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Recycling old drugs, rescuing shelved drugs and extending patents’ lives make drug repositioning an

attractive form of drug discovery. Drug repositioning accounts for approximately 30% of the newly US

Food and Drug Administration (FDA)-approved drugs and vaccines in recent years. The prevalence of

drug-repositioning studies has resulted in a variety of innovative computational methods for the

identification of new opportunities for the use of old drugs. Questions often arise from customizing or

optimizing these methods into efficient drug-repositioning pipelines for alternative applications. It

requires a comprehensive understanding of the available methods gained by evaluating both biological

and pharmaceutical knowledge and the elucidated mechanism-of-action of drugs. Here, we provide

guidance for prioritizing and integrating drug-repositioning methods for specific drug-repositioning

pipelines.
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A repositioned drug does not need the initial six to nine years

typically required for the development of new drugs, but instead

goes directly to preclinical testing and clinical trials, thus reducing

risk and costs [1]. Repositioning or repurposing drugs has been

implemented in several ways. One of the well-known examples is

sildenafil citrate (brand name: Viagra), which was repositioned

from a common hypertension drug to a therapy for erectile

dysfunction [2]. Similarly, off-label use of Food and Drug Admin-

istration (FDA)-approved drugs for cancer medical practice is also

popular. The National Comprehensive Cancer Network (NCCN)

estimates off-label use accounts for 50–75% of drugs or biologic

therapies for cancer in the USA [3]. It has been reported that 78%

and 75% of patients with breast or lung cancer, respectively

received FDA-approved drugs, although 68% and 95% of these

drugs, respectively, were used for off-label indications not

approved by the FDA [4]. Obviously, these examples were seren-

dipitously identified and these repositioning strategies lack gui-

dance and information to support clinical decision.

Pharmaceutical companies rely on traditional drug discovery

methods to seek repositioning opportunities. Among the 75 agents

(50 small molecules and 25 biologics) approved between 1999 and
Corresponding author:. Wong, Stephen T.C. (stwong@tmhs.org), (EWenzel@tmhs.org)

1359-6446/06/$ - see front matter � 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.drudis.
2008, 28 first-in-class small molecules were discovered by pheno-

typic drug screening and 17 were identified by target-based meth-

ods [5,6], accounting for more than 50% of the FDA-approved

small molecules and biologics. Phenotypic drug-screening

approaches discover drug candidates from libraries serendipi-

tously. Alternatively, target-based methods improve the reposi-

tioning process by including known target information into drug-

repositioning studies.

Nevertheless, the low knowledge content of elucidated mechan-

isms for traditional drug-repositioning methods makes it hard to

satisfy unmet medical needs by successfully repositioning a large

number of existing or shelved drugs. Computational methods are

able to alleviate this problem by high-level integration of available

knowledge and elucidation of unknown mechanisms. These com-

putational methods significantly improve the discovery process in

which new indications for a drug or new drugs for a disease can be

identified. They take advantage of the methods and tools available

in chemoinformatics [7–9], bioinformatics [10–14], network biol-

ogy [15–17] and systems biology [18–20] to make full use of known

targets, drugs, and disease biomarkers or pathways, thus leading

to the development of proof-of-concept methods and the design

of clinical studies with accelerated timelines. Accordingly, com-

putational drug-repositioning methods can be classified into
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FIGURE 1

Lotus leaves flowchart (LLF) for categorization of existing drug-repositioning methods. Drug repositioning takes advantage of different potential avenues to

repurpose drugs for new indications, including drug, disease and treatment oriented. These avenues were developed according to the availability of biological and
pharmaceutical knowledge and requirement of understanding the mechanisms of action of drugs. Traditional phenotype-based screening methods do not need

prior knowledge, and the repositioned drugs are just serendipitously tested. Targeted-based methods need specific knowledge about the targets, such as 3D

protein structures, whereas knowledge-based methods require the knowledge about the drugs or diseases, such as adverse effects, FDA approval labels, records

of clinical trials and published disease biomarkers (potential targets) or disease pathways. Signature-based methods mainly make use of gene signatures defined
by ‘-omics’ data (for diseases, drug treatments, or both). Pathway- or network-based methods generally use pathway analysis or network biology methods to

discover essential pathways from genetic, genomic, proteomic and metabolic data of diseases to find new targets for repositioned drugs. More advanced drug-

