NORTH-HOLLAND

Classification of Normal Operators in Spaces With Indefinite Scalar Product of Rank 2

O. V. Holtz and V. A. Strauss
Department of Applied Mathematics
Chelyabinsk State Technical University
454080 Chelyabinsk, Russia

Submitted by André Ran

Abstract

A finite-dimensional complex space with indefinite scalar product $[\cdot, \cdot]$ having $v_{-}=2$ negative squares and $v_{+} \geq 2$ positive ones is considered. The paper presents a classification of operators that are normal with respect to this product. It relates to the study by Gohberg and Reichstein in which the similar classification was obtained for the case $v=\min \left\{v_{-}, v_{+}\right\}=1$.

1. INTRODUCTION

Consider a complex linear space C^{n} with an indefinite scalar product $[\cdot, \cdot]$. By definition, the latter is a nondegenerate sesquilinear Hermitian form. If the ordinary scalar product (\cdot, \cdot) is fixed, then there exists a nondegenerate Hermitian operator H such that $[x, y]=(H x, y) \forall x, y \in C^{n}$. If A is a linear operator $\left(A: C^{n} \rightarrow C^{n}\right)$, then the H-adjoint of A (denoted by $A^{[*]}$) is defined by the identity $\left[A^{[*]} x, y\right]=[x, A y]$ (hence $A^{[*]}=H^{-1} A^{*} H$). An operator N is called H-normal if $N N^{[*]}=N^{[*]} N$, an operator U is called H-unitary if $U U^{[*]}=I$, where I is the identity transformation.

Let V be a nontrivial subspace of $C^{n} . V$ is called neutral if $[x, y]=0$ for all $x, y \in V$. In this case we may write $[V, V]=0 . V$ is called nondegenerate if from $x \in V$ and $\forall y \in V[x, y]=0$ it follows that $x=0$. The subspace $V^{[\perp]}$ is defined as the set of all vectors $x \in C^{n}:[x, y]=0 \quad \forall y \in V$. If V is nondegenerate, then $V^{[\perp]}$ is also nondegenerate and $V \dot{+} V^{[\perp]}=C^{n}$.

A linear operator A acting in C^{n} is called decomposable if there exists a nondegenerate subspace $V \subset C^{n}$ such that both V and $V^{[\perp]}$ are invariant for A. Then A is the orthogonal sum of $A_{1}=\left.A\right|_{V}$ and $A_{2}=\left.A\right|_{V[+]}$. Since the conditions $A V^{[\perp]} \subseteq V^{[\perp]}$ and $A^{[*]} V \subseteq V$ are equivalent, an operator
A is decomposable if there exists a nondegenerate subspace V which is invariant both for A and $A^{[*]}$.

Pairs of matrices $\left\{A_{1}, H_{1}\right\}$ and $\left\{A_{2}, H_{2}\right\}$, where H_{1} and H_{2} are Hermitian, are called unitarily similar if $A_{2}=T^{-1} A_{1} T, H_{2}=T^{*} H_{1} T$ for some invertible T; in the case when $H_{1}=H_{2}$ they are H_{1}-unitarily similar.

Throughout what follows by a rank of a space we mean $v=\min \left\{v_{-}, v_{+}\right\}$, where $v_{-}\left(v_{+}\right)$is the number of negative (positive) squares of the quadratic form $[x, x]$, or (it is the same) the number of negative (positive) eigenvalues of the operator H. Note that without loss of generality it can be assumed that $v_{-} \leq v_{+}$(otherwise H can be replaced by $-H$; the latter [invertible and Hermitian operator] has opposite eigenvalues).

Our aim is to obtain a complete classification for H-normal operators acting in the space C^{n} of rank 2, i.e., to find a set of canonical forms such that any H-normal operator could be reduced to one and only one of these forms. This means that for any invertible Hermitian matrix H with $v=2$ and for any H-normal matrix N we must point out one and only one of the canonical pairs of matrices $\{\widetilde{N}, \widetilde{H}\}$ such that the pair $\{N, H\}$ is unitarily similar to $\{\widetilde{N}, \widetilde{H}\}$.

Since any H-normal operator $N: C^{n} \rightarrow C^{n}$ is an orthogonal sum of H-normal operators each of which has one or two distinct eigenvalues (Lemma 1 from [1]), it is sufficient to solve our problem only for indecomposable operators having one or two distinct eigenvalues.

Thus, in this paper we consider only indecomposable operators having one or two distinct eigenvalues and assume that $2=v_{-} \leq v_{+}$.

Finally let us introduce some notation. Denote the identity matrix of order $r \times r$ by I_{r}, the $r \times r$ matrix with 1's on the secondary diagonal and zeros elsewhere by D_{r}, and a block diagonal matrix with A, B, \ldots, C diagonal blocks by $A \oplus B \oplus \cdots \oplus C$:

$$
\begin{gathered}
I_{r}=\left(\begin{array}{lll}
1 & & \\
& \cdot & 0 \\
0 & \cdot & 1
\end{array}\right), \quad D_{r}=\left(\begin{array}{lll}
0 & & \\
& & 1 \\
1 & & \\
& & 0
\end{array}\right) \\
A \oplus B \oplus \cdots \oplus C=\left(\begin{array}{lll}
A & B & \\
& & \\
0 & & \\
0
\end{array}\right)
\end{gathered}
$$

2. SOME PROPERTIES OF INDECOMPOSABLE H-NORMAL OPERATORS

The results of this section hold for any finite-dimensional space with indefinite scalar product.

Proposition 1. Let an indecomposable H-normal operator N acting in $C^{n}(n>1)$ have the only eigenvalue λ; then there exists a decomposition of C^{n} into a direct sum of subspaces

$$
\begin{equation*}
S_{0}=\left\{x \in C^{n}:(N-\lambda I) x=\left(N^{[*]}-\bar{\lambda} I\right) x=0\right\} \tag{1}
\end{equation*}
$$

S, S_{1} such that

$$
N=\left(\begin{array}{ccc}
N^{\prime}=\lambda I & * & * \tag{2}\\
0 & N_{1} & * \\
0 & 0 & N^{\prime \prime}=\lambda I
\end{array}\right), \quad H=\left(\begin{array}{ccc}
0 & 0 & I \\
0 & H_{1} & 0 \\
I & 0 & 0
\end{array}\right)
$$

where $N^{\prime}: S_{0} \rightarrow S_{0}, N_{1}: S \rightarrow S, N^{\prime \prime}: S_{1} \rightarrow S_{1}$, the internal operator N_{1} is H_{1}-normal, and the pair $\left\{N_{1}, H_{1}\right\}$ is determined up to the unitary similarity.

Proof. Since N and $N^{[*]}$ commute, the subspace S_{0} defined by (1) is nontrivial. For N to be indecomposable S_{0} must be neutral. Indeed, otherwise $\exists v \in S_{0}: N v=\lambda v, N^{[*]}=\bar{\lambda} v,[v, v] \neq 0$; therefore, $V=\operatorname{span}\{v\}$ is a nondegenerate subspace that is invariant both for N and $N^{[*]}$, and hence, N is decomposable. Thus, S_{0} is neutral. Let us take advantage of the following well-known result: for any neutral subspace $V_{1} \subset C^{n}$ there exists a subspace $V_{2}\left(V_{1} \cap V_{2}=\{0\}\right)$ such that

$$
\left.H\right|_{\left(V_{1}+V_{2}\right)}=\left(\begin{array}{ll}
0 & I \tag{3}\\
I & 0
\end{array}\right)
$$

Therefore, for S_{0} there exists a neutral subspace S_{1} such that $\left.H\right|_{\left(S_{0}+S_{1}\right)}$ has form (3). Since the subspace ($S_{0} \dot{+} S_{1}$) is nondegenerate, the subspace $S=\left(S_{0} \dot{+} S_{1}\right)^{[\perp]}$ is also nondegenerate and $C^{n}=S_{0}+S \dot{+} S_{1}$. As $\forall v \in C^{n}$ $(N-\lambda I) v \in S_{0}^{[\perp]}$ and $\left(N^{[*]}-\bar{\lambda} I\right) v \in S_{0}^{[\perp]}$, the matrices N and H has form (2) with respect to the decomposition $C^{n}=S_{0}+S \dot{+} S_{1}$. Since N is H-normal, the internal operator N_{1} is H_{1}-normal.

It is seen that only the subspace S_{0} is fixed; S and S_{1} may change. However, the pair $\left\{N_{1}, H_{1}\right\}$ is unique in a sense, namely, it is determined up to the unitary similarity. Indeed, any transformation T such that $T S_{0} \subseteq S_{0}$ has the form

$$
T=\left(\begin{array}{ccc}
T_{1} & T_{2} & T_{3} \\
0 & T_{4} & T_{5} \\
0 & T_{6} & T_{7}
\end{array}\right)
$$

Since

$$
\widetilde{H}=\left(\begin{array}{ccc}
0 & 0 & I \\
0 & \tilde{H}_{1} & 0 \\
I & 0 & 0
\end{array}\right),
$$

from condition $\widetilde{H}=T^{*} H T$ it follows that $T_{6}=0, \widetilde{H}_{1}=T_{4}^{*} H_{1} T_{4}$. As $\widetilde{N}=T^{-1} N T, \widetilde{N}_{1}=T_{4}^{-1} N_{1} T_{4}$ so that the pair $\left\{N_{1}, H_{1}\right\}$ is unitarily similar to $\left\{\widetilde{N}_{1}, \widetilde{H}_{1}\right\}$.

Remark. The decomposition $C^{n}=S_{0} \dot{+} S \dot{+} S_{1}$ was constructed in [1, Section 6] so that the first part of this statement is borrowed from [1].

Corollary. To go over from one decomposition $C^{n}=S_{0} \dot{+} S \dot{+} S_{1}$ to another by means of a transformation T it is necessary that T would be block triangular with respect to both decompositions.

THEOREM 1. If an H-normal operator N acting in a space C^{n} of rank $k \geq 1$ is indecomposable, then either (A) or (B) holds:
(A) N has two eigenvalues and $n=2 k$;
(B) N has one eigenvalue and $2 k \leq n \leq 4 k$.

Proof. First show that $n \geq 2 k$. Indeed, $n=v_{-}+v_{+} \geq 2 \min \left\{v_{-}, v_{+}\right\}=$ $2 k$. Now prove (A). Let N have two distinct eigenvalues. Then, according to Lemma 1 from [1], C^{n} is a direct sum of two neutral subspaces of the same dimension m which are invariant for N and $N^{[*]}$. Since in a space with indefinite scalar product no neutral space can be of dimension more than rank of a space, $m \leq k$ and $n \leq 2 k$. But it was established before that $n \geq 2 k$. Hence, $n=2 k$ and the proof of (A) is completed.

Now prove (B); i.e., show that if N has one eigenvalue, then $n \leq 4 k$. For $k=1$ the proof is given in [1, Theorem 1]. Suppose inductively that for all $i \leq k$ the size of indecomposable operators having one eigenvalue is not more than $4 i \times 4 i$. Let $v_{-}=k+1, v_{+} \geq v_{-}, N$ have the only eigenvalue λ. According to Proposition 1, one can assume that the matrices N and H have form (2). Let $N_{1}=N_{1}^{(1)} \oplus \cdots \oplus N_{1}^{(p)}$ be a decomposition of the internal operator N_{1} into an orthogonal sum of indecomposable operators, and let $H_{1}=H_{1}^{(1)} \oplus \cdots \oplus H_{1}^{(p)}, S=S^{(1)} \oplus \cdots \oplus S^{(p)}$ be the corresponding decompositions of H_{1} and S. Let $v_{-}^{(i)}$ be the number of negative eigenvalues of $H_{1}^{(i)}(i=1, \ldots p)$. If $\operatorname{dim} S_{0}=s$, then $\sum_{i=1}^{p} v_{-}^{(i)}=k+1-s$. Let

$$
H_{1}^{\prime}=\sum_{v_{-}^{(i)}>0} H_{1}^{(i)}, \quad H_{1}^{\prime \prime}=\sum_{\substack{(i) \\ v_{-}=0}} H_{1}^{(i)}
$$

Then $H_{1}=H_{1}^{\prime} \oplus H_{1}^{\prime \prime}, N_{1}=N_{1}^{\prime} \oplus N_{1}^{\prime \prime}$, where $N_{1}^{\prime}, N_{1}^{\prime \prime}$ are the corresponding sums of operators $N_{1}^{(i)}$. Since for any $i=1, \ldots, p$ rank of the subspace $S_{1}^{(i)}$ is not more than $v_{-}^{(i)}, v_{-}^{(i)} \leq k$ (because $k+1-s \leq k$), and the size of an indecomposable operator in a space of rank 0 is equal to 1 , by the inductive hypothesis $\operatorname{dim} S^{(i)} \leq 4 v_{-}^{(i)}$; hence $\operatorname{dim} S^{\prime} \leq 4(k+1-s)$. Since $H_{1}^{\prime \prime}$ has only positive eigenvalues, $N_{1}^{\prime \prime}$ is a usual normal operator having one eigenvalue λ; therefore, $N_{1}^{\prime \prime}=\lambda I$ so that

$$
N=\left(\begin{array}{cccc}
\lambda I & * & M_{1} & * \\
0 & N_{1}^{\prime} & 0 & * \\
0 & 0 & \lambda I & * \\
0 & 0 & 0 & \lambda I
\end{array}\right), \quad N^{[*]}=\left(\begin{array}{cccc}
\bar{\lambda} I & * & M_{2} & * \\
0 & N_{1}^{\prime[*]} & 0 & * \\
0 & 0 & \bar{\lambda} I & * \\
0 & 0 & 0 & \bar{\lambda} I
\end{array}\right) .
$$

If $\operatorname{dim} S^{\prime \prime}=r>2 s$, then the system

$$
\begin{aligned}
& M_{1} X=0 \\
& M_{2} X=0
\end{aligned}
$$

has a nontrivial solution $X=\left(x_{1}, \ldots, x_{r}\right)^{T}$ (where Y^{T} is Y transposed). Therefore, there exists a nonzero vector $v=\sum_{i=1}^{r} x_{i} w_{i}$ (w_{i} are the basis vectors of $\left.S^{\prime \prime}\right)$ that satisfies the condition $(N-\lambda I) v=\left(N^{[*]}-\bar{\lambda} I\right) v=0$, i.e., $v \in S_{0}$. But $S_{0} \cap S=\{0\}$. This contradiction proves that $\operatorname{dim} S^{\prime \prime} \leq$ $2 s$. Thus, $n=2 \operatorname{dim} S_{0}+\operatorname{dim} S^{\prime}+\operatorname{dim} S^{\prime \prime} \leq 2 s+4(k+1-s)+2 s=$ $4(k+1)$.

Since an indecomposable operator cannot have more than two eigenvalues [1, Lemma 1], either (A) or (B) is true so that the proof of the theorem is completed.

3. THE CLASSIFICATION OF INDECOMPOSABLE H-NORMAL OPERATORS

The principal aim of this paper is to prove the following result:

Theorem 2. If an indecomposable H-normal operator $N\left(N: C^{n} \rightarrow\right.$ C^{n}) acts in a space with indefinite scalar product with $v_{-}=2$ negative squares and $v_{+} \geq 2$ positive ones, then $4 \leq n \leq 8$ and the pair $\{N, H\}$ is unitarily similar to one and only one of canonical pairs $\{(4),(5)\}-$ $\{(31),(32)\}$. The choice of the particular canonical form is determined as follows.

If N has two distinct eigenvalues λ_{1}, λ_{2}, then $\{N, H\}$ is unitarily similar to $\{(4),(5)\}$:

$$
\begin{align*}
& N=\left(\begin{array}{cccc}
\lambda_{1} & 1 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
0 & 0 & x & \lambda_{2}
\end{array}\right), \quad x \in C, \\
& \text { for } x \neq 0\left[\begin{array}{ll}
\operatorname{Im}\left\{\lambda_{1}-\lambda_{2}\right\}>0 \\
\operatorname{Re}\left\{\lambda_{1}-\lambda_{2}\right\}>0 & \text { if } \operatorname{Im}\left\{\lambda_{1}-\lambda_{2}\right\} \neq 0, \\
H & =\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right) .
\end{array}\right. \tag{4}\\
& \tag{5}
\end{align*}
$$

If N has one eigenvalue λ, $\operatorname{dim} S_{0}=1$, the internal operator N_{1} is indecomposable, and $n=4$, then $\{N, H\}$ is unitarily similar to $\{(6),(7)\}$:

$$
\begin{align*}
& N=\left(\begin{array}{cccc}
\lambda & 1 & i r_{1} & i r_{2} z \\
0 & \lambda & z & 0 \\
0 & 0 & \lambda & z^{2} \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r_{1}, r_{2} \in \Re, \tag{6}\\
& H=D_{4} . \tag{7}
\end{align*}
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=1, N_{1}$ is indecomposable, and $n=5$, then $\{N, H\}$ is unitarily similar to one and only one of pairs $\{(8),(11)\}$, $\{(9),(11)\},\{(10),(11)\}:$

$$
\begin{align*}
& N=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & i r_{3} \\
0 & \lambda & 1 & i r_{1} & -2 r_{1}^{2}+i r_{2} \\
0 & 0 & \lambda & 1 & 2 i r_{1} \\
0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re, \tag{8}\\
& N=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & i r_{3} \\
0 & \lambda & z & r_{1} & -2 z^{2} r_{1}^{2} \operatorname{Im}^{2} z+i r_{2} z^{2} \\
0 & 0 & \lambda & z & -2 i r_{1} z^{2} \operatorname{Im} z \\
0 & 0 & 0 & \lambda & z^{2} \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \begin{array}{l}
|z|=1, z \neq i \\
0<\arg z<\pi \\
r_{1}, r_{2}, r_{3} \in \Re
\end{array} \tag{9}
\end{align*}
$$

$$
\begin{align*}
N & =\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & r_{3} \\
0 & \lambda & i & r_{1} & 2 r_{1}^{2}+i r_{2} \\
0 & 0 & \lambda & i & 2 i r_{1} \\
0 & 0 & 0 & \lambda & -1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re \tag{10}\\
H & =D_{5} \tag{11}
\end{align*}
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=1, N_{1}$ is decomposable, and $n=4$, then $\{N, H\}$ is unitarily similar to one and only one of pairs $\{(12),(15)\}$, $\{(13),(15)\},\{(14),(15)\}:$

$$
\begin{align*}
& N=\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & z \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, \tag{12}\\
& N=\left(\begin{array}{cccc}
\lambda & 1 & 1 & 0 \\
0 & \lambda & 0 & z \\
0 & 0 & \lambda & (1+i r) z \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r \in \Re>0, \tag{13}\\
& N=\left(\begin{array}{rrrc}
\lambda & 1 & -1 & 0 \\
0 & \lambda & 0 & z \\
0 & 0 & \lambda & -(1+i r) z \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r \in \Re>0, \tag{14}\\
& H=D_{4} . \tag{15}
\end{align*}
$$

