
DISCRETE
APPLIED

Discrete Applied Mathematics 87 (1998) 149-158
MATHEMATICS

A parametric critical path problem and an application
for cyclic scheduling

Eugene Levner aa*, Vladimir Kats b
a Center for Technological Education Holon ajiliated with Tel-Aviv University, CTEH,

52 Golomb Street, Holon 58102, Israel
bBen Gurion University of the Negev, Beer Sheva 8410.5, Israel

Received 14 June 1997; received in revised form 30 January 1998; accepted 16 February 1998

Abstract

The paper addresses a problem of finding critical paths in PERT networks (digraphs) with
variable arc lengths depending on a parameter. By equipping the Bellman-Ford label-correcting
algorithm with variable vectorial labels depending on the parameter, we derive its version that
solves the problem in 0(mn2) time, for all possible parameter values (where M stands for the
number of arcs, and n is the number of nodes in the digraph). An application related to cyclic
scheduling of tasks in a robotic cell is considered. 0 1998 Elsevier Science B.V. All rights
reserved.

Keywords: Networks/graphs, parametric shortest path problem; Analysis of algorithms, distance
algorithms, critical-path algorithms; Cyclic scheduling, robotic scheduling

1. Introduction

Let G = (V, E) be a PERT network (finite, not necessarily acyclic, digraph) with
at nodes and m arcs. The network describes a project, in which some arcs e E A are
identified with jobs and the nodes are identified with events (i.e., starting and finishing
points of jobs of the project). For each arc e E A, its length w(e) is given. Some arc
lengths are constants (positive, negative or zero) while some other arc lengths are
assumed to be given functions depending on a parameter. Given two fixed nodes s and
f, the parametric critical path (CP) problem is to find the longest (‘critical’) finite
paths from s to f for all possible values of the parameter.

The parametric critical path problem and closely related parametric shortest path
problem have received considerable attention in the last few years because of their
many applications to several fields such as staff scheduling [3, 61, multifacility location
[4], network optimization [13], design of parallel computer architectures [2], robotic

* Corresponding author. E-mail: levner@barley.cteh.ac.il.

0166-218X/98/%19.00 0 1998 Elsevier Science B.V. All rights reserved.
PZZSO166-218X(98)00054-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82646205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

150 E. Levner, V. Katsl Discrete Applied Mathematics 87 (1998) 149-158

flowshop scheduling [5, 8, lo], and periodic jobshop scheduling [9]. In view of these
applications, development of fast algorithms for the parametric path problems deserves

special attention.
In the paper by Karp and Orlin [6], some arc lengths in a graph have a parameter

subtracted from them, and the shortest paths are to be found for every parameter
value, 1. Two strongly polynomial algorithms are derived, one running in 0(n3) time
and producing the desired shortest paths simultaneously for all values of %, and the
second running in O(nm logn) time and generating the paths for one value of 1 at
a time as 3, increases from -oo. The second algorithm is improved by Young et al.
[16] to O(nm + n2 logn) time. Another O(n3)-time algorithm developed by Ioachim

and Soumis [5] also examines parameter values one after another, but, unlike the
second KarpOrlin algorithm, it carries out the search in the ‘opposite direction’, that
is, it decreases 1 step by step, starting from some unfeasible value until Iti becomes
feasible.

The KarpOrlin shortest path problem can be generalized naturally to the case in
which the length of arc e is taken to be w(e) = a(e) - b(e)& b(e) being non-negative
integers. With this modification, essentially the second algorithm by Karp and Orlin [6]
is employed, its running time becoming pseudopolynomial, O(maxeEE b(e)(nm log n))
[1, 151. Another pseudopolynomial algorithm for this problem using special data struc-
tures and running in O(maxeEE b(e)(nm + n2 log n)) time, is obtained by Hartmann
and Orlin [3]. An interesting pseudopolynomial algorithm is proposed by Ribeiro
and Minoux [14] for a more general shortest path problem in which arc lengths
w(e) = a(e) + b(e)& where u(e) and b(e) can take on any values provided that graph
G contains no negative cycle when A= 0. This algorithm uses shortest-paths trees and
solves the problem to optimality in O(max, b(e)(nm log n)) time.

