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1. Introduction

We study inverse nodal and inverse spectral problems for differential operators. Inverse spectral problems consist in
recovering operators from their spectral characteristics. Such problems play an important role in mathematics and have
many applications in natural sciences (see, for example, monographs [2–4,16,18,21,26,28] and the references therein). Inverse
nodal problems consist in constructing operators from the given nodes (zeros) of eigenfunctions (refer to [15,19,22,23]). In
the present paper we obtain some results on inverse nodal and inverse spectral problems and establish connections between
them.

Consider the following boundary value problem with discontinuity conditions inside the interval:

−y′′ + q(x)y = λy, 0 < x < T , (1)

U (y) := y′(0) − hy(0) = 0, V (y) := y′(T ) + H y(T ) = 0, (2)

y(T /2 + 0) = a1 y(T /2 − 0), y′(T /2 + 0) = a−1
1 y′(T /2 − 0) + a2 y(T /2 − 0). (3)

Here λ is the spectral parameter, q(x), h, H , a1, a2 are real, q(x) ∈ L(0, T ), and a1 > 0. Without loss of generality we assume
that

T∫
0

q(x)dx = 0. (4)
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We will consider inverse problems of recovering q(x), h and H from the given spectral or nodal characteristics. The coeffi-
cients a1 and a2 from (3) are assumed to be known a priori and fixed. We denote the boundary value problem (1)–(3) by
B = B(q,h, H).

Boundary value problems with discontinuity conditions inside the interval often appear in applications. Such problems
are connected with discontinuous material properties. For example, discontinuous inverse problems appear in electronics
for constructing parameters of heterogeneous electronic lines with desirable technical characteristics (see [17,20]). Spec-
tral information can be used to reconstruct the permittivity and conductivity profiles of a one-dimensional discontinuous
medium (see [13,24]). Boundary value problems with discontinuities in an interior point also appear in geophysical models
for oscillations of the Earth (see [1,14]). Here the main discontinuity is caused by reflection of the shear waves at the base of
the crust. Discontinuous inverse problems (in various formulations) have been considered in [5,7,12,13,24,25,27] and other
works.

2. Inverse spectral problems

In this section we study the so-called incomplete inverse problem of recovering the potential q(x) from a part of the
spectrum of B provided that the potential is known a priori on a part of the interval. We note that for recovering q(x) on
the whole interval (0, T ) it is necessary to specify two spectra of boundary value problems with different boundary con-
ditions (see [27]). We also note that for classical Sturm–Liouville operators incomplete inverse problems were investigated
in [6,9,10].

Let y(x) and z(x) be continuously differentiable functions on [0, T /2] and on [T /2, T ]. Denote 〈y, z〉 := yz′ − y′z. If y(x)
and z(x) satisfy the matching conditions (3), then

〈y, z〉|x=T /2+0 = 〈y, z〉|x=T /2−0. (5)

Let ϕ(x, λ) be the solution of Eq. (1) satisfying the initial conditions y(0) = 1, y′(0) = h and the matching condition (3).
Then U (ϕ) = 0. Denote Δ(λ) := −V (ϕ) (U and V are defined in (2)). The function Δ(λ) is entire in λ of order 1/2, and
its zeros {λn}n�0 coincide with the eigenvalues of B . The function Δ(λ) is called the characteristic function for B . Since the
boundary value problem B is self-adjoint, all zeros of Δ(λ) are real and simple.