If N has one eigenvalue λ, $\operatorname{dim} S_{0}=1, N_{1}$ is decomposable, and $n=5$, then $\{N, H\}$ is unitarily similar to $\{(16),(17)\}$:

$$
\begin{align*}
N & =\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \frac{1}{2} r_{1}^{2}+i r_{2} & 0 \\
0 & \lambda & 0 & z & 0 \\
0 & 0 & \lambda & 0 & r_{1} \\
0 & 0 & 0 & \lambda & z^{2} \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r_{1}, r_{2} \in \Re, r_{1}>0, \tag{16}\\
H & =D_{5} . \tag{17}
\end{align*}
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=1, N_{1}$ is decomposable, and $n=6$, then $\{N, H\}$ is unitarily similar to one and only one of pairs $\{(18),(20)\}$, $\{(19),(20)\}:$

$$
N=\left(\begin{array}{cccccc}
\lambda & 1 & 2 i r_{1} & 0 & 0 & 0 \\
0 & \lambda & 1 & i r_{1} & 0 & 2 r_{1}^{2}-r_{2}^{2} / 2+i r_{3} \\
0 & 0 & \lambda & 1 & 0 & 0 \\
0 & 0 & 0 & \lambda & 0 & 1 \\
0 & 0 & 0 & 0 & \lambda & r_{2} \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right)
$$

$$
\begin{equation*}
r_{1}, r_{2} \in \Re, r_{2}>0 \tag{18}
\end{equation*}
$$

$N=\left(\begin{array}{cccccc}\lambda & 1 & -2 i r_{1} \operatorname{Im} z & 0 & 0 & 0 \\ 0 & \lambda & z & r_{1} & 0 & \left(2 r_{1}^{2} \operatorname{Im}^{2} z-r_{2}^{2} / 2+i r_{3}\right) z^{2} \\ 0 & 0 & \lambda & z & 0 & 0 \\ 0 & 0 & 0 & \lambda & 0 & z^{2} \\ 0 & 0 & 0 & 0 & \lambda & r_{2} \\ 0 & 0 & 0 & 0 & 0 & \lambda\end{array}\right)$,
$|z|=1,0<\arg z<\pi, r_{1}, r_{2}, r_{3} \in \Re, r_{2}>0$,

$$
H=\left(\begin{array}{cccc}
0 & 0 & 0 & I_{1} \tag{19}\\
0 & D_{3} & 0 & 0 \\
0 & 0 & I_{1} & 0 \\
I_{1} & 0 & 0 & 0
\end{array}\right)
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, and $n=4$, then $\{N, H\}$ is unitarily similar to one and only one of pairs $\{(21),(23)\},\{(22),(23)\}$:

$$
\begin{align*}
& N=\left(\begin{array}{cccc}
\lambda & 0 & z & r e^{-i \pi / 3} z \\
0 & \lambda & 0 & e^{i \pi / 3} z \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \begin{array}{l}
|z|=1, r \in \Re \geq \sqrt{3} \\
0 \leq \arg z<\pi \text { if } r>\sqrt{3} \\
N
\end{array} \tag{21}\\
& \tag{22}\\
&=\left(\begin{array}{llll}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right)
\end{align*}
$$

$$
H=\left(\begin{array}{cc}
0 & I_{2} \tag{23}\\
I_{2} & 0
\end{array}\right)
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, and $n=5$, then $\{N, H\}$ is unitarily similar to one and only one of pairs $\{(24),(26)\},\{(25),(26)\}$:

$$
\begin{align*}
& N=\left(\begin{array}{lllll}
\lambda & 0 & 1 & 0 & 0 \\
0 & \lambda & 0 & 1 & 0 \\
0 & 0 & \lambda & z & 0 \\
0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, \tag{24}\\
& N
\end{aligned} \begin{aligned}
& \left(\begin{array}{lllll}
\lambda & 0 & 1 & 0 & 0 \\
0 & \lambda & 0 & r & z \\
0 & 0 & \lambda & z^{2} & 0 \\
0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r \in \Re>0 \tag{25}\\
& H \tag{26}
\end{align*}
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, and $n=6$, then $\{N, H\}$ is unitarily similar to $\{(27),(28)\}$:

$$
\begin{align*}
& N=\left(\begin{array}{cccccc}
\lambda & 0 & 1 & 0 & i r_{1} & 0 \\
0 & \lambda & 0 & 1 & r_{2} & i r_{1} \\
0 & 0 & \lambda & 0 & z & 0 \\
0 & 0 & 0 & \lambda & 0 & z \\
0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad \begin{array}{l}
|z|=1, z \neq-1 \\
r_{1}, r_{2} \in \Re, r_{2}>0 \\
H
\end{array} \tag{27}\\
& \tag{28}\\
& =\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{2} & 0 \\
I_{2} & 0 & 0
\end{array}\right) .
\end{align*}
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, and $n=7$, then $\{N, H\}$ is unitarily similar to $\{(29),(30)\}$:

$$
\begin{align*}
N & =\left(\begin{array}{ccccccc}
\lambda & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & -z_{1} \overline{z_{2}} \cos \alpha & \sin \alpha \cos \beta \\
0 & 0 & 0 & \lambda & 0 & z_{1} \sin \alpha & z_{2} \cos \alpha \cos \beta \\
0 & 0 & 0 & 0 & \lambda & 0 & \sin \beta \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \\
\left|z_{1}\right| & =\left|z_{2}\right|=1,0<\alpha, \beta \leq \pi / 2, \\
z_{1} & =1 \text { if } \beta=\pi / 2, \quad z_{2}=1 \text { if } \alpha=\pi / 2, \tag{29}\\
H & =\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{3} & 0 \\
I_{2} & 0 & 0
\end{array}\right) . \tag{30}
\end{align*}
$$

If N has one eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, and $n=8$, then $\{N, H\}$ is unitarily similar to $\{(31),(32)\}$:

$$
\begin{align*}
& N=\left(\begin{array}{cccccccc}
\lambda & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & -z_{1} \overline{z_{2}} \sin \alpha \cos \beta & \cos \alpha \cos \gamma \\
0 & 0 & 0 & \lambda & 0 & 0 & z_{1} \cos \alpha \cos \beta & z_{2} \sin \alpha \cos \gamma \\
0 & 0 & 0 & 0 & \lambda & 0 & \sin \beta & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 & \sin \gamma \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \\
& \left|z_{1}\right|=\left|z_{2}\right|=1,0 \leq \alpha<\pi / 2,0<\beta<\gamma \leq \pi / 2, \\
& z_{1}=1 \text { if } \gamma=\pi / 2, \quad z_{2}=1 \text { if } \alpha=0 \tag{31}\\
& H=\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{4} & 0 \\
I_{2} & 0 & 0
\end{array}\right) \text {. } \tag{32}
\end{align*}
$$

The following sections contain the proof of this theorem.

4. TWO DISTINCT EIGENVALUES OF N

Suppose an indecomposable H-normal operator N has two distinct eigenvalues. Then [1, Lemma 1] $C^{n}=\mathcal{Q}_{1}+\mathcal{Q}_{2}$, $\operatorname{dim} \mathcal{Q}_{1}=\operatorname{dim} \mathcal{Q}_{2}=m$, $\left[\mathcal{Q}_{1}, \mathcal{Q}_{1}\right]=0,\left[\mathcal{Q}_{2}, \mathcal{Q}_{2}\right]=0, N \mathcal{Q}_{1} \subseteq \mathcal{Q}_{1}, N \mathcal{Q}_{2} \subseteq \mathcal{Q}_{2}, N_{1}=\left.N\right|_{\mathcal{Q}_{1}}\left(N_{2}=\right.$ $\left.N \mid \mathcal{Q}_{2}\right)$ has only one eigenvalue $\lambda_{1}\left(\lambda_{2}\right)$. According to Theorem $1, m=2$ and $n=4$. Note that the subspaces \mathcal{Q}_{1} and \mathcal{Q}_{2} are determined up to interchanging. Since N is indecomposable, at least one of the operators N_{1}, N_{2} is not scalar. Consequently, one can assume $N_{1} \neq \lambda_{1} I$. If both N_{1} and N_{2} are not scalar, then we can fix $\operatorname{Im}\left\{\lambda_{1}-\lambda_{2}\right\}>0$ if $\operatorname{Im}\left\{\lambda_{1}-\lambda_{2}\right\} \neq 0$ and $\operatorname{Re}\left\{\lambda_{1}-\lambda_{2}\right\}>0$ if $\operatorname{Im}\left\{\lambda_{1}-\lambda_{2}\right\}=0$ (let us remember that $\lambda_{1} \neq \lambda_{2}$). Now \mathcal{Q}_{1} and \mathcal{Q}_{2} are determined uniquely.

As H is nondegenerate, for any basis in \mathcal{Q}_{1} there exists a basis in \mathcal{Q}_{2} such that

$$
H=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) .
$$

Let us fix a basis in \mathcal{Q}_{1} such that

$$
N_{1}=\left(\begin{array}{cc}
\lambda_{1} & 1 \tag{33}\\
0 & \lambda_{1}
\end{array}\right) .
$$

N is H-normal if and only if

$$
\begin{equation*}
N_{1} N_{2}{ }^{*}=N_{2}{ }^{*} N_{1} . \tag{34}
\end{equation*}
$$

From (34) it follows that $N_{2}^{*}=\alpha N_{1}+\beta I$. As $N_{2}=\bar{\alpha} N_{1}^{*}+\bar{\beta} I$ has the only eigenvalue λ_{2}, we conclude $N_{2}=\lambda_{2} I+x\left(N_{1}^{*}-\overline{\lambda_{1}} I\right)(x \in C)$. Thus, we have reduced N to the form

$$
N=\left(\begin{array}{cc}
\lambda_{1} & 1 \tag{35}\\
0 & \lambda_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
\lambda_{2} & 0 \\
x & \lambda_{2}
\end{array}\right), \quad x \in C
$$

Show that forms (35) with different values of x are not H-unitarily similar. To this end suppose that some matrix T satisfies the conditions

$$
\begin{align*}
N T & =T \widetilde{N}, \tag{36}\\
T T^{[*]} & =I, \tag{37}
\end{align*}
$$

where $N=N_{1} \oplus N_{2}, \widetilde{N}=N_{1} \oplus \tilde{N}_{2}, N_{1}$ has form (33),

$$
N_{2}=\left(\begin{array}{cc}
\lambda_{2} & 0 \\
x & \lambda_{2}
\end{array}\right), \quad \tilde{N}_{2}=\left(\begin{array}{cc}
\lambda_{2} & 0 \\
\widetilde{x} & \lambda_{2}
\end{array}\right) .
$$

From (36) it follows that T is block diagonal with respect to the decomposition $C^{n}=\mathcal{Q}_{1}+\mathcal{Q}_{2}: T=T_{1} \oplus T_{2}, T_{1}$ satisfying the condition $N_{1}=T_{1}^{-1} N_{1} T_{1}$. Taking into account (37), we get $T_{2}=T_{1}^{*-1}$; therefore, $\widetilde{N}_{2}=T_{2}^{-1} N_{2} T_{2}=N_{2}$, i.e., $\widetilde{x}=x$.

It can easily be checked that (35) is indecomposable so that we have proved the following lemma:

Lemma 1. If an indecomposable H-normal operator acts in a space C^{n} of rank 2 and has two distinct eigenvalues λ_{1}, λ_{2}, then $n=4$ and the pair $\{N, H\}$ is unitarily similar to canonical pair $\{(4),(5)\}$:

$$
\begin{aligned}
N & =\left(\begin{array}{cccc}
\lambda_{1} & 1 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
0 & 0 & x & \lambda_{2}
\end{array}\right), \quad x \in C, \\
\text { for } x & \neq 0\left[\begin{array}{ll}
\operatorname{Im}\left\{\lambda_{1}-\lambda_{2}\right\}>0 \\
\operatorname{Re}\left\{\lambda_{1}-\lambda_{2}\right\}>0
\end{array}\right. \\
H & =\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right),
\end{aligned}
$$

where the number x forms a complete and minimal invariant of the pair $\{N, H\}$ under the unitary similarity (in short, we say that x is an H-unitary invariant). In other words, every pair $\{N, H\}$ satisfying the hypothesis of the lemma is unitary similar to pair $\{(4),(5)\}$ and pairs $\{(4),(5)\}$ with different values of x are not H-unitarily similar to each other.

5. ONE EIGENVALUE OF N

Throughout what follows we assume that N has only one eigenvalue λ so that N and H have form (2). Since the neutral subspace S_{0} cannot be more than two dimensional, there appear two cases to be considered: $\operatorname{dim} S_{0}=1$ and $\operatorname{dim} S_{0}=2$. Now let us prove the following proposition which holds for all spaces with indefinite scalar product:

Proposition 2. An H-normal operator such that $\operatorname{dim} S_{0}=1$ is indecomposable.

Proof. Assume the converse. Suppose some nondegenerate subspace V is invariant both for N and for $N^{[*]}$. Let us denote $V_{1}=V, V_{2}=V^{[\perp]}$, $N_{1}=\left.N\right|_{V_{1}}, N_{2}=\left.N\right|_{V_{2}}, H_{1}=\left.H\right|_{V_{1}}, H_{2}=\left.H\right|_{V_{2}}$. The following conditions
must hold: $N_{1} N_{1}^{[*]}=N_{1}^{[*]} N_{1}, N_{2} N_{2}^{[*]}=N_{2}^{[*]} N_{2}$. Here $N_{i}^{[*]}$ is the H_{i}-adjoint of $N_{i}(i=1,2)$. Let us define

$$
S_{0}^{i}=\left\{x \in V_{i}:\left(N_{i}-\lambda I\right) x=\left(N_{i}^{[*]}-\bar{\lambda} I\right) x=0\right\}, \quad i=1,2
$$

Since the operators N_{1} and $N_{1}^{[*]}\left(N_{2}\right.$ and $\left.N_{2}^{[*]}\right)$ commute, $\operatorname{dim} S_{0}^{i} \geq 1$ ($i=1,2$); therefore, $\operatorname{dim}\left\{S_{0}=S_{0}^{1}+S_{0}^{2}\right\} \geq 2$. This contradicts the condition $\operatorname{dim} S_{0}=1$. Thus, N is indecomposable.

If $\operatorname{dim} S_{0}=1$, then rank of S is equal to 1 ; therefore, to classify the internal operator N_{1} we may apply Theorem 1 from [1]. Since the indecomposability (or decomposability) of N_{1} is a property that does not change under the unitary similarity of the pair $\left\{N_{1}, H_{1}\right\}$, we must consider both the case when N_{1} is indecomposable and that when N_{1} is decomposable.

5.1. $\operatorname{dim} S_{0}=1$ and N_{1} is Indecomposable

If N_{1} is indecomposable, then, according to Theorem $1,2 \leq \operatorname{dim} S \leq 4$ (recall that rank of S is equal to 1). Therefore, $4 \leq n \leq 6$. Let us consider the alternatives $n=4,5,6$ one after another.
5.1.1. $n=4 \quad$ According to Theorem 1 of [1], one can assume that N_{1} and H_{1} are reduced to the form

$$
N_{1}=\left(\begin{array}{cc}
\lambda & z \\
0 & \lambda
\end{array}\right), \quad|z|=1, \quad H_{1}=D_{2}
$$

Hence

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 0 & z & d \\
0 & 0 & 0 & e \\
0 & 0 & 0 & 0
\end{array}\right), \quad H=D_{4}
$$

Throughout what follows only H-unitary transformations are used unless otherwise stipulated. This means that for each case we fix some form of the matrix H and find out to what form it is possible to reduce the matrix N without the change of H.

The condition of the H-normality of N is equivalent to the system

$$
\begin{align*}
a \bar{z} & =\bar{e} z \tag{38}\\
\operatorname{Re}\{a \bar{b}\} & =\operatorname{Re}\{d \bar{e}\} \tag{39}
\end{align*}
$$

If $a=0$, then $e=0$; therefore, the vector v_{2} from S (v_{i} are the basis vectors) belongs to S_{0}, which is impossible. Thus, $a \neq 0$. Replace the
vector v_{1} by $a v_{1}$ and v_{4} by v_{4} / \bar{a}. This transformation reduces $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & b^{\prime} & c^{\prime} \\
0 & 0 & z & d^{\prime} \\
0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Further, apply the transformation

$$
T=\left(\begin{array}{cccc}
1 & z \bar{d}^{\prime} & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -\bar{z} d^{\prime} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

to the matrix $N-\lambda I$. We obtain

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & b^{\prime \prime} & c^{\prime \prime} \\
0 & 0 & z & 0 \\
0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It follows from (39) that $b^{\prime \prime}=i r_{1}\left(r_{1} \in \Re\right)$. Taking the transformation

$$
T=\left(\begin{array}{cccc}
1 & 0 & \frac{1}{2} \bar{z} \operatorname{Re}\left\{c^{\prime \prime} \bar{z}\right\} & 0 \\
0 & 1 & 0 & -\frac{1}{2} z \operatorname{Re}\left\{c^{\prime \prime} \bar{z}\right\} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

we reduce $N-\lambda I$ to the final form

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & i r_{1} & i r_{2} z \tag{40}\\
0 & 0 & z & 0 \\
0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1, r_{1}, r_{2} \in \Re
$$

where $r_{2}=\operatorname{Im}\left\{c^{\prime \prime} \bar{z}\right\}$.

Let us prove that the numbers z, r_{1}, r_{2} are H-unitary invariants. Indeed, let T be an H-unitary transformation of the matrix N to the form \widetilde{N}, where

$$
\widetilde{N}-\lambda I=\left(\begin{array}{cccc}
0 & 1 & i \widetilde{r}_{1} & i \widetilde{r}_{2} \tilde{z} \\
0 & 0 & \widetilde{z} & 0 \\
0 & 0 & 0 & \widetilde{z}^{2} \\
0 & 0 & 0 & 0
\end{array}\right), \quad|\widetilde{z}|=1, \widetilde{r}_{1}, \widetilde{r}_{2} \in \Re
$$

This means that T satisfies conditions (36) and (37). From the corollary of Proposition 1 it follows that T is block triangular with respect to the decomposition $C^{n}=S_{0}+S+S_{1}$. According to Theorem 1 from [1], z is an H_{1}-unitary invariant of $N_{1} . T_{4}=\left.T\right|_{S}$ is an H_{1}-unitary transformation of N_{1} to the form \widetilde{N}_{1}; therefore, z is also an H-unitary invariant of N, i.e., $\widetilde{z}=z$. Applying condition (36), we see that T is uppertriangular and its diagonal terms are equal to each other. From (37) it follows that $\left|t_{11}\right|=1$. Therefore, without loss of generality one can assume that $t_{11}=1$ (we replace our matrix T by the matrix $T^{\prime}=\overline{t_{11}} T$; the latter has the same properties (36), (37)).

Thus,

$$
T=\left(\begin{array}{cccc}
1 & t_{12} & t_{13} & t_{14} \\
0 & 1 & t_{23} & t_{24} \\
0 & 0 & 1 & t_{34} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

For T to be H-unitary it is neccessary and sufficient to have

$$
\begin{align*}
\overline{t_{34}}+t_{12} & =0 \tag{41}\\
\overline{t_{24}}+\overline{t_{23}} t_{12}+t_{13} & =0 \tag{42}\\
\operatorname{Re} t_{14}+\operatorname{Re}\left\{t_{12} \overline{t_{13}}\right\} & =0 \tag{43}\\
\operatorname{Re} t_{23} & =0 \tag{44}
\end{align*}
$$

for T to reduce N to the form \widetilde{N} it is neccessary and sufficient to have

$$
\begin{align*}
t_{23}+i r_{1} & =i \widetilde{r}_{1}+z t_{12} \tag{45}\\
t_{24}+i r_{1} t_{34}+i r_{2} z & =i \widetilde{r}_{2} z+z^{2} t_{13} \tag{46}\\
z t_{34} & =z^{2} t_{23} \tag{47}
\end{align*}
$$

Express t_{34} in terms of t_{23} from (47) and t_{12} in terms of t_{23} from (45): $t_{34}=z t_{23}, t_{12}=\bar{z}\left(i r_{1}-i \widetilde{r}_{1}\right)+\bar{z} t_{23}$. Substituting these expressions in (41), we get: $2 \operatorname{Re} t_{23}=i\left(\widetilde{r}_{1}-r_{1}\right)$. Since $\operatorname{Re} t_{23}=0$ (condition (44)),
$\tilde{r}_{1}=r_{1}$. Further, let us express t_{24} in terms of t_{13} and t_{23} (condition (46)): $t_{24}=\left(i \widetilde{r}_{2}-i r_{2}\right) z+z^{2} t_{13}-i r_{1} z t_{23}$. Then condition (42) can be written in the form

$$
\left(i r_{2}-i \widetilde{r}_{2}\right)+\overline{z t_{13}}+z t_{13}+i r_{1} \overline{t_{23}}+\left|t_{23}\right|^{2}=0
$$

As $\operatorname{Re} t_{23}=0$, ir $\overline{t_{13}} \in \Re$, consequently, $\overline{z t_{13}}+z t_{13}+i r_{1} \overline{t_{23}}+\left|t_{23}\right|^{2} \in \Re$. But $i\left(r_{2}-\widetilde{r}_{2}\right) \in \Im$. Therefore, $\widetilde{r}_{2}=r_{2}$. Thus, the numbers z, r_{1}, r_{2} are H-unitary invariants.