Our paper is devoted to another generalization of the KarpOrlin path problem mo-
tivated by a real-life application in robotic scheduling. The latter gives rise to the
problem version in which the arc lengths are taken to be w(e) =a(e)%& where J is a
parameter, and a(e) are any real numbers. Thus, while the KarpOrlin problem deals
with the coefficients b(e) in w(e) = a(e) + b(e)& equal to 0 or -1 only, we will treat
the version where those coefficients are 0, -1 or 1.

The main contribution of this paper is the design of a strongly polynomial algorithm
for the parametric critical path problem which is of another type than the KarpOrlin
algorithms. While the KarpOrlin algorithms can be seen to be parametric extensions
of the Dijkstra algorithm, we derive a parametric modification of the Bellman-Ford
(BF) label-correcting algorithm.

The proposed algorithm for the parametrical CP problem has the following features:
(1) Like the first KarpOrlin algorithm, it finds the critical paths ‘all-at-once’ for all

possible parameter values (its time complexity being O(n2m)).
(2) It finds all feasible values of parameter II, that is, such values /z for which there

is no positive-length cycle in the original graph G with respect to arc lengths
w(e) = u(e) f A.

(3) It does not require the knowledge of an initial feasible value of parameter 2.

E, Levner, V. KatslDiscrete Applied Mathematics 87 (1998) 149-158 151

(4) The algorithm is applied to a cyclic robotic scheduling problem, and improves the
best previous running time for the latter problem.

2. The CP problem: some properties

In PERT network (digraph) G = (V,E), a positive arc length denotes the duration of
the job identified with the arc. Some other arcs of positive lengths are used to represent
not-before relations denoting that some event, j, can occur (for example, some job can
be started or can be finished) not before than in the given amount of time wij after
some other event i occurs. Similarly, the not-later relation denotes that some event,
j, is to occur not later than the given time, wlj, before some other event i occurs.
The latter relations are represented by arcs of negative length. A zero-length arc just
indicates that a job preceeds some other job. Varying lengths, w(e) = a(e) f 1, appear
when the operation durations depend on a parameter A, for example, the calendar time
or cycle time (see [111, for mrther details on the PERT model with negative lengths).

The following well-known properties of the CP problem will be used below.

Property 1. Given 2 = &, a finite critical path from s to f in G exists iff, for that &,
there is no positive-length cycle in the graph G achievable from s.

Definition. Given two fixed nodes, s and f, a value 1” for which a finite critical path
from s to f in G exists, is called feusible.

Property 2. The domain of all feasible 2 values is an interval ,4 = [&in, ,?,,,] (where
the cases &n = -co and/or imax = cc are possible), or the empty set.

(The latter property is due to the fact that all problem constraints are linear inequal-
ities.)

Now, we can define exactly the parametric critical-path (CP) problem as follows:

The Parametric Critical Path Problem. (1) Given a finite, not necessarily acyclic,
digraph G = (V,E), to find interval /i = [&in, &,,,I of all feasible values of parameter i.

(2) The above interval n = [&in, &,,,] of all feasible I values being known, to find,
for each JU in [&n,/&ax], a critical path from s to f in graph G and its length.

If, for any real number 1, graph G has a positive cycle achievable from s, the
parametric critical path problem is said to have no solution for this graph.

3. The modified Bellman-Ford algorithm

Let t(e) and h(e) denote, respectively, the tail and head of arc e E E. Define for each
node v E V, the set of outward arcs F(v) = {e E E 1 t(e) = v}, and the set of inward
arcs, B(v) = {e E E 1 h(e) = v}. W e assume that B(s) = F(f) = 0. (Otherwise, we add

152 E. Levner. V. Katsl Discrete Applied Mathematics 87 (1998) 149-1.58

to G new start and finish nodes, denoted SO and fo, respectively, and zero-length arcs,
(80,s) and (f,fs), such that B(so) =F(fa) = 0.) Without the loss of generality, we
consider the PERT networks without multiple arcs; otherwise, we can eliminate them
by inserting an auxiliary node inside each multiple arc.

Let p’(o) denote the distance label of node z) found at the ith pass of the algorithm.
While carrying out label corrections in the algorithm below, we will present each
variable label as the maximim of several functions of 1: p(v) = max(jj , f2, . . . , fr)
where all Jj are linear functions of 1. If we have two labels PI(U) = max(J , . . . , fr) and

~2(~)=max(a,... ,gq) then, obviously, max(pl(v),p2(21))=max(fl,fr.g~,...,g~).

