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SUMMARY

Central processing of acoustic cues is critically de-
pendent on the balance between excitation and inhi-
bition. This balance is particularly important for audi-
tory neurons in the lateral superior olive, because
these compare excitatory inputs from one ear and in-
hibitory inputs from the other ear to compute sound
source location. By applying GABAB receptor antag-
onists during sound stimulation in vivo, it was
revealed that these neurons adjust their binaural sen-
sitivity through GABAB receptors. Using an in vitro
approach, we then demonstrate that these neurons
release GABA during spiking activity. Consequently,
GABA differentially regulates transmitter release
from the excitatory and inhibitory terminals via feed-
back to presynaptic GABAB receptors. Modulation of
the synaptic input strength, by putative retrograde
release of neurotransmitter, may enable these audi-
tory neurons to rapidly adjust the balance between
excitation and inhibition, and thus their binaural sen-
sitivity, which could play an important role as an
adaptation to various listening situations.

INTRODUCTION

An appropriate balance between excitation and inhibition is es-

sential for functional sensory networks. For example, the relative

strength and timing of excitatory and inhibitory inputs shapes the

response to sensory stimuli, which is critical for the organization

and tuning of receptive fields (Wehr and Zador, 2003; Zhang

et al., 2003; Marino et al., 2005; Higley and Contreras, 2006).

Dynamic adjustment of the balance between excitation and inhi-

bition is especially important for auditory neurons that rely on

precise comparison of excitatory and inhibitory inputs, such as

the neurons of the lateral superior olive (LSO). The LSO is an au-

ditory brainstem nucleus that encodes interaural sound level dif-

ferences (ILDs), which is one of the main cues used for sound lo-

calization (Finlayson and Caspary, 1989; Park et al., 1996).

Analysis of ILDs is accomplished by a direct subtraction of an in-
hibitory, glycinergic input, activated by sound arriving at the con-

tralateral ear, from an excitatory input, activated by sound arriv-

ing at the ipsilateral ear (Boudreau and Tsuchitani, 1968; Moore

and Caspary, 1983; Finlayson and Caspary, 1989). A key ques-

tion is how this neuronal circuit adjusts the balance between

excitation and inhibition to adapt to changes in the sensory envi-

ronment. On a cellular level, adjustments to the synaptic strength

of the inputs, or the integrative properties of the neurons, could

control the complex interplay between excitation and inhibition.

One possible candidate for this task is GABAB receptors, which

are present presynaptically on the inputs to LSO neurons (Kotak

et al., 2001). Such G protein-coupled receptors are able to mod-

ulate both synaptic inputs and postsynaptic properties (reviewed

by Miller, 1998), and could therefore be important for the fine-

tuning of sensory networks. In the present study, we tested the

hypothesis that LSO neurons adjust their ILD sensitivity by regu-

lating the balance of their excitatory and inhibitory inputs via

GABAB receptors. By using a combined in vivo and in vitro

approach, we show that the LSO neurons release GABA, which

acts as a retrograde transmitter on presynaptic GABAB recep-

tors. Furthermore, activation of the presynaptic GABAB recep-

tors differentially controls the excitatory and inhibitory terminals

in the LSO. This results in a shift of the dynamic range of the ILD

function (i.e., the ILD sensitivity), thus narrowing the binaural re-

ceptive field of the neurons. We propose that by adjusting the

balance between excitation and inhibition, LSO neurons can

rapidly adapt their binaural response properties and thereby

accommodate the current acoustic environment.

RESULTS

GABAB Receptors Modulate the Sensitivity of LSO
Neurons to Sound Level Differences between the Ears
The spike response of single LSO neurons to sounds with various

ILDs, presented via earphones, was recorded in adult anaesthe-

tized gerbils. The LSO neurons responded strongly to sound

stimulation that favored the ipsilateral ear (positive ILDs) and

were progressively inhibited by increasing the sound level at

the contralateral ear (negative ILDs) (Figure 1A, left panel). To ex-

amine the role of GABAB receptor activation on ILD processing,

the GABAB receptor agonist baclofen and the antagonists

CGP35348 and CGP55845 were applied iontophoretically while
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Figure 1. Pharmacological Manipulation of

GABAB Receptors In Vivo Causes a Shift in

Neuronal Sensitivity to Interaural Sound

Level Difference, an Important Cue Used

for Sound Localization

(A) Dot raster plots of one example neuron for var-

ious interaural sound level differences (ILDs)

before (left panel) and during (right panel) ionto-

phoretic application of the GABAB receptor ago-

nist baclofen. Each dot corresponds to one action

potential. Sound stimuli consisted of 100 ms pure

tones presented at the neuron’s best response

frequency. The amplitude at the excitatory, ipsilat-

eral ear was set 20 dB above response threshold

and each ILD was presented 20 times in pseudo-

random order. Sounds that were more intense at

the contralateral, inhibitory ear (negative ILDs)

generated fewer action potentials in the predrug

condition; baclofen increased this spike suppres-

sion (e.g., at ILDs of 10 and 20 dB, arrows).

(B) Normalized fitted ILD functions corresponding

to the dot raster plots in (A) (dashed black line =

predrug; solid red = baclofen). The ILD at 50% of

normalized peak response was used as an index

of drug-induced effects. This neuron showed an

8.1 dB shift in the 50% point ILD during baclofen

application (50% suppression was achieved with

tones that were 8.1 dB less intense at the contra-

lateral, inhibitory ear than what was required with-

out baclofen). The inset shows nonnormalized ILD

functions.

(C) Dot raster plots from a different neuron

recorded before and during application of the GA-

BAB receptor antagonist CGP35348 (5 mM). The

antagonist caused a robust increase in spikes at

ILDs of 0 and �10 dB (open arrows), the opposite

effect to that of baclofen.

(D) Normalized ILD functions corresponding to the

dot raster plots in (C). Application of the antagonist

caused an 8.2 dB shift in the 50% point toward

negative ILD values.

(E) (Left panel) Mean change in spike rate (±SEM)

induced by application of baclofen (red, n = 13)

or the antagonists CGP35348 and CGP55845

(green, n = 19 and 3, respectively; data from the

two antagonists was pooled since there was no statistical difference between the results). (Middle panel) Mean shift in 50% point ILDs (±SEM) due to the agonist

baclofen and due to the antagonists CGP35348 and CGP55845. The latency from initiation of drug iontophoresis to the onset of the effect was between 140 and

200 s. (Right panel) Mean change in slope of the unnormalized ILD function induced by GABAB receptor activation or inactivation.