Due to Proposition 2 matrix (40) is indecomposable so that we have proved the following lemma:

Lemma 2. If an indecomposable H-normal operator $N\left(N: C^{4} \rightarrow C^{\mathbf{4}}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=1$, and the internal operator N_{1} is indecomposable, then the pair $\{N, H\}$ is unitarily similar to canonical pair $\{(6),(7)\}:$

$$
\begin{aligned}
& N=\left(\begin{array}{cccc}
\lambda & 1 & i r_{1} & i r_{2} z \\
0 & \lambda & z & 0 \\
0 & 0 & \lambda & z^{2} \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r_{1}, r_{2} \in \Re \\
& H=D_{4}
\end{aligned}
$$

where z, r_{1}, r_{2} are H-unitary invariants.
5.1.2. $n=5$ According to [1, Theorem 1], it can be assumed that the pair $\left\{N_{1}, H_{1}\right\}$ has either form (48) or (49):

$$
\begin{align*}
& N_{1}=\left(\begin{array}{ccc}
\lambda & z & r \\
0 & \lambda & z \\
0 & 0 & \lambda
\end{array}\right), \quad|z|=1,0<\arg z<\pi, r \in \Re, H_{1}=D_{3} \tag{48}\\
& N_{1}=\left(\begin{array}{ccc}
\lambda & 1 & i r \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right), \quad r \in \Re, H_{1}=D_{3} \tag{49}
\end{align*}
$$

For a while we consider both the cases together, assuming that

$$
N_{1}=\left(\begin{array}{ccc}
\lambda & z^{\prime} & x \\
0 & \lambda & z^{\prime} \\
0 & 0 & \lambda
\end{array}\right), \quad\left|z^{\prime}\right|=1,0 \leq \arg z^{\prime}<\pi, x \in C
$$

Then

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & a & b & c & d \\
0 & 0 & z^{\prime} & x & e \\
0 & 0 & 0 & z^{\prime} & f \\
0 & 0 & 0 & 0 & g \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The condition of the H-normality is equivalent to the system

$$
\begin{align*}
a \overline{z^{\prime}} & =\bar{g} z^{\prime} \tag{50}\\
a \bar{x}+b \overline{z^{\prime}} & =\bar{g} x+\bar{f} z^{\prime} \tag{51}\\
2 \operatorname{Re}\{a \bar{c}\}+|b|^{2} & =2 \operatorname{Re}\{e \bar{g}\}+|f|^{2} . \tag{52}
\end{align*}
$$

As above (see the case when $n=4$), one can check that $a \neq 0$; hence a can be assumed equal to 1 , so $g=z^{\prime 2}$. Having in mind these equalities, take the (H-unitary) transformation

$$
T=\left(\begin{array}{ccccc}
1 & \overline{z^{\prime}} b & \overline{z^{\prime}}\left(c-x \overline{z^{\prime}} b\right) & 0 & -\frac{1}{2}\left|c-x \overline{z^{\prime}} b\right|^{2} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -z^{\prime}\left(\bar{c}-\bar{x} z^{\prime} \bar{b}\right) \\
0 & 0 & 0 & 1 & -z^{\prime} \bar{b} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

It reduces $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & d^{\prime} \\
0 & 0 & z^{\prime} & x & e^{\prime} \\
0 & 0 & 0 & z^{\prime} & f^{\prime} \\
0 & 0 & 0 & 0 & z^{\prime 2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now apply either the transformation

$$
T=\left(\begin{array}{ccccc}
1 & 0 & 0 & \operatorname{Re} d^{\prime} /\left(\operatorname{Re} z^{\prime 2}+1\right) & 0 \\
0 & 1 & 0 & 0 & -\operatorname{Re} d^{\prime} /\left(\operatorname{Re} z^{\prime 2}+1\right) \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\left(z^{\prime} \neq i\right)
$$

or

$$
T=\left(\begin{array}{ccccc}
1 & 0 & 0 & -\frac{1}{2} i \operatorname{Im} d^{\prime} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{2} i \operatorname{Im} d^{\prime} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\left(z^{\prime}=i\right)
$$

to the matrix $N-\lambda I$. We get

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & i\left(\operatorname{Im} d^{\prime}+\operatorname{Im}\left\{d^{\prime} \overline{z^{\prime}}\right\}\right) /\left(\operatorname{Re} z^{2}+1\right) \\
0 & 0 & z^{\prime} & x & e^{\prime} \\
0 & 0 & 0 & z^{\prime} & f^{\prime} \\
0 & 0 & 0 & 0 & z^{\prime 2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(z^{\prime} \neq i\right)
$$

or

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \operatorname{Re} d^{\prime} \\
0 & 0 & i & x & e^{\prime} \\
0 & 0 & 0 & i & f^{\prime} \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad\left(z^{\prime}=i\right)
$$

Now we distinguish cases (48) and (49).
(a) $z^{\prime}=1, \quad x=i r_{1}\left(r_{1} \in \Re\right)$. Conditions (51), (52) of the H-normality of N yield: $f^{\prime}=2 i r_{1}, e^{\prime}=-2 r_{1}^{2}+i r_{2}$. Denote $\left(\operatorname{Im} d^{\prime}+\operatorname{Im}\left\{d^{\prime}{\overline{z^{\prime}}}^{2}\right\}\right) /\left(\operatorname{Re} z^{2}+1\right)$ by r_{3}. We have

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & i r_{3} \tag{53}\\
0 & 0 & 1 & i r_{1} & -2 r_{1}^{2}+i r_{2} \\
0 & 0 & 0 & 1 & 2 i r_{1} \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re
$$

There remains to check the H-unitary invariance of the numbers r_{1}, r_{2}, r_{3}. To prove this, let us suppose that some H-unitary matrix T reduces (53)
to the form

$$
\widetilde{N}-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & i \widetilde{r}_{3} \\
0 & 0 & 1 & i \widetilde{r}_{1} & -2 \widetilde{r}_{1}^{2}+i \widetilde{r}_{2} \\
0 & 0 & 0 & 1 & 2 i \widetilde{r}_{1} \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \widetilde{r}_{1}, \widetilde{r}_{2}, \widetilde{r}_{3} \in \Re
$$

From condition (36) $N T=T \widetilde{N}$ it follows that T is uppertriangular with diagonal terms which are equal to each other. According to [1, Theorem 1], r_{1} is an H_{1}-unitary invariant for N_{1}. We already know that in this case r_{1} must be an H-unitary invariant (see the previous case $n=4$), i.e., $\widetilde{r}_{1}=r_{1}$. For T to be H-unitary, i.e., to satisfy (37), $\left|t_{11}\right|$ must be equal to 1 . Therefore, as in case $n=4$, one can assume that $t_{11}=1$. Thus, T has the form

$$
T=\left(\begin{array}{ccccc}
1 & t_{12} & t_{13} & t_{14} & t_{15} \tag{54}\\
0 & 1 & t_{23} & t_{24} & t_{25} \\
0 & 0 & 1 & t_{34} & t_{35} \\
0 & 0 & 0 & 1 & t_{45} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Condition (36) amounts to system (55)-(60), (37) to system (61)-(66):

$$
\begin{align*}
t_{23}= & t_{12} \tag{55}\\
t_{24}= & i r_{1} t_{12}+t_{13} \tag{56}\\
t_{25}+i r_{3}= & i \widetilde{r}_{3}+\left(-2 r_{1}^{2}+i \widetilde{r}_{2}\right) t_{12} \\
& +2 i r_{1} t_{13}+t_{14} \tag{57}\\
t_{34}= & t_{23} \tag{58}\\
t_{35}+i r_{1} t_{45}+i r_{2}= & i \widetilde{r}_{2}+2 i r_{1} t_{23}+t_{24} \tag{59}\\
t_{45}= & t_{34} \tag{60}\\
\overline{t_{45}}+t_{12}= & 0 \tag{61}\\
\overline{t_{35}}+\overline{t_{34}} t_{12}+t_{13}= & 0 \tag{62}\\
\overline{t_{25}}+\overline{t_{24}} t_{12}+\overline{t_{23}} t_{13}+t_{14}= & 0 \tag{63}
\end{align*}
$$

$2 \operatorname{Re} t_{15}+2 \operatorname{Re}\left\{t_{12} \overline{t_{14}}\right\}+\left|t_{13}\right|^{2}=0$

$$
\begin{align*}
\overline{t_{34}}+t_{23} & =0 \tag{65}\\
2 \operatorname{Re} t_{24}+\left|t_{23}\right|^{2} & =0
\end{align*}
$$

Express t_{35} in terms of t_{23}, t_{24}, t_{45} from (59) and substitute this expression in (62), taking into account that $t_{12}=t_{23}=t_{34}=t_{45}$ and expressing t_{24} in terms of t_{12} and t_{13} from condition (56). We obtain $i r_{2}-i \widetilde{r}_{2}=$ $2 i r_{1} \overline{t_{12}}+2 \operatorname{Re} t_{13}+\left|t_{12}\right|^{2}$. Since $\operatorname{Re} t_{12}=0$ (Eq. (61)), we have $2 i r_{1} \overline{t_{12}} \in \Re$; hence, the right-hand side of the condition obtained is real and the left one is imaginary. Therefore, $\widetilde{r}_{2}=r_{2}$.

Since $t_{13}=t_{24}-i r_{1} t_{12}$ (condition (56)), t_{25} can be expressed in terms of t_{12}, t_{24}, and t_{14} in the following way (see condition (57)): $t_{25}=i\left(\widetilde{r}_{3}-r_{3}\right)$ $+i r_{2} t_{12}+2 i r_{1} t_{24}+t_{14}$. By substituting this expression in (63), we get $i r_{3}-i \widetilde{r}_{3}=i r_{2} \overline{t_{12}}+i r_{1}\left(2 \overline{t_{24}}+\left|t_{12}\right|^{2}\right)+2 \operatorname{Re}\left\{t_{12} \overline{t_{24}}\right\}+2 \operatorname{Re} t_{14}$. Because of condition (66) $i r_{1}\left(2 \overline{t_{24}}+\left|t_{12}\right|^{2}\right)$ is real as well as the rest terms of the right-hand side; hence, $\widetilde{r}_{3}=r_{3}$. We have proved the H-unitary invariance of r_{1}, r_{2}, r_{3}.
(b) $z^{\prime}=z,|z|=1,0<\arg z<\pi, x=r_{1} \in \Re$. Applying conditions (51), (52) of the H-normality of N, we get
$N-\lambda I=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & i r_{3} \\ 0 & 0 & z & r_{1} & -2 z^{2} r_{1}^{2} \operatorname{Im}^{2} z+i r_{2} z^{2} \\ 0 & 0 & 0 & z & -2 i r_{1} z^{2} \operatorname{Im} z \\ 0 & 0 & 0 & 0 & z^{2} \\ 0 & 0 & 0 & 0 & 0\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re(z \neq i)$
or

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & r_{3} \\
0 & 0 & i & r_{1} & 2 r_{1}^{2}+i r_{2} \\
0 & 0 & 0 & i & 2 i r_{1} \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re(z=i)
$$

We join these cases, assuming that

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & i x \\
0 & 0 & z & r_{1} & -2 z^{2} r_{1}^{2} \operatorname{Im}^{2} z+i r_{2} z^{2} \\
0 & 0 & 0 & z & -2 i r_{1} z^{2} \operatorname{Im} z \\
0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where

$$
x=\left[\begin{array}{ll}
r_{3} \in \Re, & z \neq i \\
-i r_{3} \in \Im\left(r_{3} \in \Re\right), & z=i
\end{array}\right.
$$

Let us prove the H-unitary invariance of the numbers z, r_{1}, r_{2}, r_{3} (or x). Suppose some matrix T realizes the H-unitary transformation of N to the form \widetilde{N}, where

$$
\widetilde{N}-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & i \widetilde{x} \\
0 & 0 & \widetilde{z} & \widetilde{r}_{1} & -2 \widetilde{z}^{2} \widetilde{r}_{1}^{2} \operatorname{Im}^{2} \widetilde{z}+i \widetilde{r}_{2} \widetilde{z}^{2} \\
0 & 0 & 0 & \widetilde{z} & -2 i \widetilde{r}_{1} \widetilde{z}^{2} \operatorname{Im} \widetilde{z} \\
0 & 0 & 0 & 0 & \widetilde{z}^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

By Theorem 1 of [1], z and r_{1} are H_{1}-unitary invariants; hence, they are H-unitary invariants, i.e., $\widetilde{z}=z, \widetilde{r}_{1}=r_{1}$. Further, from (36) it follows that T is uppertriangular with diagonal terms that are equal to each other. Applying (37), we get that T has form (54). Now condition (37) is equivalent to system (61)-(66), condition (36) to system (67)-(72):

$$
\begin{align*}
t_{23}= & z t_{12} \tag{67}\\
t_{24}= & r_{1} t_{12}+z t_{13} \tag{68}\\
t_{25}+i x= & i \widetilde{x}+\left(-2 z^{2} r_{1}^{2} \operatorname{Im}^{2} z+i \widetilde{r}_{2} z^{2}\right) t_{12} \\
& -2 i r_{1} z^{2} \operatorname{Im} z t_{19}+z^{2} t_{14} \tag{69}\\
t_{34}= & t_{23} \tag{70}\\
z t_{35}+r_{1} t_{45}+i r_{2} z^{2}= & i \widetilde{r}_{2} z^{2}-2 i r_{1} z^{2} \operatorname{Im} z t_{23}+z^{2} t_{24} \tag{71}\\
z t_{45}= & z^{2} t_{34} . \tag{72}
\end{align*}
$$

Express t_{35} in terms of t_{23}, t_{24}, t_{45} and, taking into account the equalities $t_{12}=\bar{z} t_{23}(67), t_{13}=\bar{z}\left(t_{24}-r_{1} t_{12}\right)(68), t_{34}=t_{23}(70), t_{45}=z t_{23}$ (72), substitute the obtained expression in (62). After multiplying both sides by \bar{z}, we have: $\left(i r_{2}-i \widetilde{r}_{2}\right)=-2 i r_{1} \operatorname{Im} z t_{23}+t_{24}+\overline{t_{24}}+\left|t_{23}\right|^{2}-r_{1}\left(\bar{z} t_{23}+z \overline{t_{23}}\right)$. Since $\operatorname{Re} t_{23}=0$ (65), the right-hand side of this equality is real. Consequently, $\widetilde{r}_{2}=r_{2}$.

Now let us express t_{25} in terms of t_{23}, t_{24}, t_{14} from (69): $t_{25}=i(\widetilde{x}-$ $x)-2 r_{1}^{2} z \operatorname{Im}^{2} z t_{23}+i r_{2} z t_{23}-2 i r_{1} z \operatorname{Im} z t_{24}+2 i r_{1}^{2} \operatorname{Im} z t_{23}+z^{2} t_{14}$. Rewrite condition (63) in the form $t_{25}+t_{24} \overline{t_{12}}+t_{23} \overline{t_{13}}+\overline{t_{14}}=0$, multiply both its sides by \bar{z}, and substitute the expression for t_{25} in it. We obtain: $i(x-\widetilde{x}) \bar{z}=-2 r_{1}^{2} \operatorname{Im}^{2} z t_{23}+i r_{2} t_{23}-2 i r_{1} \operatorname{Im} z t_{24}+2 i r_{1}^{2} \bar{z} \operatorname{Im} z t_{23}+z t_{14}+$ $\bar{z} \overline{t_{14}}+t_{23} \overline{t_{24}}+t_{24} \overline{t_{23}}-z r_{1}\left|t_{23}\right|^{2}$. Since $-2 r_{1}^{2} \operatorname{Im}^{2} z+2 i r_{1}^{2} \bar{z} \operatorname{Im} z=i r_{1}^{2} \operatorname{Im} z$ $\operatorname{Re} z$ and $-2 i r_{1} \operatorname{Im} z t_{24}-r_{1} z\left|t_{23}\right|^{2}=r_{1}\left(2 \operatorname{Re} z \operatorname{Re} t_{24}+2 \operatorname{Im} z \operatorname{Im} t_{24}\right)$, the right-hand side is real. Therefore, $\operatorname{Im}[i \bar{z}(x-\widetilde{x})]=0$. If $z \neq i$, then this condition means $\left(r_{3}-\widetilde{r}_{3}\right) \operatorname{Re} z=0$; hence $\widetilde{r_{3}}=r_{3}$ because $\operatorname{Re} z \neq 0$. If $z=i$, then $\operatorname{Im}\left[i\left(\widetilde{r_{3}}-r_{3}\right)\right]=0$; hence we also get $\widetilde{r_{3}}=r_{3}$. This concludes the proof of the H-unitary invariance of $z, r_{1} r_{2}, r_{3}$.

Due to Proposition 2 all obtained forms are indecomposable. They are not H-unitarily similar because their internal matrices N_{1} are not H_{1} unitarily similar due to [1, Theorem 1]. Thus, we have proved the following lemma:

Lemma 3. If an indecomposable H-normal operator $N\left(N: C^{5} \rightarrow C^{5}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=1$, and the internal operator N_{1} is indecomposable, then the pair $\{N, H\}$ is unitarily similar to one and only one of canonical pairs $\{(8),(11)\},\{(9),(11)\},\{(10),(11)\}$:

$$
\left.\begin{array}{l}
N=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & i r_{3} \\
0 & \lambda & 1 & i r_{1} & -2 r_{1}^{2}+i r_{2} \\
0 & 0 & \lambda & 1 & 2 i r_{1} \\
0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re, \\
N=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & i r_{3} \\
0 & \lambda & z & r_{1} & -2 z^{2} r_{1}^{2} \operatorname{Im}^{2} z+i r_{2} z^{2} \\
0 & 0 & \lambda & z & -2 i r_{1} z^{2} \operatorname{Im} z \\
0 & 0 & 0 & \lambda & z^{2} \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \begin{array}{c}
\\
|z|=1, z \neq i \\
0<\arg z<\pi \\
r_{1}, r_{2}, r_{3} \in \Re
\end{array} \\
N=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & r_{3} \\
0 & \lambda & i & r_{1} & 2 r_{1}^{2}+i r_{2} \\
0 & 0 & \lambda & i & 2 i r_{1} \\
0 & 0 & 0 & \lambda & -1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad r_{1}, r_{2}, r_{3} \in \Re, \\
H
\end{array}\right)=D_{5},
$$

where z, r_{1}, r_{2}, r_{3} are H-unitary invariants.
5.1.3. $n=6$ In this case, according to [1, Theorem 1], the matrices N_{1} and H_{1} can be written in the form

$$
N_{1}=\left(\begin{array}{cccc}
\lambda & \cos \alpha & \sin \alpha & 0 \\
0 & \lambda & 0 & 1 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad 0<\alpha \leq \pi / 2, H_{1}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & I_{2} & 0 \\
1 & 0 & 0
\end{array}\right)
$$

so that
$N-\lambda I=\left(\begin{array}{cccccc}0 & a & b & c & d & e \\ 0 & 0 & \cos \alpha & \sin \alpha & 0 & f \\ 0 & 0 & 0 & 0 & 1 & g \\ 0 & 0 & 0 & 0 & 0 & h \\ 0 & 0 & 0 & 0 & 0 & p \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), \quad H=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right)$.
The condition of the H-normality of N is equivalent to the following system:

$$
\begin{align*}
a & =\bar{p} \cos \alpha \tag{73}\\
0 & =\bar{p} \sin \alpha \tag{74}\\
b \cos \alpha+c \sin \alpha & =\bar{g} \\
2 \operatorname{Re}\{a \bar{d}\}+|b|^{2}+|c|^{2} & =2 \operatorname{Re}\{f \bar{p}\}+|g|^{2}+|h|^{2}
\end{align*}
$$

From (74) and the condition $0<\alpha \leq \pi / 2$ it follows that $p=0$. Then from (73) we obtain also that $a=0$. Hence, the vector $v_{2} \in S$ belongs to S_{0}, which is impossible. This contradiction proves that for indecomposable operator $N: C^{6} \rightarrow C^{6} \operatorname{dim} S_{0} \neq 1$.

Recall that if $n>6$, then the operator N_{1} is always decomposable [1, Theorem 1]. Thus, we have obtained the classification for all indecomposable operators N having also indecomposable internal operator N_{1}.

5.2. $\operatorname{dim} S_{0}=1$ and N_{1} is Decomposable

If the operator N_{1} is decomposable, then it can be represented as an orthogonal sum of indecomposable operators $N_{1}^{(1)}, \ldots, N_{1}^{(p)}: N_{1}=N_{1}^{(1)} \oplus$ $\cdots \oplus N_{1}^{(p)}, H_{1}=H_{1}^{(1)} \oplus \cdots \oplus H_{1}^{(p)}$. Without loss of generality it can be assumed that $H_{1}^{(1)}$ has one negative eigenvalue. Denote $H_{1}^{(1)}$ by $H_{2}, N_{1}^{(1)}$ by $N_{2}, H_{1}^{(2)} \oplus \cdots \oplus H_{1}^{(p)}$ by $H_{3}, N_{1}^{(2)} \oplus \cdots \oplus N_{1}^{(p)}$ by N_{3}. Since H_{3} has only positive eigenvalues, one can assume that $H_{3}=I . N_{3}$ is a usual normal operator having the only eigenvalue λ; hence, $N_{3}=\lambda I$.

Show that the size of N_{3} is equal to 1×1. Indeed, let $\operatorname{dim} V_{2}=k$, $\operatorname{dim} V_{3}=l>1$ (V_{2} and V_{3} are the subspaces of S corresponding to N_{2} and N_{3}, respectively), $V_{2}=\operatorname{span}\left\{w_{1}^{(2)}, w_{2}^{(2)}, \ldots, w_{k}^{(2)}\right\}, V_{3}=\operatorname{span}\left\{w_{1}^{(3)}, w_{2}^{(3)}, \ldots\right.$, $\left.w_{l}^{(3)}\right\}$. Then, by the above,

$$
N=\left(\begin{array}{cccc}
\lambda & M_{1} & M_{2} & * \\
0 & N_{2} & 0 & * \\
0 & 0 & \lambda I & * \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad N^{[*]}=\left(\begin{array}{cccc}
\bar{\lambda} & M_{3} & M_{4} & * \\
0 & N_{2}^{[*]} & 0 & * \\
0 & 0 & \bar{\lambda} I & * \\
0 & 0 & 0 & \bar{\lambda}
\end{array}\right) \text {, }
$$

where $M_{1}=\left(a_{1}, a_{2}, \ldots, a_{k}\right), M_{2}=\left(b_{1}, b_{2}, \ldots, b_{l}\right), M_{3}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, $M_{4}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$. Because of the H_{2}-normality of $N_{2} \operatorname{dim} S_{0}^{(2)} \geq 1$ $\left(S_{0}^{(2)}=\left\{x \in V_{2}:\left(N_{2}-\lambda I\right) x=\left(N_{2}^{[*]}-\bar{\lambda} I\right) x=0\right\}\right)$; hence, without loss of generality it can be assumed that $w_{1}^{(2)} \in S_{0}^{(2)}$. Since $l>1, \exists\left\{\alpha_{i}\right\}_{1}^{n+1}$ $\left(\sum_{1}^{n+1}\left|\alpha_{i}\right| \neq 0\right)$:

$$
\begin{align*}
& \sum_{1}^{n} \alpha_{i} b_{i}+\alpha_{n+1} a_{1}=0 \tag{75}\\
& \sum_{1}^{n} \alpha_{i} d_{i}+\alpha_{n+1} c_{1}=0 \tag{76}
\end{align*}
$$

Therefore, $\exists v=\sum_{1}^{n} \alpha_{i} w_{i}^{(3)}+\alpha_{n+1} w_{1}^{(2)} \neq 0:(N-\lambda I) v=\left(N^{[*]}-\bar{\lambda} I\right) v=$ 0 ; i.e., some nonzero vector from S belongs to S_{0}. This is impossible, so $\operatorname{dim} V_{3}=1$.

As N_{2} is indecomposable and rank of V_{2} is less than or equal to 1 , $\operatorname{dim} V_{2} \leq 4$ in accordance with Theorem 1. Thus, $1 \leq \operatorname{dim} V_{2} \leq 4$, $\operatorname{dim} V_{3}=1$ so that $4 \leq n \leq 7$. Consider the cases $n=4,5,6,7$ one after another.
5.2.1. $n=4$ Then $\operatorname{dim} V_{2}=1, \operatorname{dim} V_{3}=1$,

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 0 & 0 & d \\
0 & 0 & 0 & e \\
0 & 0 & 0 & 0
\end{array}\right), \quad H=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

Since $H_{1}=-1 \oplus 1$ is congruent to D_{2}, we assume that $H_{1}=D_{2}$ so that $H=D_{4}$. Having fixed $H=D_{4}$, we apply, as is customary, only H-unitary transformations.

