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Abstract 

The paper addresses a problem of finding critical paths in PERT networks (digraphs) with 
variable arc lengths depending on a parameter. By equipping the Bellman-Ford label-correcting 
algorithm with variable vectorial labels depending on the parameter, we derive its version that 
solves the problem in 0(mn2) time, for all possible parameter values (where M stands for the 
number of arcs, and n is the number of nodes in the digraph). An application related to cyclic 
scheduling of tasks in a robotic cell is considered. 0 1998 Elsevier Science B.V. All rights 
reserved. 

Keywords: Networks/graphs, parametric shortest path problem; Analysis of algorithms, distance 
algorithms, critical-path algorithms; Cyclic scheduling, robotic scheduling 

1. Introduction 

Let G = (V, E) be a PERT network (finite, not necessarily acyclic, digraph) with 
at nodes and m arcs. The network describes a project, in which some arcs e E A are 
identified with jobs and the nodes are identified with events (i.e., starting and finishing 
points of jobs of the project). For each arc e E A, its length w(e) is given. Some arc 
lengths are constants (positive, negative or zero) while some other arc lengths are 
assumed to be given functions depending on a parameter. Given two fixed nodes s and 
f, the parametric critical path (CP) problem is to find the longest (‘critical’) finite 
paths from s to f for all possible values of the parameter. 

The parametric critical path problem and closely related parametric shortest path 
problem have received considerable attention in the last few years because of their 
many applications to several fields such as staff scheduling [3, 61, multifacility location 
[4], network optimization [13], design of parallel computer architectures [2], robotic 
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flowshop scheduling [5, 8, lo], and periodic jobshop scheduling [9]. In view of these 
applications, development of fast algorithms for the parametric path problems deserves 

special attention. 
In the paper by Karp and Orlin [6], some arc lengths in a graph have a parameter 

subtracted from them, and the shortest paths are to be found for every parameter 
value, 1. Two strongly polynomial algorithms are derived, one running in 0(n3) time 
and producing the desired shortest paths simultaneously for all values of %, and the 
second running in O(nm logn) time and generating the paths for one value of 1 at 
a time as 3, increases from -oo. The second algorithm is improved by Young et al. 
[16] to O(nm + n2 logn) time. Another O(n3)-time algorithm developed by Ioachim 

and Soumis [5] also examines parameter values one after another, but, unlike the 
second KarpOrlin algorithm, it carries out the search in the ‘opposite direction’, that 
is, it decreases 1 step by step, starting from some unfeasible value until Iti becomes 
feasible. 

The KarpOrlin shortest path problem can be generalized naturally to the case in 
which the length of arc e is taken to be w(e) = a(e) - b(e)& b(e) being non-negative 
integers. With this modification, essentially the second algorithm by Karp and Orlin [6] 
is employed, its running time becoming pseudopolynomial, O(maxeEE b(e)(nm log n)) 
[ 1, 151. Another pseudopolynomial algorithm for this problem using special data struc- 
tures and running in O(maxeEE b(e)(nm + n2 log n)) time, is obtained by Hartmann 
and Orlin [3]. An interesting pseudopolynomial algorithm is proposed by Ribeiro 
and Minoux [14] for a more general shortest path problem in which arc lengths 
w(e) = a(e) + b(e)& where u(e) and b(e) can take on any values provided that graph 
G contains no negative cycle when A= 0. This algorithm uses shortest-paths trees and 
solves the problem to optimality in O(max, b(e)(nm log n)) time. 

Our paper is devoted to another generalization of the KarpOrlin path problem mo- 
tivated by a real-life application in robotic scheduling. The latter gives rise to the 
problem version in which the arc lengths are taken to be w(e) =a(e)%& where J is a 
parameter, and a(e) are any real numbers. Thus, while the KarpOrlin problem deals 
with the coefficients b(e) in w(e) = a(e) + b(e)& equal to 0 or -1 only, we will treat 
the version where those coefficients are 0, -1 or 1. 

The main contribution of this paper is the design of a strongly polynomial algorithm 
for the parametric critical path problem which is of another type than the KarpOrlin 
algorithms. While the KarpOrlin algorithms can be seen to be parametric extensions 
of the Dijkstra algorithm, we derive a parametric modification of the Bellman-Ford 
(BF) label-correcting algorithm. 

