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ABSTRACT
A finite-dimensional complex space with indefinite scalar product |-, -] having
v— = 2 negative squares and v4 > 2 positive ones is considered. The paper

presents a classification of operators that are normal with respect to this prod-
uct. It relates to the study by Gohberg and Reichstein in which the similar
classification was obtained for the case v = min{v_, vy} = 1.

1. INTRODUCTION

Consider a complex linear space C™ with an indefinite scalar product
[ ,:]. By definition, the latter is a nondegenerate sesquilinear Hermitian
form. If the ordinary scalar product (-,-) is fixed, then there exists a non-
degenerate Hermitian operator H such that [z,y] = (Hz,y) Vz,y € C™. If
A is a linear operator (4: C™ — C™), then the H-adjoint of A (denoted by
Al is defined by the identity [AMz,y] = [z, Ay] (hence AM = H~1A*H).
An operator N is called H-normal if NN¥ = NN, an operator U is
called H-unitary if UUP = I, where I is the identity transformation.

Let V be a nontrivial subspace of C™. V is called neutral if [x,y] = O for
all ,y € V. In this case we may write [V, V] = 0. V is called nondegenerate
if from x € V and Vy € V [z,y] = 0 it follows that 2 = 0. The subspace
VI is defined as the set of all vectors € C™: [z,y] =0 Yy € V. If V is
nondegenerate, then V4 is also nondegenerate and V4V = C™.

A linear operator A acting in C" is called decomposable if there exists a
nondegenerate subspace V C C™ such that both V and V! are invariant
for A. Then A is the orthogonal sum of Ay = Aly and As = Alyu. Since
the conditions AV C VI and AMV C V are equivalent, an operator
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A is decomposable if there exists a nondegenerate subspace V which is
invariant both for A4 and AM.

Pairs of matrices {41, H1} and {A2, H;}, where H; and Hs are Hermi-
tian, are called unitarily similar if Ay = T7YA,T, Hy = T*H,T for some
invertible T'; in the case when H; = H, they are Hi-unitarily similar.

Throughout what follows by a rank of a space we mean v = min{v_,vy},
where v_ (v4) is the number of negative (positive) squares of the quadratic
form [z, z], or (it is the same) the number of negative (positive) eigenvalues
of the operator H. Note that without loss of generality it can be assumed
that v_ < vy (otherwise H can be replaced by —H; the latter [invertible
and Hermitian operator| has opposite eigenvalues).

Our aim is to obtain a complete classification for H-normal operators
acting in the space C™ of rank 2, i.e., to find a set of canonical forms such
that any H-normal operator could be reduced to one and only one of these
forms. This means that for any invertible Hermitian matrix H with v = 2
and for any H-normal matrix N we must point out one and only one of the
canonical pairs of matrices {N, H } such that the pair {N, H} is unitarily
similar to {N, H}.

Since any H-normal operator N: C® — C™ is an orthogonal sum of
H-normal operators each of which has one or two distinct eigenvalues
(Lemma 1 from [1]), it is sufficient to solve our problem only for inde-
composable operators having one or two distinct eigenvalues.

Thus, in this paper we consider only indecomposable operators having
one or two distinct eigenvalues and assume that 2 = v_ < v,

Finally let us introduce some notation. Denote the identity matrix of
order r X r by I, the r x r matrix with 1I’s on the secondary diagonal
and zeros elsewhere by D,., and a block diagonal matrix with A, B,...,C
diagonal blocks by A@B®--- & C:

1 0 0 1
Irz y Dr= ’
0 1 1 0
A 0
A®Bag---aC B
0 C

2. SOME PROPERTIES OF INDECOMPOSABLE
H-NORMAL OPERATORS

The results of this section hold for any finite-dimensional space with
indefinite scalar product.
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PROPOSITION 1. Let an indecomposable H-normal operator N acting
in C™ (n > 1) have the only eigenvalue X; then there exists a decomposition
of C™ into a direct sum of subspaces

So={zeC": (N-A)z=(NW_-XIz =0}, (1)

S, S1 such that

N = 0 N1 * 5 H = 0 H1 0 , (2)
0 0 N'=) I 0 0

where N': Sg — Sp, Ni: § — S, N": S; — 81, the internal operator
N1 is Hy-normal, and the pair {N1, H1} is determined up to the unitary
stmilarity.

Proof. Since N and NI commute, the subspace So defined by (1)
is nontrivial. For N to be indecomposable Sy must be neutral. Indeed,
otherwise Jv € Sp: Nv = Av, NI =, [v,v] # 0; therefore, V = span{v}
is a nondegenerate subspace that is invariant both for N and N and
hence, N is decomposable. Thus, Sy is neutral. Let us take advantage of
the following well-known result: for any neutral subspace Vi C C™ there
exists a subspace Vo (V3 N V5 = {0}) such that

0 I
Hl(VH-VZ): (I 0)' (3)

Therefore, for Sy there exists a neutral subspace S; such that H| (S04 S1)
has form (3). Since the subspace (Sp +S;) is nondegenerate, the subspace
S = (Sp + S1)H is also nondegenerate and C™ = Sy + S+ 8;. As Vv € C*
(N - Xv ¢ S([,l] and (N — XI)v € S§!, the matrices N and H has
form (2) with respect to the decomposition C* = Sy + S + S;. Since N is
H-normal, the internal operator Ny is Hj-normal.

It is seen that only the subspace Sy is fixed; S and S; may change.
However, the pair { Ny, H } is unique in a sense, namely, it is determined up
to the unitary similarity. Indeed, any transformation T such that T'Sy C So
has the form

T, T, Ty
T=[0 Ty Ts
0 Ts Ty
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Since
0o I
H=|o H o],
I 0

from condition H = T*HT it follows that Tg = 0, fIl = TyH1Ty. As
N=T- INT, N1 =T, 1Ny Ty so that the pair {N1, H} is unitarily similar
to {N1 s Hl} |

REMARK. The decomposition C™ = Sp + S + 5 was constructed in [1,
Section 6] so that the first part of this statement is borrowed from [1].

COROLLARY. To go over from one decomposition C" = Sy + S+ 51 to
another by means of a transformation T it is necessary that T would be
block triangular with respect to both decompositions.

THEOREM 1. If an H-normal operator N acting in a space C™ of rank
k > 1 is indecomposable, then either (A) or (B) holds:

(A) N has two eigenvalues and n = 2k;
(B) N has one eigenvalue and 2k < n < 4k.

Proof. First show that n > 2k. Indeed, n = v_+v; > 2min{v_,v;} =
2k. Now prove (A). Let N have two distinct eigenvalues. Then, according
to Lemma 1 from [1], C™ is a direct sum of two neutral subspaces of the
same dimension m which are invariant for N and N Since in a space
with indefinite scalar product no neutral space can be of dimension more
than rank of a space, m < k and n < 2k. But it was established before that
n > 2k. Hence, n = 2k and the proof of (A) is completed.

Now prove (B); i.e., show that if N has one eigenvalue, then n < 4k. For
k = 1 the proof is given in [1, Theorem 1]. Suppose inductively that for
all i < k the size of indecomposable operators having one eigenvalue is not

more than 4i x 4i. Let v_ = k + 1, vy > v_, N have the only eigenvalue
A. According to Proposition 1, one can assume that the matrices N and
H have form (2). Let Ny = 1 éB @ N; P he a decomposition of the

internal operator N1 into an orthogonal sum of indecomposable operators,
and let H; = H ). - @ H;p ®) , 8 =850 g...0 8P be the corresponding
decompositions of H; and 5. Let v be the number of negative eigenvalues
olel) (i=1,...p). If dim Sy = s, then }_? lvl) =k+1—s. Let

H = > HY, =3 HP.

v®>0 v®=0
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Then Hy = H; ® H{, Ny = N{ ® N{, where N{, N{' are the corresponding
sums of operators N. ) Gince for any i = 1,...,p rank of the subspace Sﬁi)
is not more than v(_i}, U(_i) < k (because k + 1 — s < k), and the size of an
indecomposable operator in a space of rank 0 is equal to 1, by the inductive
hypothesis dim S® < 41)@; hence dim S’ < 4(k+1—s). Since H{ has only
positive eigenvalues, N{ is a usual normal operator having one eigenvalue
A; therefore, N{' = AI so that

A o+« My ox Moo+ My *
7 TI[*]
wol o Moo s g o AT o
0 0 A = 0 0 A o=
0 0 0 A 0 0 0 XI
If dim 5 = 7 > 23, then the system
MiX =0
M;X =0
has a nontrivial solution X = (z1,...,z,)T (where Y7 is Y transposed).

Therefore, there exists a nonzero vector v = Y ;_, z;w; (w; are the basis
vectors of S”) that satisfies the condition (N — Al)v = (NM — XIv = 0,
ie, v € Sp. But So NS = {0}. This contradiction proves that dim S”
2s. Thus, n = 2dim Sy + dim §' + dim S” < 2s + 4(k+1 — 5) + 2s
4(k+1).

Since an indecomposable operator cannot have more than two eigenval-
ues [1, Lemma 1], either (A) or (B) is true so that the proof of the theorem
is completed. =

IA

I

3. THE CLASSIFICATION OF INDECOMPOSABLE
H-NORMAL OPERATORS

The principal aim of this paper is to prove the following result:

THEOREM 2. If an indecomposable H-normal operator N (N: C" —
C™) acts in a space with indefinite scalar product with v_ = 2 negative
squares and vy > 2 positive ones, then 4 < n < 8 and the pair {N,H} is
unitarily similar to one and only one of canonical pairs {{4),(5)}~-
{(31), (32)}. The choice of the particular canonical form is determined as
follows.
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If N has two distinct eigenvalues Ay, A2, then {N, H} is unitarily similar

to {(4), (5)}:

A1 0 0
0 XX O 0
N = , rel,
0 0 X O
0 0 x )\2

Im{/\l - )\2} >0 szm{)\l - /\2} 75 0,
Re{A;1 — A2} >0 otherwise,

0 I
H = . 5
(12 0 ) ®
If N has one eigenvalue A, dim Sy = 1, the internal operator Ni is inde-
composable, and n = 4, then {N, H} is unitarily similar to {(6),(7)}:

forz # 0[ (4)

A1 irp irpz
0 X =z 0

N = o 0 2 | |z =1, r1,m2 € R, (6)
0 0 O A

H = D,. (M)

If N has one eigenvalue A, dim Sy = 1, Ny is indecomposable, and n = 5,
then {N, H} is unitarily similar to one and only one of pairs {(8), (11)},

{(9), A1)}, {(10), (11)}:

A1 0 0 irs
0 X 1 iry —2r}+ir
N=10 0 x 1 2iry , ry1,T9, T3 € R, (8)
0 0 0 A 1
0 0 0 O A
A1 0 O irs
0 A z rp —22%r}Im?z 4 iry2? |z] =1, z #1,
N=]0 0 X\ =z —2ir122Im 2z , O<argz<m, (9)
0 0 0 X 22 T1,72,73 € R,
0 0 0 O A
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A1 0 O T3
0 A i 7 2r¥+ir
N=}10 0 X 1 2try , r1,T2,73 € R, (10)
0 0 0 -1
0 0 0 O A
H = Ds. (11)

If N has one eigenvalue A\, dim Sy = 1, N1 is decomposable, and n = 4,
then {N, H} is unstarily similar to one and only one of pairs {(12), (15)},

{(13), (15)}, {(14),(15)} :

A1 0 0
0 X 0 =z

N = =1 12
A R EE (12
0 0 0 X
A1 1 0
0 X 0

N = _ , lzl=1, reR>0, (13)
0 0 X (1+ir)z
0 0 O A
A1l -1 0
0 A 0 z

N = . , [zl=1, re R >0, (14)
0 0 X ~(1+ir):z
0 0 0 A

H = D,. (15)

If N has one eigenvalue A, dim Sy = 1, N7 is decomposable, and n = 5,
then {N, H} s unitarily similar to {(16), (17)}:

A1 0 3ri4irp O
0 A O z 0
N=]10 0 X 0 r |, |zl =1, ri,72 € R, 11 >0, (16)
0 0 0 A z2
0 0 O 0 A

H = Ds. (7)
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If N has one eigenvalue A,dim Sy = 1, Ny is decomposable, and n = 6,
then {N, H} is unitarily similar to one and only one of pairs {(18), (20)},
{(19), (20)}:

Al 2irp 0 O 0
0 X 1 4rp 0 2r2—7r2/2+ir3
0
N = 0 A 1 0 0 ,
0 0 0 A0 1
0 0 O 0 A 79
0 0 0 0 0 A
71,72 € §R, ro > 0, (18)
A1 —2irpImz 0 O 0
0 A P r1 0 (2r}Im®z — r2/2 + ir3)2?
0 0 A 0 0
N= K ,
0 0 0 A0 P
0 0 0 0 A Ty
0 0 0 0 0 A
lz| =1, 0<argz <m, ri,m2,73 € R, 72 >0, (19)
0 0 0 I
0 D3 0 0
H= . 20
0 0 I 0O (20)
L 0 0 0

If N has one eigenvalue )\, dim Sy = 2, and n = 4, then {N, H} is unitarily
similar to one and only one of pairs {(21),(23)}, {(22),(23)}:

A0 2z remin/3
0 X 0 in/3 =1, reR >3,
N= ez | B=LreR2v3 (21)
0 0 X 0 Ogargz<7rzfr>\/§,
0 0 O A
A0 0 O
0O A 1 0
N= , (22)
0 0 A O
0 0 0 A
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0 I
H:(I2 0). (23)

If N has one eigenvalue A, dim Sp = 2, and n = 5, then {N, H} is unitarily
similar to one and only one of pairs {(24), (26)}, {(25), (26)}:

A0 1 00
0 X010
N=j0 0 X z 0], 2| = 1, (24)
0 0 0 X O
00 0 0 A
A0 1 0 0
0O X 0 r =z
N=]10 0 X 22 01}, lz2l =1, TeR >0, (25)
0 0 O 0
00 0 0 X
0 0 I
H=|0 L, 0]. (26)
I, 0 0

If N has one eigenvalue A, dim Sy = 2, and n = 6, then {N, H} is unitarily
simalar to {(27),(28)}:

A0 1 0 iy O

0 X 0 1 7o ir

00 X0 2z O lz| =1, 2z # -1, .
N = : (27)

0 0 0 A O 1,79 € R, ro >0,

0 0 00 X O

0O 0 0 0 O

0 0 I
H=|0 I, 0. (28)

I, 0 O
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If N has one eigenvalue X\, dim Sy = 2, and n =7, then {N, H} is unitarily
similar to {(29), (30)}:

A 01 00 0 0

0 X 01 0 0 0

0 0 A 0 0 —zzZzcosax sinacosf
N=]|]0 0 0 x 0 z1sina zpcosacos 3 |,

0 0 0 0 X 0 sin (3

0 0 0 0O A 0

0 0 0 00 0 A

,zll = IZzl :1, 0<a,ﬂ_<_7r/2,

nn=1iff=n/2, z2=1 if a =m/2, (29)
0 0 I,

H=|0 I o{. (30)
I, 0 O

If N has one eigenvalue A\, dim Sy = 2, and n = 8, then {N, H} is unitarily
similar to {(31), (32)}:

A0 1 0 0O 0 0
¢ X 01 0 0 0 0
0 0 A 0 0 0 —zZzsinacosf cosacosy
N = 0 0 0 X 0 O Z1 cos @ cos 3 2y sin v cosy
00 00 X0 sin 8 0 ’
0 0 0 0 0 A 0 sin-y
0 0 0 0 0O A 0
0 00 0 0O 0 A

|z1|:IZ2|=1,OSQ<7T/2,O<ﬂ<’YS7T/21

zi=1lify=7/2, =1 if a=0 (31)
0 0 I

gH=[0 1, 0. (32)
I 0 0

The following sections contain the proof of this theorem.
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4. TWO DISTINCT EIGENVALUES OF N

- Suppose an indecomposable H-normal operator N has two distinct eigen-
values. Then [1, Lemma 1] C" = Q;+ Qy, dim @) = dim Q; = m,
[Q1,Q1] =0, [Q2,Q2) =0, NQ; C 1, NQ2 C 92, Ny = Nlg, (N =
N]g,) has only one eigenvalue A\; (\z). According to Theorem 1, m = 2
and n = 4. Note that the subspaces @; and Q, are determined up to in-
terchanging. Since N is indecomposable, at least one of the operators Ny,
N, is not scalar. Consequently, one can assume Ny # Al. If both N} and
N are not scalar, then we can fix Im{A; ~ A} > 0 iff Im{A; — A2} # 0 and
Re{A1 — A2} > 0 if Im{A; — Az} = 0 (let us remember that Ay # A2). Now
9, and Q5 are determined uniquely.

As H is nondegenerate, for any basis in ©Q; there exists a basis in Qy

such that
(7 o)
H = .
I 0

Let us fix a basis in Q; such that

Ny = (’Bl /\11) (33)

N is H-normal if and only if
NiNy* = No" Ny, (34)

From (34) it follows that N3 = aNy + 8I. As N, = &N} + B has the only
eigenvalue Az, we conclude Ny = Aol + (N} — M\ I) (z € C). Thus, we
have reduced N to the form

N (M NYe (™ 0> Xe (35)
B 0 /\1 T /\2 ' * .
Show that forms {35) with different values of x are not H-unitarily similar.
To this end suppose that some matrix T" satisfies the conditions

NT =TN, (36)
T =1, (37)

where N = Ny & N2, N = Ny @ N3, Ny has form (33),

N (R0 N_(AQ 0)
L I & 2T\ NS
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From (36) it follows that T is block diagonal with respect to the de-
composition C® = Q1+ Qy: T = T & Ty, T} satisfying the condition
Ny =Ty YN, Ty. Taking into account (37), we get T, = T} ~1. therefore,
Ny = Tz_lNsz = Ny, ie., T =1z

It can easily be checked that (35) is indecomposable so that we have
proved the following lemma:

LEMMA 1. If an indecomposable H-normal operator acts in a space C™
of rank 2 and has two distinct eigenvalues A1, Ag, then n = 4 and the pair
{N, H} is unitarily similar to canonical pair {(4), (5)}:

A1 000
0 A 0 0
N = s Tc Ca
0 0 X O
0 0 x )\2
Im{)\l - )\2} >0 Zf Im{)\l — )\2} 76 O,
forz #£0 .
Re{A1 — A2} >0 otherwise,

0 I
H= ,
I, 0
where the number x forms a complete and minimal invariant of the pair
{N, H} under the unitary similarity (in short, we say that x is an H-unitary
invariant). In other words, every pair {N,H} satisfying the hypothesis of

the lemma is unitary similar to pair {(4),(5)} and pairs {(4),(5)} with
different values of x are not H-unitarily similar to each other.

5. ONE EIGENVALUE OF N

Throughout what follows we assume that N has only one eigenvalue A so
that N and H have form (2). Since the neutral subspace S; cannot be more
than two dimensional, there appear two cases to be considered: dim S = 1
and dim Sy = 2. Now let us prove the following proposition which holds
for all spaces with indefinite scalar product:

PROPOSITION 2.  An H-normal operator such that dim Sp = 1 is inde-
composable.

Proof. Assume the converse. Suppose some nondegenerate subspace V'
is invariant both for N and for N[*. Let us denote Vi = V, Vo = VI
N; = Ny, Na = N|y,, H1 = H|v,, H2 = H|v,. The following conditions
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must hold: NlNl*] = N{"] Ny, NgNé*] = Né*] N3. Here Ni[*] is the H;-adjoint
of N; (i = 1,2). Let us define

Sy={zeVi: Ni=ADz= (N -3n)z =0}, =12

Since the operators Ny and NI*' (N, and N[} commute, dim S} > 1
(i = 1,2); therefore, dim{So = S} + S2} > 2. This contradicts the condition
dim Sy = 1. Thus, N is indecomposable. [ |

If dim Sy = 1, then rank of S is equal to 1; therefore, to classify the
internal operator N1 we may apply Theorem 1 from [1]. Since the indecom-
posability (or decomposability) of Ny is a property that does not change
under the unitary similarity of the pair {N,, H;}, we must consider both
the case when N; is indecomposable and that when N; is decomposable.

5.1. dim Sp =1 and Ny is Indecomposable

If Ny is indecomposable, then, according to Theorem 1, 2 < dim § <4
(recall that rank of S is equal to 1). Therefore, 4 < n < 6. Let us consider
the alternatives n = 4,5, 6 one after another.

5.1.1. n=4 According to Theorem 1 of [1], one can assume that Ny
and H, are reduced to the form

Az
N1:~ Y y |Z|=1, H1=D2.
Hence
0 a b ¢
0 0 2z d
N -\ = , H = Dy.

0 0 0 e
0 0 0 O

Throughout what follows only H-unitary transformations are used unless
otherwise stipulated. This means that for each case we fix some form of the
matrix H and find out to what form it is possible to reduce the matrix N
without the change of H.

The condition of the H-normality of N is equivalent to the system

az = €z (38)
Re{ab} = Re{de}. (39)

If a = 0, then e = 0; therefore, the vector vy from S (v; are the basis
vectors) belongs to Sp, which is impossible. Thus, a # 0. Replace the
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vector v; by av; and vy by vy /@. This transformation reduces N — A\ to
the form

01 ¥ ¢
0 0 =z d
N -\ =
0 0 0 22
0 0 0 O
Further, apply the transformation
1 zd" 0 0
0 1 0 0
T =
0 0 1 —zd
0 0 0 1
to the matrix N — A\I. We obtain
0 1 bll CI/
00 2 o
N -\ =
0 0 0 22
0 0 0 0O

It follows from (39) that b” = iry (r; € R). Taking the transformation

1 0 izRe{c'z} 0

T 01 0 —3zRe{c"z}
0 0 1 0 '
0 0 0 1

we reduce N — AJ to the final form

0 1 iry iryz
0 0 =z

N-A=| 0o 2 |0 F=lLrumeR (40
0 0 o0 0

where 79 = Im{c"z}.
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Let us prove that the numbers z, r1, ry are H-unitary invariants. Indeed,
let T be an H-unitary transformation of the matrix N to the form N, where

0 1 irp 1rqz

~ 0 0 z 0

N-Al= . F =1, 7, eER
00 0 32 2 b2
0 0 O 0

This means that T satisfies conditions (36) and (37). From the corollary
of Proposition 1 it follows that T is block triangular with respect to the
decomposition C™ = Sy + S 4+ S;. According to Theorem 1 from [1], z is
an Hj-unitary invariant of N;. Ty = T|s is an H;-unitary transformation
of Nj to the form Ni; therefore, z is also an H-unitary invariant of N, i.e.,
Z = z. Applying condition (36), we see that T is uppertriangular and its
diagonal terms are equal to each other. From (37) it follows that |t1;] = 1.
Therefore, without loss of generality one can assume that t;; = 1 (we
replace our matrix T by the matrix 77 = £1,7T; the latter has the same
properties (36), (37)).

Thus,
1 t12 tiz t14
T 0 tog 124
0 O 1tz
0 0 0 1

For T to be H-unitary it is neccessary and sufficient to have

f3q +t12=0 (41)

o4 +taztia +t13 =0 (42)
Re t14 + Re{tiafia} = 0 (43)
Re t93 = 0, (44)

for T to reduce N to the form N it is neccessary and sufficient to have

taz + i1 = iT1 + 2t12 (45)
taq +iritas +iraz = T2z + 2°t1s (46)
zt34 = Z2t23. (47)

Express t34 in terms of ta3 from (47) and t12 in terms of ta3 from (45):
tag = 2tg3, tiz = Z(iry — i) + Ziez. Substituting these expressions in
(41), we get: 2Reta3 = (71 — 71). Since Retys = 0 (condition (44)),
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71 = r1. Further, let us express to4 in terms of ¢;3 and ¢93 (condition (46)):
ta4 = (iT2 — ire)z + z%t13 — ir;2t23. Then condition (42) can be written in
the form

(iT‘Q — 'LT~‘2) + zt13 + 2813 + irlig + |t23|2 =0.

As Retgs = 0, iryfa3 € R, consequently, zt13 + 2t13 + irifa3 + [t23|? € R.
But i{re — 73) € Q. Therefore, 7, = ry. Thus, the numbers z, 71, ry are
H-unitary invariants.