(F) GABAB receptor immunoreactivity in the adult gerbil LSO. Immunostained neurons are evident in the high-frequency (HF) and low-frequency (LF) region of the

LSO. Scale bar: 50 mm.
recording the spike response to sounds with various ILDs. For

further analysis the spike response was fitted with a sigmoid

function. Baclofen (50 mM; n = 13) generally decreased the max-

imal discharge rate evoked by sounds favoring the ipsilateral, ex-

citatory ear by 34.2% ± 6.7% (Figure 1E). Importantly, activation

of GABAB receptors also resulted in a suppression of the ILD

response such that more suppression was exerted at more pos-

itive ILDs (Figure 1A, right panel, closed arrows). This relative de-

crease in spike number, induced by GABAB receptor activation,

resulted in a systematic shift of the normalized ILD function

toward more positive ILDs, thereby narrowing the binaural

response area of the neuron toward ILDs that correspond to

more ipsilateral sound positions (Figure 1B). Conversely, ionto-
126 Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc.
phoretic application of the GABAB receptor antagonist

CGP35348 (100 mM; n = 19) or CGP55845 (5 mM; n = 3) resulted

in the opposite effect (Figures 1C and 1D). Spike numbers for

sounds favoring the ipsilateral, excitatory ear increased by

90.2% ± 30.5% (Figure 1E). As during GABAB receptor activa-

tion, this increase in spike count was dependent on the spike

rate during ILD presentation. GABAB receptor blockade caused

a substantial spike response at ILDs where only a weak spike re-

sponse had been observed under control conditions (Figure 1C,

open arrows). This resulted in a shift of the normalized ILD func-

tions toward more negative ILDs, thus expanding the binaural re-

sponse area of the neurons to include ILDs that correspond to

more contralateral sound source locations (Figure 1D). This
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negative shift of the ILD function also confirms the specificity of

the opposite ILD shift during GABAB receptor activation. For all

neurons tested, the ILD shift measured at the ILD where the spike

response had decreased to 50% of the maximum response was

5.3 ± 1.7 dB (p % 0.001; n = 22) toward positive ILDs during

GABAB receptor activation and 3.6 ± 1.1 dB (p % 0.001; n = 13) to-

ward negative ILDs during GABAB receptor blockade (Figure 1E).

Neurons with binaural response areas extending more towards

contralateral sound locations (negative ILDs) were more affected

by baclofen than neurons with binaural response areas closer to

the ipsilateral side (positive ILDs) (Figure S1, available online).

To assess whether GABAB receptor activation or inactivation re-

sulted in a gain change of the ILD response, the steepness of the

sigmoid function was analyzed (Figures 1B and 1D, insets). On

average, the slope of the ILD function increased by 181.8% ±

74.9% (p % 0.05; n = 22) during GABAB receptor blockade,

whereas GABAB receptor activation had the opposite effect on

the slope (Figure 1E), indicating that GABAB receptors exert a di-

visive (multiplicative) gain control function on the ILD coding of

LSO neurons.

Since there is no morphological evidence for GABAB receptors

in the gerbil LSO in the literature, a conventional antibody stain-

ing was performed in order to demonstrate the presence of the

receptors. It confirmed that GABAB receptors are abundant on

LSO neurons throughout the nucleus (Figure 1F) but could not

determine the subcellular location of the receptor.

Taken together, these data demonstrate that endogenous

GABAB receptor activation in the LSO systematically influences

the ILD sensitivity by modulating the binaural response proper-

ties of the LSO neurons. Moreover, GABAB receptor activation

in the LSO also scales the spike rates in a divisive manner, which

is compatible with the concept of neural gain control. On an oper-

ational level, the ILD sensitivity of LSO neurons is determined by

comparing the excitatory and inhibitory inputs from the two ears.

Hence, the opposite shifts of the ILD function during GABAB

receptor activation and inactivation suggest that the excitatory

inputs from the ipsilateral ear and the inhibitory inputs from

the contralateral ear are differentially controlled by GABAB

receptors.

The ILD Shift Is Mediated by Presynaptic GABAB

Receptors in the LSO
Mechanistically, the modulation of LSO neurons described

above could occur through activation of presynaptic GABAB re-

ceptors on the excitatory or the inhibitory terminals, where they

control transmitter release. Alternatively, modulation may be

due to activation of postsynaptic GABAB receptors, which might

modulate the integration of these inputs to the LSO (reviewed by

Nicoll, 2004). To address this issue, we made whole-cell voltage-

clamp recordings from putative LSO principal neurons, selected

according to their physiological properties (Figure S2A), in acute

brainstem slices of post-hearing-onset gerbils.

Presynaptic GABAB receptors at the LSO synapses were in-

vestigated by recording either pharmacologically isolated excit-

atory postsynaptic currents (EPSCs), evoked by stimulating the

cochlear nucleus fibers from the ipsilateral ear, or inhibitory post-

synaptic currents (IPSCs), evoked by stimulating the trapezoid

fiber bundle (input from the contralateral ear) (Figure 2A). Cesium
was included in the pipette to block GABAB receptor-activated

K+ channels. Bath application of baclofen (1 mM), a GABAB

receptor agonist, reversibly reduced the amplitude of evoked

AMPA and NMDA receptor-mediated EPSCs as well as glyciner-

gic IPSCs (Figure 2B). To verify that the reduction in amplitude

was caused exclusively by GABAB receptors, we repeated the

same experiment in the presence of specific GABAB receptor

antagonists (CGP55845, 3 mM or SCH50911, 10 mM). Bath appli-

cation of the GABAB receptor antagonists blocked the baclofen-

induced reduction of the EPSCs and the IPSCs (Figure 2D),

confirming that the effects of the agonist are mediated by stim-

ulation of GABAB receptors. The fact that the GABAB receptor

antagonists had no effect per se (Figure 2D) suggests that there

is no tonic activation of the GABAB receptors by ambient GABA

in the slice. The dose-response relationship of baclofen-medi-

ated inhibition revealed a significantly more potent activation of

GABAB receptors at the excitatory synapses (half-maximal

inhibitory concentration [IC50] = 0.56 mM) than at the inhibitory

synapses (IC50 = 1.52 mM) (Figure 2C), which is in line with our

in vivo finding that GABAB receptor blockade favors excitation

rather than inhibition (Figure 1). Furthermore, baclofen (10 mM)

increased the paired-pulse ratio (PPR), a measure of the proba-

bility of transmitter release, of the EPSCs (control, 0.83 ± 0.04;

baclofen, 1.38 ± 0.36; p < 0.05, n = 6) and IPSCs (control, 0.78

± 0.04; baclofen, 0.93 ± 0.03; p < 0.01, n = 5), providing evidence

for a presynaptic mechanism of action.