Operation p(u) + f(A), where f(J) is a function of A (in particular, a constant), is
a standard operation of adding two functions. The similar terms, A + kl and B + kA
(where A and B are constants) can be reduced: max(A + k,?, B + U) = A + k1, if A > B.

3.1. The modijied Bellman-Ford algorithm

Step 0: (Initialization). Enumerate all the arcs of E in an arbitrary order.
Assign labels p’(s) = 0, Pred(s) = 0 and p’(u) = --oo to ail other nodes u of G.
Step 1: (Label Correction). for i := 1 to II - 1
do for each arc e = (t(e), h(e)) in E
do

p’(h(e)) := max(p’-’ (h(e)), #-‘(t(e)) + w(e)). (1)

Fix node-predecessor label Pred(h(e)) [details of this operation are explained in
Section 61.

Step 2: (Finding All Feasible 3, or Displaying ‘NO SOLUTION’).
for each arc e=(t(e), h(e)) in E solve the functional inequality (2) below with

respect to A:

p”-‘(t(e)) + w(e) < p”-‘(h(e)). (2)

Let n be the set of all 1 values satisfying the latter inequalities for all e E E.
If n # 0 then return n and stop.
Otherwise return ‘NO SOLUTION’ and stop.

Remark 1. The above algorithm, like the first Karp-Orlin algorithm [6], does not need
an initial value 2 to be specified in (1). At termination, the algorithm either produces
the whole set n of all feasible 2, or reveals that n = 8.

Remark 2. The above algorithm can be revised so that not to consider every arc in
E during every pass. We can order the arcs by the tail nodes so that all arcs with
the same tail node appear consecutively on an arc-list. Thus while scanning arcs we
will consider one node at a time, say, node v, with label p(u)> - 00 and scan only
the arcs e such that t(e) = v. One way to implement this approach is to store only
those ‘candidate nodes’ in a node-list whose labels p(v) change in a pass and examine

E Levner, V. KatsIDiscrete Applied Mathematics 87 (1998) 149-158 153

this list in the first-in, first out order in the next pass. This approach known to be
very effiicient in practice, for any fixed 1 value, has, however, the same worst-case
complexity as examining all the arcs in any particular order (see [l]).

4. Analysis of the modified BF algorithm

Lemma 1. At the termination of the algorithm, the final label p”-‘(u) for any node
v, found at the (n - 1)st pass, has no more than 2n - 1 components in its vector
argument.

Proof. We will prove by induction on the number of passes, k. For the basis we take
k = 1. We have the following labels of the 0th pass: p’(s) = 0, and p’(v) = -w for
all other nodes u of V. At the first pass over all arcs of G, any node v adjacent to s
achieves a new label: either p’(u) = Const., or p’(u) = Const.+L, or p’(v) = Const.-L;
the labels of all other nodes do not change. Thus, for k = 1 the required statement holds.

For the inductive step, we assume that after the (k - 1)th pass, any node label has
the following expression:

pk-l(u) = max(C(-(k-l)) - (k - I)&. . ., C(-‘) - 1:

C(O) C(l) + /J ,...$-‘)+(k- 1)A) >

where CC-V- 1))
) . . . ,c(-‘),c(O), c(l),. . .) C(k-l) are real numbers. Some of the terms

under the max-operator can be absent. At the kth scanning of the arcs of E at Step 1, all
distance labels are corrected according to (1), that is, each time when an arc e = (u, u)
is examined, the intermediate label pk(u) = pkP1(u) + w(e) of node u, can become:
either pk(o) = pkP1(U)+Const., or pk(v) = pk-l(U)+(Const.+I), or pk(v)= pk-‘(u)
+ (Const. - ;I).

Clearly, after carrying out the elementary component-wise operations of adding a
linear function to the max-function pk-’ (u), the length (i.e., the number of arguments
under the max-operator) of any of expressions pk(u) is not longer than 2k+ 1. Further,
any expression of the form pk(v) = max(pk-‘(u), pk(v)) also has the length not longer
than 2k + 1 because all the similar terms under the max-operator may be reduced, as
it was indicated in the previous section. In other words, label pk(u) of any node u at
the kth pass has the following form: pk(u) = max(C(-k) - k1,. . . , C(-‘) - L, C(O), Cc’)
+ L,. . , Cck) + U). Taking k = n - 1, the proof is complete. 0

5. Complexity of the algorithm

Theorem 2. The complexity of the parametric version of the Bellman-Ford algorithm
is O(n*m).