Due to Proposition 2 matrix (40) is indecomposable so that we have
proved the following lemma:

LEMMA 2. If an indecomposable H-normal operator N (N: C* — C*%)
has the only eigenvalue A\,dim Sy = 1, and the internal operator Ny is
indecomposable, then the pair {N, H} is unitarily similar to canonical pair

{(6),(N}:

A1 ir; irgz
0 A =z 0

N = 0 0 A 2 s ]lel, T1,7‘2€§R,
0 0 O A

H = D45

where z, 1,72 are H-unitary invariants.

5.1.2. mn =5 According to [1, Theorem 1], it can be assumed that the
pair {Ny, H1} has either form (48) or (49):

Az T

Ni=[0 X z], 2| =1, 0<argz<m, reR, H =Dz, (48)
0 0 A
A1 dr

Ni=[|0 X 1], reR, Hy = Ds. (49)
0 0 A

For a while we consider both the cases together, assuming that

!

A2 oz
Ni=|10 Xx 2], |Z|=1,0<argz <7, zeC.
0 0 A
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Then

The condition of the H-normality is equivalent to the system

o o o o O

o O O O 8

b ¢ d
Z T e
0 2z f
0 0 g
0 0 0

oz =g

af + bz’ =gz + f2'

2 Re{ac} + |b® = 2 Re{eg} + | fI*.

471

(50)
(51)
(52)

As above (see the case when n = 4), one can check that a # 0; hence a can
be assumed equal to 1, so g = 2. Having in mind these equalities, take

the (H-unitary) transformation

~

I
o O O O =
OO O -

It reduces N — AI to the form

S O = O

o O O O O

2’6 Z(c — z2'b)

o O O O

Now apply either the transformation

0

~

It
o o0 o o
o o o~

1
0
0

0

0
1
0

0 0 Red/(Rez?+1)

—1le — z2b)?

0
0

0 —2'(z~72'h)
1 i

0

N o
8 O
&

o o o
o o N
N\\
S 2

0
—Red'/(Rez? +1)
0
0
1

(2 #1)
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or
100 —3ilmd 0
010 0 —zilmd’
T=]0 01 0 0 (z' =1)
000 1 0
000 0 1

to the matrix N — AI. We get

01 0 0 i(Imd +Im{dZ})/(Rez?+1)
00 2 =z e
N-A=10 0 0 2 f (2" #1)
0 0 0 O 22
00 0 O 0
or
0 1 0 0 Red
00 i z €
N-XM=]0 00 ¢ [f (2 =1)
0 00 0 -1
0 00 0

Now we distinguish cases (48) and (49).

(a) 2/ =1, z =1ry (r € R). Conditions (51), (52) of the H-normality
of N yield: f' = 2ir;, ¢’ = —2rZ+irs. Denote (Im d’+Im{d’?2})/(Re 2%41)
by r3. We have

01 0 O irs
0 0 1 iry —2r%+ir
N-x=|000 1 2 |, ryrarse®R  (53)
0 0 0 O 1
0 0 0 O 0

There remains to check the H-unitary invariance of the numbers ry, 72, 73.
To prove this, let us suppose that some H-unitary matrix T reduces (53)
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to the form
010 0 i3
0 0 1 47 =272 +iry
N-xI=|00 0 1 2i7) . T1,T2,T3ER.
00 0 O 1
000 O 0

From condition (36) NT = TN it follows that T is uppertriangular with
diagonal terms which are equal to each other. According to [1, Theorem 1],
ry is an Hy-unitary invariant for Ny. We already know that in this case r;
must be an H-unitary invariant (see the previous case n = 4), i.e., 71 = ry.
For T to be H-unitary, i.e., to satisfy (37), |t11] must be equal to 1. There-
fore, as in case n = 4, one can assume that ¢1; = 1. Thus, T has the form

tig tiz tig iis

1
0 1 tas tog tos
T=10 o0 T (54)
0 0 0 1 tg
0 0 0 0 1

Condition (36) amounts to system (55)-(60), (37) to system (61)—(66):

tas = t12 (55)
tog = irit12 + tig (56)
tos +irg = it + (— 2r] + T2 )t12
+2irit1z + tig (57)
tag = to3 (58)
tas + iT1t4s + iry = irg + 2iT1t23 + t2g (59)
tas = t3a, (60)
tas 112 =0 (61)
tas + taat1z +t1z3 = 0 (62)
t25 + faat1a + t23tiz + 114 = 0 (63)
2 Re t15 + 2 Re{tiatia} + |t13> = 0 (64)
Tag +t23 =0 (65)

2 Re tag + |tas]? = 0. (66)
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Express t35 in terms of 33, ta4, t45 from (59) and substitute this expres-
sion in (62), taking into account that #12 = £33 = t34 = t45 and expressing
ta4 in terms of t;2 and t;3 from condition (56). We obtain iry — i7; =
2ir1t12 + 2 Re t13 + [t12[2. Since Rety = 0 (Eq. (61)), we have 2ir t;5 € R;
hence, the right-hand side of the condition obtained is real and the left one
is imaginary. Therefore, 72 = 73.

Since t13 = ta4 —irit12 (condition (56)), tos can be expressed in terms of
t12, ta4, and ty14 in the following way (see condition (57)): tos = i(F3 — 73)
+ iratia + 2irites + t14. By substituting this expression in (63), we get
irg — it3 = irafiz + ir1(2821 + [t12|?) + 2 Re{tiafza} + 2 Re t14. Because
of condition (66) ir;(2%31 + [t12|%) is real as well as the rest terms of the
right-hand side; hence, 73 = r3. We have proved the H-unitary invariance
of rq, rq, 3.

(b) 2’ =z, |2|=1,0 < arg z < m,x = r; € R. Applying conditions (51},
(52) of the H-normality of N, we get

01 0 O ir3
0 0 z r, —22%?%Im?z+iry2?
N-X=]0 0 0 =z —2ir12% Im 2z , 711,72, 713 € R (2 #£1)
0 0 0 22
0 0 0 O 0
or
01 0 O T3
0 0 i 1 2ri+ir
N-X=|0 0 0 1 2iry , r1,72, 73 € R (2 =1).
0 0 0 O -1
0 0 O 0

We join these cases, assuming that

01 0 O T
0 0 z 7 —22%3TIm? 2 +irp2?
N-XM=]0 00 =z —2ir1z%Imz ,
0 00 22
00 0 O 0
where
rg € R, z#1
=

—irg € § (r3 € R), z=1.
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Let us prove the H-unitary invariance of the numbers z, 71, 12, r3 (or ).
Suppose some matrix T realizes the H-unitary transformation of N to the
form N, where

010 0 it
0 0 2 7 —22%2Im%Z 4 irz?
N-XM={000 % ~2i7,22Im %
0 00 O 7?2
000 O 0

By Theorem 1 of [1], z and r; are Hj-unitary invariants; hence, they are
H-unitary invariants, i.e., Z = 2z, ¥; = r;. Further, from (36) it follows
that T' is uppertriangular with diagonal terms that are equal to each other.
Applying (37), we get that T" has form (54). Now condition (37) is equivalent
to system (61)—-(66), condition (36) to system (67)-(72):

tog = 2t1a (67)
tog = rit12 + 2t13 (68)
tos + 9T = 1T + (— 22%r2 Im?z + ingz)tlg
- 217‘122 Imz tlg + 22t14 (()9)
tag = tos (70)
Ztas + Titag + irez? = 17922 — 2ir122 Im 2 ty3 + 2%tos (71)
2tgs = 22t34. (72)

Express i35 in terms of tag, t24, t45 and, taking into account the equalities
tig = Ztog (67), tis = 7(t24 — Tltlg) (68), t3q4 = to3 (70), tys = ztog (72)
substitute the obtained expression in (62). After multiplying both sides by
Z, we have: (irp—ir3) = —2ir; Im zto3 -+t +E2a+|tes|? —71 (Ztaa +2te3). Since
Retas = 0 (65), the right-hand side of this equality is real. Consequently,
7"‘/2 = T9.

Now let us express t25 in terms of ta3, tog, t14 from (69): o5 = (T —
x) — 2r%z Im? 2 tog +irozteg —2iryzImz tog + 22'7"% Im 2z to3 + 2%t14. Rewrite
condition (63) in the form tos + tasfia + t23t1z + f14 = 0, multiply both
its sides by Z, and substitute the expression for tgs in it. We obtain:
i(z—I)Z= —2rf Im? 2 toz +irgtes — 2ir; Im 2 o4 + 2072 Tm 2 93 + 2814 +
Ft1a + toslog + toalas — 271 |tas|?. Since —2r?Im?z +2ir?ZImz = r?lmz
Rez and —2ir) Im ztyq — 712|t2s|® = r1(2RezRetas + 2Im 2Imtsy), the
right-hand side is real. Therefore, Im[iZ(z — )] = 0. If 2z % 4, then this
condition means (r3 — 73)Re z = 0; hence r3 = r3 because Rez # 0. If
2z = 4, then Imfi(r3 — r3)] = 0; hence we also get r3 = r3. This concludes
the proof of the H-unitary invariance of z, r{ 72, r3.
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Due to Proposition 2 all obtained forms are indecomposable. They are
not H-unitarily similar because their internal matrices N; are not H,-
unitarily similar due to [1, Theorem 1]. Thus, we have proved the following
lemma:

LEMMA 3. If an indecomposable H-normal operator N (N: C5 — C®)
has the only eigenvalue ), dim Sy = 1, and the internal operator Ny is
indecomposable, then the pair {N, H} is unitarily similar to one and only

one of canonical pairs {(8),(11)},{(9), (11)}, {(10), (11} }:

A1 0 O ir3
0 X 1 ir —27"% + 119
N=|0 0 X 1 2iry , r1,7T2,73 € R,
0 0 O 1
0 0 0 O A
A1 0 O irs
0 X z r —22%2Im®z + iry2? lz| =1, 2 # 4,
N=|0 0 X =z —2ir1z%2Im z , 0<argz<m,
0 0 0 A 2? r1,72,73 € R,
0 0 0 O A
A1 0 0 ra
0 A i 1 2ri+ir
N=|0 0 X i 2iry , T1,72,73 € R,
0 0 0 A -1
0 6 0 O A
H = Ds,

where z, T1, T2, 3 are H-unitary invariants.

5.1.3. n =6 In this case, according to [1, Theorem 1], the matrices
Ni and Hj can be written in the form

cosa sina

A 0
0 0 1
N 0 A o 1 0O<a<n/2, H 0L 0
= R <o T/l = 2
! 0 0 A0 !
1 0 O
0 O 0 X
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so that
0 a b c d e 000001
0 0 cosa sina 0 f 0 00 010
N ] = 0 0 0 0 1 g ’ H= 0 01 00O
0 0 0 0 0 h 000100
0 0 0 0 0 p 010 0 00O
0 0 0 0 0 0 1 00000
The condition of the H-normality of N is equivalent to the following system:
a=Tpcosc (73)
0 =psinc (74)

bcosa+csina =3
2 Re{ad} + |b)? + |c|* = 2Re{fD} + |9/® + |2

From (74) and the condition 0 < a < 7/2 it follows that p = 0. Then
from (73) we obtain also that a = 0. Hence, the vector v, € S belongs to
So, which is impossible. This contradiction proves that for indecomposable
operator N: C® — C8 dim Sj # 1.

Recall that if n > 6, then the operator Ny is always decomposable [1,
Theorem 1]. Thus, we have obtained the classification for all indecompos-
able operators N having also indecomposable internal operator N;.

5.2. dim Sy =1 and N, is Decomposable

If the operator N; is decomposable, then it can be represented as an

orthogonal sum of 1ndecomposable operators N; ) ey Nl(’J ), Ny =N 1) @
.o N® H =HY . @ H®). Without loss of generality it can be

assumed that H, ( ) has one negative eigenvalue. Denote H, (1) by Hs, N; )
by Na, H(2 @H(p) by Hs, N(2> EBN(” by N3. Since H3 has only
positive eigenvalues one can assume that Hs = I. N3 is a usual normal
operator having the only eigenvalue A; hence, N3 = AI.