To determine whether activation of postsynaptic GABAB recep-

tors elicits a response in these neurons, we applied exogenous

baclofen (10 mM) by puffing the agonist directly onto the neuron

(n = 10). Application of baclofen would be expected to generate

an outward current recorded at�60 mV with a K+-based intracel-

lular solution, but we could not observe such a response (Fig-

ure 2E). To make sure that the lack of response was not related

to some technical issue, we puffed baclofen from the same pipette

onto medial vestibular neurons (n = 3), known to have postsynap-

tic GABAB receptors (Dutia et al., 1992; Holstein et al., 1992), in the

same slice. Undervoltageclamp, baclofen triggered a long-lasting

outward current, and under current clamp, baclofen induced

a membrane hyperpolarization accompanied by a cessation of

spontaneous action potential discharges (data not shown). To ex-

clude that GABA could exert a postsynaptic effect on the intrinsic

excitability of the LSO neurons via GABAB receptors, spike trains

were elicited by injecting 50 Hz trains of excitatory postsynaptic

conductances (EPSGs) into the cells before and during baclofen

(3 mM) application.Therewas no qualitativechange in theneurons’

spiking activity during bath application of baclofen (3 mM) (Fig-

ure 2G), and a quantification of spike threshold (control, �43 ± 2

mV; baclofen, �43 ± 2 mV), spike amplitude (control, 67 ± 3 mV;

baclofen, 66 ± 4 mV), and spike width (control, 0.51 ± 0.04 ms; ba-

clofen, 0.51 ± 0.05 ms) did not reveal any further effects of GABAB

receptor activation in these cells (n = 5). The fact that input resis-

tance did not change upon application of baclofen in the LSO

(control, 51 ± 16 MU; baclofen, 52 ± 16 MU; p = 0.58, n = 10) lends

further support to a presynaptic mechanism of action. We

therefore conclude that, in the LSO, postsynaptic GABAB recep-

tors do not modulate postsynaptic voltage-dependent ion con-

ductances, such as K+ and Ca2+ currents, or have immediate

effects on the intrinsic excitability. However, postsynaptic GABAB
Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc. 127
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Figure 2. Baclofen Inhibits Synaptic Transmission in the LSO

(A) Schematic overview of the preparation, which consists of transverse brainstem slices containing the LSO and its auditory nerve input (N. VIII). The excitatory

fibers from the ventral cochlear nucleus (VCN) and the inhibitory fibers from the medial nucleus of the trapezoid body (MNTB) are stimulated with a glass

microelectrode filled with 2 M NaCl.

(B) Bath application of baclofen (1 mM) reversibly inhibited glutamatergic (red) and glycinergic (blue) postsynaptic currents; each response represents an average

of 20 traces.

(C) Concentration dependency and IC50 of baclofen-mediated inhibition of the EPSCs and IPSCs.

(D) A prior application of a GABAB receptor antagonist (10 mM SCH50911 or 3 mM CGP55845) had no effect on the amplitude of the synaptic inputs and blocked

the inhibition of baclofen (1 mM).

(E) Pressure application (20 psi, 0.1 s) of baclofen (10 mM) in the LSO (upper trace). Baclofen did not elicit any current flow across the membrane in the LSO.

(F) Spike response evoked by postsynaptic injection of high-frequency EPSGs via a conductance-clamp amplifier under control conditions and during baclofen

application (3 mM). No change in spike amplitude and spike shape was observed during GABAB receptor activation as compared to control conditions. *p < 0.05.

For (D) and (E), the number of cells recorded for each concentration is given in parenthesis.
receptors could be involved in long-term plastic changes, as

shown before hearing onset (Kotak et al., 2001; Chang et al.,

2003).

GABA Acts as a Retrograde Transmitter in the LSO
We have shown that GABA exerts a strong influence on LSO

neurons through presynaptic GABAB receptors. A critical ques-

tion is, ‘‘Where does the GABA come from?’’

Many of the LSO neurons are GABAergic (Roberts and Ribak,

1987; Helfert et al., 1989; Gonzalez-Hernandez et al., 1996), and

one possible scenario is that the LSO neurons themselves re-

lease GABA, which affects their synaptic inputs in an autocrine

or paracrine fashion (reviewed by Ludwig and Pittman, 2003;

Zilberter et al., 2005). We evaluated this hypothesis by investi-
128 Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc.
gating what effect depolarization of the LSO neurons had on

pharmacologically isolated excitatory postsynaptic potentials

(EPSPs). After several minutes of stable EPSP responses (con-

trol), the synaptically evoked potentials were paired with a pre-

ceding 100–200 Hz train of action potentials (conditioning),

which was induced by somatic current injections (Figure S2A).

Conditioning trains of action potentials rapidly decreased the

EPSP amplitude. This effect was reversible and could be in-

duced again after recovery (Figure 3A). There was a significant

reduction in EPSP amplitude (control, 4.3 ± 1.9 mV; conditioning,

2.9 ± 1.9 mV; p < 0.001, n = 13), accompanied by an increase in

the PPR (control, 0.80 ± 0.12; conditioning, 1.45 ± 0.93; p <

0.001, n = 13), suggesting a decrease in transmitter release in

response to the conditioning.
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To obviate the contribution of postsynaptic voltage-gated ion

channels to these effects, two experimental designs were

employed. First, we determined the increase in failure rate in re-

sponse to conditioning trains when the stimulation of the excit-

atory inputs was adjusted to just above the threshold for an

evoked response with only a few failures (�10% failure rate).

Again, after several minutes of stable responses (control), the

synaptically evoked potentials were paired with a 100–200 Hz

preceding train of action potentials (conditioning). Conditioning

rapidly increased the probability of failure of the EPSPs (control,

6.4% ± 8.3%; conditioning, 35.4% ± 17.3%; p < 0.001, n = 13).

This effect was dependent on the frequency of the conditioning

train (Figure S2B) and the intensity of the somatic current injec-

tion (Figure S2C). The increase in failures during conditioning

also resulted in a striking reduction of the mean EPSP amplitude

in 31 of 43 (or 72% of) LSO neurons and a corresponding in-

crease in the PPRs of EPSPs, in a very similar manner to that

of the larger-amplitude EPSPs and the classical baclofen-in-

duced increase in the PPR. A summary of the effects of condi-

tioning on EPSPs is given in Figure 3C. This form of short-term

presynaptic depression of the EPSPs was effectively blocked

by the three different GABAB receptor antagonists: CGP35348

(100–200 mM), CGP55854 (3 mM), or SCH50911 (10 mM) (Figures

3B and 3C), which strongly indicates that GABA acts as a retro-

grade transmitter on presynaptic GABAB receptors in the LSO.

Moreover, the input resistance of the neurons remained stable

during the conditioning stimuli (control, 64 ± 22 MU; condition-

ing, 65 ± 23 MU; p = 0.83, n = 10), also supporting the concept

of a presynaptic mechanism.