The proposed algorithm for the parametrical CP problem has the following features: 
(1) Like the first KarpOrlin algorithm, it finds the critical paths ‘all-at-once’ for all 

possible parameter values (its time complexity being O(n2m)). 
(2) It finds all feasible values of parameter II, that is, such values /z for which there 

is no positive-length cycle in the original graph G with respect to arc lengths 
w(e) = u(e) f A. 

(3) It does not require the knowledge of an initial feasible value of parameter 2. 
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(4) The algorithm is applied to a cyclic robotic scheduling problem, and improves the 
best previous running time for the latter problem. 

2. The CP problem: some properties 

In PERT network (digraph) G = (V,E), a positive arc length denotes the duration of 
the job identified with the arc. Some other arcs of positive lengths are used to represent 
not-before relations denoting that some event, j, can occur (for example, some job can 
be started or can be finished) not before than in the given amount of time wij after 
some other event i occurs. Similarly, the not-later relation denotes that some event, 
j, is to occur not later than the given time, wlj, before some other event i occurs. 
The latter relations are represented by arcs of negative length. A zero-length arc just 
indicates that a job preceeds some other job. Varying lengths, w(e) = a(e) f 1, appear 
when the operation durations depend on a parameter A, for example, the calendar time 
or cycle time (see [ 111, for mrther details on the PERT model with negative lengths). 

The following well-known properties of the CP problem will be used below. 

Property 1. Given 2 = &, a finite critical path from s to f in G exists iff, for that &, 
there is no positive-length cycle in the graph G achievable from s. 

Definition. Given two fixed nodes, s and f, a value 1” for which a finite critical path 
from s to f in G exists, is called feusible. 

Property 2. The domain of all feasible 2 values is an interval ,4 = [&in, ,?,,,] (where 
the cases &n = -co and/or imax = cc are possible), or the empty set. 

(The latter property is due to the fact that all problem constraints are linear inequal- 
ities.) 

Now, we can define exactly the parametric critical-path (CP) problem as follows: 

The Parametric Critical Path Problem. (1) Given a finite, not necessarily acyclic, 
digraph G = ( V,E), to find interval /i = [&in, &,,,I of all feasible values of parameter i. 

(2) The above interval n = [&in, &,,,] of all feasible I values being known, to find, 
for each JU in [&n,/&ax], a critical path from s to f in graph G and its length. 

If, for any real number 1, graph G has a positive cycle achievable from s, the 
parametric critical path problem is said to have no solution for this graph. 

3. The modified Bellman-Ford algorithm 

Let t(e) and h(e) denote, respectively, the tail and head of arc e E E. Define for each 
node v E V, the set of outward arcs F(v) = {e E E 1 t(e) = v}, and the set of inward 
arcs, B(v) = {e E E 1 h(e) = v}. W e assume that B(s) = F(f) = 0. (Otherwise, we add 
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to G new start and finish nodes, denoted SO and fo, respectively, and zero-length arcs, 
(80,s) and (f,fs), such that B(so) =F(fa) = 0.) Without the loss of generality, we 
consider the PERT networks without multiple arcs; otherwise, we can eliminate them 
by inserting an auxiliary node inside each multiple arc. 

Let p’(o) denote the distance label of node z) found at the ith pass of the algorithm. 
While carrying out label corrections in the algorithm below, we will present each 
variable label as the maximim of several functions of 1: p(v) = max(jj , f2, . . . , fr ) 
where all Jj are linear functions of 1. If we have two labels PI(U) = max(J , . . . , fr) and 

~2(~)=max(a,... ,gq) then, obviously, max(pl(v),p2(21))=max(fl, . . ..fr.g~,...,g~). 

Operation p(u) + f(A), where f(J) is a function of A (in particular, a constant), is 
a standard operation of adding two functions. The similar terms, A + kl and B + kA 
(where A and B are constants) can be reduced: max(A + k,?, B + U) = A + k1, if A > B. 

3.1. The modijied Bellman-Ford algorithm 

Step 0: (Initialization). Enumerate all the arcs of E in an arbitrary order. 
Assign labels p’(s) = 0, Pred(s) = 0 and p’(u) = --oo to ail other nodes u of G. 
Step 1: (Label Correction). for i := 1 to II - 1 
do for each arc e = (t(e), h(e)) in E 
do 

p’(h(e)) := max(p’-’ (h(e)), #-‘(t(e)) + w(e)). (1) 

Fix node-predecessor label Pred(h(e)) [details of this operation are explained in 
Section 61. 