Show that the size of N3 is equal to 1 x 1. Indeed, let dim V, = k,
dim V3 =1 > 1 (V, and Vj3 are the subspaces of S correspondmg to Ny and
Na, respectively), Vo = span{w?), wgz)’ .. )} Vy = span{w1 ), w§3), -
wl(B)}. Then, by the above,

A M1 M2 * X M3 M4 *
{x]
N 0 N 0 = , el 0 N; 0 = 7
0 0 M « 0 0 A
0 0 0 A 0 0 0 X
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where My = (a1,a2,...,ax), My = (by,b2,...,b), M3 = (c1,¢2,...,¢x),
My = (d1,da,...,d;). Because of the Hy-normality of N, dim Séz) >1
(562) ={z e Vo:(Na — M)z = (N;E*] ~ M)z = 0}); hence, without loss
of generality it can be assumed that w§2’ € SéQ) . Since { > 1, I{a;}7™
(7 ol # 0):

n
Zaibi +apt+1a1 =0 (75)
1

Z aidi + Ony1C1 = 0. (76)
1

Therefore, Jv = Y7 aiw,f3) + an+1w§2) #0: (N - v = (NM-XIw =
0; i.e., some nonzero vector from S belongs to Sy. This is impossible, so
dim V3 = 1.

As N, is indecomposable and rank of V; is less than or equal to 1,
dim Vo < 4 in accordance with Theorem 1. Thus, 1 < dim Vo < 4,
dim V3 = 1 so that 4 < n < 7. Consider the cases n = 4, 5, 6, 7 one
after another.

5.21. n=4 Thendim V, =1,dim V3 =1,

0 a b c 0 0 01

0 0 0 d 0 -1 0 O
N -AI = , H=

0 0 0 e 0 0 1 0

00 0 O 1 0 00

Since H; = —~1 @1 is congruent to Dy, we assume that H; = D, so that
H = D4. Having fixed H = Dy, we apply, as is customary, only H-unitary
transformations.

The condition of the H-normality of N is now equivalent to the following:

Re{ab} = Re{de}. (77)

Since the assumption a = b = 0 contradicts the condition S N Sy = {0}
(because then either vs or vz belongs to Sp), one can assume that a # 0
and, therefore, a = 1 (see the paragraph after (39)). Keeping in mind that
a =1, reduce N — AI to the form

0 1 & =sgnReb ¢
0 0 0 d’
N - Al = )
0 0 0 e
0 0 0 0
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having applied either the transformation

JReb] 0 0 0
0 v/|Rebl —ilmb/ /|Reb 0
T = [Rebl  —iImb/y/|Reb| (Reb # 0)
0 0 1//TRe] 0
0 0 0 1/+/|Reb|
or
1 0 0 0
01 -b O
T = (Reb=0).
00 1 0
0 0 0 1

Now consider the three cases (Red’ = 0,1 or —1) separately.

(a) ¥ = 0. Since Re{d'e’} = 0 (condition (77) of the H-normality of N)
and d' # 0 (otherwise vs € Sp), the representation d' = gz, €' = igyz
(lzl =1, 01,02 € R, 01 > 0) is valid. Therefore, taking

J&E 0 0 0

0 o 0 0

0 ig2/\/o1 1//o0 0 1
0 0 0 1/\/§I

we reduce N — Al to the form

01 0 ¢
6 0 0 =
N -l =
0 0 0 0
0 0 0 O
One can assume that ¢’ = 0. To achieve this it is sufficient to apply the
transformation
10 ¢ 0
01 0 -
T =
0 0 1 0
0 0 0 1
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"There remains to prove that z is an H-unitary invariant. Indeed, any matrix
T satisfying condition (36) (N — AI)T = T(N — AI) for the matrices

01 00 0 100
0 0 0 2 ~ 0 00 % »
N-A = , N = , lzl=1z]=1
0 0 0O 0 0 0O
0 0 00 0 0 0 0
and condition (37) TT™ = I has the form
1 *x % *
010
T=tn 00 1 ; ] =1.
0 0 01

This follows the desired equality z = Z.
(b) ¥ =1. As Re{d'e’} =1 (condition (77)), d' = gz, ¢’ = (1/0 +ir)z
(|z] =1, o, € R, o > 0). Consider the transformation

it/ —it)  1/(1 i)
Tzll@( 1/(1 - it) -—it/(l—it)) ®h, te® (1)

where t is a root of the equation 1 +t? = 1/0% + (tp + r)2. Its discriminant
D/4 = 1/0° + 0% + 7% — 2 is nonnegative so that ¢ is in fact real. Subjecting
to (78), the matrix N — AI becomes the following:

/7

01 1 c
0 00 2
N-—-M = i , |2 =1, r € R
0 0 0 (1412
0 0 0 0

Note that if 7’ = 0, then there exists a nonzero vector v = awvs + Bvs € So,
which is impossible. Applying (78) with ¢t = —%r’, we can replace v’ by —r’.

Thus, we can assume r’ > 0. Finally, to get ¢” = 0 it is sufficient to take

1 tiz ti3 —Ref{tiotis}
r=|° 0 —E

0 0 1 —t12

0 0 1

where t1o = e~ %/2(rcf — 2c)/(2r), t1z = e"¥/2c} /r (we mean that 2z’ =
€%, ¢! = Re{c"e~%/?}, cff = Im{c"e~%/?}).
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Thus, we have reduced the matrix N — AI to the form

011 0
00 0

N-X = ], =1L rem>o
0 0 0 (1+4ir):z
0 0 0 0

Now there remains to show that the numbers z and r are H-unitary
invariants.
First note that for a block triangular matrix

. T» Ts
T=|0 T, T (79)
0 0 Tp

to reduce N — Al to the form N — Al, where

0 N1 N2 0 Nl ]VQ
N-AM={0 Ns Ng|, N-MM=[|0 Ns N4|>
0 0 0 0 0 O

it is necessary and sufficient to have

N\Ty = Tlﬁl + Tgﬁg (80)
N\Ts + NoTg = T1 Ny + ToN 4 (81)
N3T, = T4Ns (82)
N3Ts + NyTg = T4j\74. (83)
If
0 0 I
H=|0 H 0]},
I 0 0

then for (79) to be H-unitary it is necessary and sufficient to have

TTE =1 (84)
Tng +T2H1T; +T3T1* =0 (86)

TyH\T} Hy = I. (87)
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Since any H-unitary transformation 7', such that

011 0 011
0 00 z 0 0 0 z

, T=T P
0 0 0 (1+3r)z 0 0 0 (1+4i)z
0 0 O 0 0 0 0 0

|z| = ]2 = 1, r, 7 € R > 0, must be block triangular (by the corollary
of Proposition 1), systems (80)—(83), (84)—(87) are applicable. Combining
(80) and (87), we get [t11] = 1; hence (condition (84)) t44 = t1;. Now from
(80) and (83) it follows that (2 4+ ¢r)z = (2 +147)2; hence Z =z, ¥ = r.

(c) ¥ = —1. The matrix N — Al can be carried into the form
01 -1 0
0 0 0
N - = |, ja=1 remso
00 0 —(1+ir)z
00 0 0

where z and r are H-unitary invariants. The proof is analogous to the case
(b) above.

Thus, we have obtained the canonical form for each case considered.
By using conditions (80)—(87) one can easily check that these forms are
not H-unitarily similar to each other. They are indecomposable due to
Proposition 2. Thus, we have proved the following lemma:

LEMMA 4. If an indecomposable H-normal operator N (N: C* — C*%)
has the only eigenvalue \,dim Sy = 1, and the internal operator Ny is
decomposable, then the pair {N, H} is unitarily similar to one and only
one of canonical pairs {(12), (15)},{(13),(15)},{(14),(15) }:

A1 0 O
N = 0 X 0 =z 2 =1
“lo o x o T
0 0 0 A
A1 1 0
0 A 0
N = . , lz] =1, reR>0,
0 0 A (1+ir)z
0 0 0 A
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Al 1 0
0 X 0 z
N = ) , lz| =1, reR >0,
0 0 XA —(l+ir:z
0 0 O A
H = D47

where z, v are H-unitary invariants.

522 n =25 Then dimV,; = 2, dim V3 = 1 and, according to [1,
Theorem 1], after interchanging the third and fourth rows and columns,
we get

0 a b ¢ d 0 00 0 1
00 0 2 e 0 0 0 10
N-X=100 00 f|, |z2l=1, H=30 0 1 0 O
0 00 0 g 01 0 0O
00 0 00 10 0 00

The condition of the H-normality of N is equivalent to the system
aZ = gz (88)
2 Re{az} + |b? = 2 Re{eg} + | f|*. (89)

It is readily seen that a # 0; consequently, it can be assumed that a = 1
and g = 2?2 (see the paragraph after (39)). Further, take the (H-unitary)
transformation

1 0 0 0 0

0 1 —b —4p? 0
T=10 0 1 b 0
00 0 1 0

0 0 0 0 1

and reduce N — AJ to the form

010 ¢ d

0 0 0 2z ¢
N-X=|0 0 0 0 f
0 00 0 22

0O 0 0 0 0
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Applying now the transformation
1 0 i Im{e'7?}
T=L&|0 easf 0 ® I,
0 0 1
we get

! d//

7”122

9]

T2 s ri, T2 € §R, re 2> 0.
2

S o O O
o O O O

z
0

o
o O O O =
S O O W

0

We can assume that 72 > 0 because otherwise vs € Sy, which is impossible.
From condition (89) of the H-normality of N it follows that ¢/ = r;+3r3+
irg (ra € R). Keeping in mind these conditions, apply the transformation

1 tiz tiz 0 —3ltisf?
0 1 0 0 0
T=(0 0 1 0 -tz |,
0 0 0 1 -fp
00 0 O 1

where t15 = 11%, t13 = (d" — r12(r1 + §73 +14r3)) /72, to the matrix N — A

Then ¢ = 373 + ir3, d"”" = 0, and the remaining terms of N — AI do not

change. Renaming 5 and 73, write out the final form of N — AI:
0 1

0

r |, r,m€R, r1 >0, |2] =1.

22

iri+ir, 0
z
0
0
0 0

|

3

~

I
o O O O
O O O O
o O O O O

To prove the H-unitary invariance of z, 1, r assume that

0 1 0 372+ 0
000 z 0
N-xr=[0 00 0 ., FLTeR F1>0, Z=1,
000 0 z?
000 0 0
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and there exists a matrix T such that NT = TN (condition (36)) and
TTM = I (condition (37)). Recall that T has block form (79) so that
conditions (80)—(87) hold. From (82) it follows that to3 = 0 and zt4q = 2tos.
Since toafag = 1 (87), z|tas|? = Z; ie., Z = 2, |tg4| = 1. Therefore, one can
assume that

1 0 it
T,=10 tzz O y |t33|=1, te®R
0 0 1

because it is allowed to divide T by its term t9g = t44 of modulus 1. Now
from (83) it follows that t45 = itz, Titag = r1. Asr, 7y > 0, t33 = 1
and 7; = r;. Since t12 = —f45 (condition (85)) and toq + (%r% +irg)tag =
(%?? +i73)t11 + 2ty2 (condition (80)), 7o = r3. This completes the proof of
the H-unitary invariance of z, rq, rs.

Due to Proposition 2 the obtained form is indecomposable. Thus, we
have proved the following lemma:

LEMMA 5. If an indecomposable H-normal operator N (N: C° — C®)
has the only eigenvalue \,dim Sy = 1, and the internal operator Ny is
decomposable, then the pair {N, H} is unitarily similar to canonical pair

{(16), 1n)}:

A1 0 iritiry 0
0 X 0 z 0
N=]10 0 A 0 r |, lz| =1, r1,r2 € R, 71 > 0,
0 0 0 A 22
0 0 O 0 A
H = Ds,

where 71,719, z are H-unitary invariants.

5.2.3. n=6 Inthiscasedim V, = 3, dim V3 = 1. The matrices N —\J
and H, according to [1, Theorem 1], have the form

, lzl=1, re®R (90)

oo o o o ©
o oo o o 8
oo Cc o n o
o o o n 3 0
o o o O O Q
SOW TR =,
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or

00 a b ¢ d e
0 01 ir O f
0 00 1 0 ¢
N - Al = 0000 0 nl r € R, (91)
0 00 0 0 p
0 00 0 00
0 0 01
0 D3 0 O
H =
0 0 10
1 0 00

For a while we consider these two cases together, assuming that

, |zl =1, z € C.

