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Abstract

Consider two Toeplitz operators Tg , Tf on the Segal–Bargmann space over the complex plane. Let us
assume that g is a radial function and both operators commute. Under certain growth condition at infinity of
f and g we show that f must be radial, as well. We give a counterexample of this fact in case of bounded
Toeplitz operators but a fast growing radial symbol g. In this case the vanishing commutator [Tg,Tf ] = 0
does not imply the radial dependence of f . Finally, we consider Toeplitz operators on the Segal–Bargmann
space over Cn and n > 1, where the commuting property of Toeplitz operators can be realized more easily.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The study of commuting Toeplitz operators on the Bergman and Hardy spaces over various do-
mains and related operator algebras has a long lasting history; cf. [1,6,8,10] and recently [7,11,13,
14,16,17]. The problem of characterizing commuting Toeplitz operators with arbitrary bounded
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symbols seems quite challenging and is not fully understood until now. However, methods for an
analysis are available if one restricts attention to certain sub-classes of symbols.

In the present paper we study classes of commuting Toeplitz operators acting on the Segal–
Bargmann space H 2(Cn, dμ) of all Gaussian square integrable entire functions on Cn. Here the
case n = 1 is of particular interest. Moreover, we admit the (not so frequently studied) situation of
unbounded operator symbols of a certain type since their growth behavior near infinity essentially
influences our results; cf. Theorem 4.17 and Example 5.8. As a consequence we have to deal with
a space of i.g. unbounded, densely defined Toeplitz operators. We use the construction in [3] in
order to check that they can be embedded into an operator algebra and therefore commutators
are well defined.

An easy calculation shows that a Toeplitz operator with a radial symbol f is diagonal with
respect to the standard orthonormal basis of H 2(Cn, dμ) and therefore such type of operators
commute. Here a function f is called radial if f (z) = f (|z|). Conversely, one can ask whether for
a non-trivial radial symbol f and an arbitrary symbol g (both in our symbol class) the commu-
tator condition [Tf ,Tg] = 0 implies that g is radial. The analog question in the case of Toeplitz
operators with bounded symbols acting on the unweighted Bergman space over the unit disc
D ⊂ C has been answered before in [10]. Theorem A below gives the result of Theorem 6 in [10]:

Theorem A. (See [10].) Let ψ,ϕ ∈ L∞(D, dA) where dA is the usual area measure on D. Let
ϕ be a non-trivial radial function. If the Toeplitz operators Tψ and Tϕ commute on the Bergman
space, then ψ is a radial function.

In order to prove Theorem A, the authors use an expansion of ψ into an L2-convergent series.
Then the commutator condition [Tψ,Tϕ] = 0 can be converted into a functional equation for the
Mellin transform of ϕ and coefficient functions of that expansion. From this equation the result
follows, but as an essential ingredient in the argument the Blaschke condition for the possible
distribution of zeros of non-vanishing bounded holomorphic functions on D (or a right half-
plane) is used. Since here we consider Toeplitz operators with i.g. unbounded symbols acting
on a function space over the complex plane, we cannot use such type of arguments and this fact
causes the main complications. However, we can prove a result similar to Theorem A above.

Let S be a space of measurable complex valued functions on the complex plane and of at most
polynomial growth at infinity (see Definition 4.1), then we show:

Theorem B. Let u,v ∈ S and assume that u is radial and non-constant. If the Toeplitz opera-
tors Tu and Tv commute on the Segal–Bargmann space H 2(C, dμ), then v is a radial function.

The restriction to symbols in the space S in Theorem B is necessary. We provide an example
of a unitary Toeplitz operator Tf with radial symbol f /∈ S acting on H 2(C, dμ) such that
[Tf ,Tg] = 0 where g is a bounded non-radial function on the complex plane; cf. Example 5.8.
We do not know whether a similar effect is possible in case of the Toeplitz operators with certain
unbounded symbols acting on the Bergman space over the unit disc D.

In the last part of this paper we discuss commuting Toeplitz operators with polynomial sym-
bols acting on H 2(Cn, dμ). It has been shown in [3,9] that the corresponding Toeplitz operators
form an algebra under composition and the symbol of the product of two operators can be calcu-
lated as a Moyal-type product. In case of dimension n > 1 and for polynomials p and q where p

is non-constant and radial it is shown that the condition [Tp,Tq ] = 0 is equivalent with q belong-
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ing to a certain subspace P1 of all polynomials (see (5.3) for the definition of P1). In particular,
the space P1 strictly includes all polynomials that are radial in each component.

In Section 2 we define a generalized Segal–Bargmann space by replacing the usual Gaussian
density by a suitable radial function, cf. [2,5,15]. In this setting we explain the notion of Toeplitz
operators and state our main question on commuting Toeplitz operators. In the case of the dimen-
sion n = 1 we convert the commutator condition on Toeplitz operators into a functional equation
for Mellin transforms of the symbols and their components, respectively; cf. Proposition 2.4.

In Section 3 we specialize to the classical Segal–Bargmann space of Gaussian square inte-
grable entire functions on the complex plane. The construction in [3] of an algebra of operators
containing Toeplitz operators with a certain type of unbounded symbols is recalled. As an im-
portant feature, the Berezin transform is one-to-one on this algebra.

Section 4 contains the proof of Theorem B which is deduced from a detailed discussion of the
functional equation we have obtained in Proposition 2.4. In particular, we need to analyze the
Mellin convolutions of certain functions in Propositions 4.8 and 4.9.

In Section 5 we discuss commuting Toeplitz operators with polynomial symbols acting on
H 2(Cn, dμ) where n > 1. Using the product structure of Cn it is easy to produce commuting
Toeplitz operators. Finally, we give a counterexample to Theorem B in case of u /∈ S in the end
of Section 5.

2. Preliminaries

Throughout this section let ϕ be a nonnegative integrable radial function on Cn. With z =
(z1, . . . , zn) ∈ Cn we write z̄ := (z̄1, . . . , z̄n) for its complex conjugate. By dv we denote the
usual Lebesgue measure on Cn ∼= R2n and additionally we suppose that ϕ satisfies the following
two conditions:

ϕ̂(k) :=
∫
Cn

|z|2kϕ(z) dv(z) < ∞, lim sup
k

k
√

ϕ̂(k) = ∞

for every k = 0,1, . . . and with the Euclidean norm | · | on Cn. Let Fϕ be the set of all entire
functions in L2(Cn,ϕ dv). Then it is known that Fϕ is a closed linear subspace of L2(Cn,ϕ dv)

with the inner product

〈f,g〉ϕ =
∫
Cn

f ḡϕ dv

and the usual L2-norm ‖f ‖ϕ = √〈f,f 〉ϕ where f,g ∈ L2(Cn,ϕ dv). In fact, Fϕ is a repro-
ducing kernel Hilbert space and the corresponding reproducing kernel Kϕ(z,w) can be given
by

Kϕ(z,w) =
∑
α∈N

n

(n − 1 + |α|)!
(n − 1)!α!

zαw̄α

ϕ̂(|α|) =
∞∑

k=0

(n)k

k!ϕ̂(k)
(z · w)k (2.1)
0
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where z ·w := z1w1 +· · ·+znwn and (n)k := n(n+1) · · · (n+k−1) denotes the usual Pochham-
mer symbol. Also, the notation Nn

0 denotes the set of all n-tuples of nonnegative integers. Note
that by Stirling’s formula we have the asymptotics:

(n)k

k! ∼ kn−1(n − 1)! (2.2)

as k → ∞. Therefore, it follows from the above assumptions on ϕ̂(k) that (2.1) converges uni-
formly on every compact subsets of Cn × Cn. See [15] for details and related facts.

Let Pϕ be the orthogonal projection from L2(Cn,ϕ dv) onto Fϕ . Let u : Cn → C be a mea-
surable function. Then, for all

f ∈ Du := {
g ∈ Fϕ : u · g ∈ L2(Cn,ϕ dv

)}
the Toeplitz operator T

ϕ
u with symbol u is defined by

T ϕ
u f := Pϕ(uf ).