Step 2: (Finding All Feasible 3, or Displaying ‘NO SOLUTION’). 
for each arc e=(t(e), h(e)) in E solve the functional inequality (2) below with 

respect to A: 

p”-‘(t(e)) + w(e) < p”-‘(h(e)). (2) 

Let n be the set of all 1 values satisfying the latter inequalities for all e E E. 
If n # 0 then return n and stop. 
Otherwise return ‘NO SOLUTION’ and stop. 

Remark 1. The above algorithm, like the first Karp-Orlin algorithm [6], does not need 
an initial value 2 to be specified in (1). At termination, the algorithm either produces 
the whole set n of all feasible 2, or reveals that n = 8. 

Remark 2. The above algorithm can be revised so that not to consider every arc in 
E during every pass. We can order the arcs by the tail nodes so that all arcs with 
the same tail node appear consecutively on an arc-list. Thus while scanning arcs we 
will consider one node at a time, say, node v, with label p(u)> - 00 and scan only 
the arcs e such that t(e) = v. One way to implement this approach is to store only 
those ‘candidate nodes’ in a node-list whose labels p(v) change in a pass and examine 
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this list in the first-in, first out order in the next pass. This approach known to be 
very effiicient in practice, for any fixed 1 value, has, however, the same worst-case 
complexity as examining all the arcs in any particular order (see [l]). 

4. Analysis of the modified BF algorithm 

Lemma 1. At the termination of the algorithm, the final label p”-‘(u) for any node 
v, found at the (n - 1)st pass, has no more than 2n - 1 components in its vector 
argument. 

Proof. We will prove by induction on the number of passes, k. For the basis we take 
k = 1. We have the following labels of the 0th pass: p’(s) = 0, and p’(v) = -w for 
all other nodes u of V. At the first pass over all arcs of G, any node v adjacent to s 
achieves a new label: either p’(u) = Const., or p’(u) = Const.+L, or p’(v) = Const.-L; 
the labels of all other nodes do not change. Thus, for k = 1 the required statement holds. 

For the inductive step, we assume that after the (k - 1)th pass, any node label has 
the following expression: 

pk-l(u) = max(C(-(k-l)) - (k - I)&. . ., C(-‘) - 1: 

C(O) C(l) + /J ,...$-‘)+(k- 1)A) > 

where CC-V- 1)) 
) .  .  .  ,c(-‘),c(O), c(l),. . . )  C(k-l) are real numbers. Some of the terms 

under the max-operator can be absent. At the kth scanning of the arcs of E at Step 1, all 
distance labels are corrected according to (1 ), that is, each time when an arc e = (u, u) 
is examined, the intermediate label pk(u) = pkP1(u) + w(e) of node u, can become: 
either pk(o) = pkP1(U)+Const., or pk(v) = pk-l(U)+(Const.+I), or pk(v)= pk-‘(u) 
+ (Const. - ;I). 

Clearly, after carrying out the elementary component-wise operations of adding a 
linear function to the max-function pk-’ (u), the length (i.e., the number of arguments 
under the max-operator) of any of expressions pk(u) is not longer than 2k+ 1. Further, 
any expression of the form pk(v) = max( pk-‘(u), pk(v)) also has the length not longer 
than 2k + 1 because all the similar terms under the max-operator may be reduced, as 
it was indicated in the previous section. In other words, label pk(u) of any node u at 
the kth pass has the following form: pk(u) = max(C(-k) - k1,. . . , C(-‘) - L, C(O), Cc’) 
+ L,. . , Cck) + U). Taking k = n - 1, the proof is complete. 0 

5. Complexity of the algorithm 

Theorem 2. The complexity of the parametric version of the Bellman-Ford algorithm 
is O(n*m). 
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Proof. Step 0 takes O(n) time. At Step 1, in each of n - 1 passes over all arcs 
of graph G, the algorithm corrects labels according to (1). At any of m arcs, this 
operation consists in adding a linear function (or a constant) w(e) to (2n - I)-segment 
piecewise-linear function #-‘(t(e)) and subsequent component-wise comparing the 
obtained max-function with another max-function, p’-‘(h(e)), each of them having a 
vector operand with at most 2n - 1 components (see Lemma); all these operations can 
be performed, for any arc, in O(n) time. Hence, in order to derive the final algebraic 
expressions p”-’ (v), for all v, at Step 1, it takes at most O(n2m) time. 