(=T = W = I I )
o 0o o o o 8§
©c O O ©O n o
O O O N 8B o
c O O o o
oW TR 0

Then the condition of the H-normality of N is equivalent to the system

azZ = zh (92)
aT + bz = zh + zg (93)
2Re{ac} + |b]* + |d|* = 2Re{fh} + [g|> + |p|*. (94)

As is customary, we can assume that @ = 1, h = 22. Let us use the (H-
unitary) transformation

100 O 00

01 0 —4d? —d 0

001 0 00
T =

000 1 0 0

0 00 d 10

000 O 0 1
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It reduces N — AJ to the form

bl /

01 ¢ 0 e
00 z zz 0 f
0 0 O 0 !

N -\ = =0
00 0 0 0 22
006 0 0 0 p
000 0 0 O

Further, take the transformation
1 29 zd—zg 0 0 —1zcd —zg'|?
0 1 0 0 0 0
- 0 0 1 0 0 —zd+Zg
“]lo0 o0 0 1 0 -zq’
0 O 0 0 1 0
0 O 0 0 0 1
and carry the matrix N — Al into the form

01 b 0 0 €
00 z = 0 f”
0 0 0 z 0 O

N - = 2
0 0 0 0 0 =z
00 0 00 p
00 0 0O

Now note that p” #£ 0 because otherwise vs € Sy. Since the rotation of the
vector vs about any angle does not change the matrix H, we can assume
that p”’ =72 € R > 0 (we put vs = '8P y;). The transformation

1 0 0 0 €/r —%|e”/r2|2
01 0 0 0 0
0 01 0 0 0

T panany
0 0 0 1 0 0
0 0 0 0 1 —E”/T‘z
0 0 0 0 0 1
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reduces the matrix N — AJ to the final form

o O O © O

1
0
0
0
0
0

O. V. HOLTZ AND V. A. STRAUSS

v 0
z oz
0 =z
0 o
0 0
0 o

[T e S B e 2 o B e

Now we distinguish the cases (90) and (91).
(a) z =1,z € §. According to conditions (93) and (94) of the H-norm-

ality of NV,
01 2orn O
00 1 1
0 0 O 1
N - =
00 0 0
00 O 0
0 0 O 0

o O © O O o

2r

0

0
f/l/

f —712/2 +ir3

0
1
T2
0

T1, T2, T3 € éRa
ro > 0.

Let us show that 1, g, r3 are H-unitary invariants. Indeed, suppose some
matrix T satisfies conditions (37) TT™ = I and (36) (N — A[)T = T(N -

Al), where
0 1 2,y O
00 1 in
~ 6 0 O 1
N-=)X =
0 0 O 0
0 0 O 0
006 0 0

From (36) it follows that

t11

o o o o o

o O © O O O

t12

o O © O

2?12 —F22/2+iF3

0
0
1
T2
0
tiz tig
taz  ta4
t11 l3a
0 t51
0 54
0 0

tis
26
t36
273
ts6
t11

T1, T2, T3 € R,
79 > 0.
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Using (87), we get: tsqg = 0, |t11] = 1. As above (see the argument before
Lemma 5), we can assume that ¢;; = 1. Then ¢34 = —f23 (condition (87))
and (T — r1) = tas — t93 (condition (82)); hence, 7} = r; and Retyz = 0.
Further, from (83) it follows that ry = Tatss and from (87) that |tss| = 1.
As 19,79 > 0, Ty = 9 and ts5 = 1. Thus,

1 it tog O
0 1 it 5

T = 00 1 ol t€R, 2Retos +t2 =0.
00 0 1

Substituting Ty in (80), we get t15 = it, t13 = toa — r1t; replacing Ts by
~T4H Ty in (83), we have i73 = ir3 — 2Retyy — t%; hence 73 = r3. This
completes the proof of the H-unitary invariance of vy, ro, 73.

(b) 0 < argz < w,xz € R. Applying the condition of the H-normality,
we get

0 1 —2ir{Imz 0 O 0

0 0 z ri 0 (2r2Im? z — 13/2 + irs)2?
N\ — 0 0 0 z 0 0 ’

00 0 0 0 z?

0 0 0 0 0 )

0 0 0 0 0 0

where 11, 12, r3 € R, r2 > 0. That the numbers z, ry, ro, r3 are H-unitary
invariants can be checked as in (a) above. That the forms obtained are
not H-unitary similar can also be checked by the reader by using formulas
(80)-(87).

Because of Proposition 2 the forms obtained are indecomposable so that
we have proved the following lemma:

LEMMA 6. If an indecomposable H-normal operator N (N: C® — C%)
has the only eigenvalue A, dim Sy = 1, and the internal operator Ny s
decomposable, then the pair {N,H} is unitarily similar to one and only
one of canonical pairs {(18), (20)}, {(19), (20)}:

A1 2 0 O 0
0 XA 1 dirp 0 2r2—7r%/2+irg
N = 00 2 Lo 0 , T, T2 € R, 12 > 0,
0 0 O A 0 1
0 0 0 0 A T2
0 0 O 0 0 A
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A1 —=2iryImz 0 O 0
0 A z r1 0 (2r}Im®z —r2/2 + ir3)2?
N = 0 0 A z 0 0 ,
0 0 0 A0 22
0 0 0 0 A T2
0 0 0 0 O A

2| =1, 0<argz <7, 71,72,73 € R, 72 >0,

0 0 01

0 D3 0 O
H= )

0 0 10

1 0 00

where z,71,72,73 are H-unitary invariants.

5.2.4. n =T We show that this alternative is impossible. Indeed, if
dim V;, = 4, dim V3 = 1, then, in accordance with [1, Theorem 1],

0 a b c d e f
0 0 cosae sina 0 0 ¢
00 O 0 1 0 h
N-AX=}10 0 0 0 0 0 p|{, O<a<n/2,
00 O 0 0 0 g¢g
00 0 0 00 r
00 0 0 0 00
0 000 O0O01
0 00O01O0TO
001 00O0O
H=|10 0 01 0 0 0
0100000
0 000 01O
10 00 0 0O

Therefore, the conditions of the H-normality of N are as follows:

cos &

a=9q
0 =7gsina
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bcosa+csina=h
2Re{ad} + [b* + |c|? + |e|” = 2Re{gq} + |A]* + |p|* + |r|*.

Since sina # 0, ¢ = 0; hence a = 0. Thus, (N — A)vy = (NM =Xy = 0,
which contradicts the condition Sy N S = {0}.

Thus, we have classified all indecomposable operators with one-dimen-
sional subspace Sp. Now let us consider the case when dim Sy = 2.

5.3 dim Sp =2

Let Sy be two-dimensional. Since the operator H; = H|g has only posi-
tive eigenvalues, one can assume that H; = I. Ny is a usual normal operator
having the only eigenvalue A; hence, N1 = Al. As a result, we have

M N, N

N=1{0 A N, (95)
0 0 Al
00 I

H=|0 I 0 (96)
I 00

Below we do not stipulate that the pair {N, H} has form {(95), (96)}.
For N to be H-normal it is necessary and sufficient to have

N{N{ = N Ns. (97)

According to Theorem 1, for indecomposable operators, n < 8. Let us
consider the cases n = 4, 5, 6, 7, 8 one after another.

5381 n=4 In this case C* = Sy + S1.

0 N,
0 0

Condition (97) of the H-normality of N does not restrict the submatrix N
(its terms a, b, ¢, d). If Na = 0, the operator N is decomposable because
the nondegenerate subspace V = span{v;,v3} is invariant for N and N +],
Thus, N, can be either of rank 1 or of rank 2 (rg Ny =1 or 2).

o o o O
o o o O
o o o f
o O A o
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(a) rg N3 = 2. Suppose an H-unitary transformation T'

Ty T
(0 T
I3 T,

reduces N — A to the form N — \I:

0 N _ N
N—AI:( 2), N—AI:(O N2).
0 0 0 0

Then conditions (98)—-(100) must be satisfied:

NyT5 =0 (98)
NoTy = T\ N, (99)
0 = T3N,. (100)

Since N is invertible, (98) holds only if T3 = 0. Hence, T is H-unitary iff

TN, =1 (101)
T\T; + ToT} = 0. (102)

From system (101)-(102) it follows that without loss of generality we can
consider only block diagonal transformations of the form T = Ty & Tl’“—1
because T3 does not figure in Eqs. (98)-(100).

Thus, only condition (99) Ny = T3 N T} must be satisfied. Applying
Proposition 3 from the Appendix, we obtain that the submatrix N, can be
reduced to one of the canonical forms

z pe /3 z7 0
N2 = ¢ ; y N2 = ' y
0 /3 0 2z
where z, 21, 22, 0 (|z] = 1, 0 € R > V3,0 < argz < 7 if p > V3, |z1] =
|z2| = 1, arg z; < arg z) are invariants. For the latter form the operator
N is decomposable because the nondegenerate subspace V = span{v;,v3}

is invariant both for N and N™. For the former we obtain the following
canonical form:

0 0 2z re"in/3;

N T = 0 0 0 er/3; ’ lz| =1, r e R > /3,
0 0O 0 0 <argz<m ifr>+3.
0 00 0
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(b) rg Nz =1. Then

ka kb
N2=( ) al+ B £0, K[+ £0.
la b

If 1@ = kb, then v = bvs — avg # 0 belongs both to Sp and Sy, which is
impossible (Sp N S; = {0}). Thus, we can assume that [@ # kb. Taking the
transformation T' = T} & Tl*_l, where

T_(E k>
1= l—) lv

we obtain one more canonical form:

o O o O
o O O O
o o = O
o O O O

LEMMA 7. If an indecomposable H-normal operator N (N: C* — C*%)
has the only eigenvalue A and dim Sy = 2, then the pair {N, H} is unitarily
similar to one and only one of canonical pairs {(21), (23)}, {(22), (23)}:

A0 z re"in/3y
N = 0 X 0 €3 |zl =1, re R > V3,
o o A 0 ' 0 gargz<7rifr>\/§,
0 0 0 A
A0 0 O
0O XN 1 0
N = ,
0 0 X 0
0 0 0 X

0 I
H = ,
I, 0
where 1,z are H-unitary invariants.

Proof. The possibility of reducing N to one of forms (21}, (22) is proved
before the lemma. The argument in (a) above shows that these forms are
not similar; hence, they are not H-unitarily similar. Thus, we must prove
only the indecomposability of N.
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Show that the first canonical form is indecomposable. Assume the con-
verse. Let some nondegenerate subspace V be invariant for N and N[,
Then there exists a nonzero vector wy; € V:w; € Sy. Therefore, Jws =
avz +bvy + v eV (ve S, |al + b # 0):

(N = XDw;y = azvy + b(re™ "/ 3zv; + /3 zuy),

(N = XDw, = a(zv1 + re™ *zuy) + be™"™/>Zv,.

Since min{dim V, dim V{*!} < 2, it can be assumed that dim V < 2. As the
vectors w; and wy are linearly independent, we get dim V = 2. Therefore,
the vectors (N — Al )wy and (N — XI)w, must be linearly dependent; i.e.,
the following condition must be satisfied:

(a + bre™™/3Y(aret™3 + be™""/3) = abe!™/3. (103)

Since (103) breaks if either a or b is equal to zero, we can rewrite (103) as

2
(%> rei™/3 4 (%) (e7/3 — /3 4 1?) 4 re¥/3 < 0, (104)

Discriminant of (104) is equal to 7% — 272 — 3. Since r2 > 3, it is nonnega-
tive. Therefore,

iV3—r2+/rt—2r2 -3
(1 + iV/3) .

ol 2

Consequently, |a/b> = 1(r? — 1 F vrT—2r2 —3); therefore, [ws, (N —
M)ws] = 2|b|?(|a/b|? + (a/b)rein/3 + e~in/3) = (. Thus, the subspace V is
degenerate; i.e., the operator N is indecomposable.

For the second matrix N we see that the vectors (N —AI)w; and (N1 —
A wy (w2 = avs + bug + v, v € Sp) can be linearly dependent only if
a = b = 0. Therefore, N is also indecomposable. This concludes the proof
of the lemma. u

5.8.2. n=25 The matrix N — Al has the form

0 0 a ¢ d

0 N1 N, 0 0 b e f
N-X=]|0 0 N3 | =100 0 g h
0 0 O 0 00 0O

0 0 00O



CLASSIFICATION OF NORMAL OPERATORS 495

so that condition (97) of the H-normality of N amounts to the system

la| = |g|
ab = gh
|b] = |A|.