Note that in general T
ϕ
u is an unbounded linear operator on Du ⊂ Fϕ . Clearly, in case of

u ∈ L∞(Cn) the Toeplitz operator T
ϕ
u is bounded with ‖T ϕ

u ‖ � ‖u‖∞. In the following we are
considering products of two Toeplitz operators. Hence, we restrict ourself to spaces of measur-
able complex valued symbols S which have the following property:

Assumption. There is a dense subspace HS ⊂ ⋂
u∈S Du ⊂ Fϕ which is invariant under all

Toeplitz operators T
ϕ
u with symbol u ∈ S .

Remark 2.1. In case of S = L∞(Cn) we can choose HS = Fϕ . If ϕ is a Gaussian density we
construct a space S containing unbounded symbols and a corresponding invariant subspace HS
in the next section.

For each multi-index α = (α1, . . . , αn) ∈ Nn
0 , we put eα(z) := zα‖zα‖−1

ϕ and |α| = α1 +
· · · + αn. Note, that {eα}α∈N

n
0

forms a dense subset of Fϕ . We have:

Lemma 2.2. Let u ∈ S be radial and assume that eβ ∈ HS for all β ∈ Nn
0 . Moreover, assume

that for all m ∈ N

u(z)

∞∑
k=0

kn−1

ϕ̂(k)
|z|k+m ∈ L1(Cn,ϕ dv

)
. (2.3)

Then, we have Pϕ(uzβ) = 0 for β �= 0 and T
ϕ
u is diagonal with respect to the orthonormal

basis {eα}α∈N0 . More precisely, T
ϕ
u eβ = ũ(β)eβ where

ũ(β) := 1

ϕ̂(|β|)
∫
Cn

u(z)|z|2|β|ϕ(z) dv(z).

Note that ũ(β) only depends on |β|.
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Proof. Let ρ ∈ {z̄β , zβ} with β ∈ Nn
0. Using the expression (2.1) of the reproducing kernel func-

tion, we see

Pϕ(uρ)(w) =
∫
Cn

u(z)ρ(z)Kϕ(w, z)ϕ(z) dv(z)

=
∫
Cn

u(z)ρ(z)

∞∑
k=0

(n)k

k!ϕ̂(k)
(w · z)kϕ(z) dv(z)

=
∑
α∈N

n
0

(n)|α|
α!

wα

ϕ̂(|α|)
∫
Cn

u(z)ρ(z)zαϕ(z) dv(z). (2.4)

Here we have used (2.2) and (2.3) together with Lebesgue’s dominated convergence theorem in
order to interchange the integration and summation. In case of ρ(z) = z̄β where β �= 0 the first
assertion follows from

∫
Cn u(z)zβ+αϕ(z) dv(z) = 0 for all α ∈ Nn

0.
In order to prove the second assertion choose ρ(z) = zβ and let S2n−1 ⊂ Cn denote the

(real) (2n − 1)-dimensional unit sphere with the usual measure dσ2n−1. Using the relation∫
S2n−1 |ζ β |2 dσ2n−1(ζ ) = 2β!πn/(n + |β| − 1)!, we have

∫
Cn

uzβ z̄αϕ dv = δα,β

∫
S2n−1

∣∣ζ β
∣∣2 dσ2n−1(ζ )

∞∫
0

r2(n+|β|)−1u(r)ϕ(r) dr

= δα,β

β!(n − 1)!
(n + |β| − 1)!

∫
Cn

|z|2|β|u(z)ϕ(z) dv(z),

and the second assertion follows from (2.4). The proof is complete. �
Let u ∈ S be separately radial, i.e. u only depends on |z1|, |z2|, . . . , |zn| and assume that (2.3)

holds. Then for all α ∈ Nn
0 we have:

(a)
∫

Cn u(z)zβ+αϕ(z) dv(z) = 0, in case of β �= 0,

(b)
∫

Cn u(z)zαzβϕ(z) dv(z) = cαδα,β where cα ∈ C is a suitable number.

In fact, the relations (a) and (b) follow from the invariance of both integrals under the linear
transformation U(z) := iz. By the same argument as before Pϕ(uzβ) = 0 for β �= 0 and T

ϕ
u is

diagonal with respect to the orthonormal basis {eα}α∈N
n
0
. Due to this observation it holds:

Proposition 2.3. Let u,v ∈ S be separately radial, then we have T
ϕ
u T

ϕ
v = T

ϕ
v T

ϕ
u on span{eα |

α ∈ Nn
0}.

In the following we assume that all functions u ∈ S fulfill condition (2.3). Let us specialize
now to the complex one-dimensional case. With our notations before recall that

ũ(k) = 1

ϕ̂(k)

∫
u(w)|w|2kϕ(w)dv.
C
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Assume that u ∈ S is non-constant radial and (2.3) is fulfilled. Let v ∈ S be of the form

v(z) = v
(
reiθ

)=
∞∑

j=−∞
vj (r)e

ijθ , z := reiθ (2.5)

where each vj can be interpreted as a radial function on C with (2.3). Moreover, we assume that
the sum in (2.5) converges in the topology of L2(C, ϕ dv). Suppose that the Toeplitz operators T

ϕ
u

and T
ϕ
v commute

T ϕ
u T ϕ

v = T ϕ
v T ϕ

u : span

{
ek(z) = zk√

ϕ̂(k)

∣∣ k ∈ N0

}
⊂ HS → HS . (2.6)

Since u is radial, we have by Lemma 2.2

T ϕ
u ek = ũ(k)ek

for all k ∈ N0. By Lemma 2.2 and our assumptions on vj it follows that

T ϕ
v T ϕ

u ek(z) = ũ(k)Pϕ[vek](z)

= ũ(k)

∞∑
j=−∞

Pϕ

[
vj e

ijθ ek

]
(z)

= ũ(k)√
ϕ̂(k)

∞∑
j=−∞

Pϕ

[
vj r

kei(j+k)θ
]
(z)

= ũ(k)√
ϕ̂(k)

∑
j�−k

zj+k

ϕ̂(j + k)

∫
C

vj (w)|w|j+2kϕ(w)dv(w), (2.7)

for every z ∈ C. Moreover, we have

T ϕ
v ek(z) = 1√

ϕ̂(k)

∞∑
j=−∞

Pϕ

[
vj r

kei(j+k)θ
]
(z)

= 1√
ϕ̂(k)

∑
j�−k

zj+k

ϕ̂(j + k)

∫
C

vj (w)|w|j+2kϕ(w)dv(w).

It follows from Lemma 2.2 again and the assumption on u ∈ S that

T ϕ
u T ϕ

v ek(z) = 1√
ϕ̂(k)

∑
j�−k

Pϕ[uwj+k](z)
ϕ̂(j + k)

∫
C

vj (w)|w|j+2kϕ(w)dv(w)

= 1√
ϕ̂(k)

∑
j�−k

zj+kũ(j + k)

ϕ̂(j + k)

∫
vj (w)|w|j+2kϕ(w)dv(w). (2.8)
C
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Since the operators T
ϕ
u and T

ϕ
v are commuting by assumption, it follows from (2.7) and (2.8)

that for all integers k � 0, j with j + k � 0

[̃
u(k) − ũ(j + k)

] ∫
C

vj (w)|w|j+2kϕ(w)dv(w) = 0,

or equivalently

[̃
u(k) − ũ(j + k)

] ∞∫
0

vj (r)r
j+2k+1ϕ(r) dr = 0. (2.9)

Note that

ũ(k) = 1

ϕ̂(k)

∫
C

u(w)|w|2kϕ(w)dv = 2π

ϕ̂(k)

∞∫
0

u(r)r2k+1ϕ(r) dr.

Thus, ũ(k) can be expressed as values of the Mellin transform of uϕ. Given a (suitable) func-
tion ψ on the half line (0,∞), the Mellin transform M[ψ](z) of the complex parameter z is
defined by

M[ψ](z) =
∞∫

0

ψ(t)tz−1 dt.

Recall that each M[ψ] for suitable ψ is complex analytic on a strip in the complex plane parallel
to the imaginary axis. Moreover, the Mellin transform M is injective. For all k ∈ N0 one can write

ϕ̂(k) = 2π M[ϕ](2k + 2)

and hence

ũ(k) = 1

ϕ̂(k)

∫
C

u(w)|w|2kϕ(w)dv = M[uϕ](2k + 2)

M[ϕ](2k + 2)
.