In a second approach, EPSCs evoked in the same way as in

the current-clamp recordings were measured in voltage-clamp

mode under control conditions and with a preceding depolar-

ization of the neuron (duration: 500 ms, to 0 mV). As for the

EPSPs, the preceding depolarization caused a significant re-

duction of the EPSC amplitude (control, 1002 ± 182 pA; depo-

larization, 797 ± 167 pA; p < 0.001, n = 7) (Figure 3D) and an

increase in the PPR (control, 0.75 ± 0.05; depolarization, 0.84 ±

0.05; p < 0.01, n = 7) (Figure 4D). Bath application of GABAB

receptor antagonists to the same neurons prevented the de-

crease in EPSC amplitude (control, 905 ± 180 pA; depolariza-

tion, 868 ± 180 pA; n = 7) and the increase in the PPR (control,

0.8 ± 0.05; depolarization, 0.77 ± 0.05; n = 7), indicating a sim-

ilar mechanism for the amplitude reduction of the excitatory

currents as for the EPSPs following a preceding train of action

potentials.

It is, however, essential to know whether the reduced EPSP/

EPSC amplitude during conditioning is related to lessened syn-

aptic release of transmitter or due to a failure to activate the

axon/synaptic bouton. To elucidate this, the effect of 500 ms de-

polarizing voltage steps to +30 mV on spontaneous release of

transmitter was investigated in voltage-clamped LSO neurons.

The frequency of pharmacologically isolated spontaneous

EPSCs (sEPSCs) decreased by 21% (control, 3.6 ± 0.7 Hz; depo-

larization, 2.8 ± 0.64 Hz; p < 0.01, n = 14) (Figure 3E), whereas the

amplitude of the sEPSCs remained stable (control, 64 ± 7 pA;

depolarization, 63 ± 7 pA). Also, the reduction of sEPSC

frequency with depolarizing conditioning was blocked by the

GABAB receptor antagonist SCH50911 (control, 2.6 ± 0.38 Hz;
conditioning, 2.5 ± 0.38 Hz; n = 11) (Figure 3E). These results

demonstrate that the most likely reason for the decrease in

EPSP amplitude and the increase in failure rate observed during

conditioning is a decrease in the release of transmitter from the

presynaptic bouton in response to the presynaptic GABAB

receptor activation.

GABA could be released either from the dendrites of the LSO

neurons themselves or from axon collaterals projecting back to

the cell as autapses. These possibilities were tested by adding

either QX314 (a sodium channel blocker), BAPTA (a calcium che-

lator) or botulinum neurotoxin D light chain (BoNT D) to the intra-

cellular recording solution. Addition of QX314 (5 mM) effectively

prevented the cell from firing action potentials within a few min-

utes. The conditioning trains thus only depolarized the cell and

activated their Ca2+ channels. Nevertheless, we still observed

a decrease in EPSP amplitude accompanied by an increase of

the PPR during conditioning stimuli (Figure 4A), which indicates

that GABA is most probably not released from back-projecting

axon collaterals. In contrast, BAPTA (10 mM) effectively pre-

vented the EPSP amplitude reduction and the PPR increase

during conditioning trains of action potentials (Figure 4B), point-

ing toward a Ca2+-dependent mechanism. BoNT D is known to

cleave synaptobrevin, a protein that is part of the plasma

membrane SNARE protein complex, which is essential for

Ca2+-induced vesicle exocytosis (Schoch et al., 2001). Inclusion

of BoNT D (1–2 mg/ml) into the pipette also blocked the effect of

conditioning on the EPSP amplitude and the PPR (Figure 4C).

Taken together, this is consistent with the hypothesis that

GABA is released via exocytosis in a Ca2+-dependent manner

from the LSO dendrites (or somas).

If GABA is exocytosed from LSO dendrites, the vesicles

should contain vesicular GABA transporter (VGAT). Accord-

ingly, we performed a triple immunostaining against VGAT

(red), MAP2 (green),and Nissl (blue), which colabeled the den-

drites and somata of LSO neurons (Figures 4D–4F). Based on

the knowledge that the major inhibitory input to the LSO is gly-

cinergic (Moore and Caspary, 1983; Sanes et al., 1987), and

that VGAT is also identified as a vesicular glycine transporter

(Chaudhry et al., 1998), most of the VGAT staining was of pre-

synaptic origin and localized to putative glycinergic terminals

(Figure 4D, arrow). However, many LSO neurons displayed

a clear colocalization of the VGAT puncta and the MAP2 stain-

ing, suggesting presence of VGAT in the dendrites as well (Fig-

ures 4D and S3A). This was further confirmed by scrutinizing

overlays of the VGAT and MAP2 staining at high magnification

and 3D reconstructions, which revealed the presence of VGAT

puncta inside the dendrites of LSO principal neurons (Figures

4E and 4F). This finding corroborates a post-embedding im-

munogold labeling study that demonstrated that the somata

of LSO neurons are weakly immunopositive to VGAT in the

rat (Chaudhry et al., 1998).

Retrograde GABA Signaling Differentially Controls
Excitatory and Inhibitory Transmitter Release in the LSO
Conditioning trains of action potentials also affected glycinergic

inhibitory postsynaptic potentials (IPSPs), evoked by stimulation

of the fibers of the medial nucleus of the trapezoid body. A post-

synaptic 100–200 Hz stimulation induced a reduction of the IPSP
Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc. 129
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Figure 3. Conditioning Causes a Reversible and GABAB Receptor-Dependent Depression of the Excitatory Synapses in the LSO

(A) Example EPSPs elicited at �2 times threshold during control (open circles) and during conditioning (filled circles). The course of the conditioning stimuli is

represented by the dotted lines (200 Hz, 1.5 nA). The mean EPSP amplitudes during the respective intervals indicated above the graphs are displayed as

horizontal black lines overlaying the dot displays.

(B) The depression of control EPSPs (open circles), achieved by conditioning (filled circles; dotted lines, 200 Hz, 3.5 nA), is blocked by wash-in of a GABAB

receptor antagonist (open green circles, SCH95011, 10 mM) before applying the same conditioning (filled green circles).

(C) Summaries (mean ± confidence interval [c.i.]) of the amplitude and the PPR under control conditions (white bars) following 100–200 Hz conditioning trains

(black bars), and with different GABAB receptor antagonists (CGP35348, 100–200 mM, n = 8; CGP55845, 3–10 mM, n = 11, SCH50911, 10 mM, n = 2) (control:

open green bars; conditioning: green bars). The number of cells recorded for each condition is given in parentheses. Representative examples of the average

EPSP PPR during control and during 200 Hz conditioning, for the predrug condition and with GABAB receptor antagonists, are shown to the right of the histo-

grams (averages R45 responses).