154 E. Levner, V. Katsl Discrete Applied Mathematics 87 (1998) 149-158

Proof. Step 0 takes O(n) time. At Step 1, in each of n - 1 passes over all arcs
of graph G, the algorithm corrects labels according to (1). At any of m arcs, this
operation consists in adding a linear function (or a constant) w(e) to (2n - I)-segment
piecewise-linear function #-‘(t(e)) and subsequent component-wise comparing the
obtained max-function with another max-function, p’-‘(h(e)), each of them having a
vector operand with at most 2n - 1 components (see Lemma); all these operations can
be performed, for any arc, in O(n) time. Hence, in order to derive the final algebraic
expressions p”-’ (v), for all v, at Step 1, it takes at most O(n2m) time.

At Step 2, the algorithm solves m algebraic inequalities (2). For this purpose, it finds
the intersections of each pair of max-functions in (2). Since p”-‘(t(e)) + w(e) and
p”-‘(h(e)) are piecewise-linear convex functions with at most O(n) segments each,
calculating all points i at which the two functions intersect, can be carried out in O(n)
time. Indeed, each of the two functions can be defined on an ordered set of segments
with the coordinate of their left ends increasing. In linear time, we can obtain the
ordered merged set of all segments from both functions. Passing the latter ordered set
of segments from the left to the right, we first find the smallest point 1 where the
functions intersect.

The basic step consists in further passing the ordered merged set of segments and
choosing the segment with the smallest left-end coordinate where the functions intersect
again (and the sign of p”-‘(t(e)) + w(e) - p”-‘(h(e)) changes). We repeat this step
until all the segments of one of the two functions are passed over. Therefore, for any
single arc, in linear time we can find all 1 for which (2) holds. Thus, O(nm) time is
sufficient for solving inequalities (2), for all m arcs at Step 2. Hence, in O(n2m) time,
the algorithm finds the interval [&n,&x] and the piecewise-linear function p”-‘(f)
in node f which determines, for any i in [jlmin,&ax], the length of a critical path
from s to f as a function of parameter 1. The same time amount, 0(n2m), is required
if n = 0 and the algorithm displays that the problem is inconsistent (that is, it has no
solution for any 1). 0

Correctness of the modified Bellman-Ford algorithm follows immediately from the
fact that, for each fixed value of parameter 1 from ,4 = [&in, &,,], the algorithm turns
into the standard Bellman-Ford algorithm for the problem with numerical arc lengths
(see, e.g., PI).

6. Finding critical paths

A special operation is required if we wish, along with computing the critical-path
lengths, to fix the actual nodes of the critical paths as well. The labeling we use for
this purpose is a vector extension of the standard Bellman-Ford method of keeping a
predecessor node for each node of V\s, in the critical path problem with numerical data.

While performing an operation of node labeling according to (1) at the kth pass at
Step 1, in our parametric algorithm we set two (2k + 1)-long vectorial attributes, rc
and p, to each node v of G. The ith component of p(i = -k,. . . , - l,O, 1,. . . , k) is the

E. Levner, V. KatsIDiscrete Applied Mathematics 87 (1998) 149-158 155

number of a component-predecessor for the ith component of vector operand in p(t(e)),

that is, it indicates which component in the vector operand of p(t(e)) has produced
p(h(e)) after adding w(e) to p(t(e)), in the case if the ith component of p(h(e)) has
been changed after performing the addition. If the ith component of p(h(e)) is not
changed then the ith component of p is not changed as well.

The ith component of n(i = -k,. . . , - l,O, 1,. . . , k) is the number of the node-prede-
cessor, t(e), for the ith component of vector operand in p(h(e)), that is, it indicates
which node-tail has changed the ith component in the vector operand of p(h(e)).

The vector labels rt(u) and p(u) together form a node-predecessor label, Pred(v)
which is associated with each node v. For each linear segment of the piecewise-linear
function p(u), the node-predecessor label Pved(v) = (rc(v), p(u)) indicates a linear seg-
ment in distance label p(u) of node u preceding node v in the critical path. Thus, the
chain of segments-predecessors originating at node u runs backwards along a critical
path from s to v, like a chain of nodes-predecessors in the standard Bellman-Ford
algorithm restoring a critical path in the critical path problem with numerical data.