The latter means that ¢ = @z, h = bz (|z| = 1). Note that a and b
are not equal to zero simultaneously because otherwise vz € Sy, which is
impossible.

Take the transformation T = T; ® I & 77!, where

a t2
T = ) atyy # btyg,
bt

and reduce N — AI to the form

001 cd d
0 0 0 €& f
N-X=|0 00 2 0], lz| = 1.
0 0 0 0
0 00 0 O

Now we fix the form of the submatrices N; and N3 so that the following
transformations change only the submatrix Nj. At first, apply the trans-
formation

I T, -inTs
T=|0o 1 -4 |, (105)
0 0 I

where Ty = (0 d’), and reduce N3 to the form

0
N2 = (e// f// )
Now let us consider two cases: f/ =0 and f” # 0.

(a) f” =0. Then € # 0 because otherwise v5 € Sp. Subjecting N — AJ
to the transformation T = T} & I & T7 ™!, where

1 CII
Ty = (O e”)’
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00
N; = .
i (1 0)
(b) £ # 0. Then one can assume that | f”| = 1 (to this end it is sufficient

to put vy = \/|f"|ve, Us = vs/+/|f"|). Thus, f" =21, |z1]| = 1.
If 22 # z, then N is decomposable. Indeed, applying

we get

T -y -iNTTs
T=1| o0 I Ts , (106)
0 0 T

where

i .2
T = ((1) z1e /(11 Zzl))’ Ts= (0 2e"/(1-7%2)),
we reduce Ny to the diagonal form N, = ¢” @ z;. Now the nondegener-
ate subspace V = span{vg,vs} is invariant for N and N [*l: hence, N is
decomposable.

Let 22 = 2. Note that if ” = 0, then N is decomposable (V = span{vz,
vs} is nondegenerate, NV C V, N 'V C V). Thus, e” # 0. Taking trans-
formation (106} with

(1 iz1/|e”|

Tl = . "
0 elarge

) Do (—ale H /P2 izdle)),
where ¢ = Re{c"Z1}, c§ = Im{c""Z1}, we reduce N3 to the final form

0 0 "
N2: ) T:IC |>0
r 2

LEMMA 8. If an indecomposable H-normal operator N (N: C® — C®)
has the only eigenvalue A, dim Sy = 2, then the pair {N, H} is unitarily
stmilar to one and only one of canonical pairs {(24), (26)}, {(25), (26)}:

A0 1 0 O
0 0 1 0
N=|0 0 X z 0], lz| =1,
0 0 0 X0
0 0 0 0 A
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A0 1 0 0
0 N0 r =z
N=|0o 0 x 22 0], Izl =1, r € R >0,
00 0 X O
00 0 0 X
0 0 I
H=|0 I, 0],
I, 0 0

where z, r are H-unitary invariants.

Proof. The possibility of reducing N to one of forms (24), (25) is proved
before the lemma. Hence, it is necessary to show that these forms are
indecomposable and are not H-unitarily similar to each other and their
terms z, r are H-unitary invariants. These statements may be proved as
follows.

For the block triangular matrix

T To T3
T=|0 T T (107)
0 0 T
to satisfy condition (36) NT = TN, where
0 N1 N2 Nl N2
N-x=|0 0 Ns|, N-xx=]|0o 0o MN]|.
0 0 0 0 O 0
it is necessary and sufficient to have
N\Ty = T\ N, (108)
NyTs + NoTg = T1 Ny + To Ny (109)
N3Ts = TaNs. (110)

If H has form (96), then for (107) to be H-unitary it is necessary and
sufficient to have

Ty =1 (111)

TT: + ToTy =0 (112)

NT; + T3 + T317 =0 (113)
T.T; =1 (114)
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If an H-unitary transformation 7' reduces matrix (25) (the second) to form
(24) (the first), then from the corollary of Proposition 1 it follows that T
has block form (107) and, according to (36},

t t
T, = ( ;)1 12). (115)

tag

Apply condition (109), replacing T by Tl*'1 (111) and Ty by —hT2Ty
(112). Then we get: z/ f23 = 0. This contradiction proves that the canonical
forms are not H-unitarily similar.

If
001 0 0 001 0 0
000 r =z 000 7 %
000 22 0|T=T|00 0 %2 0],
000 0 0 00 0 0
000 0 A\ 00 0 A

|zl = |Z} = 1, and r,7 € R > 0, then T has form (107), the submatrix
Ty having form (115) and t1; = t33. Since |t33] = 1 (condition (114)), we
can assume that t;; = t33 = 1. Replace Ts by 77! and apply (110); we
have Z? = z2. Now substitute 77! for Ts and —T1 Ty for T, in (109). We
obtain

tas = zt1o (116)
T — zti2/ 22 = Ttag — 2%taotss (117)
Z/Z—2_2-= Ztag. (118)

From (118) it follows that |t22| = 1, 2 = z. Hence, 1/%23 = t22, tzs = 2t12,
and r = 7tgp. Therefore, r = F|tyy|, i.e,, ¥ = r. Thus, the numbers z,r
are H-unitary invariants of canonical form (25). That z is an H-unitary
invariant of (24) can be checked in the similar way.

There remains to prove that matrices (24) and (25) are indecomposable.
The proof is by reductio ad absurdum. Suppose some nondegenerate sub-
space V is invariant for N and N[*| (N has form (24)). As min{dim V,
dim V[J-]} < 2, we can assume that dim V < 2. Since there exists a vector
w1 # 0 € Sp: wy € V, there exists also a vector wo = avz + bvg +cvs +v €
V (v € So, |b] + |c| # 0). As the vectors (N — A)wy = avy + b(ve + 2v3)
and (N — A)wy = aZvy + buz + cu; must be linearly dependent, we
obtain b = 0. But in this case the subspace V is degenerate because
(N — ANws,wy] = 0. This contradiction proves the indecomposability
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of (24). Now let us check the indecomposability of (25). Suppose a non-
degenerate subspace V is invariant both for N and N*. Then, as before,
Jw; #0€ Sog:wy € Vand Jwy = avg+bug +cvs +v €V (v € S,
|b| + |¢| # 0). Therefore, the vectors (N — A)wy — 22(NM — ADw, =
brug — crz?vy and (N — Al)wa = avy + bruy + bz?v3 + czvz must be linearly
dependent. Hence, b = 0 = ¢ = 0. The contradiction obtained proves that
(25) is also indecomposable. The proof of the lemma is completed. [ |

5.3.3. n=6 The matrix N — AI has the form

0 N, Ny ,
a
N-MXM=]0 0 N;3J|, where N1:< d)'
0 0 0 ¢

The submatrix Ny is not equal to zero because then condition (97) of the
H-normality of N implies N3 = 0 so that v3,v4 € Sp, which is impossible.
Thus, we must consider two alternatives: rg Ny = 2 and rg N; = 1.

(a) rg Ny = 2. At first apply the transformation T'= N; @ I @ Ny 71 it
takes Ni to I. Since N; has become equal to I, N3, according to (97), has be-
come unitary. Recall that any unitary matrix is unitarily simi-
lar to some diagonal one with nonzero terms of modulus 1; moreover,
this representation is unique to within order of diagonal terms. Thus,
JU (UU* =1): N3 =U*N3U, where

~ z 0
O T U
0 z9

If we subject N — AT to the transformation T = U @ U @ U, then N3 maps
to (119) and N; = I does not change.
Note that if 2y # 22, N is decomposable. To check this it is sufficient to

reduce
N, = (e ! ) (120)
g h
to the diagonal form by means of transformation (105) with the submatrix
T - 0 G-7/f)/(1 —Z122)
T\ T-m9)/(0 - m) 0

(this transformation does not change N; and N3). Now the nondegener-
ate subspace V =span{vy, vs,vs} is invariant for N and NB: hence, N is
decomposable.
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Thus, for N to be indecomposable N3 must be equal to zI. Show that
in the case when 2z = —1, N is also decomposable. Indeed, apply the trans-
formation

U —%NzU —%NgNz*U
T=1]o U sN3U |
0 0 U
where U is a unitary matrix reducing Ny + N3 to the diagonal form (U is
known to exist). Then N, becomes diagonal; we already know that in this
case N is decomposable.

Thus, N = 21, z # —1. Now we apply only transformations preserving
the submatrices N; and N3. First let us take (105) with

(7 o)
To={—
f o
and carry submatrix (120) to the form
e 0
No=(, )
Further, apply transformation (105) with
t 0
T2 = ( '3 )a
0 oy

where Re{f;3 + 2t13} = Ree’, Re{fas + zt24} = Re A’ (since z # —1, these
equations are solvable for any ¢’ and h’). After this transformation

iTl 0
Ne={, )
g ir

One can assume that ¢’ = r3 € R > 0. To this end it is sufficient
to put s = e*28I 0y, Uy = 38Ty, G5 = €389 yg. Now apply the
transformation

T, T\'T, -iTDT3
T=|0 n -1y |,
0 0 T,
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where
1 1
Ty =1/vV2{ —— . ,
=1 (—(z+1)/|z+1| (z+1)/|z+1|>
7ol -r3/|z + 1] 0
272 (irg —iry) —r3(z+ 1} /1z+ 1] r3/jz+1] '
We get

iry, 0 1
N; = == .
2 <g// ir! )’ 71 2(7'1 +72)

As above, we can assume that g” € R > 0. For N to be indecomposable
g"” must be nonzero so that ¢g” > 0. This is the final form of the matrix
N -\l

0 01 0 iry O
0 0 0 1 T2 Z"I‘l
0000 =z O 2| =1, z # -1,
N -A = , (121)
0 0 00 O z r1, T2 € R, 19 > 0.
0 00 0 O 0
0000 0 O

Let us show that z, 7y, r are H-unitary invariants. To this end suppose
that an H-unitary matrix T reduces (121) to the form

0 I N - ~ ~
- 2 - w0 2] =1, 7 # -1,
N -l = 0 0 zI ) N2 = ~ o~ 3 ~ o~ ~
Ty IT1 1,70 € R, 75 > 0.
0 0 O

By the corollary of Proposition 1, 7" must have block triangular form (107);
therefore, systems (108)-(110) and (111)-(114) must hold. From (108),
(114), and (111) it follows that Ty = Ty = Ts = Tg~'. Now from (110) it
follows that Z = z. Combining (112) and (109), we get No = Ty N T} +
2I,TY + T1T3. If we denote

thh tia
- (0 12)
21 22
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and write out the general form for 2 x 2 unitary matrix

T - ( 051 V1-0%s2
1

= _ ) o€ [Ovl]v |31|=|32|={53l:1a
V1—0%s3 —(g8182583
(122)
then we obtain

iry = 71 + 0v/1 — o?5TsoT2 + 2t} + 1,

iT) — ov/1 — p%575272 + 2thy + thy.

Il

iTl
Summing these equalities, we get
2iry = 207y + 2th; + ), + 2thy + thy.

It is easy to check that if Re{zt + %} = 0 (z # —1), then Im{zt + ¢} = 0.
In our case t}; + th, plays the role of ¢; therefore, we have zt|; + 1}, + 2thy
+ ZZ = 0. Hence 71 = r1. Let us check that from the obtained equality
71 = ry it follows that 73 = 5. Indeed, zN35 — Ny = T1(zN% — No)TY,

—iri(z+1) 272 )

zNy — Ny =
L ( 1y —iry(z +1)

the determinant of z/N; — Ny, which does not change under the similarity, is
equal to —r2(z+1)2+2r; hence r2 = 72. Since the sign of r3 coincides with
that of 73, 73 = 3. The proof of the H-unitary invariance of the numbers
r1, T2 is completed.

(b) rg Ny = 1. Let us show that in this case N is decomposable. In fact,

ka kb

Ny = ) lal 18 £0, k| + il 0.
la Ib

Taking T =T; & I & T} ™", where

t k
T = ( H >, lt11 # kta1,
to; 1

we reduce N to the form

N = (0 0>

Y \a )
Without loss of generality one can assume that a # 0 and, therefore, that
a = 1 (this may be achieved by putting U5 = avq, U5 = vg/@). If b # 0,
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apply the transformation Ty & T4 & T} !, where

(1 0 ) (1/,/|b12 +1 |b]//1b]2 + 1 )
= s T4 =1 _ . ’
0 1/4/1b2 +1 b/ /B2 +1 —etarsb/ /B2 11

to the matrix N — AJ (we mean that a = 1). Then we obtain
00
Ny = .
10

0 zycosa
N3 = ) , |z1] = |22| =1, 0<a< /2
0 Zzysino

According to (97),

Since v4€Sy, sina # 0. Therefore, we can apply the transformation T of
form (105), where

T, — <§ (f~z1§cosa)/(zzsina)>
0 0

(N has form (120)). Under the action of T' the submatrices N; and N3 do
not change but the submatrix N3 becomes diagonal. Now the nondegen-
erate subspace V = span{v;,vs} is invariant for N and N hence, N is
decomposable.