repositioning methods, such as targeted mechanism-based methods, aim to discover mechanisms of action of drugs by identification of off-targets or targeted

pathways of treated drugs using drug omics data (before and after drug treatments). Details of these methods are in Table 1 (main text). Integrated knowledge
and elucidated mechanisms of drug actions increases with the complexity of modeling methods.
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target-based, knowledge-based, signature-based, pathway- or net-

work-based, and targeted-mechanism-based methods, as shown in

Fig. 1. These methods focus on different orientations defined by

available information and elucidated mechanisms, such as drug

oriented, disease oriented and treatment oriented. These compu-

tational drug-repositioning methods enable researchers to exam-

ine nearly all drug candidates and test on a relatively large number

of diseases within significantly shortened time lines.

In recent years, the number of drug-repositioning methods has

dramatically increased. It is essential to better understand these

existing methods and prioritize them based on specific studies.

Application of an efficient drug-repositioning pipeline to a specific

study needs identification of feasible methods based on available

information of the drugs or diseases of interest. In this review, we

link existing drug-repositioning methods with their integrated

biological and pharmaceutical knowledge and discuss how to

customize a new drug-repositioning pipeline for specific studies.

Prioritize available drug-repositioning methods
Figure 1 is a top-down flowchart that we developed to better

understand orientations, integrated information types, categories

and complexities of existing drug-repositioning methods. We call

this flowchart a lotus leaves flowchart (LLF). It enables better

understanding of repositioning methods from the top down while
638 www.drugdiscoverytoday.com
customizing new repositioning pipelines from the bottom up. As

an example, if one wants to reposition drugs for an orphan disease,

one needs to identify how much pharmaceutical or biological

knowledge is available for this disease and whether understanding

the mechanisms of action of repositioned drugs is necessary. There

are several options to do such drug repositioning. Option 1: when

little information is available for the disease, phenotypic screening

or FDA off-label use would be the best option. Option 2: if there

exists one protein biomarker for the disease, target-based or knowl-

edge-based methods should be prioritized for the study. Option 3:

if there is more disease information available, either knowledge-

based or signature-based methods can be deployed to integrate

available disease pathways or disease omics data (i.e. omics data

generated from diseases) into the drug-repositioning process.

Lastly, option 4: if treatment omics data (i.e. omics data generated

from drug treatment) are available, it is possible to use signature-

based or targeted-mechanism-based methods to elucidate

unknown targeted mechanisms, such as off-targets and targeted

signaling pathways.

It is easy to see that the development of an efficient drug-

repositioning pipeline is a process of tradeoff among purposes,

methods and available information. Here, we introduce the repo-

sitioning methods shown in the LLF to facilitate understanding

the purpose, the integrated information and the complexities of
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these methods. The LLF flowchart will be helpful for scientists and

researchers to better understand existing computational methods

and customize these methods into their own pipelines for drug-

repositioning studies.

Blinded search or screening methods
Blinded drug-repositioning methods do not include pharmaceu-

tical or biological information and are less likely to help elucidate

any mechanisms of action of drugs. Most of them depend on

serendipitous identification from tests aimed at specific diseases

and drugs [3,4,21]. The advantage of these methods, which

include FDA off-label use and phenotypic screening, is that they

have high flexibility for application to a large number of drugs or

diseases. This explains why the phenotypic screening method was

used in the discovery of 28 of 75 small molecules and biologics

approved by the FDA between 1999 and 2008.

Target-based methods
Target-based drug-repositioning methods comprise in vitro and in

vivo high-throughput and/or high-content screening (HTS/HCS) of

drugs for a protein or a biomarker of interest [7–9] and in silico

screening of drugs or compounds from drug libraries [7,22], such as

ligand-based screening or docking [23,24]. Compared with blinded

methods, targeted-based methods significantly improve the like-

lihood of drug discovery because most targets link directly with the

disease mechanisms. Integration of target information into the drug

repositioning process ensures a higher possibility of finding useful

drugs compared with traditional blinded methods. The advantage

of targeted-based methods, such as docking, is that these methods

enable researchers to screen nearly all drugs or compounds with

known chemical structure information (e.g. Simplified Molecular-

Input Line-Entry System SMILES) within a few days. This is why so

many pharmaceutical companies, including Genentech and Melior,

have been using these methods to find new indications.