At Step 2, the algorithm solves m algebraic inequalities (2). For this purpose, it finds 
the intersections of each pair of max-functions in (2). Since p”-‘(t(e)) + w(e) and 
p”-‘(h(e)) are piecewise-linear convex functions with at most O(n) segments each, 
calculating all points i at which the two functions intersect, can be carried out in O(n) 
time. Indeed, each of the two functions can be defined on an ordered set of segments 
with the coordinate of their left ends increasing. In linear time, we can obtain the 
ordered merged set of all segments from both functions. Passing the latter ordered set 
of segments from the left to the right, we first find the smallest point 1 where the 
functions intersect. 

The basic step consists in further passing the ordered merged set of segments and 
choosing the segment with the smallest left-end coordinate where the functions intersect 
again (and the sign of p”-‘(t(e)) + w(e) - p”-‘(h(e)) changes). We repeat this step 
until all the segments of one of the two functions are passed over. Therefore, for any 
single arc, in linear time we can find all 1 for which (2) holds. Thus, O(nm) time is 
sufficient for solving inequalities (2), for all m arcs at Step 2. Hence, in O(n2m) time, 
the algorithm finds the interval [&n,&x] and the piecewise-linear function p”-‘(f) 
in node f which determines, for any i in [jlmin,&ax], the length of a critical path 
from s to f as a function of parameter 1. The same time amount, 0(n2m), is required 
if n = 0 and the algorithm displays that the problem is inconsistent (that is, it has no 
solution for any 1). 0 

Correctness of the modified Bellman-Ford algorithm follows immediately from the 
fact that, for each fixed value of parameter 1 from ,4 = [&in, &,,], the algorithm turns 
into the standard Bellman-Ford algorithm for the problem with numerical arc lengths 
(see, e.g., PI). 

6. Finding critical paths 

A special operation is required if we wish, along with computing the critical-path 
lengths, to fix the actual nodes of the critical paths as well. The labeling we use for 
this purpose is a vector extension of the standard Bellman-Ford method of keeping a 
predecessor node for each node of V\s, in the critical path problem with numerical data. 

While performing an operation of node labeling according to (1) at the kth pass at 
Step 1, in our parametric algorithm we set two (2k + 1)-long vectorial attributes, rc 
and p, to each node v of G. The ith component of p(i = -k,. . . , - l,O, 1,. . . , k) is the 
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number of a component-predecessor for the ith component of vector operand in p(t(e)), 

that is, it indicates which component in the vector operand of p(t(e)) has produced 
p(h(e)) after adding w(e) to p(t(e)), in the case if the ith component of p(h(e)) has 
been changed after performing the addition. If the ith component of p(h(e)) is not 
changed then the ith component of p is not changed as well. 

The ith component of n(i = -k,. . . , - l,O, 1,. . . , k) is the number of the node-prede- 
cessor, t(e), for the ith component of vector operand in p(h(e)), that is, it indicates 
which node-tail has changed the ith component in the vector operand of p(h(e)). 

The vector labels rt( u) and p(u) together form a node-predecessor label, Pred(v) 
which is associated with each node v. For each linear segment of the piecewise-linear 
function p(u), the node-predecessor label Pved( v) = (rc( v), p(u)) indicates a linear seg- 
ment in distance label p(u) of node u preceding node v in the critical path. Thus, the 
chain of segments-predecessors originating at node u runs backwards along a critical 
path from s to v, like a chain of nodes-predecessors in the standard Bellman-Ford 
algorithm restoring a critical path in the critical path problem with numerical data. 

7. An application: a scheduling problem 

The following problem is well known in the scheduling literature (see, for instance, 

17, 8, 10, 121). 
Given several machines in a line, Mi ,A42,. . . ,MN, where Mi stands for the 

input/output storage, identical parts are to be processed successively through the ma- 
chines in the same order S = (Mi ,Mz , . . . ,MN). A single robot transports the parts 
between the machines. After arriving at IV&, 2 <i GN, a part is to be processed at this 
machine, for a time interval of no less than Li and no more than Ui (otherwise the 
part will be defective), where both Li and Ui are given constants, and then it must 
be transported to the next machine. It is assumed that the robot and the machines 
(except for Mi ) can handle only one part at a time. The no-wait constraint is imposed 
requiring that after a part is processed by a machine it is not allowed to wait and must 
be immediately transferred by the robot to the next machine in S. 

The robot’s transporting operations are repeated periodically. Each repetition of the 
sequence of its moves is called a cycle, and its duration (which is equal to the time 
elapsing between two successive introductions of parts into the system) is called the 
cycle time. 