We can rewrite (2.9) by using the Mellin transform and summarizing the above calculations we
have shown:

Proposition 2.4. Let u,v ∈ S such that u is non-constant and radial. Assume that v can be
written in the form (2.5) which converges in L2(C, ϕ dv). Under the assumption (2.6) it follows[M[uϕ](2k + 2)

M[ϕ](2k + 2)
− M[uϕ](2k + 2j + 2)

M[ϕ](2k + 2j + 2)

]
M[vjϕ](j + 2k + 2) = 0 (2.10)

for all integers k � 0 and j with j + k � 0.
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3. An enveloping algebra for Toeplitz operators on the Segal–Bargmann space

In the remaining part of this paper we specialize our analysis to the case of a standard Gaus-
sian weight-function ϕ in order to study Eq. (2.10) in a precise way. On Cn we consider the
normalized Gaussian measure dμ given by dμ = ϕ dv where ϕ is defined by ϕ(z) := π−ne−|z|2 ,
cf. [2,4]. Then Fϕ = H 2(Cn, dμ) is called the Segal–Bargmann space and it has the reproducing
kernel:

Kϕ = K : Cn × Cn → C : (z,w) �→ K(z,w) = ez·w.

To keep the notations short we will write P := Pϕ for the projection and Tu := T
ϕ
u for the Toeplitz

operator with symbol u. Since in the following we are considering products of i.g. unbounded
Toeplitz operators on Fϕ , we must carefully choose the space of symbols to obtain densely
defined operators on an invariant domain of definition. We follow the construction in [3] and for
completeness we give a short summary here.

We write M(Cn) for the space of measurable complex valued functions on Cn. For c ∈ R we
set

Dc := {
f ∈ M

(
Cn
)
: ∃d > 0 such that

∣∣f (z)
∣∣� d exp

(
c|z|2) a.e.

}
and we define a space of symbols by

Sym>0
(
Cn
) :=

∞⋂
j=1

D 1
j
,

which is a ∗-algebra under the complex conjugation and pointwise multiplication, cf. [3]. Clearly,
this space contains all essentially bounded functions, but also functions having a polynomial or
even linear exponential growth at infinity. Consider the following sequence (cj )j∈N0 of positive
real numbers:

cj := 1

2
− 1

2j + 2

and put Hj := Dcj
∩ Fϕ .2 Then we obtain a scale of Banach spaces

C ∼= H0 ⊂ H1 ⊂ · · · ⊂ Hj ⊂ Hj+1 · · · ⊂ H :=
⋃
j∈N

Hj ⊂ Fϕ, (3.1)

where the norm ‖ · ‖j of Hj is given by ‖f ‖j := ‖exp{−cj | · |2}f ‖L∞(Cn). It is well known that
the last inclusion H ⊂ Fϕ is dense in the topology of Fϕ .

Given two linear spaces X and Y we write L(X,Y ) for all linear operators from X to Y . If in
addition X and Y are normed spaces we denote by L(X,Y ) the subspace of all bounded linear

2 The specific choice of the sequence (cj )j is needed in Proposition 3.2.
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operators. As usual we shortly write L(X) := L(X,X) and L(X) := L(X,X). With k ∈ N0 and
the notations in (3.1) we define

Lk(H) := {
A ∈ L(H): A|Hj

∈ L(Hj , Hj+k) for all j ∈ N0
}
.

We say that operators in Lk(H) act on the scale (3.1) by an order shift k.

Definition 3.1. The space of operators acting on (3.1) by a finite order shift is given by

Lfos(H) :=
⋃

k∈N0

Lk(H).

Since for Ak�
∈ Lk�

(H) where � ∈ {1,2}, Ak1 ◦ Ak2 ∈ Lk1+k2(H) we see that Lfos(H) in fact
defines an algebra of linear operators on H. The normalized reproducing kernel of H 2(Cn, dμ)

is

kz(u) = exp

{
u · z − |z|2

2

}
, z, u ∈ Cn.

By a straightforward calculation we have kz ∈ H for all z ∈ Cn and for all operators A ∈ Lfos(H)

we can define the Berezin transform of A as usual by

∼ : Lfos(H) → Cω
(
Cn
)

:A �→ Ã(z) = 〈Akz, kz〉,

where Cω(Cn) denotes the space of all real analytic functions on Cn and 〈·,·〉 is the inner product
of L2(Cn, dμ). It has been shown in [3]:

Proposition 3.2. Let f,g ∈ Sym>0(C
n) and Tf the Toeplitz operator on Fϕ . Then we have:

(a) The restriction of Tf to H defines an element in the algebra Lfos(H). In particular, the
product TgTf exists as a densely defined operator on Fϕ .

(b) The Berezin transform ∼ : Lfos(H) → Cω(Cn) is one-to-one.

From this we obtain a simple result which in the case of bounded symbols f,g ∈ L∞(Cn)

directly follows from Tf̄ = T ∗
f .

Lemma 3.3. Let f,g ∈ Sym>0(C
n) such that [Tf ,Tg] = 0, then [Tf̄ , Tḡ] = 0.

Proof. Note that the Berezin transform of Tf Tg is given by

T̃f Tg(z) = 〈f · Tgkz, kz〉

= e−|z|2
∫

n n

f (u)g(w)ew·z+w·u+u·z dμ(u,w),
C ×C
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where the existence of the integrals for all z ∈ Cn follows from Tgkz ∈ H. Hence, Proposition 3.2
shows that the relation [Tf ,Tg] = 0 is equivalent to

0 =
∫

Cn×Cn

[
f (u)g(w) − f (w)g(u)

]
ew·z+w·u+u·z dμ(u,w),

for all z ∈ Cn. After applying the complex conjugation to this equation and using the transform
(u,w) �→ (w,u) we obtain

0 =
∫

Cn×Cn

[
f̄ (u)ḡ(w) − f̄ (w)ḡ(u)

]
ew·z+w·u+u·z dμ(u,w),

which (again, by Proposition 3.2) implies that [Tf̄ , Tḡ] = 0. �
4. Commuting Toeplitz operators on the complex plane

We consider the case of dimension n = 1 and define a symbol space for the Toeplitz operators
in consideration:

Definition 4.1. Let S be the subspace of measurable functions with at most polynomial growth
at infinity:

S := {
f : C → C: ∃C, m > 0 such that

∣∣f (z)
∣∣� C

(
1 + |z|)m for all z ∈ C

}
.

From S ⊂ Sym>0(C) and Proposition 3.2 it is clear that {Tf |H
| f ∈ S} ⊂ Lfos(H) and there-

fore all finite products of Toeplitz operators with symbols in S are well defined at least as densely
defined operators with domain H.

The Gaussian density ϕ is given by ϕ(z) := π−1e−|z|2 and for Re(z) > 0 its Mellin transform
can be expressed by the usual Gamma function as

M[ϕ](z) = 1

π

∞∫
0

e−t2
tz−1 dt = 1

2π

∞∫
0

e−t t
z
2 −1 dt = 1

2π
Γ

(
z

2

)
.

From this one has ϕ̂(k) = 2π M[ϕ](2k + 2) = Γ (k + 1) = k!, and therefore it is easy to check
that the condition (2.3) is fulfilled for all u ∈ S .

We need the following simple observation.

Lemma 4.2. Each v ∈ S has an L2(C, dμ)-convergent expansion of the form

v
(
reiθ

)=
∞∑

j=−∞
vj (r)e

ijθ , z = reiθ . (4.1)

By interpreting vj as radial functions on the complex plane we have vj ∈ S for all j ∈ Z.
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Proof. Let v ∈ S , then

‖v‖2
L2(C,dμ)

= 1

π

∞∫
0

2π∫
0

∣∣v(reiθ
)∣∣2 dθ re−r2

dr < ∞.

By Fubini’s theorem, it follows Φv,r (λ) := v(rλ) ∈ L2(S1) for a.e. r > 0. For such r > 0 we can
expand Φv,r into an L2(S1)-convergent Fourier-series:

Φv,r

(
eiθ
)=

∑
j∈Z

vj (r)e
ijθ (4.2)

with (measurable) coefficients vj (r) = 1
2π

∫ 2π

0 v(reiθ )e−ijθ dθ . In particular, there are C,m > 0
such that

∣∣vj (r)
∣∣� 1

2π

2π∫
0

∣∣v(reiθ
)∣∣dθ � C

(
1 + r2)m,

which shows that, interpreted as a radial function on the complex plane, vj defines an element
in S for all j ∈ Z. Finally, for all ε > 0 we can choose a finite set J ⊂ Z such that

∫
C

∣∣∣∣∑
j /∈J

vj (r)e
ijθ

∣∣∣∣2 dμ(z) = 2
∑
j /∈J

∞∫
0

∣∣vj (r)
∣∣2re−r2

dr < ε.