The condition of the H-normality of N is now equivalent to the following:

$$
\begin{equation*}
\operatorname{Re}\{a \bar{b}\}=\operatorname{Re}\{d \bar{e}\} \tag{77}
\end{equation*}
$$

Since the assumption $a=b=0$ contradicts the condition $S \cap S_{0}=\{0\}$ (because then either v_{2} or v_{3} belongs to S_{0}), one can assume that $a \neq 0$ and, therefore, $a=1$ (see the paragraph after (39)). Keeping in mind that $a=1$, reduce $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & b^{\prime}=\operatorname{sgn} \operatorname{Re} b & c^{\prime} \\
0 & 0 & 0 & d^{\prime} \\
0 & 0 & 0 & e^{\prime} \\
0 & 0 & 0 & 0
\end{array}\right),
$$

having applied either the transformation

$$
T=\left(\begin{array}{cccc}
\sqrt{|\operatorname{Re} b|} & 0 & 0 & 0 \\
0 & \sqrt{|\operatorname{Re} b|} & -i \operatorname{Im} b / \sqrt{|\operatorname{Re} b|} & 0 \\
0 & 0 & 1 / \sqrt{|\operatorname{Re} b|} & 0 \\
0 & 0 & 0 & 1 / \sqrt{|\operatorname{Re} b|}
\end{array}\right) \quad(\operatorname{Re} b \neq 0)
$$

or

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad(\operatorname{Re} b=0)
$$

Now consider the three cases $\left(\operatorname{Re} b^{\prime}=0,1\right.$ or -1$)$ separately.
(a) $b^{\prime}=0$. Since $\operatorname{Re}\left\{d^{\prime} e^{\prime}\right\}=0$ (condition (77) of the H-normality of N) and $d^{\prime} \neq 0$ (otherwise $v_{3} \in S_{0}$), the representation $d^{\prime}=\varrho_{1} z, e^{\prime}=i \varrho_{2} z$ $\left(|z|=1, \varrho_{1}, \varrho_{2} \in \Re, \varrho_{1}>0\right)$ is valid. Therefore, taking

$$
T=\left(\begin{array}{cccc}
\sqrt{\varrho_{1}} & 0 & 0 & 0 \\
0 & \sqrt{\varrho_{1}} & 0 & 0 \\
0 & i \varrho_{2} / \sqrt{\varrho_{1}} & 1 / \sqrt{\varrho_{1}} & 0 \\
0 & 0 & 0 & 1 / \sqrt{\varrho_{1}}
\end{array}\right)
$$

we reduce $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & 0 & c^{\prime \prime} \\
0 & 0 & 0 & z \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

One can assume that $c^{\prime \prime}=0$. To achieve this it is sufficient to apply the transformation

$$
T=\left(\begin{array}{cccc}
1 & 0 & \overline{c^{\prime \prime}} & 0 \\
0 & 1 & 0 & -c^{\prime \prime} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

There remains to prove that z is an H-unitary invariant. Indeed, any matrix T satisfying condition (36) $(N-\lambda I) T=T(\tilde{N}-\lambda I)$ for the matrices
$N-\lambda I=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & z \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right), \quad \tilde{N}-\lambda I=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \widetilde{z} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right), \quad|z|=|\widetilde{z}|=1$
and condition (37) $T T^{[*]}=I$ has the form

$$
T=t_{11}\left(\begin{array}{cccc}
1 & * & * & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left|t_{11}\right|=1
$$

This follows the desired equality $z=\tilde{z}$.
(b) $b^{\prime}=1$. As $\operatorname{Re}\left\{d^{\prime} e^{\prime}\right\}=1$ (condition (77)), $d^{\prime}=\varrho z, e^{\prime}=(1 / \varrho+i r) z$ ($|z|=1, \varrho, r \in \Re, \varrho>0$). Consider the transformation

$$
T=I_{1} \oplus\left(\begin{array}{cc}
-i t /(1-i t) & 1 /(1-i t) \tag{78}\\
1 /(1-i t) & -i t /(1-i t)
\end{array}\right) \oplus I_{1}, \quad t \in \Re
$$

where t is a root of the equation $1+t^{2}=1 / \varrho^{2}+(t \varrho+r)^{2}$. Its discriminant $\mathcal{D} / 4=1 / \varrho^{2}+\varrho^{2}+r^{2}-2$ is nonnegative so that t is in fact real. Subjecting to (78), the matrix $N-\lambda I$ becomes the following:

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & 1 & c^{\prime \prime} \\
0 & 0 & 0 & z^{\prime} \\
0 & 0 & 0 & \left(1+i r^{\prime}\right) z^{\prime} \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left|z^{\prime}\right|=1, \quad r^{\prime} \in \Re
$$

Note that if $r^{\prime}=0$, then there exists a nonzero vector $v=\alpha v_{2}+\beta v_{3} \in S_{0}$, which is impossible. Applying (78) with $t=-\frac{1}{2} r^{\prime}$, we can replace r^{\prime} by $-r^{\prime}$. Thus, we can assume $r^{\prime}>0$. Finally, to get $c^{\prime \prime}=0$ it is sufficient to take

$$
T=\left(\begin{array}{cccc}
1 & t_{12} & t_{13} & -\operatorname{Re}\left\{t_{12} \overline{t_{13}}\right\} \\
0 & 1 & 0 & -\overline{t_{13}} \\
0 & 0 & 1 & -\overline{t_{12}} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $t_{12}=e^{-i \varphi / 2}\left(r c_{1}^{\prime \prime}-2 c_{2}^{\prime \prime}\right) /(2 r), t_{13}=e^{-i \varphi / 2} c_{2}^{\prime \prime} / r$ (we mean that $z^{\prime}=$ $\left.e^{i \varphi}, c_{1}^{\prime \prime}=\operatorname{Re}\left\{c^{\prime \prime} e^{-i \varphi / 2}\right\}, c_{2}^{\prime \prime}=\operatorname{Im}\left\{c^{\prime \prime} e^{-i \varphi / 2}\right\}\right)$.

Thus, we have reduced the matrix $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & z \\
0 & 0 & 0 & (1+i r) z \\
0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1, \quad r \in \Re>0
$$

Now there remains to show that the numbers z and r are H-unitary invariants.

First note that for a block triangular matrix

$$
T=\left(\begin{array}{ccc}
T_{1} & T_{2} & T_{3} \tag{79}\\
0 & T_{4} & T_{5} \\
0 & 0 & T_{6}
\end{array}\right)
$$

to reduce $N-\lambda I$ to the form $\widetilde{N}-\lambda I$, where

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & N_{2} \\
0 & N_{3} & N_{4} \\
0 & 0 & 0
\end{array}\right), \quad \tilde{N}-\lambda I=\left(\begin{array}{ccc}
0 & \tilde{N}_{1} & \tilde{N}_{2} \\
0 & \widetilde{N}_{3} & \widetilde{N}_{4} \\
0 & 0 & 0
\end{array}\right)
$$

it is necessary and sufficient to have

$$
\begin{align*}
N_{1} T_{4} & =T_{1} \widetilde{N}_{1}+T_{2} \widetilde{N}_{3} \tag{80}\\
N_{1} T_{5}+N_{2} T_{6} & =T_{1} \widetilde{N}_{2}+T_{2} \widetilde{N}_{4} \tag{81}\\
N_{3} T_{4} & =T_{4} \widetilde{N}_{3} \tag{82}\\
N_{3} T_{5}+N_{4} T_{6} & =T_{4} \widetilde{N}_{4} \tag{83}
\end{align*}
$$

If

$$
H=\left(\begin{array}{ccc}
0 & 0 & I \\
0 & H_{1} & 0 \\
I & 0 & 0
\end{array}\right)
$$

then for (79) to be H-unitary it is necessary and sufficient to have

$$
\begin{align*}
T_{1} T_{6}^{*} & =I \tag{84}\\
T_{4} H_{1} T_{2}^{*}+T_{5} T_{1}^{*} & =0 \tag{85}\\
T_{1} T_{3}^{*}+T_{2} H_{1} T_{2}^{*}+T_{3} T_{1}^{*} & =0 \tag{86}\\
T_{4} H_{1} T_{4}^{*} H_{1} & =I \tag{87}
\end{align*}
$$

Since any H-unitary transformation T, such that

$$
\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & z \\
0 & 0 & 0 & (1+i r) z \\
0 & 0 & 0 & 0
\end{array}\right) T=T\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & \widetilde{z} \\
0 & 0 & 0 & (1+i \widetilde{r}) \widetilde{z} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$|z|=|\widetilde{z}|=1, r, \widetilde{r} \in \Re>0$, must be block triangular (by the corollary of Proposition 1), systems (80)-(83), (84)-(87) are applicable. Combining (80) and (87), we get $\left|t_{11}\right|=1$; hence (condition (84)) $t_{44}=t_{11}$. Now from (80) and (83) it follows that $(2+i r) z=(2+i \widetilde{r}) \widetilde{z}$; hence $\widetilde{z}=z, \widetilde{r}=r$.
(c) $b^{\prime}=-1$. The matrix $N-\lambda I$ can be carried into the form

$$
N-\lambda I=\left(\begin{array}{rrrc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & z \\
0 & 0 & 0 & -(1+i r) z \\
0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1, \quad r \in \Re>0
$$

where z and r are H-unitary invariants. The proof is analogous to the case (b) above.

Thus, we have obtained the canonical form for each case considered. By using conditions (80)-(87) one can easily check that these forms are not H-unitarily similar to each other. They are indecomposable due to Proposition 2. Thus, we have proved the following lemma:

Lemma 4. If an indecomposable H-normal operator $N\left(N: C^{4} \rightarrow C^{4}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=1$, and the internal operator N_{1} is decomposable, then the pair $\{N, H\}$ is unitarily similar to one and only one of canonical pairs $\{(12),(15)\},\{(13),(15)\},\{(14),(15)\}$:

$$
\begin{aligned}
N & =\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & z \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, \\
N & =\left(\begin{array}{cccc}
\lambda & 1 & 1 & 0 \\
0 & \lambda & 0 & z \\
0 & 0 & \lambda & (1+i r) z \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, \quad r \in \Re>0
\end{aligned}
$$

$$
\begin{aligned}
& N=\left(\begin{array}{cccc}
\lambda & 1 & -1 & 0 \\
0 & \lambda & 0 & z \\
0 & 0 & \lambda & -(1+i r) z \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, \quad r \in \Re>0 \\
& H=D_{4}
\end{aligned}
$$

where z, r are H-unitary invariants.
5.2.2. $n=5$ Then $\operatorname{dim} V_{2}=2, \operatorname{dim} V_{3}=1$ and, according to [1, Theorem 1], after interchanging the third and fourth rows and columns, we get

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & a & b & c & d \\
0 & 0 & 0 & z & e \\
0 & 0 & 0 & 0 & f \\
0 & 0 & 0 & 0 & g \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1, H=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The condition of the H-normality of N is equivalent to the system

$$
\begin{align*}
a \bar{z} & =\bar{g} z \tag{88}\\
2 \operatorname{Re}\{a \bar{c}\}+|b|^{2} & =2 \operatorname{Re}\{e \bar{g}\}+|f|^{2} \tag{89}
\end{align*}
$$

It is readily seen that $a \neq 0$; consequently, it can be assumed that $a=1$ and $g=z^{2}$ (see the paragraph after (39)). Further, take the (H-unitary) transformation

$$
T=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & -b & -\frac{1}{2}|b|^{2} & 0 \\
0 & 0 & 1 & \bar{b} & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and reduce $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & c^{\prime} & d^{\prime} \\
0 & 0 & 0 & z & e^{\prime} \\
0 & 0 & 0 & 0 & f^{\prime} \\
0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Applying now the transformation

$$
T=I_{1} \oplus\left(\begin{array}{ccc}
1 & 0 & i \operatorname{Im}\left\{e^{\prime} \bar{z}^{2}\right\} \\
0 & e^{i \arg f^{\prime}} & 0 \\
0 & 0 & 1
\end{array}\right) \oplus I_{1}
$$

we get

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & c^{\prime \prime} & d^{\prime \prime} \\
0 & 0 & 0 & z & r_{1} z^{2} \\
0 & 0 & 0 & 0 & r_{2} \\
0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad r_{1}, r_{2} \in \Re, \quad r_{2} \geq 0
$$

We can assume that $r_{2}>0$ because otherwise $v_{3} \in S_{0}$, which is impossible. From condition (89) of the H-normality of N it follows that $c^{\prime \prime}=r_{1}+\frac{1}{2} r_{2}^{2}+$ $i r_{3}\left(r_{3} \in \Re\right)$. Keeping in mind these conditions, apply the transformation

$$
T=\left(\begin{array}{ccccc}
1 & t_{12} & t_{13} & 0 & -\frac{1}{2}\left|t_{13}\right|^{2} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -\overline{t_{13}} \\
0 & 0 & 0 & 1 & -\overline{t_{12}} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where $t_{12}=r_{1} \bar{z}, t_{13}=\left(d^{\prime \prime}-r_{1} z\left(r_{1}+\frac{1}{2} r_{2}^{2}+i r_{3}\right)\right) / r_{2}$, to the matrix $N-\lambda I$. Then $c^{\prime \prime \prime}=\frac{1}{2} r_{2}^{2}+i r_{3}, d^{\prime \prime \prime}=0$, and the remaining terms of $N-\lambda I$ do not change. Renaming r_{2} and r_{3}, write out the final form of $N-\lambda I$:

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & \frac{1}{2} r_{1}^{2}+i r_{2} & 0 \\
0 & 0 & 0 & z & 0 \\
0 & 0 & 0 & 0 & r_{1} \\
0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad r_{1}, r_{2} \in \Re, r_{1}>0,|z|=1
$$

To prove the H-unitary invariance of z, r_{1}, r_{2} assume that

$$
\widetilde{N}-\lambda I=\left(\begin{array}{ccccc}
0 & 1 & 0 & \frac{1}{2} \widetilde{r}_{1}^{2}+i \widetilde{r}_{2} & 0 \\
0 & 0 & 0 & \widetilde{z} & 0 \\
0 & 0 & 0 & 0 & \widetilde{r}_{1} \\
0 & 0 & 0 & 0 & \widetilde{z}^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \widetilde{r}_{1}, \widetilde{r}_{2} \in \Re, \widetilde{r}_{1}>0,|\widetilde{z}|=1
$$

and there exists a matrix T such that $N T=T \tilde{N}$ (condition (36)) and $T T^{[*]}=I$ (condition (37)). Recall that T has block form (79) so that conditions (80)-(87) hold. From (82) it follows that $t_{23}=0$ and $z t_{44}=\widetilde{z} t_{22}$. Since $t_{22} \overline{t_{44}}=1(87), z\left|t_{44}\right|^{2}=\widetilde{z}$; i.e., $\widetilde{z}=z,\left|t_{44}\right|=1$. Therefore, one can assume that

$$
T_{4}=\left(\begin{array}{ccc}
1 & 0 & i t \\
0 & t_{33} & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left|t_{33}\right|=1, t \in \Re
$$

because it is allowed to divide T by its term $t_{22}=t_{44}$ of modulus 1 . Now from (83) it follows that $t_{45}=i t z, \widetilde{r}_{1} t_{33}=r_{1}$. As $r_{1}, \widetilde{r}_{1}>0, t_{33}=1$ and $\widetilde{r}_{1}=r_{1}$. Since $t_{12}=-\overline{t_{45}}$ (condition (85)) and $t_{24}+\left(\frac{1}{2} r_{1}^{2}+i r_{2}\right) t_{44}=$ $\left(\frac{1}{2} \widetilde{r}_{1}^{2}+i \widetilde{r}_{2}\right) t_{11}+\widetilde{z} t_{12}$ (condition (80)), $\widetilde{r}_{2}=r_{2}$. This completes the proof of the H-unitary invariance of z, r_{1}, r_{2}.

Due to Proposition 2 the obtained form is indecomposable. Thus, we have proved the following lemma:

Lemma 5. If an indecomposable H-normal operator $N\left(N: C^{5} \rightarrow C^{5}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=1$, and the internal operator N_{1} is decomposable, then the pair $\{N, H\}$ is unitarily similar to canonical pair $\{(16),(17)\}:$

$$
\begin{aligned}
N & =\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \frac{1}{2} r_{1}^{2}+i r_{2} & 0 \\
0 & \lambda & 0 & z & 0 \\
0 & 0 & \lambda & 0 & r_{1} \\
0 & 0 & 0 & \lambda & z^{2} \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r_{1}, r_{2} \in \Re, r_{1}>0 \\
H & =D_{5}
\end{aligned}
$$

where r_{1}, r_{2}, z are H-unitary invariants.
5.2.3. $n=6$ In this case $\operatorname{dim} V_{2}=3, \operatorname{dim} V_{3}=1$. The matrices $N-\lambda I$ and H, according to [1 , Theorem 1$]$, have the form

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & a & b & c & d & e \tag{90}\\
0 & 0 & z & r & 0 & f \\
0 & 0 & 0 & z & 0 & g \\
0 & 0 & 0 & 0 & 0 & h \\
0 & 0 & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1, r \in \Re
$$

or

$$
\begin{align*}
N-\lambda I & =\left(\begin{array}{llllll}
0 & a & b & c & d & e \\
0 & 0 & 1 & i r & 0 & f \\
0 & 0 & 0 & 1 & 0 & g \\
0 & 0 & 0 & 0 & 0 & h \\
0 & 0 & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad r \in \Re \tag{91}\\
H & =\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & D_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{align*}
$$

For a while we consider these two cases together, assuming that

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & a & b & c & d & e \\
0 & 0 & z & x & 0 & f \\
0 & 0 & 0 & z & 0 & g \\
0 & 0 & 0 & 0 & 0 & h \\
0 & 0 & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1, x \in C
$$

Then the condition of the H-normality of N is equivalent to the system

$$
\begin{align*}
a \bar{z} & =z \bar{h} \tag{92}\\
a \bar{x}+b \bar{z} & =x \bar{h}+z \bar{g} \tag{93}\\
2 \operatorname{Re}\{a \bar{c}\}+|b|^{2}+|d|^{2} & =2 \operatorname{Re}\{f \bar{h}\}+|g|^{2}+|p|^{2} \tag{94}
\end{align*}
$$

As is customary, we can assume that $a=1, h=z^{2}$. Let us use the (H unitary) transformation

$$
T=\left(\begin{array}{ccccrc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -\frac{1}{2}|d|^{2} & -d & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \bar{d} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

It reduces $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & 1 & b^{\prime} & c^{\prime} & 0 & e^{\prime} \\
0 & 0 & z & x & 0 & f^{\prime} \\
0 & 0 & 0 & z & 0 & g^{\prime} \\
0 & 0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0 & p^{\prime} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Further, take the transformation

$$
T=\left(\begin{array}{cccccc}
1 & z \overline{g^{\prime}} & \bar{z} c^{\prime}-x \overline{g^{\prime}} & 0 & 0 & -\frac{1}{2}\left|\bar{z} c^{\prime}-x \overline{g^{\prime}}\right|^{2} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -z \overline{c^{\prime}}+\bar{x} g^{\prime} \\
0 & 0 & 0 & 1 & 0 & -\bar{z} g^{\prime} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and carry the matrix $N-\lambda I$ into the form

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & 1 & b^{\prime \prime} & 0 & 0 & e^{\prime \prime} \\
0 & 0 & z & x & 0 & f^{\prime \prime} \\
0 & 0 & 0 & z & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0 & p^{\prime \prime} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Now note that $p^{\prime \prime} \neq 0$ because otherwise $v_{5} \in S_{0}$. Since the rotation of the vector v_{5} about any angle does not change the matrix H, we can assume that $p^{\prime \prime}=r_{2} \in \Re>0$ (we put $\widetilde{v_{5}}=e^{i \arg p^{\prime \prime}} v_{5}$). The transformation

$$
T=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & e^{\prime \prime} / r_{2} & -\frac{1}{2}\left|e^{\prime \prime} / r_{2}\right|^{2} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\bar{e}^{\prime \prime} / r_{2} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

reduces the matrix $N-\lambda I$ to the final form

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & 1 & b^{\prime \prime \prime} & 0 & 0 & 0 \\
0 & 0 & z & x & 0 & f^{\prime \prime \prime} \\
0 & 0 & 0 & z & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0 & r_{2} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now we distinguish the cases (90) and (91).
(a) $z=1, x \in \Im$. According to conditions (93) and (94) of the H-normality of N,
$N-\lambda I=\left(\begin{array}{cccccc}0 & 1 & 2 i r_{1} & 0 & 0 & 0 \\ 0 & 0 & 1 & i r_{1} & 0 & 2 r_{1}^{2}-r_{2}^{2} / 2+i r_{3} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & r_{2} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), \begin{aligned} & r_{1}, r_{2}, r_{3} \in \Re, ~ \\ & r_{2}>0 .\end{aligned}$
Let us show that r_{1}, r_{2}, r_{3} are H-unitary invariants. Indeed, suppose some matrix T satisfies conditions (37) $T T^{[*]}=I$ and (36) $(N-\lambda I) T=T(\widetilde{N}-$ λI), where
$\widetilde{N}-\lambda I=\left(\begin{array}{cccccc}0 & 1 & 2 i \widetilde{r}_{1} & 0 & 0 & 0 \\ 0 & 0 & 1 & i \widetilde{r}_{1} & 0 & 2 \widetilde{r}_{1}^{2}-\widetilde{r}_{2}^{2} / 2+i \widetilde{r}_{3} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & \widetilde{r}_{2} \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right), \begin{aligned} & \\ & \widetilde{r}_{1}, \widetilde{r}_{2}, \widetilde{r}_{3} \in \Re, ~ \\ & \widetilde{r}_{2}>0 .\end{aligned}$
From (36) it follows that

$$
T=\left(\begin{array}{cccccc}
t_{11} & t_{12} & t_{13} & t_{14} & t_{15} & t_{16} \\
0 & t_{11} & t_{23} & t_{24} & 0 & t_{26} \\
0 & 0 & t_{11} & t_{34} & 0 & t_{36} \\
0 & 0 & 0 & t_{11} & 0 & t_{46} \\
0 & 0 & 0 & t_{54} & t_{55} & t_{56} \\
0 & 0 & 0 & 0 & 0 & t_{11}
\end{array}\right)
$$

Using (87), we get: $t_{54}=0,\left|t_{11}\right|=1$. As above (see the argument before Lemma 5), we can assume that $t_{11}=1$. Then $t_{34}=-\overline{t_{23}}$ (condition (87)) and $i\left(\widetilde{r}_{1}-r_{1}\right)=t_{34}-t_{23}$ (condition (82)); hence, $\widetilde{r}_{1}=r_{1}$ and $\operatorname{Re} t_{23}=0$. Further, from (83) it follows that $r_{2}=\widetilde{r}_{2} t_{55}$ and from (87) that $\left|t_{55}\right|=1$. As $r_{2}, \widetilde{r}_{2}>0, \widetilde{r}_{2}=r_{2}$ and $t_{55}=1$. Thus,

$$
T=\left(\begin{array}{cccc}
1 & i t & t_{24} & 0 \\
0 & 1 & i t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad t \in \Re, 2 \operatorname{Re} t_{24}+t^{2}=0
$$

Substituting T_{4} in (80), we get $t_{12}=i t, t_{13}=t_{24}-r_{1} t$; replacing T_{5} by $-T_{4} H_{1} T_{2}^{*}$ in (83), we have $i \widetilde{r}_{3}=i r_{3}-2 \operatorname{Re} t_{24}-t^{2}$; hence $\widetilde{r}_{3}=r_{3}$. This completes the proof of the H-unitary invariance of r_{1}, r_{2}, r_{3}.
(b) $0<\arg z<\pi, x \in \Re$. Applying the condition of the H-normality, we get

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & 1 & -2 i r_{1} \operatorname{Im} z & 0 & 0 & 0 \\
0 & 0 & z & r_{1} & 0 & \left(2 r_{1}^{2} \operatorname{Im}^{2} z-r_{2}^{2} / 2+i r_{3}\right) z^{2} \\
0 & 0 & 0 & z & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & z^{2} \\
0 & 0 & 0 & 0 & 0 & r_{2} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $r_{1}, r_{2}, r_{3} \in \Re, r_{2}>0$. That the numbers z, r_{1}, r_{2}, r_{3} are H-unitary invariants can be checked as in (a) above. That the forms obtained are not H-unitary similar can also be checked by the reader by using formulas (80)-(87).