(D) The EPSC amplitude is reversibly suppressed by a 500 ms long preceding depolarization (depol.) of the neuron to 0 mV and can be repeatedly

induced. Each dot represents the peak amplitude of a single EPSCs evoked by stimulation of the ipsilateral cochlear nucleus fibers with a repetition

rate of 0.14 Hz during control (open circles) and with preceding depolarization (filled circles). The course of the depolarization is represented by dotted
130 Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc.
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amplitude (control, 4.4 ± 2.3 mV; conditioning, 3.5 ± 2.0 mV; p <

0.001, n = 21), which was paralleled by an increase in the PPR

(control, 0.86 ± 0.10; conditioning, 1.15 ± 0.25; p < 0.01, n =

10), in 26 of 74 (or 35% of) LSO neurons tested (Figures 5A

and 5C). Similar to the evoked excitation, this effect could be ef-

fectively blocked by addition of GABAB receptor antagonists to

the bath (Figures 5B and 5C). A quantitative comparison of the

effect of conditioning between EPSPs and IPSPs revealed sev-

eral differences (Figure 5D). First, the total number of neurons

in which this effect was triggered was more than twice as large

for EPSPs as it was for IPSPs. Second, the reduction in ampli-

lines, and the mean EPSC amplitudes during the respective intervals indicated above the graphs are displayed as horizontal black bars overlaying the

dot displays.

(E) Example in which the GABAB receptor antagonist SCH50911 (10 mM) was bath-applied 8 min (open green circles) before the second phase of preceding

depolarizing pulses (filled green circles). The depolarization-induced suppression of the EPSC amplitude was effectively prevented by the GABAB receptor

blockade.

(F) Individual traces demonstrating that conditioning (500 ms long depolarizing pulses to 30 mV) decreases the frequency of spontaneous EPSCs (sEPSCs),

isolated with strychnine (0.5 mM). The decrease in sEPSC frequency (n = 14) is blocked by the GABAB receptor antagonist SCH50911 (10 mM, n = 11). **p <

0.01; ***p < 0.001.

Figure 4. The Increase in Synaptic Failures

by Conditioning Is Related to Vesicular

Release of GABA

(A–C) Depression of the EPSP amplitudes and

increase in PPRs at an interstimulus interval of

30 ms (averages of R50 responses) in conjunction

with 200 Hz conditioning trains (averages of R50

responses) is not prevented by intracellular load-

ing of the Na+ channel antagonist QX314 (5 mM)

(A), but is effectively prevented by intracellular

loading of the Ca2+ chelator BAPTA (10 mM) (B)

or BoNT D (1–2 mg/ml) (C). Summaries (mean ±

c.i.) of the EPSP amplitudes and the PPRs before

(unfilled columns) and after (black columns) condi-

tioning trains are displayed for the three drugs

used. The number of cells recorded for each con-

dition is given in parentheses. **p < 0.01.

(D) Laser-scanning microscopy of the vesicular

GABA transporter (VGAT, red), MAP2 (green),

and Nissl Deep Red (blue) triple labeling in an

LSO principal neuron. Arrow indicates VGAT-im-

munoreactive synaptic terminals with presumed

MNTB origin on an LSO principal neuron.

(E) High-magnification image of the same LSO

principal neuron revealed significant dendritic

VGAT-like immunoreactivity.

(F) The dendritic location of VGAT was confirmed

by applying the Huygens (SVI) maximum-likeli-

hood-estimation deconvolution algorithm fol-

lowed by 3D reconstructions (Amira 3.1, TGS).

Surface rendering was applied for the MAP2 stain-

ing to highlight the borders of the dendrites.

Axial distance between optical sections: (D)

0.3 mm; (E) and (F) 0.1 mm. Scale bars: (D) 10 mm,

(E) 1 mm, (F) 0.5 mm.

tude (EPSPs: 40.3% ± 8.8%, n = 26;

IPSPs: 20.6% ± 20.3%, n = 21; p <

0.01), as well as the increase of the PPR

(EPSPs: 109.7% ± 61.9%, n = 26; IPSPs:

31.1% ± 24.2%, n = 10; p < 0.05), was

significantly larger for EPSPs than it was for IPSPs (Figure 5D).

These results indicate that, during ongoing stimulation, activa-

tion of presynaptic GABAB receptors shifts the balance between

the inputs to the LSO by attenuating the excitation relative to the

inhibition, which is compatible with our in vivo findings.

An important question that remains is, ‘‘What mechanism un-

derlies these differential effects on the excitatory and the inhibi-

tory inputs to the LSO?’’ It is well known that presynaptically

located GABAB receptors modulate neurotransmitter release (re-

viewed by Miller, 1998). Since changes in the frequency of min-

iature events are generally thought to reflect modulation of the
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release machinery, we examined the effects of baclofen on min-

iature (m)EPSCs/IPSCs (in the presence of 1 mM TTX) and spon-

taneous (s)EPSCs/IPSCs (in the absence of TTX). Baclofen

(10 mM) strongly reduced both the frequency of mEPSCs and

sEPSCs (Figures 6A and 6B). In marked contrast, no effect of

baclofen was observed on the frequency of mIPSCs (Figure 6A).

However, the frequency of the sIPSCs was reduced in the pres-

ence of baclofen, in a similar fashion to the sEPSCs (Figure 6B).

These results suggest that GABAB receptor-mediated inhibition

of IPSCs is, in contrast to that of the EPSCs, due to inhibition of

voltage-dependent Ca2+ increases in the presynaptic terminals.

To confirm this, we recorded sEPSCs and sIPSCs in the presence

of Cd2+ (100 mM), a nonspecific Ca2+ channel blocker. Cd2+ com-

pletely blocked the decrease in sIPSC frequency, whereas it

caused a less severe decrease in frequency of the baclofen-

induced sEPSCs (Figure 6C). It is unlikely that these effects are

due to some form of postsynaptic action of baclofen, because

the agonist had no effect on the amplitude of the three types of

excitatory and inhibitory synaptic events (Figure S4). Taken to-

gether, our data support the concept of a mechanism involving

differential GABAB receptor actions on transmitter release from

Figure 5. The Effect of Conditioning on In-

hibitory Synapses in the LSO Is Smaller

Than the Effect on Excitatory Synapses

(A) IPSP amplitudes during control (open circles)

and conditioning trains of action potentials (filled

circles; 100 Hz, 3 nA) or (B) during control and con-

ditioning (100 Hz, 1 nA) followed by administration

of a GABAB receptor antagonist (open green cir-

cles) with the same conditioning (filled green cir-

cles). The course of the conditioning stimuli is rep-

resented by the dotted lines. The mean IPSP

amplitudes during the respective intervals indi-

cated above the graphs are displayed as horizon-

tal black lines overlaying the dot displays. (C) Sum-

maries (mean ± c.i.) of the decrease in amplitude

and the increase in the PPR with conditioning

trains are illustrated in the histograms. The GABAB

receptor antagonists CGP55845 (3 mM; n = 4 or n =

1, respectively) and SCH50911 (10 mM; n = 11 or

n = 5, respectively) were used. Representative ex-

amples of the average IPSP PPRs during control

and during 100 Hz conditioning are shown to the

right of the histograms (average of R50 re-

sponses). (D) Quantification and comparison of

the effects of conditioning trains of action poten-

tials on EPSPs and IPSPs (mean ± c.i.). The excit-

atory synaptic input to the LSO is more affected by

the conditioning. *p < 0.05; **p < 0.01; ***p < 0.001.

excitatory and inhibitory terminals. This

results in an enhanced effect of baclofen

on the excitatory pathway in the LSO as

compared with the inhibitory pathway.