A cycle of robot’s route is denoted as R = ([ 11, [2], . . . , [N]), where the kth component 
of R denotes that, in each cycle, in its kth move in R, the robot moves a part from the 
machine numbered [k] to machine [k] + 1, and then runs (without a load) to machine 
[k + 11. Clearly, after servicing the last machine in the cycle, [N], the robot starts its 
next cycle with the machine numbered [l]. Without the loss of generality, we may 
assume that [l] = 1. 

The following notation and terminology are used to formalize the problem: 
di = the time required by the (loaded) robot to move a part from machine Mi to 

M 1+1, 
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rij = the time required by the unloaded robot to run from Mi to Mj, where 2 < i <N, 
l<j<N- 1, 

tk = the completion time of the kth operation in the processing sequence S which is 
performed within the ‘first’ cycle (i.e., during the interval [0, T]), k = 1,. . . , N, 

Zk = the duration of the kth operation in the processing sequence S, 
T = the cycle time. 
Given the processing sequence S, robot’s route R, and real numbers dk, rij, Lk and 

uk, the scheduling problem is to find the set T of all feasible cycle time values for 
which a cyclic schedule (that is, the operation durations rk lying within [Lk, &] and 
completion times tk, k = 1,. . . , N) exists. 

The minimal T from T will provide the minimal cycle time. 
Let us denote by A the set of part-processing operations in S which being started in 

some robot cycle R are finished in the same cycle, and B those operations in S which 
being started in cycle R are finished in the next cycle. Then this cyclic scheduling 
problem can be reformulated as the following linear programming problem: 

Problem P. Find all T 
subject to: 

Lk <zk = tk - tk-_l - dk-1 6 uk, if kEA, 

Lk~Zk=T+tk-tk_*-dk-l~uk, ifkEB 

[the two-sided constraints on the processing times], 

t[il + d[il + r[i]+l,[i+l] dt[i+l]r 

for all i= 1,2,..., N (where r[i]+l,[N+tj = r[i]+l,l), 

[the constraints on the traveling times of the unloaded robot], 
and 

t1 = 0, q.v+1] = T. 

We can see now that T plays the role of a parameter in this scheduling problem. 
We can construct a PERT network G in which there are N nodes corresponding to the 
completion times of operations from S plus one more node, [N + 11, corresponding to 

t[N+l] = T. 
Constraints Of the f0l-m Lk < tk - tk__l - dk-, and Lk < T + tk - tk__l - dk_1 aI% 

represented by the arcs leading from node k - 1 to node k and having the length 
Lk + dk_, and Lk +dk-, - T, reSpeCtiVely. Constraints Of the f0lTI-l tk - tk-_l - dk-, < uk 
and T + tk - tk_1 - dk_1 < uk are represented by the arcs leading from node k to node 
k - 1 and having the length - uk - dk-1 and T - uk - dk-1, respectively. Constraints 

of the form tril + d,i] + r[i]+l,[i+l] < t~~+l] are represented by the arcs leading from node 

[i] to node [i + l] and having the length d[i] + r[i]+l,[i+l]. 
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Since T = tl~+~], finding the feasible cycle time 7’ is equivalent to finding the critical 
path length from node 1 to node [N + l] in graph G. Since parameter T plays in this 
model the same role as parameter i in the parametric critical path problem studied 
above, the minimal value of I obtained as a solution of the critical path problem will 
be the minimal T we are searching for. 

Using the modified Bellman-Ford algorithm described above, we can solve the latter 
critical path problem in O(N3) time (since the number of arcs is O(N) in the con- 
structed network). Notice that mathematical programming formulations for the schedul- 
ing problem have been known before in the literature (see, e.g., [7, 10, 121). However, 
all the previous studies of the problem known to us have resulted in either heuristic 
or, at best, weakly polynomial algorithms. If problem P has one-sided constraints on 
the processing times then it can be solved in O(N* 1ogN) time by reducing to the 
KarpOrlin parametric path problem with binary b(e) [8, 91. 

8. Concluding remarks 

The proposed algorithm remains valid and solves to optimality a more general para- 
metric critical path problem with arc lengths w(e) = a(e) + b(e)A, where u(e) are any 
real numbers, and b(e) are any integers. However, the length of the vector label p(v) 
will be then at most 2b(n - 1) + 1, where b = rnaxeEE b(e), and, in this case, the algo- 
rithm becomes pseudopolynomial. It would be interesting to find other special cases of 
the parametric critical path problem solvable in polynomial or pseudopolynomial time. 
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