Because of Proposition 2 the forms obtained are indecomposable so that we have proved the following lemma:

Lemma 6. If an indecomposable H-normal operator $N\left(N: C^{6} \rightarrow C^{6}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=1$, and the internal operator N_{1} is decomposable, then the pair $\{N, H\}$ is unitarily similar to one and only one of canonical pairs $\{(18),(20)\},\{(19),(20)\}$:

$$
N=\left(\begin{array}{cccccc}
\lambda & 1 & 2 i r_{1} & 0 & 0 & 0 \\
0 & \lambda & 1 & i r_{1} & 0 & 2 r_{1}^{2}-r_{2}^{2} / 2+i r_{3} \\
0 & 0 & \lambda & 1 & 0 & 0 \\
0 & 0 & 0 & \lambda & 0 & 1 \\
0 & 0 & 0 & 0 & \lambda & r_{2} \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad r_{1}, r_{2} \in \Re, r_{2}>0
$$

$$
\begin{aligned}
N & =\left(\begin{array}{cccccc}
\lambda & 1 & -2 i r_{1} \operatorname{Im} z & 0 & 0 & 0 \\
0 & \lambda & z & r_{1} & 0 & \left(2 r_{1}^{2} \operatorname{Im}^{2} z-r_{2}^{2} / 2+i r_{3}\right) z^{2} \\
0 & 0 & \lambda & z & 0 & 0 \\
0 & 0 & 0 & \lambda & 0 & z^{2} \\
0 & 0 & 0 & 0 & \lambda & r_{2} \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \\
|z| & =1,0<\arg z<\pi, r_{1}, r_{2}, r_{3} \in \Re, r_{2}>0, \\
H & =\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & D_{3} & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

where z, r_{1}, r_{2}, r_{3} are H-unitary invariants.
5.2.4. $n=7$ We show that this alternative is impossible. Indeed, if $\operatorname{dim} V_{2}=4, \operatorname{dim} V_{3}=1$, then, in accordance with [1, Theorem 1],

$$
\begin{aligned}
N-\lambda I & =\left(\begin{array}{ccccccc}
0 & a & b & c & d & e & f \\
0 & 0 & \cos \alpha & \sin \alpha & 0 & 0 & g \\
0 & 0 & 0 & 0 & 1 & 0 & h \\
0 & 0 & 0 & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & 0 & 0 & q \\
0 & 0 & 0 & 0 & 0 & 0 & r \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad 0<\alpha \leq \pi / 2 \\
H & =\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Therefore, the conditions of the H-normality of N are as follows:

$$
\begin{aligned}
& a=\bar{q} \cos \alpha \\
& 0=\bar{q} \sin \alpha
\end{aligned}
$$

$$
\begin{aligned}
b \cos \alpha+c \sin \alpha & =\bar{h} \\
2 \operatorname{Re}\{a \bar{d}\}+|b|^{2}+|c|^{2}+|e|^{2} & =2 \operatorname{Re}\{g \bar{q}\}+|h|^{2}+|p|^{2}+|r|^{2}
\end{aligned}
$$

Since $\sin \alpha \neq 0, q=0$; hence $a=0$. Thus, $(N-\lambda I) v_{2}=\left(N^{[*]}-\bar{\lambda} I\right) v_{2}=0$, which contradicts the condition $S_{0} \cap S=\{0\}$.

Thus, we have classified all indecomposable operators with one-dimensional subspace S_{0}. Now let us consider the case when $\operatorname{dim} S_{0}=2$.

5.3. $\operatorname{dim} S_{0}=2$

Let S_{0} be two-dimensional. Since the operator $H_{1}=\left.H\right|_{S}$ has only positive eigenvalues, one can assume that $H_{1}=I . N_{1}$ is a usual normal operator having the only eigenvalue λ; hence, $N_{1}=\lambda I$. As a result, we have

$$
\begin{align*}
& N=\left(\begin{array}{ccc}
\lambda I & N_{1} & N_{2} \\
0 & \lambda I & N_{3} \\
0 & 0 & \lambda I
\end{array}\right), \tag{95}\\
& H=\left(\begin{array}{lll}
0 & 0 & I \\
0 & I & 0 \\
I & 0 & 0
\end{array}\right) . \tag{96}
\end{align*}
$$

Below we do not stipulate that the pair $\{N, H\}$ has form $\{(95),(96)\}$.
For N to be H-normal it is necessary and sufficient to have

$$
\begin{equation*}
N_{1} N_{1}^{*}=N_{3}^{*} N_{3} . \tag{97}
\end{equation*}
$$

According to Theorem 1, for indecomposable operators, $n \leq 8$. Let us consider the cases $n=4,5,6,7,8$ one after another.
5.3.1. $n=4$ In this case $C^{4}=S_{0} \dot{+} S_{1}$,

$$
N-\lambda I=\left(\begin{array}{cc}
0 & N_{2} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & a & b \\
0 & 0 & c & d \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Condition (97) of the H-normality of N does not restrict the submatrix N_{2} (its terms a, b, c, d). If $N_{2}=0$, the operator N is decomposable because the nondegenerate subspace $V=\operatorname{span}\left\{v_{1}, v_{3}\right\}$ is invariant for N and $N^{[*]}$. Thus, N_{2} can be either of rank 1 or of rank $2\left(r g N_{2}=1\right.$ or 2$)$.
(a) $\operatorname{rg} N_{2}=2$. Suppose an H-unitary transformation T

$$
T=\left(\begin{array}{ll}
T_{1} & T_{2} \\
T_{3} & T_{4}
\end{array}\right)
$$

reduces $N-\lambda I$ to the form $\tilde{N}-\lambda I$:

$$
N-\lambda I=\left(\begin{array}{cc}
0 & N_{2} \\
0 & 0
\end{array}\right), \quad \tilde{N}-\lambda I=\left(\begin{array}{cc}
0 & \widetilde{N}_{2} \\
0 & 0
\end{array}\right)
$$

Then conditions (98)-(100) must be satisfied:

$$
\begin{align*}
N_{2} T_{3} & =0 \tag{98}\\
N_{2} T_{4} & =T_{1} \widetilde{N}_{2} \tag{99}\\
0 & =T_{3} \widetilde{N}_{2} \tag{100}
\end{align*}
$$

Since N_{2} is invertible, (98) holds only if $T_{3}=0$. Hence, T is H-unitary iff

$$
\begin{align*}
T_{1} T_{4}^{*} & =I \tag{101}\\
T_{1} T_{2}^{*}+T_{2} T_{1}^{*} & =0 \tag{102}
\end{align*}
$$

From system (101)-(102) it follows that without loss of generality we can consider only block diagonal transformations of the form $T=T_{1} \oplus T_{1}^{*-1}$ because T_{2} does not figure in Eqs. (98)-(100).

Thus, only condition (99) $N_{2}=T_{1} \vec{N}_{2} T_{1}^{*}$ must be satisfied. Applying Proposition 3 from the Appendix, we obtain that the submatrix N_{2} can be reduced to one of the canonical forms

$$
N_{2}=\left(\begin{array}{cc}
z & \varrho e^{-i \pi / 3} z \\
0 & e^{i \pi / 3} z
\end{array}\right), \quad N_{2}=\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2}
\end{array}\right)
$$

where $z, z_{1}, z_{2}, \varrho\left(|z|=1, \varrho \in \Re \geq \sqrt{3}, 0 \leq \arg z<\pi\right.$ if $\varrho>\sqrt{3},\left|z_{1}\right|=$ $\left|z_{2}\right|=1, \arg z_{1} \leq \arg z_{2}$) are invariants. For the latter form the operator N is decomposable because the nondegenerate subspace $V=\operatorname{span}\left\{v_{1}, v_{3}\right\}$ is invariant both for N and $N^{[*]}$. For the former we obtain the following canonical form:

$$
N-\lambda I=\left(\begin{array}{cccc}
0 & 0 & z & r e^{-i \pi / 3} z \\
0 & 0 & 0 & e^{i \pi / 3} z \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \begin{aligned}
& |z|=1, r \in \Re \geq \sqrt{3} \\
& 0 \leq \arg z<\pi \text { if } r>\sqrt{3}
\end{aligned}
$$

(b) $r g N_{2}=1$. Then

$$
N_{2}=\left(\begin{array}{cc}
k a & k b \\
l a & l b
\end{array}\right), \quad|a|+|b| \neq 0, \quad|k|+|l| \neq 0
$$

If $l \bar{a}=k \bar{b}$, then $v=b v_{3}-a v_{4} \neq 0$ belongs both to S_{0} and S_{1}, which is impossible ($S_{0} \cap S_{1}=\{0\}$). Thus, we can assume that $l \bar{a} \neq k \bar{b}$. Taking the transformation $T=T_{1} \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
\bar{a} & k \\
\bar{b} & l
\end{array}\right)
$$

we obtain one more canonical form:

$$
N-\lambda I=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

LEmma 7. If an indecomposable H-normal operator $N\left(N: C^{4} \rightarrow C^{4}\right)$ has the only eigenvalue λ and $\operatorname{dim} S_{0}=2$, then the pair $\{N, H\}$ is unitarily similar to one and only one of canonical pairs $\{(21),(23)\},\{(22),(23)\}$:

$$
\begin{aligned}
& \left.N=\left(\begin{array}{cccc}
\lambda & 0 & z & r e^{-i \pi / 3} z \\
0 & \lambda & 0 & e^{i \pi / 3} z \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \begin{array}{l}
|z|=1, r \in \Re \geq \sqrt{3}, \\
0 \leq \arg z<\pi \text { if } r>\sqrt{3}, \\
N
\end{array}\right) \\
& H=\left(\begin{array}{llll}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right) \\
& H
\end{aligned}
$$

where r, z are H-unitary invariants.
Proof. The possibility of reducing N to one of forms (21), (22) is proved before the lemma. The argument in (a) above shows that these forms are not similar; hence, they are not H-unitarily similar. Thus, we must prove only the indecomposability of N.

Show that the first canonical form is indecomposable. Assume the converse. Let some nondegenerate subspace V be invariant for N and $N^{[*]}$. Then there exists a nonzero vector $w_{1} \in V: w_{1} \in S_{0}$. Therefore, $\exists w_{2}=$ $a v_{3}+b v_{4}+v \in V\left(v \in S_{0},|a|+|b| \neq 0\right):$

$$
\begin{aligned}
(N-\lambda I) w_{2} & =a z v_{1}+b\left(r e^{-i \pi / 3} z v_{1}+e^{i \pi / 3} z v_{2}\right) \\
\left(N^{[*]}-\bar{\lambda} I\right) w_{2} & =a\left(\bar{z} v_{1}+r e^{i \pi / 3} \bar{z} v_{2}\right)+b e^{-i \pi / 3} \bar{z} v_{2}
\end{aligned}
$$

Since $\min \left\{\operatorname{dim} V, \operatorname{dim} V^{[\perp]}\right\} \leq 2$, it can be assumed that $\operatorname{dim} V \leq 2$. As the vectors w_{1} and w_{2} are linearly independent, we get $\operatorname{dim} V=2$. Therefore, the vectors $(N-\lambda I) w_{2}$ and $\left(N^{[*]}-\bar{\lambda} I\right) w_{2}$ must be linearly dependent; i.e., the following condition must be satisfied:

$$
\begin{equation*}
\left(a+b r e^{-i \pi / 3}\right)\left(a r e^{i \pi / 3}+b e^{-i \pi / 3}\right)=a b e^{i \pi / 3} \tag{103}
\end{equation*}
$$

Since (103) breaks if either a or b is equal to zero, we can rewrite (103) as

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{2} r e^{i \pi / 3}+\left(\frac{a}{b}\right)\left(e^{-i \pi / 3}-e^{i \pi / 3}+r^{2}\right)+r e^{-2 i \pi / 3}=0 \tag{104}
\end{equation*}
$$

Discriminant of (104) is equal to $r^{4}-2 r^{2}-3$. Since $r^{2} \geq 3$, it is nonnegative. Therefore,

$$
\frac{a}{b}=\frac{i \sqrt{3}-r^{2} \pm \sqrt{r^{4}-2 r^{2}-3}}{r(1+i \sqrt{3})}
$$

Consequently, $|a / b|^{2}=\frac{1}{2}\left(r^{2}-1 \mp \sqrt{r^{4}-2 r^{2}-3}\right)$; therefore, $\left[w_{2},(N-\right.$ $\left.\lambda I) w_{2}\right]=z|b|^{2} \overline{\left(|a / b|^{2}+(a / b) r e^{i \pi / 3}+e^{-i \pi / 3}\right)}=0$. Thus, the subspace V is degenerate; i.e., the operator N is indecomposable.

For the second matrix N we see that the vectors $(N-\lambda I) w_{2}$ and $\left(N^{[*]}-\right.$ $\bar{\lambda} I) w_{2}\left(w_{2}=a v_{3}+b v_{4}+v, v \in S_{0}\right)$ can be linearly dependent only if $a=b=0$. Therefore, N is also indecomposable. This concludes the proof of the lemma.
5.3.2. $n=5$ The matrix $N-\lambda I$ has the form

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & N_{2} \\
0 & 0 & N_{3} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & a & c & d \\
0 & 0 & b & e & f \\
0 & 0 & 0 & g & h \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

so that condition (97) of the H-normality of N amounts to the system

$$
\begin{aligned}
|a| & =|g| \\
a \bar{b} & =\bar{g} h \\
|b| & =|h| .
\end{aligned}
$$

The latter means that $g=\bar{a} z, h=\bar{b} z(|z|=1)$. Note that a and b are not equal to zero simultaneously because otherwise $v_{3} \in S_{0}$, which is impossible.

Take the transformation $T=T_{1} \oplus I \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
a & t_{12} \\
b & t_{22}
\end{array}\right), \quad a t_{22} \neq b t_{12}
$$

and reduce $N-\lambda I$ to the form

$$
N-\lambda I=\left(\begin{array}{ccccc}
0 & 0 & 1 & c^{\prime} & d^{\prime} \\
0 & 0 & 0 & e^{\prime} & f^{\prime} \\
0 & 0 & 0 & z & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad|z|=1
$$

Now we fix the form of the submatrices N_{1} and N_{3} so that the following transformations change only the submatrix N_{2}. At first, apply the transformation

$$
T=\left(\begin{array}{ccc}
I & T_{2} & -\frac{1}{2} T_{2} T_{2}^{*} \tag{105}\\
0 & I & -T_{2}^{*} \\
0 & 0 & I
\end{array}\right)
$$

where $T_{2}^{*}=\left(\begin{array}{ll}0 & d^{\prime}\end{array}\right)$, and reduce N_{2} to the form

$$
N_{2}=\left(\begin{array}{cc}
c^{\prime \prime} & 0 \\
e^{\prime \prime} & f^{\prime \prime}
\end{array}\right)
$$

Now let us consider two cases: $f^{\prime \prime}=0$ and $f^{\prime \prime} \neq 0$.
(a) $f^{\prime \prime}=0$. Then $e^{\prime \prime} \neq 0$ because otherwise $v_{5} \in S_{0}$. Subjecting $N-\lambda I$ to the transformation $T=T_{1} \oplus I \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
1 & c^{\prime \prime} \\
0 & e^{\prime \prime}
\end{array}\right)
$$

we get

$$
N_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

(b) $f^{\prime \prime} \neq 0$. Then one can assume that $\left|f^{\prime \prime}\right|=1$ (to this end it is sufficient to put $\left.\widetilde{v_{2}}=\sqrt{\left|f^{\prime \prime}\right|} v_{2}, \widetilde{v_{5}}=v_{5} / \sqrt{\left|f^{\prime \prime}\right|}\right)$. Thus, $f^{\prime \prime}=z_{1},\left|z_{1}\right|=1$.

If $z_{1}^{2} \neq z$, then N is decomposable. Indeed, applying

$$
T=\left(\begin{array}{ccc}
T_{1} & -T_{1} T_{5}^{*} & -\frac{1}{2} T_{1} T_{5}^{*} T_{5} \tag{106}\\
0 & I & T_{5} \\
0 & 0 & T_{1}^{*-1}
\end{array}\right)
$$

where

$$
T_{1}=\left(\begin{array}{cc}
1 & z_{1} \overline{e^{\prime \prime}} /\left(1-\bar{z} z_{1}^{2}\right) \\
0 & 1
\end{array}\right), \quad T_{5}=\left(\begin{array}{ll}
0 & \left.z_{1}^{2} \overline{e^{\prime \prime}} /\left(1-\bar{z} z_{1}^{2}\right)\right), ~
\end{array}\right.
$$

we reduce N_{2} to the diagonal form $N_{2}=c^{\prime \prime \prime} \oplus z_{1}$. Now the nondegenerate subspace $V=\operatorname{span}\left\{v_{2}, v_{5}\right\}$ is invariant for N and $N^{[*]}$; hence, N is decomposable.

Let $z_{1}^{2}=z$. Note that if $e^{\prime \prime}=0$, then N is decomposable ($V=\operatorname{span}\left\{v_{2}\right.$, $\left.v_{5}\right\}$ is nondegenerate, $\left.N V \subseteq V, N^{[*]} V \subseteq V\right)$. Thus, $e^{\prime \prime} \neq 0$. Taking transformation (106) with

$$
T_{1}=\left(\begin{array}{cc}
1 & i z_{1} c_{2}^{\prime \prime} /\left|e^{\prime \prime}\right| \\
0 & e^{i \arg e^{\prime \prime}}
\end{array}\right), \quad T_{5}=\left(-z_{1}\left(c_{1}^{\prime \prime}+c_{2}^{\prime \prime 2} /\left|e^{\prime \prime}\right|^{2}\right) / 2 \quad i z_{1}^{2} c_{2}^{\prime \prime} /\left|e^{\prime \prime}\right|\right)
$$

where $c_{1}^{\prime \prime}=\operatorname{Re}\left\{c^{\prime \prime} \overline{z_{1}}\right\}, c_{2}^{\prime \prime}=\operatorname{Im}\left\{c^{\prime \prime} \overline{z_{1}}\right\}$, we reduce N_{2} to the final form

$$
N_{2}=\left(\begin{array}{cc}
0 & 0 \\
r & z_{1}
\end{array}\right), \quad r=\left|e^{\prime \prime}\right|>0 .
$$

Lemma 8. If an indecomposable H-normal operator $N\left(N: C^{5} \rightarrow C^{5}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, then the pair $\{N, H\}$ is unitarily similar to one and only one of canonical pairs $\{(24),(26)\},\{(25),(26)\}$:

$$
N=\left(\begin{array}{ccccc}
\lambda & 0 & 1 & 0 & 0 \\
0 & \lambda & 0 & 1 & 0 \\
0 & 0 & \lambda & z & 0 \\
0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1
$$

$$
\begin{aligned}
N & =\left(\begin{array}{ccccc}
\lambda & 0 & 1 & 0 & 0 \\
0 & \lambda & 0 & r & z \\
0 & 0 & \lambda & z^{2} & 0 \\
0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad|z|=1, r \in \Re>0 \\
H & =\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{1} & 0 \\
I_{2} & 0 & 0
\end{array}\right)
\end{aligned}
$$

where z, r are H-unitary invariants.
Proof. The possibility of reducing N to one of forms (24), (25) is proved before the lemma. Hence, it is necessary to show that these forms are indecomposable and are not H-unitarily similar to each other and their terms z, r are H-unitary invariants. These statements may be proved as follows.