This shows the L2(C, dμ)-convergence of the series in (4.1). �
Now, we analyze Eq. (2.10) in Proposition 2.4. Let u,v ∈ S and j ∈ Z, then we put

Fj (z) = Φj(z)Θj (z) (4.3)

where Θj(z) := M[vjϕ](j + 2z + 2) and

Φj(z) := 2π

[M[uϕ](2z + 2)

Γ (z + 1)
− M[uϕ](2z + 2j + 2)

Γ (z + 1 + j)

]
.

Since the Gamma function does not have zeros in the complex plane, it follows that:

Lemma 4.3. Fj (z) is holomorphic on the half-plane Re(z) > max{−1,−j − 1}.

Note that with these notations the condition (2.10) can be written as Fj (k) = 0 for all integers
k � 0 and j with j +k � 0. The following example shows that Φj(k) = 0 for all k ∈ N is possible
in case of a non-vanishing symbol u of exponential growth. Hence, with such u the relation (2.10)
is fulfilled independently of the choice of vj where j ∈ N.
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Example 4.4. Consider u(t) := eλt2
where λ ∈ C and Re(λ) < 1. Then we have

M[uϕ](z) = 1

π
M
[
e(λ−1)t2]

(z)

= 1

π

∞∫
0

e−(1−λ)t2
tz−1 dt = 1

2π
(1 − λ)−

z
2 Γ

(
z

2

)
.

Therefore

Φj(z) = (1 − λ)−z−1[1 − (1 − λ)−j
]
.

Fix λ := λn ∈ C where n ∈ N such that (1 − λn)
−1 = ei 2π

n i.e. λn = 1 − e−i 2π
n . Moreover, let n

be sufficiently large with Re(λn) < 1. It follows:

Φj(k) = e2πi k+1
n
[
1 − e2πi

j
n
]
.

Let j = n, then Φj(k) = 0 for all k � 0 with j + k � 0. Note that in case of λ �= 0 we have
Re(λn) = 1 − cos( 2π

n
) > 0 and u(t) is of exponential growth at infinity.

Now, we define the function:

Φ̃j (z) := 1

2π
Fj (z)Γ (z + 1)

=
[

M[uϕ](2z + 2) −
j∏

�=1

(z + �)−1 M[uϕ](2z + 2j + 2)︸ ︷︷ ︸
=:Hj (z)

]
M[vjϕ](2z + 2 + j).

(4.4)

We wish to express the function Hj(z) and finally Φ̃j (z) as a Mellin transform. Recall that for a
suitable holomorphic function Ψ̃ (z) on a right half-plane Re(z) > δ the inverse Mellin transform
is given by

{
M−1Ψ̃

}
(x) = 1

2πi

c+i∞∫
c−i∞

x−s Ψ̃ (s) ds

whenever the integral exists. Here we put Ψ̃j (z) = Ψ̃ (z) :=∏j

�=1(z + �)−1 with Re(z) > −1.
Then we have

Lemma 4.5. The inverse Mellin transform mj(x) := {M−1Ψ̃j }(x) has support in [0,1]. More-
over mj(x) = O(xα) for all α < 1 as x → 0.
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Proof. In case of j = 1 it is known that:

m1(x) =
{

x, if 0 < x < 1,

0, if x > 1

and the assertion directly follows. Now, we assume that j ∈ {2,3, . . .}. With c > −1 we have

mj(x) = 1

2πi

c+i∞∫
c−i∞

x−s

j∏
�=1

1

(s + �)
ds = 1

2πixc

∫
R

x−it

j∏
�=1

1

(c + � + it)
dt.

Since Ψ̃j (z) is holomorphic on Re(z) > −1 the above integral is independent of c > −1. Now:

∣∣mj(x)
∣∣� 1

2πxc

∫
R

j∏
�=1

1√
(c + �)2 + t2

dt. (4.5)

As c → ∞ the integral on the right-hand side tends to zero. In particular, it is bounded as a
function of c by some η > 0. Hence, for all c > 0

0 �
∣∣mj(x)

∣∣� η

2πxc
,

and this shows that mj(x) = 0 for x > 1. Now, we study the behavior of mj(x), j � 2 as x → 0.
Since the integral (4.5) converges for c > −1, the assertion follows. �

Recall that for suitable functions f,g : R+ → C and x > 0 the Mellin convolution is defined
by

(f ∗ g)(x) :=
∞∫

0

f (y)g

(
x

y

)
dy

y
.

Definition 4.6. We define a space A of complex valued measurable functions on R+ by

A :=
{
u(x): R+ → C: ∃C, c > 0 and ∃ρ,η � 0 such that

∣∣u(x)
∣∣� c

xρ

for all x ∈ (0,1] and
∣∣u(x)

∣∣� Cxη for all x ∈ [1,∞)

}
.

In the following we will often identify radial functions on C and functions on R+ in the
obvious way. In this sense we have S ⊂ A (see Definition 4.1).

We need a simple technical lemma:

Lemma 4.7. Let ρ � 0. Then g(x) := ex2 ∫∞
x

e−y2
yρ−1 dy is of order O(xρ) as x → ∞.

Proof. Let 2n+ 1 with n ∈ N0 be the smallest odd number � ρ − 1. With a real parameter a > 0
we see that there is a polynomial P(x) of degree 2n such that
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∞∫
x

e−y2
y2n+1 dy = (−1)n

dn

dan

{ ∞∫
x

e−ay2
y dy

}
|a=1

= (−1)n
dn

dan

{
e−ax2

2a

}
|a=1

= P(x)e−x2
.

Therefore, we obtain in the case x � 1:

0 � g(x) � ex2

∞∫
x

e−y2
y2n+1 dy �

∣∣P(x)
∣∣� Dx2n.

Finally, note that 2n � ρ due to our choice of n. The proof is complete. �
Proposition 4.8. With u,v ∈ A we write fu(x) := u(x)e−x2

and fv(x) := v(x)e−x2
. Then the

Mellin convolution (fu ∗ fv)(x) exists for all x � 0 and there is h ∈ A such that

(fu ∗ fv)(x) = h(x)e−x, x ∈ R+.

Proof. We choose Cw, cw > 0 and ρw,ηw � 0 such that∣∣w(x)
∣∣� cw

xρw
for all x ∈ (0,1], ∣∣w(x)

∣∣� Cwxηw for all x ∈ [1,∞),

where w ∈ {u,v}. Let x > 1, then

∣∣(fu ∗ fv)(x)
∣∣� 1∫

0

∣∣fu(y)
∣∣︸ ︷︷ ︸

� cu
yρu

∣∣∣∣fv

(
x

y

)∣∣∣∣︸ ︷︷ ︸
�Cv

xηv

yηv e
− x2

y2

dy

y

+
x∫

1

∣∣fu(y)
∣∣︸ ︷︷ ︸

�Cuyηue−y2

∣∣∣∣fv

(
x

y

)∣∣∣∣︸ ︷︷ ︸
�Cv

xηv

yηv e
− x2

y2

dy +
∞∫

x

∣∣fu(y)
∣∣︸ ︷︷ ︸

�Cuyηue−y2

∣∣∣∣fv

(
x

y

)∣∣∣∣︸ ︷︷ ︸
�cv

yρv

xρv

dy

y
.

Therefore, we have

∣∣(fu ∗ fv)(x)
∣∣� Cvcux

ηv

1∫
0

y−ρu−ηv−1e
− x2

y2 dy + CuCvx
ηv

x∫
1

yηu−ηv e
−y2− x2

y2 dy

+ Cucvx
−ρv

∞∫
yηu+ρv−1e−y2

dy. (4.6)
x
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We estimate the three integrals on the right as functions of x as x → ∞. Using the transformation
rule in the first equality below and Lemma 4.7, we find

xηv

1∫
0

y−ρu−ηv−1e
− x2

y2 dy = x−ρu

∞∫
x

rρu+ηv−1e−r2
dr � D1x

ηv e−x2
,

where D1 > 0 is a suitable constant independent of x > 1. Now, we look at the last term on the
right of (4.6). Applying Lemma 4.7 again, it follows

x−ρv

∞∫
x

yηu+ρv−1e−y2
dy � D2x

ηue−x2
.