Let λ = ρ2, τ := Imρ . For |λ| → ∞ uniformly in x one has (see [27] or Chapter 1 in [28]):

ϕ(x, λ) = cosρx +
(

h + 1

2

x∫
0

q(t)dt

)
sinρx

ρ
+ o

(
1

ρ
exp

(|τ |x)), x <
T

2
, (6)

ϕ(x, λ) = (
b1 cosρx + b2 cosρ(T − x)

) +
(

F1(x)
sinρx

2ρ
+ F2(x)

sinρ(T − x)

2ρ

)
+ o

(
1

ρ
exp

(|τ |x)), x >
T

2
, (7)

ϕ′(x, λ) = −ρ sinρx +
(

h + 1

2

x∫
0

q(t)dt

)
cosρx + o

(
exp

(|τ |x)), x <
T

2
, (8)

ϕ′(x, λ) = ρ
(−b1 sinρx + b2 sinρ(T − x)

) +
(

F1(x)
cosρx

2
− F2(x)

cosρ(T − x)

2

)
+ o

(
exp

(|τ |x)), x >
T

2
, (9)

where

F1(x) = b1

(
2h +

x∫
0

q(t)dt

)
+ a2, F2(x) = b2

(
2h −

x∫
0

q(t)dt + 2

T /2∫
0

q(t)dt

)
− a2,

b1 = a1 + a−1
1

2
, b2 = a1 − a−1

1

2
.

It follows from (6)–(9) that for |λ| → ∞,

Δ(λ) = b1

(
ρ sinρT − ω cosρT

2
+ ω1

2

)
+ o

(
exp

(|τ |T ))
, (10)

where

ω = 2H + 2h +
T∫

0

q(t)dt + a2

b1
, ω1 = −b2

b1

(
2H − 2h +

T∫
0

q(t)dt − 2

T /2∫
0

q(t)dt

)
− a2

b1
.

It is easy to see that
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ω − ω1 = 2b−1
1

(
(b1 + b2)H + (b1 − b2)h + a2

)
,

ω + ω1 = 2b−1
1

(
(b1 − b2)H + (b1 + b2)h

)
.

}
(11)

Using (10) by the well-known method (see, for example, [4]) one has that for n → ∞,

ρn := √
λn = πn

T
+ 1

2πn

(
ω + (−1)n−1ω1

) + o

(
1

n

)
. (12)

Together with B we consider a boundary value problem B̃ = B(q̃, h̃, H̃) of the same form but with different coefficients
q̃, h̃, H̃ (we remind that the coefficients a1 and a2 from (3) are fixed and known a priori). We agree that if a certain symbol α
denotes an object related to B , then α̃ will denote an analogous object related to B̃ . The following theorem has been proven
by M. Horvath [11] for the Sturm–Liouville equation without interior discontinuity. We show it also holds for (1)–(3).

Theorem 1. Fix b ∈ (0, T /2]. Let Λ ⊂ N ∪ {0} be a subset of nonnegative integer numbers, and let Ω := {λn}n∈Λ be a part of the
spectrum of B such that the system of functions {cos 2ρnx}n∈Λ is complete in L2(0,b). Let q(x) = q̃(x) a.e. on (b, T ), H = H̃ , and
Ω = Ω̃ . Then q(x) = q̃(x) a.e. on (0, T ) and h = h̃.

Proof. Since

−ϕ′′(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ), −ϕ̃′′(x, λ) + q̃(x)ϕ̃(x, λ) = λϕ̃(x, λ),

ϕ(0, λ) = ϕ̃(0, λ) = 1, ϕ′(0, λ) = h, ϕ̃′(0, λ) = h̃,

it follows from (5) that

T∫
0

r(x)ϕ(x, λ)ϕ̃(x, λ)dx = (∣∣T /2−0
0 + ∣∣T

T /2+0

)(
ϕ′(x, λ)ϕ̃(x, λ) − ϕ(x, λ)ϕ̃′(x, λ)

)

= ϕ(T , λ)Δ̃(λ) − Δ(λ)ϕ̃(T , λ) − (h − h̃), (13)

where r(x) = q(x) − q̃(x). Taking (11) and (12) into account we get

h = h̃. (14)

Since Δ(λn) = Δ̃(λn) = 0 for n ∈ Λ, it follows from (4), (13) and (14) that

b∫
0

r(x)

(
ϕ(x, λn)ϕ̃(x, λn) − 1

2

)
dx = 0, n ∈ Λ. (15)