Knowledge-based methods
Knowledge-based drug-repositioning methods are those applying

bioinformatics or cheminformatics approaches to include the

available information of drugs, drug–target networks [10–14],

chemical structures of targets and drugs [14], clinical trial infor-

mation (adverse effects) [25,26], FDA approval labels [27], signal-

ing or metabolic pathways [28], and so on, into drug-repositioning

studies. The information content of blinded and target-based

methods are poor and they cannot be used to identify new

mechanisms beyond the known targets. By contrast, knowl-

edge-based methods incorporate known information into predict-

ing unknown mechanisms, such as unknown targets for drugs,

unknown drug–drug similarities, and new biomarkers for diseases.

The advantage of knowledge-based methods is that they include a

large amount of known information into the drug-repositioning

process to improve its prediction accuracy. For example, THOM-

SON REUTERSTM has used this strategy to do drug repositioning

based on its rich volumes of accumulated prior knowledge. More-

over, these methods have been applied to repurpose known drugs

to pediatric hematology oncology. Blatt and Corey describe how

the knowledge in the Harriet Lane Handbook (HLH) of the Johns

Hopkins School of Medicine (compiled based on perceived interest

to the general pediatric practitioners) and information acquired by
searching PubMed and Google.com might also be helpful to

repurpose drugs for children [29].

Signature-based methods
Signature-based drug-repositioning methods make use of gene sig-

natures derived from disease omics data with or without treatments

[30–37] to discover unknown off-targets or unknown disease

mechanisms. As the advancement of microarray and next genera-

tion sequencing techniques speed up the generation of vast volumes

of genomics data pertinent for drug-repositioning studies, gene

signatures can be used to discover unknown mechanisms.

One can easily access such genomics data in publicly available

databases, such as NCBI-GEO (http://www.ncbi.nlm.nih.gov/

geo/), SRA Sequence Read Archive (http://www.ncbi.nlm.nih.gov/

Traces/sra/), CMAP Connectivity Map [32] and CCLE Cancer Cell

Line Encyclopedia [38]. More details on these databases are shown

in Table 2. The advantage of signature-based methods is that they

are useful to uncover unknown mechanisms of action of molecules

and drugs. Compared with knowledge-based methods, signature-

based methods involve more molecular-level mechanisms, such as

the significantly changed genes, by using computational

approaches.

Pathway- or network-based methods
Pathway- or network-based drug-repositioning methods utilize dis-

ease omics data, available signaling or metabolic pathways, and

protein interaction networks to reconstruct disease-specific path-

ways that provide the key targets for repositioned drugs [15–17]. The

advantage of these methods is that they are helpful in narrowing

general signaling networks from a large number of proteins down to

a specific network with a few proteins (or targets). A recent study of

drug repositioning addressed distinct signaling mechanisms of

metastatic subtypes of breast cancer [17]. Neither knowledge-based

nor signature-based methods can address these repositioning results

because the subtype signaling mechanisms are hard to elucidate

from existing breast cancer pathways or the gene signatures.

Targeted mechanism-based methods
Targeted mechanism-based drug-repositioning methods integrate

treatment omics data, available signaling pathway information

and protein interaction networks to delineate the unknown

mechanisms of action of drugs [18–20]. The era of precision

medicine motivates such drug-repositioning studies. For instance,

drug resistance remains an unresolved issue in cancer therapy.

Although patients respond well to a drug initially, they often

acquire resistance to that drug after a few months of treatment.

This indicates that deriving a successful drug treatment needs

additional information about the mechanisms of action of drugs

to find better drug targets. Systems biology approaches are promis-

ing in addressing this challenge. The advantage of these methods

is that their goals are not only to discover the mechanisms related

to diseases or drugs, but also to identify those directly related to

treatments of drugs to specific diseases. Owing to the difficulties in

deriving effective computational models, there are only a few

studies on these targeted mechanism-based methods [18–20] that

developed elegant computational models to predict the drug

effects and related targeted pathways. Comprehensive overviews

of these drug-repositioning methods are given in Tables 1 and 2.
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TABLE 1

Details of available drug-repositioning methods

Fields Methods Categories Mechanism or

knowledge

complexity

Approach summaries with

references

Examples

Drug-oriented

FDA off-label use Blinded Serendipitously
tested

Extremely low Clinical decisions [3,4,21] Sildenafil citrate (erectile
dysfunction); rituximab (breast

cancer); fluorouracil (lung cancer)

and etoposide (bladder cancer)