In order to estimate the middle term on the right of (4.6) note that for y ∈ [1, x]

y2 + x2

y2
� 2x � x + y.

This implies that

xηv

x∫
1

yηu−ηv e
−y2− x2

y2 dy � xηu+ηv

x∫
1

e
−y2− x2

y2 dy

� xηu+ηv e−x

x∫
1

e−y dy

� xηu+ηv e−x−1.

Summarizing these estimates, we have with a suitable constant C > 0 and x > 1:

∣∣(fu ∗ fv)(x)
∣∣� C

(
xηv e−x2 + xηue−x2 + xηv+ηue−x

)
.

In case of x ∈ [1,∞) we define h(x) := ex(fu ∗ fv)(x). Then we have

∣∣h(x)
∣∣� Chx

ηv+ηu

with a suitable constant Ch > 0.
Next, we estimate the Mellin convolution (fu ∗ fv)(x) with x ∈ (0,1]. We can assume that

ρu � ρv :
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∣∣(fu ∗ fv)(x)
∣∣� x∫

0

∣∣u(y)
∣∣︸ ︷︷ ︸

� cu
yρu

∣∣∣∣v(x

y

)∣∣∣∣︸ ︷︷ ︸
Cv

xηv

yηv

e
−y2− x2

y2 dy

y
+

+
1∫

x

∣∣u(y)
∣∣︸ ︷︷ ︸

� cu
yρu

∣∣∣∣v(x

y

)∣∣∣∣︸ ︷︷ ︸
cv

yρv

xρv

e
−y2− x2

y2 dy

y
+

∞∫
1

∣∣u(y)
∣∣︸ ︷︷ ︸

�Cuyηu

∣∣∣∣v(x

y

)∣∣∣∣︸ ︷︷ ︸
�cv

yρv

xρv

e
−y2− x2

y2 dy

y
.

Therefore, we have

∣∣(fu ∗ fv)(x)
∣∣� cuCvx

ηv

x∫
0

y−ρu−ηv−1e
− x2

y2 dy

+ cucv

xρv

1∫
x

yρv−ρu−1e
− x2

y2 dy + Cucv

xρv

∞∫
1

yηu+ρv−1e−y2
dy. (4.7)

We estimate the three terms on the right separately. Applying the transformation rule we have as
x → 0:

xηv

x∫
0

y−ρu−ηv−1e
− x2

y2 dy = x−ρu

∞∫
1

rρu+ηv−1e−r2
dr = O

(
x−ρu

)
.

As for the second integral, we have

x−ρv

1∫
x

yρv−ρu−1e
− x2

y2 dy = x−ρu

1∫
x

rρu−ρv−1e−r2
dr

=
{

O(x−ρu), if ρu > ρv,

O(x−ρu log 1
x
), if ρu = ρv.

Since the last term on the right of (4.7) is of order O(x−ρv ) as x → 0 we see that there is a
constant C > 0 such that

∣∣(fu ∗ fv)(x)
∣∣� C

(
x−ρu log

1

x
+ x−ρv

)
.

Again, we set h(x) = ex(fu ∗ fv)(x) with x ∈ (0,1]. Then there is ch > 0 such that |h(x)| �
ch

xρu+ρv+1 and hence h ∈ A as desired. The proof is complete. �
Let u,v ∈ A and in addition assume that the support suppv of v is contained in [0,1]. As

before we write fu(x) := u(x)e−x2
. Then we have:
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Proposition 4.9. Under the above assumptions there is h ∈ A such that

(fu ∗ v)(x) = h(x)e−x2
, x ∈ R+.

Proof. We use the same notations as in the proposition before. Since suppv ⊂ [0,1], we have
for x � 1 and together with Lemma 4.7

∣∣(fu ∗ v)(x)
∣∣� ∞∫

x

∣∣fu(y)
∣∣︸ ︷︷ ︸

�Cuyηue−y2

∣∣∣∣v(x

y

)∣∣∣∣︸ ︷︷ ︸
�cv

yρv

xρv

dy

y

� Cucv

xρv

∞∫
x

yηu+ρv−1e−y2
dy � Cxηue−x2

,

where C > 0 is a suitable constant. We set h(x) := ex2
(fu ∗ v)(x) in case of x � 1. In case of

x ∈ (0,1] we can apply the same calculation as in the proof of Proposition 4.8. �
Now, we return to (4.4). Let j ∈ N and as before we write Ψ̃j (z) =∏j

�=1(z+�)−1. According
to Lemma 4.5 there is a function m̃j : R+ → C with supp m̃j ⊂ [0,1] such that

M[m̃j ](z) = Ψ̃j (z).

Now, the transformation y := √
x shows

Ψ̃j (z) =
1∫

0

m̃j (x)xz−1 dx = 2

1∫
0

m̃j

(
y2)y2z−1 dy = M[mj ](2z),

where we write mj(y) := 2m̃j (y
2). Clearly, it holds suppmj ⊂ [0,1]. Hence (4.4) can be written

in the form:

Φ̃j (z) = {
M
[
ux2ϕ

]
(2z) − M[mj ](2z)M

[
ux2j+2ϕ

]
(2z)

}
M
[
vjx

2+j ϕ
]
(2z).

Assume u,vj ∈ A, then we have ux2, ux2j+2, vj x
2+j ∈ A. Due to Proposition 4.9, there is a

function h ∈ A such that

mj ∗ (ux2j+2ϕ
)= he−x2

.

According to the Mellin convolution theorem we have for Re(z) sufficiently large

M[mj ](2z) · M
[
ux2j+2ϕ

]
(2z) = M

[
mj ∗ (ux2j+2ϕ

)]
(2z) = M

[
he−x2]

(2z)

and with this notations

Φ̃j (z) = [
M
[
ux2ϕ

]
(2z) − M

[
he−x2]

(2z)
]

M
[
vjx

2+j ϕ
]
(2z).
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Next, we can apply Proposition 4.8 to see that there are functions g1, g2 ∈ A such that

(i) [(ux2ϕ) ∗ (vj x
2+j ϕ)](x) = g1(x)e−x ,

(ii) [(he−x2
) ∗ (vj x

2+j ϕ)](x) = g2(x)e−x .

Again, we can use the Mellin convolution theorem in order to see that

Φ̃j (z) = M
[(

ux2ϕ
) ∗ (vjx

2+j ϕ
)]

(2z) − M
[(

he−x2) ∗ (vjx
2+j ϕ

)]
(2z)

= M
[
(g1 − g2)e

−x
]
(2z).

We have shown with g := g1 − g2:

Proposition 4.10. With the notations in (4.4) there is g ∈ A such that Φ̃j (z) = M[ge−x](2z).

The next proposition is essential in our proof. It is a replacement for the Blaschke condition
which is used by the authors of [10] to prove Theorem A of the introduction.

Proposition 4.11. Let u ∈ A and a ∈ (0,2]. For fixed number m0 ∈ N the condition:

∞∫
0

u(t)e−t tak dt = 0, (4.8)

for all k � m0 implies that u = 0 a.e. on R+.

Proof. Since with m0 ∈ N0 we have

∞∫
0

u(t)e−t ta(m0+k) dt = tm0a

∞∫
0

u(t)e−t tak dt = 0

for all k ∈ N. Hence, we can assume that u is integrable over [0,1] and that m0 = 0. First, we
consider the case a ∈ (0,2). The transformation r = ta in the integral (4.8) implies for all k ∈ N0:

1

a

∞∫
0

u
(
r

1
a
)
e−r

1
a
r

1
a
−1︸ ︷︷ ︸

=:h(r)

rk dr = 0.

With x ∈ R consider the sum:

0 =
∞∑

k=0

(−1)k

∞∫
0

h(r)
(x

√
r )2k

(2k)! dr

︸ ︷︷ ︸

=0
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=
∞∫

0

h(r) cos(x
√

r ) dr

= 2

∞∫
0

rh
(
r2) cos(xr) dr. (4.9)

In the second equality we have used
∑m

k=0
(x

√
r )2k

(2k)! � ex
√

r for all m ∈ N and 1
a

> 1
2 together

with Lebesgue dominated convergence theorem in order to interchange the sum and integral. We
extend s(r) := rh(r2) ∈ L1(R+) by zero to an integrable function on the real line. Then we have

0 =
∫
R

s(r)
(
eixr + e−ixr

)
dr =

∫
R

[
s(r) + s(−r)

]
eixr dr.