LEMMA 9. If an indecomposable H-normal operator N (N:C% — C%)
has the only eigenvalue A,dim Sy = 2, then the pair {N,H} is unitarily
similar to canonical pair {(27),(28)}:

A0 1 0 4 O
0 AN 0 1 7 inm
N = 00 X 0 0 |zl =1, z # —1,
000 x 0 2z |’ r,7T € R, 79 >0,
00 00 X O
00 00 0 X
0 0 I
H=|0 I, 0},
I, 0 0

where z,71,79 are H-unitary invariants.
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Proof. It is necessary to prove only the indecomposability of the canon-
ical form because the rest was proved before the lemma. Suppose that a
nondegenerate subspace V satisfies the conditions NV C V, N My CV.As
above, we can assume that dim V' < 3 (see the proofs of the previous lem-
mas). Since Jw; #0€ Sp 1wy € V, Jws =avs+bvg+v e V (v € (Sp+5),
la]+ || # 0). The vectors (N —AI)(NP = XIw; = av; 4+ bvg and (N — AT —
2(NM — XD)wy = air (1 + z)vy — brozvy + bir1 (1 4 2)vg + arv, must be
linearly dependent because otherwise Sy C V and dim V > 4. Therefore,
—b%ryz = a®ry. Since z # —1, a = b = 0. This contradiction proves that N
is indecomposable. The proof of the lemma is completed. |

5.83.4. n=7 The matrix N — Al has the form

0 N1 Ny
a b c
N-JXI=]0 0 Nj|, WhereNl-:( )
d e f
0 0 ©

As in the case when n = 6, one can check that N; # 0; therefore, we
must consider the cases rg Ny = 1 and rg N; = 2. Show that the former
alternative is also impossible. Indeed, if rg N; = 1, then

(ka kb ke
| =

b 0 k| +[l] #0.
o w) Ao, k2

Applying the transformation T =T, & I T} ~1 where

ti1 k
= , lt11 # ktor,
toy I

we reduce Nj to the form

<0 0 0
Ny = )
a b ¢

Then from condition (97) of the H-normality of N it follows that

0
Na= [0
0

B 8 o
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Since there exists a nontrivial solution {a;}3 of the system

acy + bag +caz3 =0
Sy + uag + Wag = 0,
the nonzero vector v = ajv3 + a4 + a3vs belongs to Sy, which contradicts

the condition Sy NS = {0}.
Thus, rg N1 = 2. Then without loss of generality it can be assumed that

a b
det(d e);ﬁo.

Take the block diagonal transformation Ty & I @ Ty, where

a b
le( )
d e

N_lOc’
“\o 1 5 )

Further, apply the transformation Ty & T ® T} ~! where

It reduces Nj to the form

1 0

0
1 0
n:( 1+,f,|2), =0 YVITIE ~f/VITIFE|.
0 FIVITIFE UVITIIE

Then we get

1 b// C/l
N; = .
01 0

Now take T =T1 & T> & Tl*-l, where

1/+/1+ (2 0 —c"//1+ |2
Y IVTFTE] INiear
=V L Ty= 0 1 0
0 1

/T2 0 1/y/1+|c"|?

and get the final form of the submatrix Ny:

100
Ny = .
(010)
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Now consider the submatrix

S
Nz =

S

U
w
If v and w are both equal to zero, then vs € Sy. Therefore, we can assume

that |v|? +|w|? # 0 and can apply the transformation T = Ty T, ® I & T3,
where

T ( w/V/l? +[wl? v/ lv|2+lw|2>
1= .

—v/VIl?+w? W/l + |w]?

Then
T,I S/
Ny= |t o |, w' = +/|v]? + |w|? > 0.
0 w

If s # 0, replace ' by |s'| by putting 07 = €*28% v, 73 = e 218y,
Ug = '8 yg If s’ = 0, then apply the transformation 0; = e~*2/8 %y,
T3 = e~ *a8 ¥y g = e~* @& t'yo and replace t’ by |t/|. Now we can assume
that s ¢ R>0andif s =0,thent’ € R >0.

Now let us apply condition (97) of the H-normality of N. We obtain

—21Zzcosa sinacos 3
N3 = z1sina zocosacosf |,
0 sin 3
|21l = 22| = 1,0 <, £ 7/2, 3 # 0, z1 = 1 if sinawcos f =0, 20 = 1

if & = 7/2. Let us show that in the case when a = 0, N is decomposable.
Indeed, under the action of (105), where

T —_(0 P (h—;‘)zgcosacosﬁ)/sinﬂ)
*“\o o 0 ’

the submatrix

h
=5 )
P g

becomes diagonal. The nondegenerate subspace V' = span{v;, v3, vg} is now
invariant for N and N hence, N is decomposable.
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Thus, a # 0. Applying transformation (105) with
0 ¢ t
Ty = ( 14 t1s )’
0 24 tos

tiy = 9/(z1 sina)
t15 = (h — t1azg cosxcos 8)/ sin 3
toa = (p —t1a)/(21 sin @)

tas = (¢ — t24 — toazg cos & cos B)/ sin B,

where

we reduce N3 to zero without changing N; and Nj. This is the final form
of the matrix N — AI:

0 01 00 0 0

0 6 01 0 0 0

0 0 0 0 0 —z2cosa sinacosf

N-XN=]0 000 0 z1 sina zgcosacosf ),

0 0 00O 0 sin 3

0 00O0O 0 0

0 0 0 00 0 0

lz1] = |22] =1, 0 < o, < /2,21 = 1if B =7/2,20 = lif a = 7/2.

Show that zy, 23, «, 3 are H-unitary invariants. Suppose an H-unitary
matrix T reduces N — AI to the form

0 N O
N-xr=|o0o o N |,
0 0 0
where
—Z,25c0s& sinacosf
N (L 00 S e ~65
1=\g 1 0/ 3 = Zi1sina Z5 COS ( COS ,

0 sin 5

|z =22l = 1,0 < &,B<7/2, 2z, =1if f=n/2,Z,=1if & =7/2
Therefore, T' has block triangular form (107) and conditions (108)—-(114)
hold. Combining (108), (114), and (111), we get: Ty = T3 ® t55 (|tss] = 1),
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T =T = Tg"l. Now from (110) it follows that Ty = t11 ® tag (|t11| =
|ta2] = 1),

toasinacos 3 = t11 sinacos 8
t11z;sina = topz ) sinax

taosin 8 = ts5sin ,E

Hence t1; = top = ts5, and hence N3 = N3jie,a=«, 8 =0, 71 = 21,
Zg = z3. Thus, «, B, 21, 22 are H-unitary invariants.

LEMMA 10. If an indecomposable H-normal operator N (N:C7 — C7)
has the only eigenvalue X\, dim Sy = 2, then the pair {N, H} is unitarily
similar to canonical pair {(29), (30)}:

A0 1 0 0 0 0
0 A0 1 0 0 0
0 0 A 0 0 —z7Zzcosa sinacosf
N=|0 0 0 X 0 z1 sina zpcosacosf |,
0 0 0 0 A 0 sin 3
0 0 0 0 O A 0
0 0 0 0 O 0 A
lz1] = |z2] =1, 0< a,8<7/2, z1 =1 B=7/2, zo=1if a =7/2.
0 0 I
H=}10 I3 0|,
I, 0 0

where 21, 23, T, a, B are H-unitary invariants.

Proof. We have to prove only the indecomposability of the canonical
form because the rest was proved above. The proof, as is customary, is by
inductio ad absurdum. Suppose a nondegenerate subspace V is invariant
for N and N; then we can assume (see the proofs of the previous lemmas)
that dim V < 3 and Jwe = avg + bvr + v € V (v € (So + 5), |a| + |b] # 0).
Then some nontrivial linear combination of the vectors (N Y ¢ Ywe =
avs +bug + v (v’ € Sp) and (N — Awy = a(—21Zz cos avs + 21 sinawvy) +
b(sin a cos Bz + z3 cos a cos Pug +sin Bus ) +v” (v € Sp) must belong to Sp.
This implies b = 0 = a = 0. The contradiction obtained proves that N is
indecomposable. The proof is completed. [ ]
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5.83.5. n =8 In this case

0 Ny N,
a b ¢ d
N-X=]10 0 N3|, where Ny = .
e f g h
0 0 0

As in the case when n = 7, one can check that for the condition S N Sy =
{0} to hold the rank N; must be equal to 2. Without loss of generality it

can be assumed that
b
det(a ) #£ 0.
e f

As before (in the case when n = 7), taking the block diagonal transforma-
tionT =Ty &I ® Ty~ ", where

a b
Tl = ( )7
e f
we reduce N; to the form
N.— 1 0 ¢ d
7 \o 1 g h)

The results for the previous case n = 7 let the submatrix N; reduce to
the form (I 0). Indeed, there exists a transformation

taz fag f35 O
t ¢ t 0
T=T®T, @Tl*_l, where T2=T2*_1= 43 a4 s ,
ts3 tsq4 Iss O
0 0 0 1
that reduces the submatrix N to the form
N 1 0 0 d
"o 10 n
and there exists a transformation
t3z tag 0 36
. . taz taa 0 tgs
T=ToT,dTy L where T, = T, R 0 o 1 o |’
tez3 tea 0 tes
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that reduces the obtained submatrix N; to the desired form

1000
N, = . 123
1<0100) (123)

Now consider the submatrix N3 and its submatrices N§ and Ny':

N3 P q t wu
N3 = , N.= ., N!/'= .
: <N§'> 8 <7' 5) 3 (v w>

Note that Ni must be nondegenerate because otherwise the system

ta; +Tay =0

oy + wag =0

has a nontrivial solution {a;}?; hence, the nonzero vector v = ajvs + azvs
belongs to Sp.

Thus, NY is nondegenerate. Recall that any nondegenerate matrix is
a product of some self-adjoint positive definite matrix and some unitary
one. Consequently, N} = RU, where R is self-adjoint positive definite and
U is unitary. Let U; be a unitary matrix reducing R to the real positive
diagonal form. Taking T = U*U, @ U*U; & U; & U*U;, we carry N into
the form

1 T1 0
N3 = , 7‘1,7’2€§}e,o<7‘1$’r‘2
0 T2

without changing the submatrix N;. Now we have

P q

N} r s

N = (N”) oo
3 1

0 T2

Further, apply transformation (105) with

({0 m (k—rm)/r (I—s'm)/re
T2_(0 0 0 n/ra )

and reduce the submatrix

2 =
m n
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to zero. Finally apply condition (97) of the H-normality of N. We get:
r9 < 1. Show that if ry = r9, then N is decomposable. In fact, ifry = r3 = 1,
then from (97) it follows that N = 0; hence, the nondegenerate subspace
V = span{vy, v, vs,v7} is invariant for N and N and hence, N is decom-
posable. If 7y = r3 < 1, then the matrix N}/+/1 — r# is unitary; therefore,
there exists a unitary matrix U that reduces N3 to the diagonal form. Then
the transformation 7 = U @ U @ U & U does not change the submatrices
Ny = (I 0), Np =0, N{ = 7] and reduces Nj to the diagonal form. Now it
is seen that N is decomposable (V = span{v,v3, vs, v7} is nondegenerate,
NV cvVv, NHv C V). Thus, in either case N is decomposable.