Phenotypic screening Blinded Screening Extremely low In vivo and in vitro HTS/HCS
screening [44–47]

HDECC inhibitors for stem-like lung
cancer cells; widely used in GSK and

Novartis

Phenotypic screening Target based Screening Low In vivo and in vitro HTS/HCS
screening [7–9]

Widely used in Genentech

Target 3D structure,

chemical structure

information of drugs
and ligands

Target based Cheminformatics Low In silico screening [7,22], ligand

based and docking [23,24]

MLR-1023 for diabetes (Melior)

Drug–target information,

chemical structure

information of targets
and drugs

Knowledge

based

Bioinformatics,

Cheminformatics

Moderate Drug–target prediction [10–14] Simvastatin and Ketoconazole

(breast cancer)

Adverse effects (clinical

trial information)

Knowledge

based

Bioinformatics Moderate Using correlation to define disease

adverse effect associations [25], and
adverse effects to define drug

similarity [26]

FDA approval labels

and adverse effects

Knowledge

based

Bioinformatics Moderate Using principal component analysis

to define drug similarity
measurement [27]

Disease-oriented

Available Pathway

information

Knowledge

based

Bioinformatics Moderate Discovery of disease mechanism and

address of key targets [28]

Vismodegib for skin cancer

Disease omics data Signature

based

Bioinformatics Moderate From gene signature (most changed

genes) in disease of interest to

identify key targets [30]

Genetics data Signature
based

Bioinformatics Moderate Genome-wide association study
analysis to identify key targets [31]

Disease omics data,

available pathway

information, and
protein interaction

network

Pathway or

network

based

Network biology High Reconstruction of disease-specific

pathways and networks to identify

key targets [15–17]

Sunitinib and dasatinib for breast

cancer brain metastases

Treatment-oriented

Drug omics data Signature
based

Bioinformatics Moderate Connectivity Map, linking diseases
with treated drugs by using gene

signatures [32–34]

Sirolimus for patients with acute
lymphoblastic leukemia with

dexamethasone resistance

Signature and

network
based

Bioinformatics,

network biology

Moderate Using gene signatures to define the

distances among drugs and then use
community structure to classify drug

[48]

Fasudil (a Rho-kinase inhibitor) for

neurodegenerative disorders

Disease omics and
drug omics data

Signature
based

Bioinformatics High Using both drug and disease gene
signatures to define similarities

between drugs and diseases [35–37]

Cimetidine for lung cancer and
topiramate for Inflammatory bowel

disease

Drug omics data,

disease pathway
and protein

interaction network

Targeted-

mechanism
based

Network biology and

systems biology

Extremely

high

Elucidating targeted pathways for

each treated drugs to define
potential repositioning score [18–20]

Daunorubicin and clomifene for

breast cancer
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Customize and generate new drug-repositioning
pipelines
The low-risk and low-cost drug-repositioning strategies have been

widely used to identify new clinical opportunities for old drugs.

Accordingly, numerous strategies have been developed from drug-

repositioning studies. On the basis of the LLF, we use a fishbone

flowchart to present the existing methods with preclinical and
640 www.drugdiscoverytoday.com
clinical validations (Fig. 2). The fishbone flowchart helps readers to

understand the existing drug-repositioning pipelines and shows

how to generate new drug-repositioning pipelines.

A general fishbone flowchart of existing methods
The fishbone flowchart includes general methods used for drug-

repositioning studies. Starting with a disease or a drug, one can
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TABLE 2

Databases used for drug-repositioning studies

Fields Databases Website Refs

Chemical structure PubChem http://pubchem.ncbi.nlm.nih.gov

Collaborative Drug Discovery Vault https://www.collaborativedrug.com

Drugbank http://www.drugbank.ca/ [49]

Therapeutic Target Database (TTD) http://bidd.nus.edu.sg/group/cjttd/ [50]

Pharmacogenetics Knowledge Base (PharmGKB) http://www.pharmgkb.org/ [51]

DrugMap Central (DMC) http://r2d2drug.org/index.html [42]

ChemSpider http://www.chemspider.com

ChemFrog http://www.chemfrog.com

ChemDB http://www.chemdb.com

iScienceSearch http://cwmglobalsearch.com/gs/Default.aspx

Chemicalize (ChemAxon) http://www.chemicalize.org

DistilBio http://distilbio.com

Target 3D structure RCSB Protein Data Bank (PDB) http://www.rcsb.org

OCA http://oca.weizmann.ac.il/oca-bin/ocamain

OPM (membrane proteins) http://opm.phar.umich.edu

Proteopedia http://proteopedia.org

TOPSAN http://www.topsan.org

Drug–target information Drugbank http://www.drugbank.ca/ [49]