For the block triangular matrix

$$
T=\left(\begin{array}{ccc}
T_{1} & T_{2} & T_{3} \tag{107}\\
0 & T_{4} & T_{5} \\
0 & 0 & T_{6}
\end{array}\right)
$$

to satisfy condition (36) $N T=T \tilde{N}$, where

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & N_{2} \\
0 & 0 & N_{3} \\
0 & 0 & 0
\end{array}\right), \quad \widetilde{N}-\lambda I=\left(\begin{array}{ccc}
0 & \widetilde{N}_{1} & \tilde{N}_{2} \\
0 & 0 & \widetilde{N}_{3} \\
0 & 0 & 0
\end{array}\right)
$$

it is necessary and sufficient to have

$$
\begin{align*}
N_{1} T_{4} & =T_{1} \widetilde{N}_{1} \tag{108}\\
N_{1} T_{5}+N_{2} T_{6} & =T_{1} \widetilde{N}_{2}+T_{2} \widetilde{N}_{3} \tag{109}\\
N_{3} T_{6} & =T_{4} \widetilde{N}_{3} . \tag{110}
\end{align*}
$$

If H has form (96), then for (107) to be H-unitary it is necessary and sufficient to have

$$
\begin{align*}
T_{1} T_{6}^{*} & =I \tag{111}\\
T_{1} T_{5}^{*}+T_{2} T_{4}^{*} & =0 \tag{112}\\
T_{1} T_{3}^{*}+T_{2} T_{2}^{*}+T_{3} T_{1}^{*} & =0 \tag{113}\\
T_{4} T_{4}^{*} & =I . \tag{114}
\end{align*}
$$

If an H-unitary transformation T reduces matrix (25) (the second) to form (24) (the first), then from the corollary of Proposition 1 it follows that T has block form (107) and, according to (36),

$$
T_{1}=\left(\begin{array}{cc}
t_{11} & t_{12} \tag{115}\\
0 & t_{22}
\end{array}\right)
$$

Apply condition (109), replacing T_{6} by T_{1}^{*-1} (111) and T_{2} by $-T_{1} T_{5}^{*} T_{4}$ (112). Then we get: $z / \overline{t_{22}}=0$. This contradiction proves that the canonical forms are not H-unitarily similar.

If

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & r & z \\
0 & 0 & 0 & z^{2} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right) T=T\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \widetilde{r} & \widetilde{z} \\
0 & 0 & 0 & \widetilde{z}^{2} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right)
$$

$|z|=|\tilde{z}|=1$, and $r, \tilde{r} \in \Re>0$, then T has form (107), the submatrix T_{1} having form (115) and $t_{11}=t_{33}$. Since $\left|t_{33}\right|=1$ (condition (114)), we can assume that $t_{11}=t_{33}=1$. Replace T_{6} by T_{1}^{*-1} and apply (110); we have $\widetilde{z}^{2}=z^{2}$. Now substitute T_{1}^{*-1} for T_{6} and $-T_{1} T_{5}^{*}$ for T_{2} in (109). We obtain

$$
\begin{align*}
t_{35} & =\widetilde{z} t_{12} \tag{116}\\
r-z \overline{t_{12}} / \overline{t_{22}} & =\widetilde{r} t_{22}-z^{2} t_{22} \overline{t_{35}} \tag{117}\\
z / \overline{t_{22}} & =\widetilde{z} t_{22} \tag{118}
\end{align*}
$$

From (118) it follows that $\left|t_{22}\right|=1, \widetilde{z}=z$. Hence, $1 / \overline{t_{22}}=t_{22}, t_{35}=z t_{12}$, and $r=\widetilde{r} t_{22}$. Therefore, $r=\widetilde{r}\left|t_{22}\right|$, i.e., $\widetilde{r}=r$. Thus, the numbers z, r are H-unitary invariants of canonical form (25). That z is an H-unitary invariant of (24) can be checked in the similar way.

There remains to prove that matrices (24) and (25) are indecomposable. The proof is by reductio ad absurdum. Suppose some nondegenerate subspace V is invariant for N and $N^{[*]}$ (N has form (24)). As min\{dim V, $\left.\operatorname{dim} V^{[\perp]}\right\} \leq 2$, we can assume that $\operatorname{dim} V \leq 2$. Since there exists a vector $w_{1} \neq 0 \in S_{0}: w_{1} \in V$, there exists also a vector $w_{2}=a v_{3}+b v_{4}+c v_{5}+v \in$ $V\left(v \in S_{0},|b|+|c| \neq 0\right)$. As the vectors $(N-\lambda I) w_{2}=a v_{1}+b\left(v_{2}+z v_{3}\right)$ and $\left(N^{[*]}-\bar{\lambda} I\right) w_{2}=a \bar{z} v_{1}+b v_{3}+c v_{1}$ must be linearly dependent, we obtain $b=0$. But in this case the subspace V is degenerate because $\left[(N-\lambda I) w_{2}, w_{2}\right]=0$. This contradiction proves the indecomposability
of (24). Now let us check the indecomposability of (25). Suppose a nondegenerate subspace V is invariant both for N and $N^{[*]}$. Then, as before, $\exists w_{1} \neq 0 \in S_{0}: w_{1} \in V$ and $\exists w_{2}=a v_{3}+b v_{4}+c v_{5}+v \in V\left(v \in S_{0}\right.$, $|b|+|c| \neq 0)$. Therefore, the vectors $(N-\lambda I) w_{2}-z^{2}\left(N^{[*]}-\bar{\lambda} I\right) w_{2}=$ $b r v_{2}-c r z^{2} v_{1}$ and $(N-\lambda I) w_{2}=a v_{1}+b r v_{2}+b z^{2} v_{3}+c z v_{2}$ must be linearly dependent. Hence, $b=0 \Rightarrow c=0$. The contradiction obtained proves that (25) is also indecomposable. The proof of the lemma is completed.
5.3.3. $n=6$ The matrix $N-\lambda I$ has the form

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & N_{2} \\
0 & 0 & N_{3} \\
0 & 0 & 0
\end{array}\right), \quad \text { where } N_{1}=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)
$$

The submatrix N_{1} is not equal to zero because then condition (97) of the H-normality of N implies $N_{3}=0$ so that $v_{3}, v_{4} \in S_{0}$, which is impossible. Thus, we must consider two alternatives: $r g N_{1}=2$ and $r g N_{1}=1$.
(a) $r g N_{1}=2$. At first apply the transformation $T=N_{1} \oplus I \oplus N_{1}^{*-1}$; it takes N_{1} to I. Since N_{1} has become equal to I, N_{3}, according to (97), has become unitary. Recall that any unitary matrix is unitarily similar to some diagonal one with nonzero terms of modulus 1 ; moreover, this representation is unique to within order of diagonal terms. Thus, $\exists U\left(U U^{*}=I\right): \quad \widetilde{N}_{3}=U^{*} N_{3} U$, where

$$
\tilde{N}_{3}=\left(\begin{array}{cc}
z_{1} & 0 \tag{119}\\
0 & z_{2}
\end{array}\right), \quad\left|z_{1}\right|=\left|z_{2}\right|=1, \quad \arg z_{1} \leq \arg z_{2}
$$

If we subject $N-\lambda I$ to the transformation $T=U \oplus U \oplus U$, then N_{3} maps to (119) and $N_{1}=I$ does not change.

Note that if $z_{1} \neq z_{2}, N$ is decomposable. To check this it is sufficient to reduce

$$
N_{2}=\left(\begin{array}{ll}
e & f \tag{120}\\
g & h
\end{array}\right)
$$

to the diagonal form by means of transformation (105) with the submatrix

$$
T_{2}=\left(\begin{array}{cc}
0 & \left(\bar{g}-\overline{z_{1}} f\right) /\left(1-\overline{z_{1}} z_{2}\right) \\
\left(\bar{f}-\overline{z_{2}} g\right) /\left(1-z_{1} \overline{z_{2}}\right) & 0
\end{array}\right)
$$

(this transformation does not change N_{1} and N_{3}). Now the nondegenerate subspace $V=\operatorname{span}\left\{v_{1}, v_{3}, v_{5}\right\}$ is invariant for N and $N^{[*]}$; hence, N is decomposable.

Thus, for N to be indecomposable N_{3} must be equal to $z I$. Show that in the case when $z=-1, N$ is also decomposable. Indeed, apply the transformation

$$
T=\left(\begin{array}{ccc}
U & -\frac{1}{2} N_{2} U & -\frac{1}{8} N_{2} N_{2}^{*} U \\
0 & U & \frac{1}{2} N_{2}^{*} U \\
0 & 0 & U
\end{array}\right)
$$

where U is a unitary matrix reducing $N_{2}+N_{2}^{*}$ to the diagonal form (U is known to exist). Then N_{2} becomes diagonal; we already know that in this case N is decomposable.

Thus, $N=z I, z \neq-1$. Now we apply only transformations preserving the submatrices N_{1} and N_{3}. First let us take (105) with

$$
T_{2}=\left(\begin{array}{cc}
0 & 0 \\
\bar{f} & 0
\end{array}\right)
$$

and carry submatrix (120) to the form

$$
N_{2}=\left(\begin{array}{cc}
e^{\prime} & 0 \\
g^{\prime} & h^{\prime}
\end{array}\right)
$$

Further, apply transformation (105) with

$$
T_{2}=\left(\begin{array}{cc}
t_{13} & 0 \\
0 & t_{24}
\end{array}\right)
$$

where $\operatorname{Re}\left\{\overline{t_{13}}+z t_{13}\right\}=\operatorname{Re} e^{\prime}, \operatorname{Re}\left\{\overline{t_{24}}+z t_{24}\right\}=\operatorname{Re} h^{\prime}$ (since $z \neq-1$, these equations are solvable for any e^{\prime} and h^{\prime}). After this transformation

$$
N_{2}=\left(\begin{array}{cc}
i r_{1} & 0 \\
g^{\prime} & i r_{2}
\end{array}\right)
$$

One can assume that $g^{\prime}=r_{3} \in \Re \geq 0$. To this end it is sufficient to put $\widetilde{v_{2}}=e^{i \arg g^{\prime}} v_{2}, \widetilde{v_{4}}=e^{i \arg g^{\prime}} v_{4}, \widetilde{v_{6}}=e^{i \arg g^{\prime}} v_{6}$. Now apply the transformation

$$
T=\left(\begin{array}{ccc}
T_{1} & T_{1} T_{2} & -\frac{1}{2} T_{1} T_{2} T_{2}^{*} \\
0 & T_{1} & -T_{1} T_{2}^{*} \\
0 & 0 & T_{1}
\end{array}\right)
$$

where

$$
\begin{gathered}
T_{1}=1 / \sqrt{2}\left(\begin{array}{cc}
1 \\
-\frac{(z+1)}{(z+1 \mid} & \frac{1}{(z+1)} /|z+1|
\end{array}\right) \\
T_{2}=\frac{1}{2}\left(\begin{array}{cc}
-r_{3} /|z+1| & 0 \\
\left(i r_{2}-i r_{1}\right)-r_{3} \overline{(z+1)} /|z+1| & r_{3} /|z+1|
\end{array}\right)
\end{gathered}
$$

We get

$$
N_{2}=\left(\begin{array}{cc}
i r_{1}^{\prime} & 0 \\
g^{\prime \prime} & i r_{1}^{\prime}
\end{array}\right), \quad r_{1}^{\prime}=\frac{1}{2}\left(r_{1}+r_{2}\right)
$$

As above, we can assume that $g^{\prime \prime} \in R \geq 0$. For N to be indecomposable $g^{\prime \prime}$ must be nonzero so that $g^{\prime \prime}>0$. This is the final form of the matrix $N-\lambda I:$

$$
N-\lambda I=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & i r_{1} & 0 \tag{121}\\
0 & 0 & 0 & 1 & r_{2} & i r_{1} \\
0 & 0 & 0 & 0 & z & 0 \\
0 & 0 & 0 & 0 & 0 & z \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad \begin{aligned}
& |z|=1, z \neq-1 \\
& r_{1}, r_{2} \in \Re, r_{2}>0
\end{aligned}
$$

Let us show that z, r_{1}, r_{2} are H-unitary invariants. To this end suppose that an H-unitary matrix T reduces (121) to the form
$\widetilde{N}-\lambda I=\left(\begin{array}{ccc}0 & I & \widetilde{N}_{2} \\ 0 & 0 & \widetilde{z} I \\ 0 & 0 & 0\end{array}\right), \quad \widetilde{N}_{2}=\left(\begin{array}{cc}i \widetilde{r}_{1} & 0 \\ \widetilde{r}_{2} & i \widetilde{r}_{1}\end{array}\right), \quad \begin{aligned} & |\widetilde{z}|=1, \widetilde{z} \neq-1 \\ & \widetilde{r}_{1}, \widetilde{r}_{2} \in \Re, \widetilde{r}_{2}>0 .\end{aligned}$
By the corollary of Proposition 1, T must have block triangular form (107); therefore, systems (108)-(110) and (111)-(114) must hold. From (108), (114), and (111) it follows that $T_{1}=T_{4}=T_{6}=T_{6}^{*-1}$. Now from (110) it follows that $\widetilde{z}=z$. Combining (112) and (109), we get $N_{2}=T_{1} \widetilde{N}_{2} T_{1}^{*}+$ $z T_{2} T_{1}^{*}+T_{1} T_{2}^{*}$. If we denote

$$
T_{2}^{\prime}=T_{2} T_{1}^{*}=\left(\begin{array}{cc}
t_{11}^{\prime} & t_{12}^{\prime} \\
t_{21}^{\prime} & t_{22}^{\prime}
\end{array}\right)
$$

and write out the general form for 2×2 unitary matrix

$$
T_{1}=\left(\begin{array}{cc}
\varrho s_{1} & \sqrt{1-\varrho^{2}} s_{2} \tag{122}\\
\sqrt{1-\varrho^{2}} s_{3} & -\varrho \overline{s_{1}} s_{2} s_{3}
\end{array}\right), \quad \varrho \in[0,1],\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=1
$$

then we obtain

$$
\begin{aligned}
& i r_{1}=i \widetilde{r}_{1}+\varrho \sqrt{1-\varrho^{2}} \overline{s_{1}} s_{2} \widetilde{r}_{2}+z t_{11}^{\prime}+\overline{t_{11}^{\prime}} \\
& i r_{1}=i \widetilde{r}_{1}-\varrho \sqrt{1-\varrho^{2}} \overline{s_{1}} s_{2} \widetilde{r}_{2}+z t_{22}^{\prime}+\overline{t_{22}^{\prime}}
\end{aligned}
$$

Summing these equalities, we get

$$
2 i r_{1}=2 i \widetilde{r}_{1}+z t_{11}^{\prime}+\overline{t_{11}^{\prime}}+z t_{22}^{\prime}+\overline{t_{22}^{\prime}}
$$

It is easy to check that if $\operatorname{Re}\{z t+\bar{t}\}=0(z \neq-1)$, then $\operatorname{Im}\{z t+\bar{t}\}=0$. In our case $t_{11}^{\prime}+t_{22}^{\prime}$ plays the role of t; therefore, we have $z t_{11}^{\prime}+\overline{t_{11}^{\prime}}+z t_{22}^{\prime}$ $+\overline{t_{22}^{\prime}}=0$. Hence $\widetilde{r}_{1}=r_{1}$. Let us check that from the obtained equality $\widetilde{r}_{1}=r_{1}$ it follows that $\widetilde{r}_{2}=r_{2}$. Indeed, $z N_{2}^{*}-N_{2}=T_{1}\left(z \widetilde{N}_{2}^{*}-\widetilde{N}_{2}\right) T_{1}^{*}$,

$$
z N_{2}^{*}-N_{2}=\left(\begin{array}{cc}
-i r_{1}(z+1) & z r_{2} \\
-r_{2} & -i r_{1}(z+1)
\end{array}\right)
$$

the determinant of $z N_{2}^{*}-N_{2}$, which does not change under the similarity, is equal to $-r_{1}^{2}(z+1)^{2}+z r_{2}^{2}$; hence $r_{2}^{2}=\widehat{r}_{2}^{2}$. Since the sign of r_{2} coincides with that of $\widetilde{r}_{2}, \widetilde{r}_{2}=r_{2}$. The proof of the H-unitary invariance of the numbers r_{1}, r_{2} is completed.
(b) $r g N_{1}=1$. Let us show that in this case N is decomposable. In fact,

$$
N_{1}=\left(\begin{array}{cc}
k a & k b \\
l a & l b
\end{array}\right), \quad|a|+|b| \neq 0, \quad|k|+|l| \neq 0
$$

Taking $T=T_{1} \oplus I \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
t_{11} & k \\
t_{21} & l
\end{array}\right), \quad l t_{11} \neq k t_{21}
$$

we reduce N_{1} to the form

$$
N_{1}=\left(\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right)
$$

Without loss of generality one can assume that $a \neq 0$ and, therefore, that $a=1$ (this may be achieved by putting $\widetilde{v_{2}}=a v_{2}, \widetilde{v_{6}}=v_{6} / \bar{a}$). If $b \neq 0$,
apply the transformation $T_{1} \oplus T_{4} \oplus T_{1}^{*-1}$, where
$T_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / \sqrt{|b|^{2}+1}\end{array}\right), \quad T_{4}=\left(\begin{array}{cc}1 / \sqrt{|b|^{2}+1} & |b| / \sqrt{|b|^{2}+1} \\ \bar{b} / \sqrt{|b|^{2}+1} & -e^{-i \arg b} / \sqrt{|b|^{2}+1}\end{array}\right)$,
to the matrix $N-\lambda I$ (we mean that $a=1$). Then we obtain

$$
N_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

According to (97),

$$
N_{3}=\left(\begin{array}{cc}
0 & z_{1} \cos \alpha \\
0 & z_{2} \sin \alpha
\end{array}\right), \quad\left|z_{1}\right|=\left|z_{2}\right|=1, \quad 0 \leq \alpha \leq \pi / 2
$$

Since $v_{4} \bar{\in} S_{0}, \sin \alpha \neq 0$. Therefore, we can apply the transformation T of form (105), where

$$
T_{2}=\left(\begin{array}{cc}
\bar{g} & \left(f-z_{1} \bar{g} \cos \alpha\right) /\left(z_{2} \sin \alpha\right) \\
0 & 0
\end{array}\right)
$$

(N_{2} has form (120)). Under the action of T the submatrices N_{1} and N_{3} do not change but the submatrix N_{2} becomes diagonal. Now the nondegenerate subspace $V=\operatorname{span}\left\{v_{1}, v_{5}\right\}$ is invariant for N and $N^{[*]}$; hence, N is decomposable.

Lemma 9. If an indecomposable H-normal operator $N\left(N: C^{6} \rightarrow C^{6}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, then the pair $\{N, H\}$ is unitarily similar to canonical pair $\{(27),(28)\}$:

$$
\begin{aligned}
& N=\left(\begin{array}{cccccc}
\lambda & 0 & 1 & 0 & i r_{1} & 0 \\
0 & \lambda & 0 & 1 & r_{2} & i r_{1} \\
0 & 0 & \lambda & 0 & z & 0 \\
0 & 0 & 0 & \lambda & 0 & z \\
0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \quad \begin{array}{l}
|z|=1, z \neq-1, \\
r_{1}, r_{2} \in \Re, r_{2}>0,
\end{array} \\
& H=\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{2} & 0 \\
I_{2} & 0 & 0
\end{array}\right),
\end{aligned}
$$

where z, r_{1}, r_{2} are H-unitary invariants.

Proof. It is necessary to prove only the indecomposability of the canonical form because the rest was proved before the lemma. Suppose that a nondegenerate subspace V satisfies the conditions $N V \subseteq V, N^{[*]} V \subseteq V$. As above, we can assume that $\operatorname{dim} V \leq 3$ (see the proofs of the previous lemmas). Since $\exists w_{1} \neq 0 \in S_{0}: w_{1} \in V, \exists w_{2}=a v_{5}+b v_{6}+v \in V\left(v \in\left(S_{0}+S\right)\right.$, $|a|+|b| \neq 0)$. The vectors $(N-\lambda I)\left(N^{[*]}-\bar{\lambda} I\right) w_{2}=a v_{1}+b v_{2}$ and $(N-\lambda I-$ $\left.z\left(N^{[*]}-\bar{\lambda} I\right)\right) w_{2}=a i r_{1}(1+z) v_{1}-b r_{2} z v_{1}+b i r_{1}(1+z) v_{2}+a r_{2} v_{2}$ must be linearly dependent because otherwise $S_{0} \subset V$ and $\operatorname{dim} V \geq 4$. Therefore, $-b^{2} r_{2} z=a^{2} r_{2}$. Since $z \neq-1, a=b=0$. This contradiction proves that N is indecomposable. The proof of the lemma is completed.
5.3.4. $n=7$ The matrix $N-\lambda I$ has the form

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & N_{2} \\
0 & 0 & N_{3} \\
0 & 0 & 0
\end{array}\right), \quad \text { where } N_{1}=\left(\begin{array}{ccc}
a & b & c \\
d & e & f
\end{array}\right)
$$

As in the case when $n=6$, one can check that $N_{1} \neq 0$; therefore, we must consider the cases $r g N_{1}=1$ and $r g N_{1}=2$. Show that the former alternative is also impossible. Indeed, if $r g N_{1}=1$, then

$$
N_{1}=\left(\begin{array}{ccc}
k a & k b & k c \\
l a & l b & l c
\end{array}\right), \quad|a|+|b|+|c| \neq 0, \quad|k|+|l| \neq 0
$$

Applying the transformation $T=T_{1} \oplus I \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
t_{11} & k \\
t_{21} & l
\end{array}\right), \quad l t_{11} \neq k t_{21}
$$

we reduce N_{1} to the form

$$
N_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a & b & c
\end{array}\right)
$$

Then from condition (97) of the H-normality of N it follows that

$$
N_{3}=\left(\begin{array}{cc}
0 & s \\
0 & u \\
0 & w
\end{array}\right)
$$

Since there exists a nontrivial solution $\left\{\alpha_{i}\right\}_{1}^{3}$ of the system

$$
\begin{aligned}
a \alpha_{1}+b \alpha_{2}+c \alpha_{3} & =0 \\
\bar{s} \alpha_{1}+\bar{u} \alpha_{2}+\bar{w} \alpha_{3} & =0
\end{aligned}
$$

the nonzero vector $v=\alpha_{1} v_{3}+\alpha_{2} v_{4}+\alpha_{3} v_{5}$ belongs to S_{0}, which contradicts the condition $S_{0} \cap S=\{0\}$.