There remains to consider the case when rq < ry. If q # 0, let us replace
q' by |¢| by means of the transformatlon 0, = etargd vy, U3 = et 38 g
U = el8d Us) U7 = e’arng If ¢ =0, let us put 111 = e targTy
Uy = e 1ATBT o g = emiargr’ vs, U7 = e~ 87 . Then r' w111 be replaced
by |r’|. Thus, one can assume that ¢' € R > 0 and if ¢’ = 0, thenr’ € ® > 0.
Applying (97) and renaming the terms of N3, we get

—z1Zgsinacos B cosacoswy
z1 cos acos 3 25 8in o cos ¥
N3 = . ’ (124)
sin 3 0

0 sin~y
z1]l = lz2] = 1,0 < B <vy< /2,0 < a < 7/2, 2y = 1if cosacosy = 0,

zg = 1 if @ = 0. We already know that if N} is diagonal, N is decomposable.
Therefore, a # /2. As a result, we have

0 Ny 0
1 00 0
N-XM=|0 0 N3}, N1:< ), (125)
01 00
0 0 0
and N3 has form (124),
|z1| = |22] = 1, 0<fB<y<n/2, 0<a<n/2,

126
zi=1 if y=m7/2, 22=1 if a=0. (126)

Check the H-unitary invariance of the numbers «, 3, v, 21, and z;. To
this end suppose that an H-unitary matrix T reduces N — Al to the form
N — M, where N — AI has form (124), (125), (126),

N-X=|0 0 N;gji,
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N7 has form (123), and N3 has form (124),
—312 2 8in & cos E COS (X COS

~ Zi1cosacos 3 Zgsina cosy

N3 = N ,
sin 3 0
0 siny
lz1l = |2l =1, 0<B<i<n/2, O0<a<n/2

Zi=1ify=n/2, Zz=1ifa=0

Then T has form (107) and conditions (108)—(114) hold. From (108), (114),
and (111) it follows that Ty = Ty @ Ty, T4Ty* = I, Ty = Ts = T~ '. From
(110) it follows that NJ'T; = TjNj. Taking into account the general form
(122) of a 2 x 2 unitary matrix, we can check that this equality implies 7; =
Ty = t11 ®to2 (tu] = [ta2| = 1), B = 8,5 = v. Applying (110) again, we get
a2 cOS @ cOS 7y = t17 COS & COS Y
t1121 cos acos B = ta321 COS (X COS ,E

Hence t1; = tg2, and hence N; = Ng;ie,a=a, 21 =21, 22 = 22.
LEMMA 11. If an indecomposable H-normal operator N (N:C® — C8)

has the only eigenvalue X\, dim Sy = 2, then the pair {N,H} is unitarily
similar to canonical pair {(31), (32)}:

A0 1 0 0 O 0 0
0 x 01 00 0 0
0 0 A 0 0 0 —zZzsinacosf cosqcoswy
N = 0 0 0 A O O 21 cos acos 3 zg sin  cos 7y
0 0 00 X O sin 8 0 ’
0 0 0 0 0 X 0 sin-y
0 0 0 0 0 O A 0
0 0 0 0 0 O 0 A
|z1] = |22] = 1, 0<a<n/2, 0<B8<y<&n/2,

zn=1if y=m/2, 2 =0if a=0.

0 0 I
H=}0 I, o],
ILb 0 0

where 21, 29, «, 3,7 are H-unitary invariants.
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Proof. We must prove only the indecomposability of the canonical
form. Assume the converse. Then (see the proofs of the previous lemmas) we
can assume that dim V > 4, wy = avy+bvg+v € V (v € (So+95), |a| +|b| #
0). The vectors (N — AI}(N™ — XDw,y = avy + buy, (NF — X1)2w, =
a(—Z1ze sin a cos Bvy + cosacosyug) + b(Z7 cos a cos Bvy + Z3 sin a cos yug)
and (N —XI)%wy = a(~21Zz sin a cos Bvy +21 cos a cos Bug) + b(cos a cos yvy
+ zg sin a cosyve) must be collinear because otherwise we get Sy C V, but
since the condition NS; C (S; + Sp) does not hold, we obtain dim V > 4.
Thus, let us write the conditions of the linear dependence (if a or b is equal
to zero, the vectors are not collinear):

_ . — a .
—Zizzsinacos § + Zy cosacos f— = cosacosvg + Z3 sin o cos 7y
a

. b a :
—~2z1Zgsina cos 3 + cOS a Cosy— = 21 COS (x COS 53 -+ 2o SIn (x COS Y.
a

If we replace the last condition by its complex conjugate and subtract it
from the first, we obtain

b a a
Z1cosacos B— —cosacosy| = | = cosacosyy — 7 cos acos 3 z
a a h

or

lal® + |6 laf® + |
= = COS(COS Y ——.

Zicosacosf3 —
ab ab

Modulus of the left-hand side must be equal to that of the right-hand
side, i.e., cosacosf = cosacosy. Since cosa # 0, cos3 = cos<y; hence,
# = ~v. But for our canonical form # < 7. This contradiction proves the
indecomposability of the operator N.

We have considered all alternatives for an indecomposable operator N

and have obtained canonical forms for each case. Thus, we have proved
Theorem 2. .

APPENDIX: CANONICAL FORMS FOR 2 x 2 MATRICES
UNDER CONGRUENCE

PROPOSITION 3. Any invertible matric A of order 2 x 2 is congruent

to one and only one of the following canenical forms:

z Qe—iﬂ/Bz ‘
A= . , \zl:l,ge%}ﬁ,ogargz<ﬂif9>\/§,
0 ei"/3;

(127)
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z1 0
A= (01 )’ a1l =1, |22| =1, arg 21 S argzp,  (128)
2

where 2,21, z2, 0 form a complete and minimal set of invariants.

Proof Consider the matrix A’ = AA*~!. If A = TAT*, then A’ =
TA'T~! so that spectral properties of A’ do not change under congruence
of A. Reduce A’ to the Jordan normal form. Since |det A’| = 1, there exist
three such forms:

T 0
A = ( ! ), Ty # Zo, |T1T2] =1, |21] <1, (129)
0 Iy
A =zI, z| =1, (130)
1
A = (x ) lz| = 1. (131)
0 z

(a) A’ is reduced to form (129). Since A = A’A*, we have

A = (“ b) - (ml Exl) — A'A". (132)

c d E.’Z:Q E.'L‘Q

It is seen that either b = ¢ = 0 or arg z; = arg zs.
If |zy] < 1, then from (132) it follows that a = d = 0; since A is
invertible, b and ¢ are nonzero; therefore, arg z; = arg 2. Now let us

consider the function f(o) = (1 — 0* — \/(¢®> + 1)(0® — 3)) of the real

variable p. It monotonically decreases on the interval (v/3,+00); f(1/3) =

—1, and limy, 400 f(0) = —00; therefore, the equation f(p) = s has a root
0 > /3 for all s < —1. Let p be a root of the equation flo) = —|9;2| and let
€82 = _eim/3,2 where |2| = 1, 0 < arg z < 7. Then z; = 2€*™/322(1 -

4+ (0 +1)(0? = 3)), z2 = 3/32%(1 - 0* ~ /(e® +1)(0% - 3)), and

from (132) it follows that

~(emaras o) P70
Now the transformation
( 1 Z(e™ /3 o) ~ 1)/ (b(f(0)* ~ 1)))
e* 30f(0)/(e™/*f(0) — 1) —"/320/(b(f(0)* — 1))

reduces A to form (127) with ¢ > +/3. The numbers g and z cannot be
changed under congruence because the eigenvalues of A’ are invariants
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and from the condition e*"/322f(p) = e"™/3Z2 () (J2| =|Z| =1, 0 < arg 2.
argz < m, 0,0 € R > /3) it follows that Z = z, 5 = o.

If |z;| = 1, then from the condition 1, # z, it follows that arg z; #
arg To; hence b = ¢ = 0. By taking T' = D5 one can interchange the terms a
and d of the matrix A. Hence, we can assume that arga < argd. Applying
the transformation

- (UF 1/?/@) ’

we reduce A to form (128) with z; = '8 9, z, = e?ar€ e,

To prove the invariance of z; and 2z, suppose that A = T AT, where
A=21®z2, A=21 D72 |21] = |22] = |21 = |Z2] = 1, arg 21 < arg 2z,
arg z; < arg z2. Then

zltn|® + zoltie)? = 2, (133)
zititay + zatiotas = 0 (134)
zitiitey + 22t12tes = 0 (135)
21|t21|2 + 22|t22|2 = Zs. (136)
Since ty1t31 = —Z1z2tiafzz (condition (134)), (135) holds only if (25 —

29 iatoe = 0. If 22 # 22, then 5 must be zero because if tp, = 0, then
t11 = 0 and, therefore, z1 = 23, Z2 = z1, which contradicts the condition
arg z; < arg z,. Thus, t13 = 0; hence, toy = 0, 21 = 21, Zo = 2. If
z] = zg, then, according to (133)-(136), 21 = z1(Jt11|* + |t12|?), Z2 =

21(|t21|2 + |t22|2); hence 21 = 2o = 21 = 20. If 20 = —2z; and #iatay # 0,
then tlltgl 7é 0 and 51 = 21(|t11|2 — |t12|2). Since ‘t211/|t22| = |t12|/|t11‘,
Z9 = Zl(ltgllz - |t22l2) = —tht22|2/|t1112. As_iirg Z1 S arg zo, we get
Z1 = z1, 29 = Z3. The case when 25 = —2z; and t12t22 = 0 can be considered

as before. Thus, we have proved the invariance of the numbers z; and z5.

(b) A’ is reduced to form (130). Then A = zA*, |z| = 1, this property
being invariant with respect to congruence. Since A is invertible, A = RU,
where R is self-adjoint positive definite matrix and U is unitary. Let T be a
unitary matrix reducing U to the diagonal form A. After the application of
T we have: A = RA, where R =TRT* is also self-adjoint positive definite.
Now let T be a lowertrlangular matrix such that TRT* = I. Then we
reduce A to the uppertriangular form T*~!AT™*. Since the term c of A is
now equal to zero, from the condition A = zA* it follows that b is also
equal to zero; i.e., A is diagonal. We already know that a diagonal matrix
is congruent to (128) (see case (a) above). Thus, A can be reduced to form
(128).
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(c) A’ is reduced to form (131). Let z = —e*™/322 (|z| = 1). Then the
application of the condition A = A’A* yields

a b )
_ = - 3=2
A_<_ei”/3z25 0), b=g+e /332,

For A to be invertible b must be nonzero. Since |b| = |a + €7™/32%q| =
laZ + €™/3Gz| = |aZ — e~ %"/3qz| = |€"/3aZ — e~ "™/3@z| = 2|Im{e™/3aZ}|,
we see that Im{e*"/3aZ} # 0. Let us choose z so that Im{e*"/3aZ} > 0.
Applying the transformation

ﬁ( bl ZizIm{az}lel/ )

T= , -
|b|3 e"/3zb  22( — Zi Im{aZ} + aZ)

we reduce A to form (127) with ¢ = /3. It is clear that matrix (127) with
0 = /3 is not congruent to that with ¢ > 3 because in the former case A’
has the diagonal Jordan normal form in contrast to the latter. Therefore,
we must prove only the invariance of z. Note that if 4 = TAT™, where

3 ~im/3 - vl Be—in/3%
A=<z vae ) A=<" vie z), |2 = [3] = 1,

0 ei1r/3z 0 eiﬂ/Sg

then 22 = 2? because the eigenvalue T = —e*"/322 of A’ does not change
under congruence of A. Therefore,

w2173 VB4
\/§ e2i7r/3 !

For T to satisfy the condition A’T = T A’ the matrix T must have the form

T (tn t12. )
ti2  t11 +it1e2

Now from the condition A = TAT™ it follows that

zZt1y|? + V3e Bty Tn + o2t =7 (137)
ztiitig + \/§e_i"/32|t12l2 + ei”/az(tu?l; + i|t12|2) = 0. (138)

If t12 # 0, from (138) it follows that

gmim/6 11 4 /Beim/2 4 pin/6 111 4T3 Z
t1o t12
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which is impossible because the imaginary part of the left-hand side is
equal to Im{/3e~¥"/2 4 ¢%7/3} = _\/3/2. Therefore, t; = 0, and hence
(condition (137)) Z = z; i.e., 2 is an invariant. This concludes the proof of
the proposition. n
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ful comments of this paper, and to the referee for careful reading and valuable
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REFERENCE

1 1. Gohberg and B. Reichstein, On classification of normal matrices in an in-
definite scalar product, Integral Equations and Operator Theory 13:364-394
(1990).

Recetved 21 September 199/); final manuscript accepted 26 June 1995