Therapeutic Target Database (TTD) http://bidd.nus.edu.sg/group/cjttd/ [50]

Pharmacogenetics Knowledge Base (PharmGKB) http://www.pharmgkb.org/ [51]

DrugMap Central (DMC) http://r2d2drug.org/index.html [42]

MATADOR (manually annotated) http://matador.embl.de

SuperTarget http://bioinf-apache.charite.de/supertarget_v2/ [52]

STITCH (Chemical-Protein Interactions) http://stitch.embl.de/ [53]

GPCR-Ligand Database (GLIDA) http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/ [54]

Psychoactive Drug Screening Program Ki (PDSP Ki) http://pdsp.med.unc.edu/pdsp.php [55]

BindingDB http://www.bindingdb.org/bind/index.jsp [56]

Adverse effects and clinical trial information SIDER http://sideeffects.embl.de/ [57]

FAERS (US FDA) http://www.fda.gov/Drugs/

Adverse Reaction Database (Canada) http://www.hc-sc.gc.ca

Iowa Drug Information Service (IDIS) http://itsnt14.its.uiowa.edu

Clinicaltrial.gov http://clinicaltrials.gov

DrugMap Central (DMC) http://r2d2drug.org/index.html [42]

FDA label information FDALABEL (US FDA) http://www.fda.gov/ScienceResearch/

BioinformaticsTools/ucm289739.htm

DailyMed (US FDA) http://dailymed.nlm.nih.gov/dailymed/about.cfm

Structured Product Labeling (SPL) http://www.fda.gov/ForIndustry/DataStandards/

StructuredProductLabeling/default.htm

DrugMap Central (DMC) http://r2d2drug.org/index.html [42]

Pathway information NCI Pathway Interaction Database (NCI-PID) http://pid.nci.nih.gov/ [58]

Kyoto Encyclopedia of Genes and Genomes (KEGG) http://www.genome.jp/kegg/ [59]

BioCarta http://www.biocarta.com

Reactome http://www.reactome.org

PathwayCommons http://www.pathwaycommons.org/about/ [60]

DrugMap Central (DMC) http://r2d2drug.org/index.html [42]

Protein interaction information Human Protein Reference Database (HPRD) http://www.hprd.org/ [61]

Biological General Repository for Interaction

Datasets (BioGRID)

http://thebiogrid.org/ [62]

STRING http://string-db.org/ [63]

PathwayCommons http://www.pathwaycommons.org/about/ [60]

MIPS (mammalian protein-protein interaction database) http://mips.helmholtz-muenchen.de/proj/ppi/ [64]

IntAct http://www.ebi.ac.uk/intact/ [65]

Database of Interacting Proteins (DIP) http://dip.doe-mbi.ucla.edu/dip/Main.cgi [66]

Molecular omics data NCBI-GEO http://www.ncbi.nlm.nih.gov/geo/

Sequence Read Archive (SRA) http://www.ncbi.nlm.nih.gov/Traces/sra/

Stanford Microarray Database http://smd.princeton.edu

ArrayExpress http://www.ebi.ac.uk/arrayexpress/

Princeton University MicroArray database (PUMAdb) http://puma.princeton.edu

CellMiner (for NCI-60) http://discover.nci.nih.gov/cellminer/

Oncomine https://www.oncomine.org

Cancer Cell Line Encyclopedia (CCLE) http://www.broadinstitute.org/ccle/home [38]

Genetic data or information dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/

Sequence Read Archive (SRA) http://www.ncbi.nlm.nih.gov/Traces/sra/

Online Mendelian Inheritance in Man (OMIM) http://www.omim.org/ [67]

Drug omics data Connectivity Map (CMAP) http://www.broadinstitute.org/cmap/ [32]

Cancer Cell Line Encyclopedia (CCLE) http://www.broadinstitute.org/ccle/home [38]

NCBI-GEO http://www.ncbi.nlm.nih.gov/geo/

Sequence Read Archive (SRA) http://www.ncbi.nlm.nih.gov/Traces/sra/
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FIGURE 2