Since the Fourier transform is one-to-one on L1(R) it follows s(r) + s(−r) = 0 a.e. on R. Since
s(−r) = 0 in case of r > 0 we have s(r) = 0 a.e. on R+ and this implies that u = 0, a.e. on R+.

Next, we consider the case a = 2. We can exchange the integration and summation in (4.9) at
least in the case |x| < 1. Hence, we have for all |x| < 1 and with our former notations

0 =
∞∫

0

[
s(r) + s(−r)

]
eixr dr.

Let us replace x by the complex variable z = σ + it . From |eizr | = e−tr and

0 �
∣∣s(r)∣∣= ∣∣rh(r2)∣∣= ∣∣u(r)e−r

∣∣� Cur
ηue−r

with some positive Cu > 0 and ηu > 0 it follows that

F(z) =
∫
R

[
s(r) + s(−r)

]
eizr dr

defines a holomorphic function on N := {z ∈ C | −1 < Im(z) = t < 1}. Since F(x) = 0 when-
ever |x| < 1 we have F ≡ 0 on N . In particular, the Fourier transform of s(r) + s(−r) vanishes
identically. As before we obtain u(r) = 0 a.e. on R+. �

The next example shows that Proposition 4.11 fails in the case of a > 2.

Example 4.12. Consider ga(r) := sin(ar)e−r where a > 0. Then:

M[ga](z) = 1

2i

∞∫
0

e−(1−ia)r rz−1 dr − 1

2i

∞∫
0

e−(1+ia)r rz−1 dr

= 1
(1 − ia)−zΓ (z) − 1

(1 + ia)−zΓ (z)

2i 2i
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= 1

2i

(
1 + a2)− z

2
[
eiz arctana − e−iz arctana

]
Γ (z)

= (
1 + a2)− z

2 sin(z arctana)Γ (z).

Let β > 2, then M[ga](βz) vanishes exactly for βz arctana = kπ with k ∈ Z. Choose a with
arctana = π

β
< π

2 , then M[ga](βk) = 0 for all k ∈ N.

In our arguments below we need some well-known estimates on the Gamma function:

Lemma 4.13. There are constants A > 0 and C > 0 independent of z, such that for Re z = σ > A

Γ (σ)

|Γ (z)| � C

[
σ 2

σ 2 + t2

] σ
2 − 1

4

exp

{
|t | arctan

|t |
σ

}
. (4.10)

In particular, we have for Re z = σ > A > 1

Γ (σ)

|Γ (z)| � C exp

{
π

2
|t |
}
. (4.11)

Proof. We write z = σ + it ∈ C and we use a well-known formula on the asymptotic expansion
of logΓ (z + 1) (cf. [18, p. 279]):

logΓ (z) =
(

z − 1

2

)
log z − z − 1

2
log(2π) + ψ(z),

where lim|z|→∞ ψ(z) = 0. Consider the line Lσ := {z ∈ C | Re(z) = σ }, which for σ > 0 is
parametrized by

Lσ =
{
z :=

√
σ 2 + t2 exp

{
i arctan

t

σ

} ∣∣ t ∈ R

}
.

If we insert such z ∈ Lσ into the above formula, we obtain

Γ (z) = exp

{(
z − 1

2

)(
log

√
σ 2 + t2 + i arctan

t

σ

)
− z − 1

2
log 2π + ψ(z)

}
.

Therefore, there is ρ : C → R such that lim|z|→∞ ρ(z) = 1 and

∣∣Γ (z)
∣∣= ρ(z) exp

{(
σ − 1

2

)
log

√
σ 2 + t2 − t arctan

t

σ
− σ − 1

2
log 2π

}
= ρ(z)

e−σ

√
2π

(
σ 2 + t2) σ

2 − 1
4 exp

{
−|t | arctan

|t |
σ

}
, (4.12)

which gives the desired result. The proof is complete. �
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Let u ∈ A and assume that

Ψj (z) := M[uϕ](2z + 2)

Γ (z + 1)

is periodic on Re(z) � A with period j ∈ N. Therefore, it can be considered as an entire func-
tion on the complex plane. With the notations in the proof of Proposition 4.8 we have for
σ = Re(z) � ρu

2

∣∣M[uϕ](2z + 2)
∣∣� 1

π

∞∫
0

∣∣u(t)
∣∣e−t2

t2σ+1 dt

� cu

π

1∫
0

e−t2
t2σ−ρu+1 dt + Cu

π

∞∫
1

e−t2
t2σ+ηu+1 dt

� cu

2π
Γ

(
σ − ρu

2
+ 1

)
+ Cu

2π
Γ

(
σ + ηu

2
+ 1

)
� CΓ

(
σ + ηu

2
+ 1

)
,

where C > 0 is a suitable constant. Without lost of generality we can assume that ηu is an even
integer. According to (4.11) in Lemma 4.13, it follows

∣∣Ψj (z)
∣∣� C

Γ (σ + ηu

2 + 1)

|Γ (z + 1)|
� C

(
σ + ηu

2

)(
σ + ηu

2
− 1

)
· · · (σ + 1)

Γ (σ )

|Γ (z)|

� C1
[|σ | + 1

]m exp

{
π

2
|t |
}

where C1 > 0 and m ∈ N are sufficiently large. Let z = σ + it ∈ C and choose k ∈ Z with

ρu

2
+ j � σ + jk � ρu

2
.

By the periodicity of Ψj (z), we have

∣∣Ψj (z)
∣∣= ∣∣Ψj (z + jk)

∣∣� C1

[
ρu

2
+ j + 1

]m

exp

{
π

2
|t |
}

� C2 exp

{
π

2
|z|
}
.

We have proved:

Lemma 4.14. If the entire function Ψj is periodic of period j , then Ψj has linear exponential
growth as |z| → ∞.
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The next proposition characterizes the class of all periodic entire functions of at most linear
exponential growth at infinity.

Proposition 4.15. Let f be an entire function of period j ∈ N. Assume that there are A,B > 0
such that ∣∣f (z)

∣∣� AeB|z|.

Then f is a trigonometric polynomial of the following type:

f (z) =
n∑

�=−n

a�e
2πi�z

j , a� ∈ C. (4.13)

Proof. Let w = re2πiϕ ∈ C∗ with r > 0 and ϕ ∈ [0,1) and define

g(w) := f

(
− ji

2π
logw

)
= f

(
jϕ − ji

2π
log r

)
.

Note that g is an entire function on the complex plane since f has the period j ∈ N. If n is an
integer greater than B we have in case of r > 1∣∣wnjg(w)

∣∣� Arnj exp{njϕ + nj log r} = Ãr2nj = Ã|w|2nj .

In case of 0 < r � 1, we have |wnjg(w)| � Arnj exp{njϕ + nj log r−1} = Ã, where Ã > 0 is a
suitable constant. Therefore

wnjg(w) =
{

O(|w|2nj ), as |w| → ∞,

O(1), as |w| → 0.

The second estimate shows that wnjg(w) has a removable singularity at 0. We remove it. The
first inequality shows that wnjg(w) is a polynomial of degree � 2nj . Therefore,

f (z) = g
(
e

2πiz
j
)

is a trigonometric polynomial of the type (4.13). �
So, we see from Lemma 4.14 and Proposition 4.15 that Ψj must be a trigonometric polynomial

of the form

Ψj (z) =
n∑

�=−n

a�e
2πi�z

j

=
n∑

�=−n|4�|>j

a�e
2πi�z

j +
n∑

�=−n|4�|�j

a�e
2πi�z

j

=: Ψ +(z) + Ψ −(z). (4.14)
j j
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First, we observe that the trigonometric polynomial Ψ −
j (z) can be written in the form:

Ψ −
j (z) = M[wϕ](2z + 2)

Γ (z + 1)

with a suitable function w (which is of exponential growth as |z| → ∞). This follows from our
calculations in Example 4.4. More precisely, for λ ∈ C and Re(λ) < 1

M
[
eλr2

ϕ
]
(z) = 1

2π
(1 − λ)−

z
2 Γ

(
z

2

)
.