For x � T /2 the following representation holds (see [4,16,18]):

ϕ(x, λ) = cosρx +
x∫

0

K (x, t) cosρt dt, (16)

where K (x, t) is a continuous function which does not depend on λ. Hence

ϕ(x, λ)ϕ̃(x, λ) − 1

2
= 1

2

(
cos 2ρx +

x∫
0

V (x, t) cos 2ρt dt

)
,

where V (x, t) is a continuous function which does not depend on λ. Substituting (16) into (15) and taking the relation∫ T
0 r(x)dx = 0 into account, we calculate

b∫
0

(
r(x) +

b∫
x

V (t, x)r(t)dt

)
cos 2ρnx dx = 0, n ∈ Λ,

and consequently,

r(x) +
b∫

V (t, x)r(t)dt a.e. on (0,b).
x
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Since this homogeneous integral equation has only the trivial solution it follows that r(x) = 0 a.e. on (0,b), i.e. q(x) = q̃(x)
a.e. on (0,b). �

Theorem 1 will be used in the next section for studying inverse nodal problems. The next theorem is devoted to the
particular case when b = T /2. In this case one has to take the whole spectrum, and the completeness can be proved. This
theorem is a generalization of the result from [9] for the classical Sturm–Liouville operators.

Theorem 2. Let q(x) = q̃(x) a.e. on (T /2, T ), H = H̃ and λn = λ̃n for all n � 0. Then q(x) = q̃(x) a.e. on (0, T ) and h = h̃.

Proof. Let us show that the system of functions {cosρnx}n�0 is complete in L2(0, T ). Indeed, let f (x) ∈ L2(0, T ) be such
that

T∫
0

f (x) cosρnx dx = 0, n � 0. (17)

Consider the functions

F (λ) :=
T∫

0

f (x) cosρx dx, F0(λ) := F (λ)

Δ(λ)
.

Fix δ > 0, and denote Gδ := {ρ: |ρ − ρn| � δ ∀n � 0}. Then (see [27])∣∣Δ(λ)
∣∣ � C |ρ|exp

(|τ |T )
, ρ ∈ Gδ,

and consequently,

∣∣F0(λ)
∣∣ � C

|ρ| , ρ ∈ Gδ. (18)

On the other hand, it follows from (17) that the function F0(λ) is entire in λ. Together with (18) this yields F0(λ) ≡ 0, i.e.
F (λ) ≡ 0. Hence f (x) = 0 a.e. on (0, T ). Thus, the system of functions {cosρnx}n�0 is complete in L2(0, T ). Applying now
Theorem 1 for b = T /2 we obtain q(x) = q̃(x) a.e. on (0, T ) and h = h̃. �
Corollary 1. Let q(x) = q̃(x) a.e. on (T /4, T ), H = H̃ and λ2n = λ̃2n for all n � 0. Then q(x) = q̃(x) a.e. on (0, T ) and h = h̃.

Proof. It is sufficient to prove that {cos(2ρ2nx)} is complete in L2(0, T /4). For the purpose, the reader can refer to Theorem 3
on p. 163 of [21]. �
3. Inverse nodal problems

The study of inverse nodal problem without discontinuous conditions was initiated by O.H. Hald and J.R. McLaughlin
(see [8] and [19]). In this section, we consider the inverse nodal problems with discontinuous conditions. In the first part of
this section we obtain uniqueness theorems and a procedure of recovering the potential q(x) on the whole interval (0, T )

from a dense subset of nodal points. In the second part of the section we establish connections between inverse nodal and
spectral problems. Using these connections and the results of Section 2, it is proved that under additional restrictions the
potential can be recovered on the whole interval (0, T ) from a subset of nodal points situated only on a part of the interval.