DISCUSSION

In this study we demonstrate that GABA

acts as a retrograde transmitter in the

LSO, an auditory brainstem nucleus involved in sound localiza-

tion, by differentially activating presynaptic GABAB receptors

on the excitatory and inhibitory inputs. We also reveal that

GABAB receptor activity in the LSO fine-tunes the sound locali-

zation sensitivity of these neurons. This suggests that adjusting

the balance of excitation and inhibition, by means of retrograde

release of GABA, might function as an effective control mecha-

nism for the adaptation of auditory brainstem neurons to sound

localization sensitivity in the prevailing sound environment.

Retrograde signaling through ‘‘classical’’ neurotransmitters

has been shown to contribute to short-term modifications of syn-

aptic efficacy (reviewed by Ludwig and Pittman, 2003; Zilberter

et al., 2005). For instance, studies of the neocortex layer 2/3

(Zilberter et al., 1999) and the olfactory bulb (Aroniadou-Ander-

jaska et al., 2000; Isaacson, 2001; Isaacson and Vitten, 2003;

Murphy et al., 2005) have reported that GABA can be released

through exocytosis from dendrites. Our results strongly suggest

that GABA is released from the dendrites of LSO neurons. This is

supported by the fact that many LSO principal cells synthesize

GABA (Roberts and Ribak, 1987; Helfert et al., 1989; Gonza-

lez-Hernandez et al., 1996) and display labeling for VGAT
132 Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc.
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(Chaudhry et al., 1998; present study). Furthermore, in this study,

the depolarization-induced GABA release from the LSO neurons

was completely prevented by intracellular Ca2+ buffering and

BoNT D. This is consistent with a release mechanism dependent

on a rise in the intracellular Ca2+ concentrations, such as exocy-

tosis (reviewed by Sudhof, 2004). In the present experiments, el-

evation of the dendritic Ca2+ concentration may have arisen due

to activation of voltage-gated Ca2+ channels in response to

backpropagating action potentials (Spruston et al., 1995; Kaiser

et al., 2001). Alternatively, direct Ca2+ influx into the dendrites of

LSO neurons through Ca2+-permeable receptors could provide

an action-potential-independent rise in Ca2+ concentration (Cai-

cedo and Eybalin, 1999; Wu and Fu, 1998; Schmid et al., 2001).

Figure 6. GABAB Receptor Activation Reduces the Frequency of

mEPSCs, but Not mIPSCs

Individual experiments illustrating spontaneous and miniature EPSCs, iso-

lated with strychnine (0.5 mM), and of spontaneous and miniature IPSCs,

isolated with DNQX (10 mM), from LSO neurons before and after applica-

tion of baclofen (10 mM). The sodium channel blocker TTX (1 mM) and the

Ca2+ channel blocker Cd2+ (100 mM) were used to investigate the contribu-

tion of (A) action-potential-independent transmitter release, (B) action-po-

tential-dependent and -independent transmitter release, and (C) Ca2+-de-

pendent transmitter release. Graphs illustrate the cumulative distribution

of interevent intervals of postsynaptic currents under the control condition

(black lines) and during baclofen application (red lines). The insets show

the mean postsynaptic current frequency recorded from LSO cells in the

control condition and during baclofen application. *p < 0.05; **p < 0.01.

Future studies should dissect the contribution of these com-

ponents to the Ca2+-dependent release of GABA in the LSO.

It is also interesting to note that LSO principal neurons, which

most likely provide a glutamatergic or glycinergic input to

their target nuclei (Glendenning et al., 1992), use GABA as

a retrograde transmitter released from their dendrites. A

mixed glutamatergic-GABAergic phenotype has indeed

been described in granule cells of the hippocampal dentate

gyrus (Gutierrez, 2003).

It cannot be ruled out that acoustic stimulation might trig-

ger other sources of GABA release in the LSO; for instance,

release from the periolivary brainstem nuclei or descending

projections (Coomes Peterson and Schofield, 2007; Thomp-

son and Schofield, 2000). Indeed, GABAergic terminals of

unknown origin have been documented in the LSO (Helfert

et al., 1992; Korada and Schwartz, 1999). However, when

we stimulated regions adjacent to the LSO, a technique

that in most cases elicits transmitter release of the fibers

stimulated, we never observed any form of GABA-mediated

response. Also, bath application of NO711 (20–100 mM),

a GABA-uptake blocker of GAT-1, the predominant isoform

in the superior olivary complex (Durkin et al., 1995), affected

neither evoked EPSCs nor evoked IPSCs (data not shown). In

order to ultimately resolve the issue of the putative origins of

GABA release under in vivo conditions, selective intracellular

stimulation of LSO neurons in combination with pharmaco-

logical manipulation of GABAB receptors had to be employed

in the intact animal.

Clearly GABA, released from the LSO neurons, affects the ex-

citatory input more strongly than it affects the inhibitory input.

One underlying mechanism seems to be related to differences

in GABAB receptor control of transmitter release at the two types

of terminals. Previous studies have shown that presynaptically

located GABAB receptors modulate transmitter release by either

inhibiting voltage-gated Ca2+ channels (Scholz and Miller, 1991;

Takahashi et al., 1998; Isaacson, 1998) or directly interacting

with the synaptic release machinery (Scanziani et al., 1992; Ditt-

man and Regehr, 1996; Sakaba and Neher, 2003). Because both

types of mechanisms seem to act in tandem at the excitatory ter-

minals in the LSO, this is likely to make them more susceptible to

GABAB receptor-mediated inhibition of transmitter release. It is
Neuron 59, 125–137, July 10, 2008 ª2008 Elsevier Inc. 133
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also possible that the large diversity among presynaptic Ca2+

channels, which remains to be classified in the LSO, may con-

tribute further to the heterogeneous actions of presynaptic

GABAB receptors on the excitatory and inhibitory release path-

ways (Wu and Saggau, 1997; Lei and McBain, 2003). Another

factor that could explain the differential effects of GABA on exci-

tation and inhibition is the spatial distribution of the excitatory

and inhibitory inputs on the neurons. Excitatory inputs to LSO

neurons terminate predominantly on the dendrites, whereas in-

hibitory inputs terminate predominantly on the soma (Cant,

1984; Helfert et al., 1992). These anatomical differences imply

that dendritic GABA release affects the excitatory inputs more

than the inhibitory ones.