Therefore:

M[2π(1 − λ)eλr2
ϕ](2z + 2)

Γ (z + 1)
= (1 − λ)−z.

If we choose 1 −λ = e
− 2πi�

j where |4�| < j , then we have Re(λ) = 1 − cos 2π�
j

< 1 and with the

definition w(r) := 2π(1 − λ)eλr2
it follows that

M[wϕ](2z + 2)

Γ (z + 1)
= e

2πi�z
j .

We still need to consider the case |4�| = j , which means that e
− 2πi�

j = ±i. Let 4� = −j , then
we have in case of −1 < Re(z) < 0:

M[−2ieit2](2z + 2)

Γ (z + 1)
= e

πiz
2 .

The case 4� = j can be treated in a similar way. Note that in these calculations and for λ �= 0
we have Re(λ) > 0, which implies that w /∈ A. With our notations in (4.14) we prove:

Proposition 4.16. Let u ∈ A such that

Ψj (z) = M[uϕ](2z + 2)

Γ (z + 1)

is an entire function of period j ∈ N. Then u must be a constant function.

Proof. By what was said before Ψj (z) is a trigonometric polynomial of the form (4.14) and
using the assumption and the notations above we can write

M[uϕ](2z + 2) = Γ (z + 1)
[
Ψ +

j (z) + Ψ −
j (z)

]
.

First we show that Ψ +
j must vanish identically. Otherwise there is �0 ∈ {−n, . . . ,0, . . . , n} such

that |�0| = max{|�|: a� �= 0} >
j
4 . To fix a particular case let us assume that �0 < 0. It is easy to

check that

Ψ +(ir) ∼ a� e
− 2π�0r

j , as r → ∞.
j 0
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From (4.12), we known that Γ (ir + 1) ∼ const ·√1 + r2 exp{−r arctan r} as r → ∞. Therefore,
we conclude from − 2π�0

j
> π

2 = limr→∞ arctan r that r �→ Γ (ir + 1)Ψ +
j (ir) has growth of

exponential order as r �→ ∞. A similar argument shows that r �→ Γ (ir + 1)Ψ −
j (ir) can have at

most (linear) polynomial growth as r → ∞. Finally, note that r �→ M[uϕ](2ir + 2) is bounded:

∣∣M[uϕ](2ir + 2)
∣∣� ∞∫

0

|uϕ|(t)t2 dt < ∞.

Hence, we must find u with

M[uϕ](2z + 2) = Γ (z + 1)Ψ −
j (z). (4.15)

Due to our calculations above we can find λ�, a� ∈ C with 1 � Re(λ�) � 0 such that for all z ∈ C

with −1 < Re(z) < 0:

Γ (z + 1)Ψ −
j (z) = M

[
ϕ

n∑
�=−n

a�e
λ�r

2

]
(2z + 2).

The Mellin transform is one-to-one and therefore we conclude that (4.15) is uniquely solved by

u(r) =
n∑

�=−n

a�e
λ�r

2
.

Since u ∈ A is of at most polynomial growth at infinity, we have a� = 0 if λ� �= 0 and u must be
constant. �

Now, we can formulate and prove our main theorem in this section:

Theorem 4.17. Let u,v ∈ S and assume that u is radial and non-constant. If TuTv = TvTu on H,
cf. (3.1), then v is a radial function.

We remark that the condition u,v ∈ S is essential. A counter example to the above statement
in case of u /∈ S and even bounded v is given in Example 5.8.

Proof of Theorem 4.17. According to Lemma 4.2 there is an expansion of v:

v
(
reiθ

)=
∞∑

j=−∞
vj (r)e

ijθ , z = reiθ , (4.16)

which is convergent in L2(C, dμ) and it holds vj ∈ A for all j ∈ Z. Assume, that v is not radial,
then there is j ∈ Z \ {0} such that vj (r) �= 0. Using Lemma 3.3 we can assume that j ∈ N.
Using the notation in (4.3) we see that the holomorphic function Θj does not vanish on a right
half-plane. Proposition 2.4 shows that

Fj (k) = Φj(k)Θj (k) = 0
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for all k ∈ N. From this we have Φ̃j (k) = 0 for k ∈ N where

Φ̃j (z) := 1

2π
Fj (z)Γ (z + 1)

is the holomorphic function on Re(z) > −1 in (4.4). According to Proposition 4.10 there is g ∈ A
such that

Φ̃j (z) = M
[
ge−x

]
(2z)

and therefore Φ̃j (k) = ∫∞
0 g(x)e−xx2k−1 dx = 0 for all k ∈ N. Using Proposition 4.11 with

a = 2 it follows that g = 0 a.e. on R+ and therefore

Φ̃j (z) = 1

2π
Φj (z)Θj (z)Γ (z + 1) = 0

on Re(z) > −1. Consequently, we have

Φj(z) = 2π

[M[uϕ](2z + 2)

Γ (z + 1)
− M[uϕ](2z + 2j + 2)

Γ (z + 1 + j)

]
≡ 0,

which shows that

Ψj (z) := M[uϕ](2z + 2)

Γ (z + 1)

is an entire function on the complex plane of period j ∈ N. Finally, using Proposition 4.16 it
follows that u is constant, which gives a contradiction and the proof is finished. �

As a direct consequence of Theorem 4.17 we remark:

Corollary 4.18. Let v ∈ S and assume that the Toeplitz operator Tv is diagonal with respect to

the standard orthonormal basis {(j !)− 1
2 zj : j ∈ N0}. Then v has to be a radial function.

Proof. Fix a non-constant radial function u ∈ S. Due to our assumption on Tv we have
[Tu,Tv] = 0 and the assertion follows from Theorem 4.17. �

Note that Corollary 4.18 can also be proved directly. Let Rv denote the radialization of the
symbol v. In case the Toeplitz operator Tv is diagonal, it can be checked that TRv = Tv , which
implies that TRv−v = 0. It follows that v = Rv is a radial function.

5. Discussion on CCCn

We use the notations of Section 3, and we write P[z, z] for the space of all polynomials in
the complex variables z = (z1, . . . , zn) and z = (z1, . . . , zn). For simplicity we only consider
Toeplitz operators Tf with symbols f ∈ P[z, z]. In general, such operators are unbounded but as
a common dense domain of definition we can choose:

D := P[z, z] ∩ H 2(Cn, dμ
)
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which is the space of all holomorphic polynomials on Cn. Moreover, one can easily check that
D is invariant under all Toeplitz operators Tf with f ∈ P[z, z]. The linear space:

O := {
Tf : D → D

∣∣ f ∈ P[z, z]}
is also invariant under the operator product. More precisely, it holds (cf. [3,9]):

Lemma 5.1. Let p,q ∈ P[z, z], then the product TpTq is a Toeplitz operator Tp�q , where the
symbol p � q can be calculated as

p � q =
∑
γ∈N

n
0

(−1)|γ |

γ ! ∂γ p · ∂γ q. (5.1)

Here we write ∂γ := ∂ |γ |
∂zγ and ∂γ := ∂ |γ |

∂zγ where γ ∈ Nn
0 .

By using this result, we can easily construct non-radial commuting Toeplitz operators in case
of dimension n � 2. Consider the linear subspace P0 of P[z, z] defined by

P0 :=
{

p ∈ P[z, z]: ∃m ∈ N, ∃aα ∈ C such that p(z) =
m∑

j=0

∑
|α|=j

aα

∣∣zα
∣∣2}.

Lemma 5.2. The space (P0, �) is a commutative �-sub-algebra of (P[z, z], �).
Proof. First assume that p,q ∈ P0 have the form p(z) = |zα|2 and q(z) = |zβ |2 where
α,β ∈ Nn

0. Note that

∂ |γ |p
∂zγ

· ∂ |γ |q
∂z̄γ

=
{

α!
(α − γ )!z

α−γ zα

}
·
{

β!
(β − γ )!z

β z̄β−γ

}
= α!β!

(α − γ )!(β − γ )!
∣∣zα+β−γ

∣∣2
= ∂ |γ |q

∂zγ
· ∂ |γ |p

∂z̄γ
.