Fishbone flowchart of drug-repositioning pipelines. Developed drug-repositioning pipelines comprise at least one of these methods (i.e. blinded, target based,
knowledge based, signature based, pathway or network based, and targeted-mechanism based), preclinical studies (in vitro and/or in vivo validations) and clinical

development (testing the new indications identified from the preclinical development). Development of a new drug-repositioning pipeline for a drug or a disease

of interest should evaluate the priorities of these repositioning methods based on the available information of the drug or the disease. For example, an infectious
disease that only has limited available signaling information related to cell wall and cytoplasmic membrane proteins would lead to high priority of target-based

drug-repositioning studies focusing on these cell wall and cytoplasmic membrane proteins. Many drug-repositioning pipelines can reverse the order of the listed

methods in the fishbone flowchart and make use of them flexibly. As an example, several existing drug-repositioning pipelines first consider pathway- or network-

based drug-repositioning methods to reconstruct disease pathways and then use knowledge-based or targeted-based methods to identify candidate drugs. The
fishbone provides all relevant components of general drug-repositioning pipelines, and one can customize specific drug-repositioning pipelines according to the

available knowledge and information of targeted drugs or diseases. Abbreviations: FDA, Food and Drug Administration; GWAS, genome-wide association study;

HTS/HCS, high-throughput and/or high-content screening; PK/PD, pharmacokinetics/pharmacodynamics.
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choose the feasible methods determined by the available informa-

tion or prior knowledge about the disease or drug. Then, during

the validation stages, one can decide which in vitro and in vivo

validations are needed for further testing of the newly identified

indication(s). Eventually, the repositioned drugs will enter into

clinical trials to evaluate their efficacy and performance in

patients. Here, we take advantage of already published pipelines

to discuss how to select the best drug-repositioning methods for

specific studies.

Example pipeline 1: neglected tropical diseases (malaria) +
phenotypic screening methods + drug libraries + in vivo
validations ) astemizole
Orphan or rare diseases are those diseases that affect small num-

bers of people compared with the general population (<200,000

patient population per year in the USA) [39,40]. The orphan and/

or rare diseases in developing regions of Africa, Asia and the

Americas are also known as neglected tropical diseases. Most of

these diseases receive less treatment and research funding, which

results in little information about the disease mechanisms.

According to the fishbone flowchart in Fig. 2, the methods invol-

ving little information would be useful to reposition drugs for

these diseases. In one such study using phenotypic screening,

Chong et al. screened 1,937 FDA-approved drugs and 750 drugs
642 www.drugdiscoverytoday.com
that were either approved for use abroad or undergoing phase II

clinical trials for inhibition of Plasmodium falciparum growth. They

identified a drug, astemizole, as an antimalarial agent by testing

the drug using two mouse models of malaria [41].

Example pipeline 2: distinct breast cancer metastases +
knowledge-based methods + pathway- or network-based
methods + drug libraries + in vitro and in vivo
validations + clinical trials ) sunitinib for brain metastasis
We remain unclear about the pathways or mechanisms respon-

sible for breast cancer metastasis to brain, bone and lung, leading

to challenges in repositioning drugs for these cancer subtypes.

Knowledge-based methods alone cannot solve this repositioning

issue because these methods provide only general or canonical

breast cancer signaling pathways instead of those specific to

various types of metastasis. In a recent study, knowledge-based

and network-based methods were combined to reconstruct the

signaling networks for these metastatic breast cancer subtypes so

that drug repositioning for each type was feasible to implement

[17]. The knowledge-based method in this study deployed newly

discovered signaling network elements, called cancer signaling

bridges [18], to identify general known signaling information

for breast cancer, whereas the network-based method used a

mathematical model to address the specific signaling networks
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for subtypes of metastatic breast cancer. By checking the known

targets in a recently developed drug database, DrugMap Central

[42], 15, nine and two drug candidates were repositioned for brain,

lung and bone metastases, respectively. For breast cancer brain

metastasis, in vitro and in vivo validations were used to test the

efficacies of these 15 drug candidates and two drugs were identified

(sunitinib and dasatinib); the efficacy of sunitinib for breast cancer

brain metastasis is now being tested in a phase II clinical trial

(ClinicalTrials.gov ID: NCT00570908).