Thus, $\operatorname{rg} N_{1}=2$. Then without loss of generality it can be assumed that

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right) \neq 0
$$

Take the block diagonal transformation $T_{1} \oplus I \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)
$$

It reduces N_{1} to the form

$$
N_{1}=\left(\begin{array}{ccc}
1 & 0 & c^{\prime} \\
0 & 1 & f^{\prime}
\end{array}\right)
$$

Further, apply the transformation $T_{1} \oplus T_{2} \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1+\left|f^{\prime}\right|^{2}}
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{1+\left|f^{\prime}\right|^{2}} & -f^{\prime} / \sqrt{1+\left|f^{\prime}\right|^{2}} \\
0 & \frac{f^{\prime}}{} / \sqrt{1+\left|f^{\prime}\right|^{2}} & 1 / \sqrt{1+\left|f^{\prime}\right|^{2}}
\end{array}\right)
$$

Then we get

$$
N_{1}=\left(\begin{array}{ccc}
1 & b^{\prime \prime} & c^{\prime \prime} \\
0 & 1 & 0
\end{array}\right)
$$

Now take $T=T_{1} \oplus T_{2} \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{cc}
\sqrt{1+\left|c^{\prime \prime}\right|^{2}} & b^{\prime \prime} \\
0 & 1
\end{array}\right), \quad T_{2}=\left(\begin{array}{ccc}
1 / \sqrt{1+\left|c^{\prime \prime}\right|^{2}} & 0 & -c^{\prime \prime} / \sqrt{1+\left|c^{\prime \prime}\right|^{2}} \\
0 & 1 & 0 \\
\overline{c^{\prime \prime}} / \sqrt{1+\left|c^{\prime \prime}\right|^{2}} & 0 & 1 / \sqrt{1+\left|c^{\prime \prime}\right|^{2}}
\end{array}\right)
$$

and get the final form of the submatrix N_{1} :

$$
N_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Now consider the submatrix

$$
N_{3}=\left(\begin{array}{cc}
r & s \\
t & u \\
v & w
\end{array}\right)
$$

If v and w are both equal to zero, then $v_{5} \in S_{0}$. Therefore, we can assume that $|v|^{2}+|w|^{2} \neq 0$ and can apply the transformation $T=T_{1} \oplus T_{1} \oplus I \oplus T_{1}$, where

$$
T_{1}=\left(\begin{array}{cc}
w / \sqrt{|v|^{2}+|w|^{2}} & \bar{v} / \sqrt{|v|^{2}+|w|^{2}} \\
-v / \sqrt{|v|^{2}+|w|^{2}} & \bar{w} / \sqrt{|v|^{2}+|w|^{2}}
\end{array}\right)
$$

Then

$$
N_{3}=\left(\begin{array}{cc}
r^{\prime} & s^{\prime} \\
t^{\prime} & u^{\prime} \\
0 & w^{\prime}
\end{array}\right), \quad w^{\prime}=\sqrt{|v|^{2}+|w|^{2}}>0
$$

If $s^{\prime} \neq 0$, replace s^{\prime} by $\left|s^{\prime}\right|$ by putting $\widetilde{v_{1}}=e^{i \arg s^{\prime}} v_{1}, \widetilde{v_{3}}=e^{i \arg s^{\prime}} v_{3}$, $\widetilde{v_{6}}=e^{i \arg s^{\prime}} v_{6}$. If $s^{\prime}=0$, then apply the transformation $\widetilde{v_{1}}=e^{-i \arg t^{\prime}} v_{1}$, $\widetilde{v_{3}}=e^{-i \arg t^{\prime}} v_{3}, \widetilde{v_{6}}=e^{-i \arg t^{\prime}} v_{6}$ and replace t^{\prime} by $\left|t^{\prime}\right|$. Now we can assume that $s^{\prime} \in \Re \geq 0$ and if $s^{\prime}=0$, then $t^{\prime} \in \Re \geq 0$.

Now let us apply condition (97) of the H-normality of N. We obtain

$$
N_{3}=\left(\begin{array}{cc}
-z_{1} \overline{z_{2}} \cos \alpha & \sin \alpha \cos \beta \\
z_{1} \sin \alpha & z_{2} \cos \alpha \cos \beta \\
0 & \sin \beta
\end{array}\right)
$$

$\left|z_{1}\right|=\left|z_{2}\right|=1,0 \leq \alpha, \beta \leq \pi / 2, \beta \neq 0, z_{1}=1$ if $\sin \alpha \cos \beta=0, z_{2}=1$ if $\alpha=\pi / 2$. Let us show that in the case when $\alpha=0, N$ is decomposable. Indeed, under the action of (105), where

$$
T_{2}=\left(\begin{array}{ccc}
0 & \bar{p} & \left(h-\bar{p} z_{2} \cos \alpha \cos \beta\right) / \sin \beta \\
0 & 0 & 0
\end{array}\right)
$$

the submatrix

$$
N_{2}=\left(\begin{array}{ll}
g & h \\
p & q
\end{array}\right)
$$

becomes diagonal. The nondegenerate subspace $V=\operatorname{span}\left\{v_{1}, v_{3}, v_{6}\right\}$ is now invariant for N and $N^{[*]}$; hence, N is decomposable.

Thus, $\alpha \neq 0$. Applying transformation (105) with

$$
T_{2}=\left(\begin{array}{ccc}
0 & t_{14} & t_{15} \\
0 & t_{24} & t_{25}
\end{array}\right),
$$

where

$$
\begin{aligned}
& t_{14}=g /\left(z_{1} \sin \alpha\right) \\
& t_{15}=\left(h-t_{14} z_{2} \cos \alpha \cos \beta\right) / \sin \beta \\
& t_{24}=\left(p-\overline{t_{14}}\right) /\left(z_{1} \sin \alpha\right) \\
& t_{25}=\left(q-\overline{t_{24}}-t_{24} z_{2} \cos \alpha \cos \beta\right) / \sin \beta,
\end{aligned}
$$

we reduce N_{2} to zero without changing N_{1} and N_{3}. This is the final form of the matrix $N-\lambda I$:

$$
\begin{aligned}
& N-\lambda I=\left(\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -z_{1} \overline{z_{2}} \cos \alpha & \sin \alpha \cos \beta \\
0 & 0 & 0 & 0 & 0 & z_{1} \sin \alpha & z_{2} \cos \alpha \cos \beta \\
0 & 0 & 0 & 0 & 0 & 0 & \sin \beta \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
&\left|z_{1}\right|=\left|z_{2}\right|=1,0<\alpha, \beta \leq \pi / 2, z_{1}=1 \text { if } \beta=\pi / 2, z_{2}=1 \text { if } \alpha=\pi / 2 .
\end{aligned}
$$

Show that $z_{1}, z_{2}, \alpha, \beta$ are H-unitary invariants. Suppose an H-unitary matrix T reduces $N-\lambda I$ to the form

$$
\tilde{N}-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & 0 \\
0 & 0 & \tilde{N}_{3} \\
0 & 0 & 0
\end{array}\right),
$$

where

$$
N_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \widetilde{N}_{3}=\left(\begin{array}{cc}
-\widetilde{z}_{1} \widetilde{z}_{2} \cos \widetilde{\alpha} & \sin \widetilde{\alpha} \cos \widetilde{\beta} \\
\widetilde{z}_{1} \sin \widetilde{\alpha} & \widetilde{z}_{2} \cos \widetilde{\alpha} \cos \widetilde{\beta} \\
0 & \sin \widetilde{\beta}
\end{array}\right)
$$

$\left|\widetilde{z}_{1}\right|=\left|\widetilde{z}_{2}\right|=1,0<\widetilde{\alpha}, \widetilde{\beta} \leq \pi / 2, \widetilde{z}_{1}=1$ if $\widetilde{\beta}=\pi / 2, \widetilde{z}_{2}=1$ if $\widetilde{\alpha}=\pi / 2$. Therefore, T has block triangular form (107) and conditions (108)-(114) hold. Combining (108), (114), and (111), we get: $T_{4}=T_{1} \oplus t_{55}\left(\left|t_{55}\right|=1\right)$,
$T_{1}=T_{6}=T_{6}^{*-1}$. Now from (110) it follows that $T_{4}=t_{11} \oplus t_{22}\left(\left|t_{11}\right|=\right.$ $\left|t_{22}\right|=1$,

$$
\begin{aligned}
t_{22} \sin \alpha \cos \beta & =t_{11} \sin \widetilde{\alpha} \cos \widetilde{\beta} \\
t_{11} z_{1} \sin \alpha & =t_{22} \widetilde{z}_{1} \sin \widetilde{\alpha} \\
t_{22} \sin \beta & =t_{55} \sin \widetilde{\beta} .
\end{aligned}
$$

Hence $t_{11}=t_{22}=t_{55}$, and hence $N_{3}=\widetilde{N}_{3}$; i.e., $\widetilde{\alpha}=\alpha, \widetilde{\beta}=\beta, \widetilde{z}_{1}=z_{1}$, $\widetilde{z}_{2}=z_{2}$. Thus, $\alpha, \beta, z_{1}, z_{2}$ are H-unitary invariants.

Lemma 10. If an indecomposable H-normal operator $N\left(N: C^{7} \rightarrow C^{7}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, then the pair $\{N, H\}$ is unitarily similar to canonical pair $\{(29),(30)\}$:

$$
\begin{gathered}
N=\left(\begin{array}{ccccccc}
\lambda & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & -z_{1} \overline{z_{2}} \cos \alpha & \sin \alpha \cos \beta \\
0 & 0 & 0 & \lambda & 0 & z_{1} \sin \alpha & z_{2} \cos \alpha \cos \beta \\
0 & 0 & 0 & 0 & \lambda & 0 & \sin \beta \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \\
\left|z_{1}\right|=\left|z_{2}\right|=1,0<\alpha, \beta \leq \pi / 2, z_{1}=1 \text { if } \beta=\pi / 2, z_{2}=1 \text { if } \alpha=\pi / 2 . \\
H=\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{3} & 0 \\
I_{2} & 0 & 0
\end{array}\right)
\end{gathered}
$$

where $z_{1}, z_{2}, r, \alpha, \beta$ are H-unitary invariants.
Proof. We have to prove only the indecomposability of the canonical form because the rest was proved above. The proof, as is customary, is by inductio ad absurdum. Suppose a nondegenerate subspace V is invariant for N and $N^{[*]}$; then we can assume (see the proofs of the previous lemmas) that $\operatorname{dim} V \leq 3$ and $\exists w_{2}=a v_{6}+b v_{7}+v \in V\left(v \in\left(S_{0}+S\right),|a|+|b| \neq 0\right)$. Then some nontrivial linear combination of the vectors $\left(N^{[*]}-\bar{\lambda} I\right) w_{2}=$ $a v_{3}+b v_{4}+v^{\prime}\left(v^{\prime} \in S_{0}\right)$ and $(N-\lambda I) w_{2}=a\left(-z_{1} \overline{z_{2}} \cos \alpha v_{3}+z_{1} \sin \alpha v_{4}\right)+$ $b\left(\sin \alpha \cos \beta v_{3}+z_{2} \cos \alpha \cos \beta v_{4}+\sin \beta v_{5}\right)+v^{\prime \prime}\left(v^{\prime \prime} \in S_{0}\right)$ must belong to S_{0}. This implies $b=0 \Rightarrow a=0$. The contradiction obtained proves that N is indecomposable. The proof is completed.
5.3.5. $n=8$ In this case

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & N_{2} \\
0 & 0 & N_{3} \\
0 & 0 & 0
\end{array}\right), \quad \text { where } N_{1}=\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h
\end{array}\right) .
$$

As in the case when $n=7$, one can check that for the condition $S \cap S_{0}=$ $\{0\}$ to hold the rank N_{1} must be equal to 2 . Without loss of generality it can be assumed that

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
e & f
\end{array}\right) \neq 0
$$

As before (in the case when $n=7$), taking the block diagonal transformation $T=T_{1} \oplus I \oplus T_{1}^{*-1}$, where

$$
T_{1}=\left(\begin{array}{ll}
a & b \\
e & f
\end{array}\right)
$$

we reduce N_{1} to the form

$$
N_{1}=\left(\begin{array}{cccc}
1 & 0 & c^{\prime} & d^{\prime} \\
0 & 1 & g^{\prime} & h^{\prime}
\end{array}\right)
$$

The results for the previous case $n=7$ let the submatrix N_{1} reduce to the form ($\left.\begin{array}{l}I \\ 0\end{array}\right)$. Indeed, there exists a transformation

$$
T=T_{1} \oplus T_{2} \oplus T_{1}^{*-1}, \quad \text { where } T_{2}=T_{2}^{*-1}=\left(\begin{array}{cccc}
t_{33} & t_{34} & t_{35} & 0 \\
t_{43} & t_{44} & t_{45} & 0 \\
t_{53} & t_{54} & t_{55} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

that reduces the submatrix N_{1} to the form

$$
N_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & d^{\prime} \\
0 & 1 & 0 & h^{\prime}
\end{array}\right)
$$

and there exists a transformation

$$
T=T_{1} \oplus T_{2} \oplus T_{1}^{*-1}, \quad \text { where } T_{2}=T_{2}^{*-1}=\left(\begin{array}{cccc}
t_{33} & t_{34} & 0 & t_{36} \\
t_{43} & t_{44} & 0 & t_{46} \\
0 & 0 & 1 & 0 \\
t_{63} & t_{64} & 0 & t_{66}
\end{array}\right)
$$

that reduces the obtained submatrix N_{1} to the desired form

$$
N_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{123}\\
0 & 1 & 0 & 0
\end{array}\right)
$$

Now consider the submatrix N_{3} and its submatrices N_{3}^{\prime} and $N_{3}^{\prime \prime}$:

$$
N_{3}=\binom{N_{3}^{\prime}}{N_{3}^{\prime \prime}}, \quad N_{3}^{\prime}=\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right), \quad N_{3}^{\prime \prime}=\left(\begin{array}{cc}
t & u \\
v & w
\end{array}\right)
$$

Note that $N_{3}^{\prime \prime}$ must be nondegenerate because otherwise the system

$$
\begin{aligned}
\bar{t} \alpha_{1}+\bar{v} \alpha_{2} & =0 \\
\bar{u} \alpha_{1}+\bar{w} \alpha_{2} & =0
\end{aligned}
$$

has a nontrivial solution $\left\{\alpha_{i}\right\}_{1}^{2}$; hence, the nonzero vector $v=\alpha_{1} v_{5}+\alpha_{2} v_{6}$ belongs to S_{0}.

Thus, $N_{3}^{\prime \prime}$ is nondegenerate. Recall that any nondegenerate matrix is a product of some self-adjoint positive definite matrix and some unitary one. Consequently, $N_{3}^{\prime \prime}=R U$, where R is self-adjoint positive definite and U is unitary. Let U_{1} be a unitary matrix reducing R to the real positive diagonal form. Taking $T=U^{*} U_{1} \oplus U^{*} U_{1} \oplus U_{1} \oplus U^{*} U_{1}$, we carry $N_{3}^{\prime \prime}$ into the form

$$
N_{3}^{\prime \prime}=\left(\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right), \quad r_{1}, r_{2} \in \Re, 0<r_{1} \leq r_{2}
$$

without changing the submatrix N_{1}. Now we have

$$
N_{3}=\binom{N_{3}^{\prime}}{N_{3}^{\prime \prime}}=\left(\begin{array}{cc}
p^{\prime} & q^{\prime} \\
r^{\prime} & s^{\prime} \\
r_{1} & 0 \\
0 & r_{2}
\end{array}\right)
$$

Further, apply transformation (105) with

$$
T_{2}=\left(\begin{array}{cccc}
0 & \bar{m} & \left(k-r^{\prime} \bar{m}\right) / r_{1} & \left(l-s^{\prime} \bar{m}\right) / r_{2} \\
0 & 0 & 0 & n / r_{2}
\end{array}\right)
$$

and reduce the submatrix

$$
N_{2}=\left(\begin{array}{cc}
k & l \\
m & n
\end{array}\right)
$$

to zero. Finally apply condition (97) of the H-normality of N. We get: $r_{2} \leq 1$. Show that if $r_{1}=r_{2}$, then N is decomposable. In fact, if $r_{1}=r_{2}=1$, then from (97) it follows that $N_{3}^{\prime}=0$; hence, the nondegenerate subspace $V=\operatorname{span}\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is invariant for N and $N^{[*]}$, and hence, N is decomposable. If $r_{1}=r_{2}<1$, then the matrix $N_{3}^{\prime} / \sqrt{1-r_{1}^{2}}$ is unitary; therefore, there exists a unitary matrix U that reduces N_{3}^{\prime} to the diagonal form. Then the transformation $T=U \oplus U \oplus U \oplus U$ does not change the submatrices $N_{1}=\left(\begin{array}{ll}I & 0\end{array}\right), N_{2}=0, N_{3}^{\prime \prime}=r_{1} I$ and reduces N_{3}^{\prime} to the diagonal form. Now it is seen that N is decomposable ($V=\operatorname{span}\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is nondegenerate, $\left.N V \subseteq V, N^{[*]} V \subseteq V\right)$. Thus, in either case N is decomposable.