By linearity it follows that P0 is closed under the �-product and the �-multiplication is commu-
tative. �

As an immediate consequence of Lemmas 5.1 and 5.2 we find that

O0 := {Tp: p ∈ P0}
is a commutative sub-algebra in O. Let p,q ∈ P[z, z] be of degree k and m with principal parts pk

and qm, respectively. We see from Lemma 5.1 that the relation [Tp,Tq ] = TpTq − TqTp = 0 is
equivalent to

0 = p � q − q � p =
∞∑

(−1)�
∑ 1

γ ! {∂γ p · ∂γ q − ∂γ q · ∂γ p}.

�=0 |γ |=�
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In general, the right-hand side is a polynomial of degree m + k − 2 having the principal part:

PP(p � q − q � p) =
n∑

j=1

{
∂pk

∂zj

∂qm

∂zj

− ∂qm

∂zj

∂pk

∂zj

}
.

Corollary 5.3. A necessary condition for [Tp,Tq ] = TpTq − TqTp = 0 is

0 =
n∑

j=0

{
∂pk

∂zj

∂qm

∂zj

− ∂qm

∂zj

∂pk

∂zj

}
. (5.2)

Consider the space Pa[z] := {p ∈ P[z, z] | p is complex analytic}, which we also have de-
noted by D before. As a simple consequence of Corollary 5.3 we have:

Proposition 5.4. Let n = 1 and assume that p ∈ Pa[z] is non-constant. If q ∈ P[z, z] such that
[Tp,Tq ] = 0, then q ∈ Pa[z].

Proof. Using our former notations we conclude from Corollary 5.3 and ∂pk

∂z
= 0 that

∂pk

∂z
· ∂qm

∂z
= 0. If pk is non-constant we see that ∂qm

∂z
= 0, which implies that qm ∈ Pa[z]. Now,

we can apply the same argument to p and q − qm, using [Tp,Tq−qm ] = 0 to show that qm−1 (the
principal part of q − qm) is in Pa[z]. The assertion follows by induction. �

Next, we consider the space of radial symmetric polynomials:

Prad[z, z] := {
p
(|z|2) ∈ P[z, z] ∣∣ p = p(r) is a polynomial in one variable r

}
and the space P1 of all polynomials p ∈ P[z, z] which fulfill the invariance p(eit z) = p(z) for
all t ∈ R and z ∈ Cn:

P1 :=
{
p(z) =

∑
α,β∈N

n
0

aα,βzαzβ ∈ P[z, z] ∣∣ aα,β = 0 if |α| �= |β|
}
. (5.3)

We clearly have Prad[z, z] ⊂ P0 ⊂ P1 and all the inclusions are strict. Generalizing Lemma 5.2
we can prove the following:

Lemma 5.5. Let p ∈ Prad[z, z] and q ∈ P1, then the Toeplitz operators Tp and Tq commute.

Proof. Let � ∈ N and α,β, γ ∈ Nn
0 . Then it follows by a direct calculation:

∂ |γ |

∂zγ
|z|2� · ∂ |γ |

∂zγ

(
zαzβ

)=
(

�

|γ |
)(

β

γ

)
|γ |!γ !zαzβ |z|2(�−|γ |),

∂ |γ |

∂zγ

(
zαzβ

) · ∂ |γ |

∂zγ
|z|2� =

(
�

|γ |
)(

α

γ

)
|γ |!γ !zαzβ |z|2(�−|γ |).

Hence, we have
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|z|2� � zαzβ = zαzβ
∑
γ∈N

n
0

(
�

|γ |
)(

β

γ

)
|γ |!(−1)|γ ||z|2(�−|γ |),

zαzβ � |z|2� = zαzβ
∑
γ∈N0

(
�

|γ |
)(

α

γ

)
|γ |!(−1)|γ ||z|2(�−|γ |).

In order to see that |z|2� � zαzβ = zαzβ � |z|2� in case of |α| = |β| note that
∑

|γ |=m

(
β
γ

)= (|β|
m

)
for m ∈ N0. The assertion now follows by linearity of the f � g-product in f and g. �

Finally, we state the converse result. A similar statement in case of Toeplitz operators acting
on Bergman spaces over the unit ball has been given in [12].

Proposition 5.6. Let p ∈ Prad[z, z] be non-constant and q ∈ P[z, z] such that [Tq,Tp] = 0, then
q ∈ P1.

Proof. Let p(z) =∑k
j=0 aj |z|2j be non-constant with principal part pk(z) = ak|z|2k . The gen-

eral form of q is q(z) = ∑m
j=0

∑
|α|+|β|=j aα,βzαzβ = ∑m

j=0 qj (z). We define the differential
operators

Lj := zj

∂

∂zj

− zj

∂

∂zj

,

where j = 1, . . . , n. Then condition (5.2) can be written in the form:

0 = |z|2k−2
n∑

j=1

Ljqm,

which implies that

0 =
n∑

j=1

∑
|α|+|β|=m

aα,βLj z
αzβ =

n∑
j=1

∑
|α|+|β|=m

aα,β(αj − βj )z
αzβ

=
∑

|α|+|β|=m

aα,β

(|α| − |β|)zαzβ.

It follows that aα,β = 0 for |α| �= |β| and therefore qm ∈ P1. According to our assumptions and
due to Lemma 5.5 the Toeplitz operator Tq−qm also commutes with Tp and we can use induction
to finish the proof. �

We give a generalization of Corollary 4.18 to Toeplitz operators on H 2(Cn, dμ), n > 1 with
polynomial symbols:

Corollary 5.7. Let q ∈ P[z, z] and assume that Tq is diagonal with respect to the standard or-

thonormal basis B := [eα := (α!)− 1
2 zα: α ∈ Nn

0]. Then q ∈ P0, i.e. q is radial in all components
z1, . . . , zn.
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Proof. Let pj (z) := |zj |2 for j = 1, . . . , n such that pj ∈ P0. Then the operators Tpj
are diago-

nal with respect to the basis B. Since by assumption Tq is diagonal with respect to B as well, it
follows that [Tpj

, Tq ] = 0 and (5.2) shows that Ljqm = 0 for all j = 1, . . . , n. In the same way
as in the proof of Proposition 5.6 we obtain that q ∈ P0. �

There are bounded Toeplitz operators with radial symbols of exponential growth at infinity
that are commuting with Toeplitz operators having non-radial bounded symbol. The construction
is closely related to our observations in Example 4.4:

Example 5.8. On Cn we consider the radial function gλ(z) := eλ|z|2 where λ ∈ C such that
Re(λ) < 1

2 . The latter condition ensures that the Toeplitz operator Tgλ is densely defined on
H 2(Cn, dμ). Next, we consider the composition operators

Uγ : Dγ ⊂ H 2(Cn, dμ
)→ H 2(Cn, dμ

)
:f �→ f (γ z)

where γ ∈ C. By using the reproducing kernel K(z,w) = ez·w of H 2(Cn, dμ) we see that the
Berezin transform Ũγ (z) of Uγ is given by

Ũγ (z) = e−|z|2 〈Uγ K(·, z),K(·, z)〉= e(γ−1)|z|2 .

On the other hand, the Berezin transform of Tgλ is given by

T̃gλ(z) = e−|z|2
∫
Cn

gλ(u)ez·u+z·u dμ(u)

= π−ne−|z|2
∫
Cn

ez·u+z·u−(1−λ)|u|2 dv(u)

= (1 − λ)−1eλ(1−λ)−1|z|2 .

Since the Berezin transform is one-to-one on (suitable) operators we find that

(1 − λ)−1U(1−λ)−1 = Tgλ.

For all m ∈ N we define λm := 1−e− 2iπ
m . By choosing m sufficiently large, it follows Reλm < 1

2 .
Then Tgλm

is well defined and

e
2iπ
m U

e
2iπ
m

= Tgλm
. (5.4)

Note that by this equation the Toeplitz operator Tgλm
is unitary with unbounded symbol. We

shortly write Vk := U
e

2iπ
k

where k ∈ Z and remark that for any bounded symbol f

VkTf V−k = TVkf . (5.5)

It immediately follows from (5.5) and (5.4) that Tgλm
commutes with all Toeplitz operators with

symbols that are invariant under Vm. To give an explicit example, choose n = 1 and m = 8 such
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that Reλm = 1 − cos(π
4 ) = 1 −

√
2

2 < 1
2 . Then Tgλ8

commutes with Tf where f is the bounded

non-radial function f (z) = z8

|z|8 .

Problem. Is there an extension of the results in Section 5 to Toeplitz operators with arbitrary
measurable symbols that have at most polynomial growth at infinity?
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