Example pipeline 3: treatment omics data (164 drug
compounds) + disease omics data (100 diseases) + signature-
based methods + in vivo validations ) cimetidine for lung
adenocarcinoma
To test a large number of diseases for a specific drug or a large

number of drugs for a specific disease, it is difficult to unify the

needed computational approaches because the available informa-

tion for different diseases or drugs varies. For example, to use

target-based methods to reposition drugs for 100 diseases, one

would have to know the biomarkers or available pathways for each

of these diseases. The knowledge needed for this type of drug

repositioning might be unavailable or difficult to derive from the

literature or available databases. However, one can derive the gene

signatures for these diseases from the publicly available genomics

data. Together with the drug signatures identified from treatment

omics data, Sirota et al. considered signature-based methods to

evaluate the drug–disease scores [37]. On the basis of the drug–

disease score map, they validated cimetidine for lung adenocarci-

noma using tumor xenograft experiments.

Example pipeline 4: treatment omics data (>1000 drug–dose
pairs) + targeted mechanism-based methods + in vitro
validations ) repositioned drugs with targeted mechanisms
In example pipeline 3, there is an issue in the gene signatures for

164 drugs: the treatment gene signatures for the 100 diseases are

only based on treatments on three to five cancer cell lines in the

CMAP database. Thus, when applying these drug gene signatures

to other diseases, it is hard to ensure that the disease–drug scores

are not biased by the limited treatment information. Another

issue encountered with signature-based methods is in evaluating

the accuracy of the large number of predictions on disease–drug

associations. By integrating the targeted mechanisms into the

drug-repositioning process, new computational approaches for

predicting the efficacies of repositioned drugs were tested [18]. It

was confirmed that the analysis could accurately predict clinical

responses to more than 90% of drugs approved by the FDA and

more than 75% of experimental clinical drugs that were tested.

The high accuracy of prediction ensures more favorable reposi-

tioning results for disease–drug associations. To keep the accura-

cies of treatment information, only drugs for three cancer cell

lines were repositioned that were used for treatments in CMAP.

Moreover, the importance of the identified targeted pathways

was addressed by explaining the differences in treatment

responses.

Concluding remarks
Drug-repositioning studies are dependent on the prior knowledge

and available information from specific studies to select and
determine appropriate repositioning methods. Establishing accu-

rate and efficient drug-repositioning pipelines for specific studies

requires the prioritization of existing computational methods

based on the available knowledge or the development of new

computational methods. In this review, we described the available

drug-repositioning methods according to the categorization of

their integrated knowledge and information. We introduced the

LLF to characterize existing repositioning methods and presented

them in a generalized drug-repositioning pipeline (Fishbone flow-

chart). These flowcharts are powerful tools to understand the

existing drug-repositioning methods and customize them into

new drug-repositioning pipelines for specific studies.

Still, many challenges remain for cost-effective drug-reposi-

tioning studies. Not every existing drug-repositioning study can

be generalized to a new study, especially those including com-

putational methods. One has to evaluate carefully the available

drug-repositioning methods according to the prior knowledge

and available information of the study of interest and determine

which is the best for that study. Another issue for the available

drug-repositioning studies for diseases with low knowledge and

low complexity-of-mechanism is that they have relatively low

success rates. The complexities and richness of information

available to drug-repositioning studies largely determine their

success rates; obviously, knowledge-based and signature-based

methods are more likely to identify more successful repurposed

drugs than are blinded search or screening methods. As an

example, we mentioned drug repositioning for pediatric popu-

lation in the ‘Knowledge-based drug-repositioning methods’

section. The existing studies did not consider the blinded search

or screening methods for drug repositioning for pediatric dis-

eases. Instead, the drug knowledge from HLH, PubMed and

Google, was used in the drug repositioning targeting this special

population [29], because knowledge-based methods consider

the factor of patient variability in the drug-repositioning

process.

In the era of precision medicine, it is important to delineate

disease mechanisms, such as signaling pathways, or treatment

mechanisms, such as off-targets and targeted pathways, to

explain the mechanisms of action of drugs. This also leads to

the application of drug repositioning to new indications for

individual patients. Mechanism-based repositioning approaches

are able to consider fully the heterogeneity and complexity of

patients while reducing the inefficacy and toxicity caused by

patient variability [43]. We would like to emphasize that drug-

repositioning studies have to be solidly grounded on science to be

successful. Toward better drug repositioning, the field needs

better development of more in-depth mechanistic computational

methods or models that can readily be customized into drug-

repositioning pipelines that integrate computational and experi-

mental methods seamlessly to ensure high success rates of reposi-

tioned drugs.
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