There remains to consider the case when $r_{1}<r_{2}$. If $q^{\prime} \neq 0$, let us replace q^{\prime} by $\left|q^{\prime}\right|$ by means of the transformation $\widetilde{v_{1}}=e^{i \arg q^{\prime}} v_{1}, \widetilde{v_{3}}=e^{i \arg q^{\prime}} v_{3}$, $\widetilde{v_{5}}=e^{i \arg q^{\prime}} v_{5}, \widetilde{v_{7}}=e^{i \arg q^{\prime}} v_{7}$. If $q^{\prime}=0$, let us put $\widetilde{v_{1}}=e^{-i \arg r^{\prime}} v_{1}$, $\widetilde{v_{3}}=e^{-i \arg r^{\prime}} v_{3}, \widetilde{v_{5}}=e^{-i \arg r^{\prime}} v_{5}, \widetilde{v_{7}}=e^{-i \arg r^{\prime}} v_{7}$. Then r^{\prime} will be replaced by $\left|r^{\prime}\right|$. Thus, one can assume that $q^{\prime} \in \Re \geq 0$ and if $q^{\prime}=0$, then $r^{\prime} \in \Re \geq 0$. Applying (97) and renaming the terms of N_{3}, we get

$$
N_{3}=\left(\begin{array}{cc}
-z_{1} \overline{z_{2}} \sin \alpha \cos \beta & \cos \alpha \cos \gamma \tag{124}\\
z_{1} \cos \alpha \cos \beta & z_{2} \sin \alpha \cos \gamma \\
\sin \beta & 0 \\
0 & \sin \gamma
\end{array}\right)
$$

$\left|z_{1}\right|=\left|z_{2}\right|=1,0<\beta<\gamma \leq \pi / 2,0 \leq \alpha \leq \pi / 2, z_{1}=1$ if $\cos \alpha \cos \gamma=0$, $z_{2}=1$ if $\alpha=0$. We already know that if N_{3}^{\prime} is diagonal, N is decomposable. Therefore, $\alpha \neq \pi / 2$. As a result, we have

$$
N-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & 0 \tag{125}\\
0 & 0 & N_{3} \\
0 & 0 & 0
\end{array}\right), \quad N_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

and N_{3} has form (124),

$$
\begin{gather*}
\left|z_{1}\right|=\left|z_{2}\right|=1, \quad 0<\beta<\gamma \leq \pi / 2, \quad 0 \leq \alpha<\pi / 2 \\
z_{1}=1 \quad \text { if } \quad \gamma=\pi / 2, \quad z_{2}=1 \quad \text { if } \quad \alpha=0 \tag{126}
\end{gather*}
$$

Check the H-unitary invariance of the numbers $\alpha, \beta, \gamma, z_{1}$, and z_{2}. To this end suppose that an H-unitary matrix T reduces $N-\lambda I$ to the form $\widetilde{N}-\lambda I$, where $N-\lambda I$ has form (124), (125), (126),

$$
\widetilde{N}-\lambda I=\left(\begin{array}{ccc}
0 & N_{1} & 0 \\
0 & 0 & \widetilde{N}_{3} \\
0 & 0 & 0
\end{array}\right)
$$

N_{1} has form (123), and N_{3} has form (124),

$$
\begin{aligned}
& \widetilde{N}_{3}=\left(\begin{array}{cc}
-\widetilde{z}_{1} \overline{\widetilde{z}}_{2} \sin \widetilde{\alpha} \cos \widetilde{\beta} & \cos \widetilde{\alpha} \cos \widetilde{\gamma} \\
\widetilde{z}_{1} \cos \widetilde{\alpha} \cos \widetilde{\beta} & \widetilde{z}_{2} \sin \widetilde{\alpha} \cos \widetilde{\gamma} \\
\sin \widetilde{\beta} & 0 \\
0 & \sin \widetilde{\gamma}
\end{array}\right), \\
& \left|z_{1}\right|=\left|z_{2}\right|=1, \quad 0<\widetilde{\beta}<\widetilde{\gamma} \leq \pi / 2, \quad 0 \leq \widetilde{\alpha}<\pi / 2, \\
& \widetilde{z}_{1}=1 \text { if } \widetilde{\gamma}=\pi / 2, \quad \widetilde{z}_{2}=1 \text { if } \widetilde{\alpha}=0 .
\end{aligned}
$$

Then T has form (107) and conditions (108)-(114) hold. From (108), (114), and (111) it follows that $T_{4}=T_{1} \oplus T_{4}^{\prime}, T_{4}^{\prime} T_{4}^{\prime *}=I, T_{1}=T_{6}=T_{6}^{*-1}$. From (110) it follows that $N_{3}^{\prime \prime} T_{1}=T_{4}^{\prime} \widetilde{N}_{3}^{\prime \prime}$. Taking into account the general form (122) of a 2×2 unitary matrix, we can check that this equality implies $T_{4}^{\prime}=$ $T_{1}=t_{11} \oplus t_{22}\left(\left|t_{11}\right|=\left|t_{22}\right|=1\right), \widetilde{\beta}=\beta, \widetilde{\gamma}=\gamma$. Applying (110) again, we get $t_{22} \cos \alpha \cos \gamma=t_{11} \cos \tilde{\alpha} \cos \tilde{\gamma}$

$$
t_{11} z_{1} \cos \alpha \cos \beta=t_{22} \widetilde{z}_{1} \cos \widetilde{\alpha} \cos \widetilde{\beta}
$$

Hence $t_{11}=t_{22}$, and hence $\widetilde{N}_{3}=N_{3}$; i.e., $\widetilde{\alpha}=\alpha, \widetilde{z}_{1}=z_{1}, \widetilde{z}_{2}=z_{2}$.
LEMMA 11. If an indecomposable H-normal operator $N\left(N: C^{8} \rightarrow C^{8}\right)$ has the only eigenvalue $\lambda, \operatorname{dim} S_{0}=2$, then the pair $\{N, H\}$ is unitarily similar to canonical pair $\{(31),(32)\}$:

$$
\begin{aligned}
N & =\left(\begin{array}{cccccccc}
\lambda & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & -z_{1} \overline{z_{2} \sin \alpha \cos \beta} & \cos \alpha \cos \gamma \\
0 & 0 & 0 & \lambda & 0 & 0 & z_{1} \cos \alpha \cos \beta & z_{2} \sin \alpha \cos \gamma \\
0 & 0 & 0 & 0 & \lambda & 0 & \sin \beta & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 & \sin \gamma \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right), \\
\left|z_{1}\right| & =\left|z_{2}\right|=1, \\
z_{1} & =1 \text { if } \gamma=\pi / 2, \\
H & =\left(\begin{array}{ccc}
0 & 0 & I_{2} \\
0 & I_{4} & 0 \\
I_{2} & 0 & 0
\end{array}\right),
\end{aligned}
$$

where $z_{1}, z_{2}, \alpha, \beta, \gamma$ are H-unitary invariants.

Proof. We must prove only the indecomposability of the canonical form. Assume the converse. Then (see the proofs of the previous lemmas) we can assume that $\operatorname{dim} V \geq 4, w_{2}=a v_{7}+b v_{8}+v \in V\left(v \in\left(S_{0}+S\right),|a|+|b| \neq\right.$ $0)$. The vectors $(N-\lambda I)\left(N^{[*]}-\bar{\lambda} I\right) w_{2}=a v_{1}+b v_{2},\left(N^{[*]}-\bar{\lambda} I\right)^{2} w_{2}=$ $a\left(-\overline{z_{1}} z_{2} \sin \alpha \cos \beta v_{1}+\cos \alpha \cos \gamma v_{2}\right)+b\left(\overline{z_{1}} \cos \alpha \cos \beta v_{1}+\overline{z_{2}} \sin \alpha \cos \gamma v_{2}\right)$ and $(N-\lambda I)^{2} w_{2}=a\left(-z_{1} \overline{z_{2}} \sin \alpha \cos \beta v_{1}+z_{1} \cos \alpha \cos \beta v_{2}\right)+b\left(\cos \alpha \cos \gamma v_{1}\right.$ $+z_{2} \sin \alpha \cos \gamma v_{2}$) must be collinear because otherwise we get $S_{0} \subset V$, but since the condition $N S_{1} \subset\left(S_{1}+S_{0}\right)$ does not hold, we obtain $\operatorname{dim} V>4$. Thus, let us write the conditions of the linear dependence (if a or b is equal to zero, the vectors are not collinear):

$$
\begin{aligned}
& -\overline{z_{1}} z_{2} \sin \alpha \cos \beta+\overline{z_{1}} \cos \alpha \cos \beta \frac{b}{a}=\cos \alpha \cos \gamma \frac{a}{b}+\overline{z_{2}} \sin \alpha \cos \gamma \\
& -z_{1} \overline{z_{2}} \sin \alpha \cos \beta+\cos \alpha \cos \gamma \frac{b}{a}=z_{1} \cos \alpha \cos \beta \frac{a}{b}+z_{2} \sin \alpha \cos \gamma
\end{aligned}
$$

If we replace the last condition by its complex conjugate and subtract it from the first, we obtain

$$
\overline{z_{1}} \cos \alpha \cos \beta \frac{b}{a}-\cos \alpha \cos \gamma\left(\frac{\bar{b}}{\bar{a}}\right)=\cos \alpha \cos \gamma \frac{a}{b}-\overline{z_{1}} \cos \alpha \cos \beta\left(\frac{\bar{a}}{\bar{b}}\right)
$$

or

$$
\overline{z_{1}} \cos \alpha \cos \beta \frac{|a|^{2}+|b|^{2}}{a \bar{b}}=\cos \alpha \cos \gamma \frac{|a|^{2}+|b|^{2}}{\bar{a} b} .
$$

Modulus of the left-hand side must be equal to that of the right-hand side, i.e., $\cos \alpha \cos \beta=\cos \alpha \cos \gamma$. Since $\cos \alpha \neq 0, \cos \beta=\cos \gamma$; hence, $\beta=\gamma$. But for our canonical form $\beta<\gamma$. This contradiction proves the indecomposability of the operator N.

We have considered all alternatives for an indecomposable operator N and have obtained canonical forms for each case. Thus, we have proved Theorem 2.

APPENDIX: CANONICAL FORMS FOR 2×2 MATRICES UNDER CONGRUENCE

Proposition 3. Any invertible matrix A of order 2×2 is congruent to one and only one of the following canonical forms:

$$
A=\left(\begin{array}{cc}
z & \varrho e^{-i \pi / 3} z \tag{127}\\
0 & e^{i \pi / 3} z
\end{array}\right), \quad|z|=1, \varrho \in \Re \geq \sqrt{3}, 0 \leq \arg z<\pi \text { if } \varrho>\sqrt{3}
$$

$$
A=\left(\begin{array}{rr}
z_{1} & 0 \tag{128}\\
0 & z_{2}
\end{array}\right), \quad\left|z_{1}\right|=1,\left|z_{2}\right|=1, \arg z_{1} \leq \arg z_{2}
$$

where z, z_{1}, z_{2}, ϱ form a complete and minimal set of invariants.
Proof. Consider the matrix $A^{\prime}=A A^{*-1}$. If $\widetilde{A}=T A T^{*}$, then $\widetilde{A}^{\prime}=$ $T A^{\prime} T^{-1}$ so that spectral properties of A^{\prime} do not change under congruence of A. Reduce A^{\prime} to the Jordan normal form. Since $\left|\operatorname{det} A^{\prime}\right|=1$, there exist three such forms:

$$
\begin{align*}
& A^{\prime}=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right), \quad x_{1} \neq x_{2},\left|x_{1} x_{2}\right|=1,\left|x_{1}\right| \leq 1, \tag{129}\\
& A^{\prime}=x I, \quad|x|=1, \tag{130}\\
& A^{\prime}=\left(\begin{array}{ll}
x & 1 \\
0 & x
\end{array}\right), \quad|x|=1 . \tag{131}
\end{align*}
$$

(a) A^{\prime} is reduced to form (129). Since $A=A^{\prime} A^{*}$, we have

$$
A^{\prime}=\left(\begin{array}{ll}
a & b \tag{132}\\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\bar{a} x_{1} & \bar{c} x_{1} \\
\bar{b} x_{2} & \bar{d} x_{2}
\end{array}\right)=A^{\prime} A^{*}
$$

It is seen that either $b=c=0$ or $\arg x_{1}=\arg x_{2}$.
If $\left|x_{1}\right|<1$, then from (132) it follows that $a=d=0$; since A is invertible, b and c are nonzero; therefore, $\arg x_{1}=\arg x_{2}$. Now let us consider the function $f(\varrho)=\frac{1}{2}\left(1-\varrho^{2}-\sqrt{\left(\varrho^{2}+1\right)\left(\varrho^{2}-3\right)}\right)$ of the real variable ϱ. It monotonically decreases on the interval $(\sqrt{3},+\infty) ; f(\sqrt{3})=$ -1 , and $\lim _{\varrho \rightarrow+\infty} f(\varrho)=-\infty$; therefore, the equation $f(\varrho)=s$ has a root $\varrho>\sqrt{3}$ for all $s<-1$. Let ϱ be a root of the equation $f(\varrho)=-\left|x_{2}\right|$ and let $e^{i \arg x_{2}}=-e^{i \pi / 3} z^{2}$, where $|z|=1,0 \leq \arg z<\pi$. Then $x_{1}=\frac{1}{2} e^{i \pi / 3} z^{2}(1-$ $\left.\varrho^{2}+\sqrt{\left(\varrho^{2}+1\right)\left(\varrho^{2}-3\right)}\right), x_{2}=\frac{1}{2} e^{i \pi / 3} z^{2}\left(1-\varrho^{2}-\sqrt{\left(\varrho^{2}+1\right)\left(\varrho^{2}-3\right)}\right)$, and from (132) it follows that

$$
A=\left(\begin{array}{cc}
0 & b \\
e^{i \pi / 3} z^{2} f(\varrho) \bar{b} & 0
\end{array}\right), \quad b \neq 0
$$

Now the transformation

$$
T=\left(\begin{array}{cc}
1 & \bar{z}\left(e^{-i \pi / 3} f(\varrho)-1\right) /\left(\bar{b}\left(f(\varrho)^{2}-1\right)\right) \\
e^{2 i \pi / 3} \varrho f(\varrho) /\left(e^{i \pi / 3} f(\varrho)-1\right) & -e^{i \pi / 3} \bar{z} \varrho /\left(\bar{b}\left(f(\varrho)^{2}-1\right)\right)
\end{array}\right)
$$

reduces A to form (127) with $\varrho>\sqrt{3}$. The numbers ϱ and z cannot be changed under congruence because the eigenvalues of A^{\prime} are invariants
and from the condition $e^{i \pi / 3} z^{2} f(\varrho)=e^{i \pi / 3} \widetilde{z}^{2} f(\tilde{\varrho})(|z|=|\tilde{z}|=1,0 \leq \arg z$, $\arg \widetilde{z}<\pi, \varrho, \widetilde{\varrho} \in \Re>\sqrt{3})$ it follows that $\widetilde{z}=z, \widetilde{\varrho}=\varrho$.

If $\left|x_{1}\right|=1$, then from the condition $x_{1} \neq x_{2}$ it follows that $\arg x_{1} \neq$ $\arg x_{2}$; hence $b=c=0$. By taking $T=D_{2}$ one can interchange the terms a and d of the matrix A. Hence, we can assume that $\arg a \leq \arg d$. Applying the transformation

$$
T=\left(\begin{array}{cc}
1 / \sqrt{|a|} & 0 \\
0 & 1 / \sqrt{|d|}
\end{array}\right)
$$

we reduce A to form (128) with $z_{1}=e^{i \arg a}, z_{2}=e^{i \arg d}$.
To prove the invariance of z_{1} and z_{2} suppose that $\tilde{\widetilde{A}}=T A T^{*}$, where $A=z_{1} \oplus z_{2}, \widetilde{A}=\widetilde{z}_{1} \oplus \widetilde{z}_{2},\left|z_{1}\right|=\left|z_{2}\right|=\left|\widetilde{z}_{1}\right|=\left|\widetilde{z}_{2}\right|=1, \arg z_{1} \leq \arg z_{2}$, $\arg \widetilde{z}_{1} \leq \arg \tilde{z}_{2}$. Then

$$
\begin{align*}
z_{1}\left|t_{11}\right|^{2}+z_{2}\left|t_{12}\right|^{2} & =\widetilde{z}_{1} \tag{133}\\
z_{1} t_{11} \overline{t_{21}}+z_{2} t_{12} \overline{t_{22}} & =0 \tag{134}\\
z_{1} \overline{t_{11}} t_{21}+z_{2} \overline{t_{12}} t_{22} & =0 \tag{135}\\
z_{1}\left|t_{21}\right|^{2}+z_{2}\left|t_{22}\right|^{2} & =\widetilde{z}_{2} . \tag{136}
\end{align*}
$$

Since $t_{11} \overline{t_{21}}=-\overline{z_{1}} z_{2} t_{12} \overline{t_{22}}$ (condition (134)), (135) holds only if ($z_{2}^{2}-$ $\left.z_{1}^{2}\right) \overline{t_{12}} t_{22}=0$. If $z_{1}^{2} \neq z_{2}^{2}$, then t_{12} must be zero because if $t_{22}=0$, then $t_{11}=0$ and, therefore, $\widetilde{z}_{1}=z_{2}, \widetilde{z}_{2}=z_{1}$, which contradicts the condition $\arg \widetilde{z}_{1} \leq \arg \widetilde{z}_{2}$. Thus, $t_{12}=0$; hence, $t_{21}=0, \widetilde{z}_{1}=z_{1}, \widetilde{z}_{2}=z_{2}$. If $z_{1}=z_{2}$, then, according to (133)-(136), $\widetilde{z}_{1}=z_{1}\left(\left|t_{11}\right|^{2}+\left|t_{12}\right|^{2}\right), \widetilde{z}_{2}=$ $z_{1}\left(\left|t_{21}\right|^{2}+\left|t_{22}\right|^{2}\right)$; hence $\widetilde{z}_{1}=\widetilde{z}_{2}=z_{1}=z_{2}$. If $z_{2}=-z_{1}$ and $\overline{t_{12}} t_{22} \neq 0$, then $t_{11} \overline{t_{21}} \neq 0$ and $\widetilde{z}_{1}=z_{1}\left(\left|t_{11}\right|^{2}-\left|t_{12}\right|^{2}\right)$. Since $\left|t_{21}\right| /\left|t_{22}\right|=\left|t_{12}\right| /\left|t_{11}\right|$, $\widetilde{z}_{2}=z_{1}\left(\left|t_{21}\right|^{2}-\left|t_{22}\right|^{2}\right)=-\widetilde{z}_{1}\left|t_{22}\right|^{2} /\left|t_{11}\right|^{2}$. As arg $\widetilde{z}_{1} \leq \arg \widetilde{z}_{2}$, we get $\widetilde{z}_{1}=z_{1}, \widetilde{z}_{2}=z_{2}$. The case when $z_{2}=-z_{1}$ and $\overline{t_{12}} t_{22}=0$ can be considered as before. Thus, we have proved the invariance of the numbers z_{1} and z_{2}.
(b) A^{\prime} is reduced to form (130). Then $A=x A^{*},|x|=1$, this property being invariant with respect to congruence. Since A is invertible, $A=R U$, where R is self-adjoint positive definite matrix and U is unitary. Let T be a unitary matrix reducing U to the diagonal form Λ. After the application of T we have: $A=\widetilde{R} \Lambda$, where $\widetilde{R}=T R T^{*}$ is also self-adjoint positive definite. Now let T be a lowertriangular matrix such that $T \widetilde{R} T^{*}=I$. Then we reduce A to the uppertriangular form $T^{*-1} \Lambda T^{*}$. Since the term c of A is now equal to zero, from the condition $A=x A^{*}$ it follows that b is also equal to zero; i.e., A is diagonal. We already know that a diagonal matrix is congruent to (128) (see case (a) above). Thus, A can be reduced to form (128).
(c) A^{\prime} is reduced to form (131). Let $x=-e^{i \pi / 3} z^{2}(|z|=1)$. Then the application of the condition $A=A^{\prime} A^{*}$ yields

$$
A=\left(\begin{array}{cc}
a & b \\
-e^{i \pi / 3} z^{2} \bar{b} & 0
\end{array}\right), \quad b=\bar{a}+e^{-i \pi / 3} \bar{z}^{2} a .
$$

For A to be invertible b must be nonzero. Since $|b|=\left|a+e^{i \pi / 3} z^{2} \bar{a}\right|=$ $\left|a \bar{z}+e^{i \pi / 3} \bar{a} z\right|=\left|a \bar{z}-e^{-2 i \pi / 3} \bar{a} z\right|=\left|e^{i \pi / 3} a \bar{z}-e^{-i \pi / 3} \bar{a} z\right|=2\left|\operatorname{Im}\left\{e^{i \pi / 3} a \bar{z}\right\}\right|$, we see that $\operatorname{Im}\left\{e^{i \pi / 3} a \bar{z}\right\} \neq 0$. Let us choose z so that $\operatorname{Im}\left\{e^{i \pi / 3} a \bar{z}\right\}>0$. Applying the transformation

$$
T=\frac{\sqrt[4]{3}}{\sqrt{|b|^{3}}}\left(\begin{array}{cc}
|b| & \frac{2}{3} i \bar{z} \operatorname{Im}\{a \bar{z}\}|b| / \bar{b} \\
e^{i \pi / 3} \bar{z} \bar{b} & \bar{z}^{2}\left(-\frac{2}{3} i \operatorname{Im}\{a \bar{z}\}+a \bar{z}\right)
\end{array}\right),
$$

we reduce A to form (127) with $\varrho=\sqrt{3}$. It is clear that matrix (127) with $\varrho=\sqrt{3}$ is not congruent to that with $\varrho>3$ because in the former case A^{\prime} has the diagonal Jordan normal form in contrast to the latter. Therefore, we must prove only the invariance of z. Note that if $\widetilde{A}=T A T^{*}$, where

$$
A=\left(\begin{array}{cc}
z & \sqrt{3} e^{-i \pi / 3} z \\
0 & e^{i \pi / 3} z
\end{array}\right), \quad \widetilde{A}=\left(\begin{array}{cc}
\widetilde{z} & \sqrt{3} e^{-i \pi / 3} \widetilde{z} \\
0 & e^{i \pi / 3} \widetilde{z}
\end{array}\right), \quad|z|=|\widetilde{z}|=1,
$$

then $\widetilde{z}^{2}=z^{2}$ because the eigenvalue $x=-e^{i \pi / 3} z^{2}$ of A^{\prime} does not change under congruence of A. Therefore,

$$
A^{\prime}=z^{2}\left(\begin{array}{cc}
1-3 e^{i \pi / 3} & \sqrt{3} \\
\sqrt{3} & e^{2 i \pi / 3}
\end{array}\right)=\widetilde{A^{\prime}}
$$

For T to satisfy the condition $A^{\prime} T=T A^{\prime}$ the matrix T must have the form

$$
T=\left(\begin{array}{cc}
t_{11} & t_{12} \\
t_{12} & t_{11}+i t_{12}
\end{array}\right) .
$$

Now from the condition $\widetilde{A}=T A T^{*}$ it follows that

$$
\begin{align*}
z\left|t_{11}\right|^{2}+\sqrt{3} e^{-i \pi / 3} z t_{11} \overline{t_{12}}+e^{i \pi / 3} z\left|t_{12}\right|^{2} & =\widetilde{z} \tag{137}\\
z \overline{t_{11}} t_{12}+\sqrt{3} e^{-i \pi / 3} z\left|t_{12}\right|^{2}+e^{i \pi / 3} z\left(t_{11} \overline{t_{12}}+i\left|t_{12}\right|^{2}\right) & =0 . \tag{138}
\end{align*}
$$

If $t_{12} \neq 0$, from (138) it follows that

$$
e^{-i \pi / 6} \overline{\overline{t_{11}}} \overline{\overline{t_{12}}}+\sqrt{3} e^{-i \pi / 2}+e^{i \pi / 6} \frac{t_{11}}{t_{12}}+e^{2 i \pi / 3}=0
$$

which is impossible because the imaginary part of the left-hand side is equal to $\operatorname{Im}\left\{\sqrt{3} e^{-i \pi / 2}+e^{2 i \pi / 3}\right\}=-\sqrt{3} / 2$. Therefore, $t_{12}=0$, and hence (condition (137)) $\widetilde{z}=z$; i.e., z is an invariant. This concludes the proof of the proposition.

We express our gratitude to Prof. Heinz Langer who drew our attention to this problem, to Prof. André Ran for his attention to our work and very helpful comments of this paper, and to the referce for careful reading and valuable suggestions.

REFERENCE

1 I. Gohberg and B. Reichstein, On classification of normal matrices in an indefinite scalar product, Integral Equations and Operator Theory 13:364-394 (1990).

Received 21 September 1994; final manuscript accepted 26 June 1995