In many sensory systems chronic changes in overall activity

levels (over a period of days) drive compensatory changes in ex-

citatory and inhibitory synaptic strength, which keep neuronal

properties in a working range and promote stability of firing (Ko-

tak et al., 2005). This type of homeostatic plasticity, which is also

referred to as ‘‘synaptic scaling,’’ is distinct from input-specific

synaptic plasticity (reviewed by Turrigiano and Nelson, 2004;

Wierenga et al., 2005). The short-term presynaptic gain control

mechanism observed in the present study is probably not

a form of ‘‘homeostatic synaptic scaling,’’ but rather represents

a relatively fast fine-tuning of the synaptic dynamics, which in

turn will regulate sensory information processing carried out by

these neurons.

So, when and how does retrograde GABA release modulate

sound localization behavior? At this time, we can only speculate

as to which natural situations this mechanism may be useful in.

We propose that auditory spatial discrimination improves during

retrograde GABA signaling in the LSO as follows: a sound coming

from the left is louder at the left ear than at the right ear, which re-

sults in neurons in the left LSO firing action potentials (Figure 7A).

As a result, the action-potential-induced GABA release from the

dendrites depresses the excitatory inputs more than the inhibi-

tory inputs (Figure 7B), causing a shift in the dynamic part of the

response toward the direction of the current sound source and

narrowing the binaural response area of the neuron (Figure 7C).

Since the discharge rates change maximally at the dynamic

part of the response in reaction to small changes in sound loca-

tion, the ILD sensitivity has now adapted to more lateral positions

and should improve localization in the corresponding azimuthal

area (i.e., subsequent sounds from a similar spatial location might

be localized with an enhanced precision). This type of auditory

spatial adaptation has indeed been observed in humans, where

a preceding sound selectively improves the ability to spatially

segregate subsequent sounds from the same direction (Getz-

mann, 2004). In addition to this change in coding range, activation

of presynaptic GABAB receptor also serves as an adaptive gain

control of the ILD function, which is crucial for the accurate en-

coding of variable input signals such as overall sound intensity

(Brenner et al., 2000; Dean et al., 2005). Although neuronal gain

control has usually been associated with a shunting of postsyn-

aptic inhibition (Mitchell and Silver, 2003), there is also evidence

that activation of presynaptic metabotropic receptors, such as

presynaptic metabotropic glutamate receptors, can impose a

gain change on the mossy fiber granule cell synapse in the cere-

bellum in the subsecond timescale (Mitchell and Silver, 2000).
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Recent experiments from our group show that the response

rate of an LSO neuron to a specific ILD is strongly dependent

on the ILD of the preceding sound (Park et al., 2008). A similar

context-dependent adaptive mechanism has been documented

in other sensory systems of the brain where GABAB receptors

sharpen receptive fields (Binns and Salt, 1997; Vucinic et al.,

2006). Moreover, as GABA is retrogradely released upon spiking

activity of a neuron, the adjustment of the balance of excitation

and inhibition should depend on the neuron’s previous firing

rate. Larger discharge rates ought to weaken excitatory inputs

more than inhibitory inputs and thereby also provide an effective

Figure 7. Conceptual Model of Retrograde GABA Signaling in

the LSO

(A) Schematic representation of the circuitry encoding ILDs in the gerbil. In this

figure, neurons in the left LSO fire action potentials because the sound is

louder at the left ear than at the right ear (positive ILDs).

(B) Postsynaptic activity in LSO neurons causes dendritic release of GABA,

which activates presynaptic GABAB receptors on the synaptic terminals. The

excitatory input from the ipsilateral ear is more affected than the inhibitory

input from the contralateral ear, due to differential regulation of transmitter

release by the GABAB receptors on the respective terminals.

(C) A hypothetical ILD function illustrating how ILD sensitivity is adjusted during

more (dotted line) or less (dashed line) action-potential-related (AP) GABA re-

lease from an LSO neuron. Note that further GABA release shifts the dynamic

range of the response toward the left ear (i.e., ILD sensitivity increases at the

side where the sound comes from) and decreases the gain of the input-output

function (inset).
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mechanism for monaural self-adaptation. Indeed, a recent study

in the inferior colliculus demonstrated that auditory neurons have

the capacity to adapt within a few seconds to the most com-

monly occurring sound levels by adjusting the threshold and

the slope of their output function to the statistical distribution

of the presented stimuli (Dean et al., 2005). This sensory adaptive

phenomenon could be an explanation for the self-adaptive retro-

grade action of GABA described in the present study. It is also

interesting to note that GABA appears to have a similar self-

regulatory role in the avian auditory system, in which neurons

of the superior olivary nucleus, activated by ipsilateral sound

stimulation, send GABAergic backprojections, which serve as

a feedback inhibitory control, to several auditory brainstem

nuclei (Yang et al., 1999).

A feedback control of synaptic inputs via dendritic release of

a neurotransmitter may well be a general mechanism allowing

auditory neurons to adapt and extend their range of coding in or-

der to match the sensory environment and accurately represent

auditory space.

EXPERIMENTAL PROCEDURES

All experiments were performed in accordance with the rules laid down by the

EC Council Directive (86/89/ECC) and German animal welfare legislation.

Single-Unit Recordings and Drug Iontophoresis In Vivo

Gerbils (Meriones unguiculatus) were anesthetized with a mixture of Ketamine

(10 mg/100 g) and Rompun (2%) throughout the experiment. Animals were

placed on a heated cushion in a sound-attenuated chamber and electrodes

were inserted stereotaxically through the foramen magnum. Recording elec-

trodes were glass pipettes filled with 2 M sodium acetate (impedance 10–

30 MU). Action potentials were recorded using conventional methods. Only

action potentials from single neurons with a signal-to-noise ratio >5 were re-

corded. Each recording electrode was attached to a five-barrel glass pipette

used for iontophoretic application of drugs, which included the GABAB agonist

baclofen (50 mM; pH 3.5) and two GABAB antagonists, CGP35348 (100 mM;

pH 3.5–4) and CGP55845 (5 mM; pH 3.5). One of the barrels was filled with

4% Horse-Radish-Peroxidase (HRP, Sigma) solution, which was used to

mark recording locations for histological reconstructions. Another one of the

barrels was filled with sodium acetate (1 M) and served as a balancing channel.