7. An application: a scheduling problem

The following problem is well known in the scheduling literature (see, for instance,

17, 8, 10, 121).
Given several machines in a line, Mi ,A42,. . . ,MN, where Mi stands for the

input/output storage, identical parts are to be processed successively through the ma-
chines in the same order S = (Mi ,Mz , . . . ,MN). A single robot transports the parts
between the machines. After arriving at IV&, 2 <i GN, a part is to be processed at this
machine, for a time interval of no less than Li and no more than Ui (otherwise the
part will be defective), where both Li and Ui are given constants, and then it must
be transported to the next machine. It is assumed that the robot and the machines
(except for Mi) can handle only one part at a time. The no-wait constraint is imposed
requiring that after a part is processed by a machine it is not allowed to wait and must
be immediately transferred by the robot to the next machine in S.

The robot’s transporting operations are repeated periodically. Each repetition of the
sequence of its moves is called a cycle, and its duration (which is equal to the time
elapsing between two successive introductions of parts into the system) is called the
cycle time.

A cycle of robot’s route is denoted as R = ([11, [2], . . . , [N]), where the kth component
of R denotes that, in each cycle, in its kth move in R, the robot moves a part from the
machine numbered [k] to machine [k] + 1, and then runs (without a load) to machine
[k + 11. Clearly, after servicing the last machine in the cycle, [N], the robot starts its
next cycle with the machine numbered [l]. Without the loss of generality, we may
assume that [l] = 1.

The following notation and terminology are used to formalize the problem:
di = the time required by the (loaded) robot to move a part from machine Mi to

M 1+1,

156 E. Levner, V. Kutsl Discrete Applied Mathematics 87 (1998) 149-158

rij = the time required by the unloaded robot to run from Mi to Mj, where 2 < i <N,
l<j<N- 1,

tk = the completion time of the kth operation in the processing sequence S which is
performed within the ‘first’ cycle (i.e., during the interval [0, T]), k = 1,. . . , N,

Zk = the duration of the kth operation in the processing sequence S,
T = the cycle time.
Given the processing sequence S, robot’s route R, and real numbers dk, rij, Lk and

uk, the scheduling problem is to find the set T of all feasible cycle time values for
which a cyclic schedule (that is, the operation durations rk lying within [Lk, &] and
completion times tk, k = 1,. . . , N) exists.

The minimal T from T will provide the minimal cycle time.
Let us denote by A the set of part-processing operations in S which being started in

some robot cycle R are finished in the same cycle, and B those operations in S which
being started in cycle R are finished in the next cycle. Then this cyclic scheduling
problem can be reformulated as the following linear programming problem:

Problem P. Find all T
subject to:

Lk <zk = tk - tk-_l - dk-1 6 uk, if kEA,

Lk~Zk=T+tk-tk_*-dk-l~uk, ifkEB

[the two-sided constraints on the processing times],

t[il + d[il + r[i]+l,[i+l] dt[i+l]r

for all i= 1,2,..., N (where r[i]+l,[N+tj = r[i]+l,l),

[the constraints on the traveling times of the unloaded robot],
and

t1 = 0, q.v+1] = T.

We can see now that T plays the role of a parameter in this scheduling problem.
We can construct a PERT network G in which there are N nodes corresponding to the
completion times of operations from S plus one more node, [N + 11, corresponding to

t[N+l] = T.
Constraints Of the f0l-m Lk < tk - tk__l - dk-, and Lk < T + tk - tk__l - dk_1 aI%

represented by the arcs leading from node k - 1 to node k and having the length
Lk + dk_, and Lk +dk-, - T, reSpeCtiVely. Constraints Of the f0lTI-l tk - tk-_l - dk-, < uk
and T + tk - tk_1 - dk_1 < uk are represented by the arcs leading from node k to node
k - 1 and having the length - uk - dk-1 and T - uk - dk-1, respectively. Constraints

of the form tril + d,i] + r[i]+l,[i+l] < t~~+l] are represented by the arcs leading from node

[i] to node [i + l] and having the length d[i] + r[i]+l,[i+l].

E. Levner, V. Katsl Discrete Applied Mathematics 87 (1998) 149-158 151

Since T = tl~+~], finding the feasible cycle time 7’ is equivalent to finding the critical
path length from node 1 to node [N + l] in graph G. Since parameter T plays in this
model the same role as parameter i in the parametric critical path problem studied
above, the minimal value of I obtained as a solution of the critical path problem will
be the minimal T we are searching for.

