodated by a wedge surface-dislocation density h33ðIÞ:

½je
31� ¼ h33ðIÞ ð72Þ

However, if continuous modeling of the boundary is attempted and
surface-disclinations discarded, this relation transforms into the the
tangential continuity condition:

½je
31� ¼ 0 ð73Þ

while, according to Eq. (48), a normal discontinuity ½je
32� may exist:

½je
32� ¼ ½w� ð74Þ

where ½w� sets the disorientation of the crystals ðD�;DþÞ across the
interface. Hence, the latter appears to be representing a tilt bound-
ary. The discontinuity (74) implies that the continuity demanded in
writing Eq. (68) does not exist at the interface. Thus, discontinuity
of the disclination density h33 may occur at the interface. In the
presence of disclinations, Eq. (68) allows describing how the disori-
entation ½w� continuously evolves along the interface.

If the reference point is chosen in the interface, such that r0 ¼ 0,
specializing Eq. (54) shows that any tangential discontinuity of the
elastic strain across the interface is accommodated by edge sur-
face-dislocations a13ðIÞ and a23ðIÞ:

½�e
11� ¼ �a13ðIÞ ð75Þ

½�e
21� ¼ �a23ðIÞ ð76Þ

However, if continuous modeling prevails, Eqs. (75), (76) reduce
to:

½�e
11� ¼ 0 ð77Þ
½�e

21� ¼ 0 ð78Þ
Analogous relations are obtained from Eq. (61) for the plastic strain
rates:

½ _�p
11� ¼ 0 ð79Þ

½ _�p
21� ¼ 0 ð80Þ

These relations indicate that the plastic shear strain rate and
extension rate along the interface must be continuous at the inter-
face. According to Eq. (69), preventing the non-glide motion of a13

edges across the interface is sufficient to fulfill Eq. (79). Possible
occurrence of a normal discontinuity of the plastic strain rate ten-
sor is written as:

½ _�p
22� ¼ ½ _v� ð81Þ

where ½ _v�may be non-zero. Together with Eq. (71), this relation im-
plies that discontinuity of the non-glide motion of a23 edges along
the interface, e.g. by climb or atom shuffling, is consistent with
the continuity conditions on the plastic strain rate.

Let us now consider a two-dimensional triple junction built
from the intersection of tilt boundaries where the dihedral angles
and lattice orientation angles with respect to the e1 axis are de-
noted with bi and /i (i 2 f1;3g), respectively (see Fig. 2). The disori-
entation between grain i and grain j and the orientation angle of
their interface I ij with respect to the e1 axis are respectively de-
noted with ½wij� and bij (8ði; jÞ 2 f1;3g), while the angle between
the lattice orientation of grain i and the interface I ij is taken as
rij½wij�, with 0 6 rij 6 1. It is seen in Fig. 2 that the orientation angles
of the boundaries are:

b12 ¼ r12½w12� þ /1 ð82Þ
b23 ¼ r23½w23� þ ½w12� þ /1 ð83Þ
b31 ¼ r31½w31� þ ½w23� þ ½w12� þ /1 ð84Þ

while the dihedral angles are:

b1 ¼ ð1� r31Þ½w31� þ r12½w12� ¼ 2p� ðb31 � b12Þ ð85Þ
b2 ¼ ð1� r12Þ½w12� þ r23½w23� ¼ b23 � b12 ð86Þ
b3 ¼ ð1� r23Þ½w23� þ r31½w31� ¼ b31 � b23 ð87Þ

In addition, Fig. 2 shows that:X
ij¼12;23;31

½wij� ¼ 2p ð88Þ

Eq. (88) reflects the closure relation: R31 � R23 � R12 ¼ I, where I
denotes the identity matrix, between the rotation matrices Rij

transforming grain i into grain j:

Rij ¼
cos½wij� �sin½wij� 0
sin½wij� cos½wij� 0

0 0 1

0
B@

1
CA ð89Þ

The analysis shown above in Eqs. (72)–(74) for the generic
interface I is now reproduced in a local orthonormal frame
ðu1;u2; e3Þ for each of the three interfaces I ij, with ðu1; e3Þ as the
plane of the interface and n ¼ �u2 as its normal directed from
grain i to grain j. Written in components of the elastic curvature
tensor in the local frame of the interface I ij, the results correspond-
ing to Eqs. (72), (74) are:

½je
31�ij ¼ h33ðI ijÞ ð90Þ
½je

32�ij ¼ �½wij� ð91Þ

all the other components of the matrices ½je� being zero. Rotating
these matrices to project Eq. (62) on the common reference frame
ðe1; e2; e3Þ, it is found that:X
ij¼12;23;31

½wij�sinbij þ h33ðI ijÞcosbij ¼ 0 ð92Þ



Fig. 2. Schematic of the triple junction geometry.
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X
ij¼12;23;31

� ½wij�cosbij þ h33ðI ijÞsinbij ¼ 0 ð93Þ

With Eqs. (88), (92), (93) set a system of algebraic linear equa-
tions for the three unknowns ½wij�. As a first step in the solution of
this system, assume tangential continuity of the elastic curvature
at all interfaces: 8ij; h33ðI ijÞ ¼ 0, as required in a continuous model.
With a non-zero determinant D ¼ sinðb23 � b31Þ þ sinðb31 � b12Þþ
sinðb12 � b23Þ ¼ �ðsinb1þ sinb2 þ sinb3Þ, the solutions are such that:

½w12�
sinb3

¼ ½w23�
sinb1

¼ ½w31�
sinb2

¼ 2p
sinb1 þ sinb2 þ sinb3

ð94Þ

Eq. (94) is a sine law, formally similar to the Herring equation
between the interfacial free energies and dihedral angles (Herring
et al., 1951). However, it is not a force balance equation. Its mean-
ing is that triple junctions with dihedral angles bi; i 2 f1;2;3g and
disorientations ½wij� fulfill rotational compatibility. In particular,
when all dihedral angles are bi ¼ 2p=3; 8i 2 f1;2;3g, Eq. (94) leads
to: 8ij; ½wij� ¼ 2p=3. This case corresponds to a compatible triple
junction with three-fold symmetry. In the context of singular mod-
eling, the algebraic system of Eqs. (88), (92),(93) may be used to
obtain information on the surface-disclinations needed to accom-
modate arbitrary disorientations ½wij� in a triple junction with dihe-
dral angles bi. The disorientations are, in the presence of surface-
disclinations at the interfaces:

½w12� ¼
2psinb3þh33ðI12Þðcosb2�cosb1Þþðh33ðI23Þ�h33ðI31ÞÞð1� cosb3Þ

sinb1þ sinb2þ sinb3

ð95Þ

½w23� ¼
2psinb1þh33ðI23Þðcosb3�cosb2Þþðh33ðI31Þ�h33ðI12ÞÞð1� cosb1Þ

sinb1þ sinb2þ sinb3

ð96Þ

½w31� ¼
2psinb2þh33ðI31Þðcosb1�cosb3Þþðh33ðI12Þ�h33ðI23ÞÞð1� cosb2Þ

sinb1þ sinb2þ sinb3

ð97Þ
However, inverting these relations for the surface-disclinations is
not possible, because the involved determinant D:

D ¼ ðcosb3 � cosb2Þðcosb1 � cosb3Þðcosb2 � cosb1Þ
þ ð1� cosb1Þð1� cosb3Þðcosb1 � cosb3Þ
þ ð1� cosb2Þð1� cosb3Þðcosb3 � cosb2Þ
þ ð1� cosb1Þð1� cosb2Þðcosb2 � cosb1Þ ð98Þ

is zero. As an example, consider arbitrary variations ½dwij� from the
disorientations ½wij� ¼ 2p=3 obtained in the three-fold symmetric
triple junction. Then, Eqs. (95)–(97) become:
ffiffiffi
3
p
½dw12� ¼ h33ðI23Þ � h33ðI31Þ ð99Þ

ffiffiffi
3
p
½dw23� ¼ h33ðI31Þ � h33ðI12Þ ð100Þ

ffiffiffi
3
p
½dw31� ¼ h33ðI12Þ � h33ðI23Þ ð101Þ

Clearly, only differences in the surface-disclination densities are
available from Eqs. (99)–(101). Hence, from singular modeling
analysis, any arbitrary variation from the disorientations in a com-
patible triple junction can be accommodated by surface-disclina-
tions, but the densities of the latter are known up to a constant.
In continuous modeling, departures from the compatible disorien-
tations are accommodated in a finite-width layer across the inter-
face by bulk disclination densities.