Stimuli were delivered using Tucker Davis Technologies (TDT) System II and

two Beyer dynamics speakers (model DT 990), fitted to the ears via probe

tubes (2 mm inner diameter). The stimulus delivering system and the speakers

were calibrated using a 0.25 in microphone (Reinstorp VtS, Germany), a mea-

suring amplifier (MV 302, Microtech, Gefell, Germany), and a waveform ana-

lyzer (Stanford Research Systems, model SR770 FFT network analyzer). After

electrophysiological isolation of a single neuron, a frequency-tuning curve was

measured and the best frequency and threshold were determined. ILD func-

tions were generated by simultaneously presenting 100 ms tones at the neu-

ron’s best response frequency. The intensity at the ipsilateral (excitatory) ear

was set 20 dB above hearing threshold, whereas the intensity at the contralat-

eral (inhibitory) ear was varied by ± 20–40 dB in a pseudorandom order. Stimuli

were delivered at a rate of 4/s with 10 or 20 repetitions at each ILD. The pop-

ulation of neurons used for the two pharmacological manipulations did not

differ in their best frequency and 50% ILD. Data were analyzed offline using in-

dividual spike times and peristimulus time histograms. Sigmoid curves were

fitted to the recorded ILD functions using Matlab (The MathWork Inc., Natick,

USA) to determine 50% points and gain of the functions. Only curve fits with

R2 R 0.9 were included in the data set. For 50% points calculations, the

reversal point ILDs of the normalized fitted curves were determined. To

assess the gain of the ILD functions, the points of 80% and 20% of maximum

response rate of the unnormalized fitted functions were determined, and the

slope between the two points was calculated by linear regression.
Whole-Cell Patch-Clamp Recordings In Vitro

Transverse brainstem slices (200 mm) in the area of the superior olivary com-

plex were prepared from gerbils aged P15–21 (3–8 days after hearing onset)

as previously described (Magnusson et al., 2005). Slices were transferred to

a recording chamber perfused (3–5 ml/min) with oxygenated artificial cerebro-

spinal fluid (aCSF) at 32�C ± 2�C. Current- and voltage-clamp recordings were

made from LSO principal cells using a Multiclamp 700A amplifier (Axon Instru-

ments, Foster City, CA) with standard electrode solutions as described under

supplementary materials. During voltage-clamp recordings, the series resis-

tance was lower than 10 MU, compensated by 70%–80%, and not allowed

to change more than 20%. The principal cells were visually identified by their

large fusiform somata with dendrites extending bipolarly. Upon injection of hy-

perpolarizing and depolarizing currents, these neurons exhibited an onset

spike pattern, the typical large voltage-gated conductances in the depolarizing

and hyperpolarizing range, and very low input resistance (Figure S2A). Neuron

size was estimated from the capacitance compensation measurement under

voltage-clamp conditions on the amplifier. Only large neurons with a capaci-

tance larger than 20 pF were included in the analysis. In the gerbil LSO, the

large principal cells constitute >75% of the neurons (Helfert and Schwartz,

1987). This makes them a very likely target for in vivo recordings. Also, LSO

neurons with very similar intrinsic properties to the ones recorded in the pres-

ent study have previously been identified as putative principal cells, based on

their morphological features and their firing properties in vitro (Adam et al.

1999) and in vivo (Finlayson and Caspary, 1989).

Evoked synaptic responses (interstimulus interval 20–30 ms) were elicited

with a glass microelectrode filled with 2 M NaCl, which was positioned in either

the fibers coming from the ipsilateral cochlear nucleus or the trapezoid fiber

tracts. Isolation of glycinergic or glutamatergic postsynaptic responses was

accomplished by addition of 0.5 mM strychnine or 10 mM DNQX, respectively,

to the aCSF. During some voltage-clamp recordings, the Ih-blocker ZD7288

(10 mM) was utilized. Experimental protocols and data analysis are described

in detail in the Supplementary Material and Methods.

The signals were filtered with a low-pass 4-pole Bessel filter at 10 kHz,

sampled at 20–50 kHz and digitized using a Digidata 1322A interface (Axon In-

struments, Foster City, CA). Stimulus generation, data acquisition, and offline

analysis of data were performed using pClamp Software (Version 9.0 or 10.0;

Axon Instruments, Foster City, CA). Results are expressed as mean ± standard

deviations in the text and as mean ± 95% confidence intervals in the figures

unless otherwise stated. The level of significance was determined by Student’s

paired or unpaired t test (p < 0.05 was considered statistically significant).

Immunohistochemistry

Gerbils were deeply anesthetized with isofluorane and then perfused transcar-

dially with 0.9% Ringer followed by 4% PFA (n = 4). Brains were removed and

postfixed for 6 hr. Tissue was then sectioned at 40 mm with a vibratome. Stan-

dard triple immunofluorescent labeling against VGAT (1:400; Chemicon Inter-

national Inc.), MAP2 (1:250; Labvision Corp.), and Nissl (1:100; Molecular

Probes, Germany) was performed (Supplementary Material and Methods).

Confocal optical sections were acquired with a Leica TCS SP confocal la-

ser-scanning microscope (Leica Microsystems, Mannheim) equipped with

Plan Apo 100 3 /1.4 NA oil immersion objective. Fluorochromes were visual-

ized using an argon laser with excitation wavelengths of 488 nm (emission

510–540 nm) for Alexa 488, a DPSS laser with a laser line of 561 nm (emission

565–600) for Cy3, and a helium-neon laser with an excitation wavelength of

633 nm (emission 640�760 nm) for Nissl Deep Red. For each optical section

the images were collected sequentially for three fluorochromes. Stacks of

eight-bit grayscale images were obtained with axial distances of 300 or 100

nm between optical sections and pixel sizes of 195 to 24 nm depending on

the selected zoom factor. After stack acquisition, Z chromatic shift between

color channels was corrected. RGB stacks, montages of RGB optical sec-

tions, and maximum-intensity projections were created using ImageJ 1.37k

plugins. Prior to 3D image reconstructions (generated with Amira 3.1, TGS),

3D data stacks of light optical sections were deconvolved with the Huygens

(SVI) maximum-likelihood-estimation algorithm (quality factor 0.1; 20Y40 iter-

ations; signal-to-noise ratio was set to 30) using measured point-spread func-

tions. Surface rendering was applied for the MAP2 staining to highlight the

borders of the dendrites.
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For the GABAB immunostaining, sections were prepared as described

above (n = 5). Standard immunostaining was performed against the GABAB-

R1 subunit of the GABAB receptor (anti-GABAB-R1, 1:2000, Chemicon Interna-

tional Inc., USA) and subsequently visualized with a DAB protocol (Supple-

mentary Material and Methods).

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/59/1/125/DC1/.
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