Using the modified Bellman-Ford algorithm described above, we can solve the latter
critical path problem in O(N3) time (since the number of arcs is O(N) in the con-
structed network). Notice that mathematical programming formulations for the schedul-
ing problem have been known before in the literature (see, e.g., [7, 10, 121). However,
all the previous studies of the problem known to us have resulted in either heuristic
or, at best, weakly polynomial algorithms. If problem P has one-sided constraints on
the processing times then it can be solved in O(N* 1ogN) time by reducing to the
KarpOrlin parametric path problem with binary b(e) [8, 91.

8. Concluding remarks

The proposed algorithm remains valid and solves to optimality a more general para-
metric critical path problem with arc lengths w(e) = a(e) + b(e)A, where u(e) are any
real numbers, and b(e) are any integers. However, the length of the vector label p(v)
will be then at most 2b(n - 1) + 1, where b = rnaxeEE b(e), and, in this case, the algo-
rithm becomes pseudopolynomial. It would be interesting to find other special cases of
the parametric critical path problem solvable in polynomial or pseudopolynomial time.

Acknowledgements

The authors thank Boris V. Cherkassky, Evgeny G. Gol’shtein and Arkady
S. Nemirovsky for their helpful comments and the anonymous referees for their con-
structive suggestions.

References

[I] R.K. Ahuja, T.L. Magnanti, J.B. Odin, Network Flows: Theory, Algorithms and Applications, Prentice-
Hall, Englewood Cliffs, NJ, 1993, pp. 164-165.

[2] C. Hanen, A. Munier, Cyclic scheduling on parallel processors: an overview, in: P. Chretienne,
E.G. Coffman, Jr., J.K. Len&a, Z. Liu (Eds.), Scheduling Theory and its Applications, Wiley,
Chichester, 1995, pp. 193-226.

[3] M. Hartmann, J.B. Orlin, Finding minimum cost to time ratio cycles with small integral transit times,
Networks 23 (1993) 567-574.

[4] T. Ichimori, A shortest path approach to a multifacility minimax location problem with rectilinear
distances, J. Oper. Res. Sot. Japan 28 (1985) 269-284.

[5] I. loachim, F. Soumis, Schedule efficiency in a robotic production cell, Int. .I. Flexible Manufact.
Systems 7 (1995) 5-26.

[6] R.M. Karp, J.B. Orlin, Parametric shortest path algorithms with an application to cyclic staffing, Discrete
Appl. Math. 3 (1981) 37-45.

158 E. Levner. V. KatslDiscrete Applied Mathematics 87 (1998) 149-158

[7] V.B. Kats, An exact optimal cyclic scheduling algorithm for multi-operator service of a production line,
Automat. Remote Control 43 (1982) 538-542.

[8] V. Kats, E. Levner, Polynomial algorithms for scheduling of robots, in: Proc. Workshop on Intelligent
Scheduling of Robots and Flexible Manufacturing Systems, CTEH Press, Holon, Israel, 1996,
pp. 77-100.

[9] T.E. Lee, M.E. Posner, Performance measures and schedules in periodic job shops, Oper. Res. 45
(1997) 72-91.

[lo] L. Lei, Determining the optimal starting times in a cyclic schedule with a given route, Comput. Oper.
Res. 20 (1993) 807-816.

[111 E.V. Levner, AS. Nemirovsky, A network flow algorithm for just-in-time project scheduling, European
J. Oper. Res. 79 (1994) 167-175.

[12] L.W. Phillips, P.S. Unger, Mathematical programming solution of a hoist scheduling problem, ABE
Trans. 2 (1976) 219-225.

[13] G.G. Polak, On a parametric shortest path problem from primal-dual multicommodity network
optimization, Networks 22 (1992) 283-295.

[14] C.C. Ribeiro, M. Minoux, A heuristic approach to hard constrained shortest path problems, Discrete
Appl. Math. 10 (1985) 125-137.

[15] C. Yang, D. Jin, A primal-dual algorithm for the minimum average weighted length circuit problem,
Networks 21 (1991) 705-712.

[16] N.E. Young, R.E. Tarjan, J.B. Orlin, Faster parametric shortest path and minimum-balance algorithms,
Networks 21 (1991) 205-221.