We now contemplate fulfilling the compatibility condition (67)
on the normal discontinuities of the plastic strain rates at the triple
junction. In the local frame of interface I ij, the relations reflecting
tangential continuity and normal discontinuity of the plastic strain
rate tensor, and corresponding to Eqs. (79)–(81) are:

½ _�p
11�ij ¼ 0 ð102Þ
½ _�p

21�ij ¼ 0 ð103Þ
½ _�p

22�ij ¼ �½ _v�ij ð104Þ

where ½ _v�ij may be non zero, the other components of the matrices
½ _�p�ij being zero in the local reference frame. Rotating these matrices
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to project Eq. (67) in the common reference frame ðe1; e2; e3Þ, it is
found that:X
ij¼12;23;31

½ _�p
22�ijsin2bij ¼ 0 ð105Þ

X
ij¼12;23;31

½ _�p
22�ijsinbijcosbij ¼ 0 ð106Þ

X
ij¼12;23;31

½ _�p
22�ijcos2bij ¼ 0 ð107Þ

Choosing for convenience b12 ¼ 0, without loss of generality, it
is found that the determinant D of this homogeneous set of
algebraic linear equations, where the unknowns are the three
extension rate discontinuities ½ _�p

22�ij; ij ¼ 12;23;31, is D ¼ sinb1

sinb2sinb3. Since D is usually non-zero, the unique solution to
Eqs. (105)–(107) is: ½ _�p

22�ij ¼ 0; ij ¼ 12;23;31. Therefore normal
continuity of the plastic strain rate tensor is generally required at
such triple junctions, in addition to tangential continuity. In con-
nection with Eq. (81), the interpretation of this result in terms of
dislocation mobility is that non-glide motion along the interfaces
is generally not kinematically allowed at compatible triple junc-
tions. The exception to this rule is met when one of the dihedral
angles is equal to p, say b2 ¼ p. Then a non-zero solution to Eqs.
(105)–(107) is existing: ½ _�p

22�31 ¼ 0; ½ _�p
22�12 ¼ �½ _�

p
22�23 – 0, which

indicates that non-glide motion of dislocations along the straight
interface ðI12; I23Þ is still possible at the triple junction (see Fig.2)

7. Conclusion

In the present paper, the continuous vs discontinuous character
of the elastic/plastic curvature & curvature rate, and strain & strain
rate tensors is examined at surfaces of discontinuity, typically
grain boundaries in polycrystals. Tangential continuity of these
tensors is derived from the conservation of the Burgers and Frank
vectors over patches bridging a smooth interface, in the limit
where such patches collapse onto the interface, whereas normal
discontinuity is allowed. This kinematic constraint implies spatial
correlation between neighbor grains on either sides of the interface
and confers nonlocal character to the description of the interface,
because limiting values of the tangential components from the left
of the interface must equal their counterparts from the right. Using
the tangential continuity condition also implies that grain bound-
aries are viewed as having a finite thickness. However, this condi-
tion stops short of providing a characteristic thickness, or a length
scale for the extent of the spatial correlations in neighboring
grains. Such a characteristic length scale may be obtained from
experiments, by analyzing the spatial correlations in the misorien-
tations between neighbor grains (Beausir et al., 2009), or from the
dynamics of dislocation and disclination densities in a complete
field theory (Fressengeas et al., 2011). In the numerical implemen-
tation of this theory in polycrystals, using for example the finite
element method, the tangential continuity of the plastic strain rate
and curvature rate tensors at grain boundaries may be seen as a
penalty condition for the dynamics of the field variables. By con-
straining the plastic strain and curvature rates along interfaces,
tangential continuity does have significant consequences on their
spatial distribution and development in time. Earlier work in the
(more restricted) framework of the theory of dislocation fields
showed indeed that, in a rigid viscoplastic setting for the simula-
tion of rolling textures of f.c.c. materials, similar constraints on
the plastic distortion rate result in an overall texture weaker than
in local models and a b fiber that is more consistent with experi-
mental observations (Mach et al., 2010). Similarly in metal matrix
composites, a Bauschinger effect and a particle size effect on
particle-strengthening were demonstrated to originate solely in
the tangential continuity of the plastic distortion rates at
particle–matrix interfaces (Richeton et al., 2011). By incorporating
disclinations in the analysis and introducing separately constraints
on the plastic curvature rates and plastic strain rates, the present
tangential continuity conditions address more specifically the
description of grain-boundary mediated plasticity in nanocrystal-
line materials, through mechanisms such as dislocation emission
and absorption or grain rotations. Grain boundary migration will
be treated in future work by considering interfaces that can move
with respect to the material.
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