The eigenfunctions of the boundary value problem B have the form yn(x) = ϕ(x, λn). We note that yn(x) are real-valued
functions. Substituting (12) into (6) and (7) we obtain the following asymptotic formulae for n → ∞ uniformly in x:

yn(x) = cos
πn

T
x + 1

2πn

(
T

(
2h +

x∫
0

q(t)dt

)
− (

ω + (−1)n−1ω1
)
x

)
sin

πn

T
x + o

(
1

n

)
, x <

T

2
, (19)

yn(x) = (
b1 + (−1)n−1b2

)
cos

πn

T
x + 1

2πn

(
T F1(x) + (−1)n−1T F2(x)

− (
ω + (−1)n−1ω1

)(
b1x + (−1)n−1b2(T − x)

))
sin

πn

T
x + o

(
1

n

)
, x >

T

2
. (20)

For the boundary value problem B an analog of Sturm’s oscillation theorem is true. More precisely, the eigenfunction yn(x)
has exactly n (simple) zeros inside the interval (0, T ), namely: 0 < x1

n < · · · < xn
n < T . The set XB := {x j

n}n�1, j=1,n is called

the set of nodal points of the boundary value problem B . Denote Xk := {x j } , k = 0,1. Clearly, X0 ∪ X1 = XB .
B 2m−k m�1, j=1,2m−k B B
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Inverse nodal problems consist in recovering the potential q(x) and the coefficients h and H from the given set XB of nodal
points or from a certain its part. Denote

α
j

n :=
(

j − 1

2

)
T

n
.

Taking (19)–(20) into account, we obtain the following asymptotic formulae for nodal points as n → ∞ uniformly in j:

x j
n = α

j
n + T

2π2n2

(
T

(
2h +

α
j

n∫
0

q(t)dt

)
− (ω − ω1)α

j
n

)
+ o

(
1

n2

)
, x j

n ∈
(

0,
T

2

)
, n = 2m, (21)

x j
n = α

j
n + T

2π2n2

(
T

(
2h +

α
j

n∫
0

q(t)dt

)
− (ω + ω1)α

j
n

)
+ o

(
1

n2

)
, x j

n ∈
(

0,
T

2

)
, n = 2m + 1, (22)

x j
n = α

j
n + T

2π2n2

(
T

α
j

n∫
0

q(t)dt − (ω − ω1)α
j

n + c0

)
+ o

(
1

n2

)
, x j

n ∈
(

T

2
, T

)
, n = 2m, (23)

x j
n = α

j
n + T

2π2n2

(
T

α
j

n∫
0

q(t)dt − (ω + ω1)α
j

n + c1

)
+ o

(
1

n2

)
, x j

n ∈
(

T

2
, T

)
, n = 2m + 1, (24)

where

c0 = 2T a2

b1 + b2
− 2T b2

b1 + b2

T /2∫
0

q(t)dt + 2T h(b1 − b2)

b1 + b2
+ T b2(ω − ω1)

b1 + b2
,

c1 = 2T b2

b1 − b2

T /2∫
0

q(t)dt + 2T h(b1 + b2)

b1 − b2
− T b2(ω + ω1)

b1 − b2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(25)

We note that the sets Xk
B , k = 0,1, are dense on (0, T ). Using these formulae we arrive at the following assertion.

Theorem 3. Fix k = 0 ∨ 1 and x ∈ [0, T ]. Let {x jn
n } ∈ Xk

B be chosen such that limn→∞ x jn
n = x. Then there exists a finite limit

gk(x) := lim
n→∞

2π2n

T 2

(
x jn

n n −
(

jn − 1

2

)
T

)
, (26)

and

gk(x) =
x∫

0

q(t)dt − ω + (−1)k+1ω1

T
x + 2h, x � T

2
,

gk(x) =
x∫

0

q(t)dt − ω + (−1)k+1ω1

T
x + ck

T
, x � T

2
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(27)

where c0 and c1 are defined by (25).

Let us now formulate a uniqueness theorem and provide a constructive procedure for the solution of the inverse nodal
problem.

Theorem 4. Fix k = 0 ∨ 1. Let X ⊂ Xk
B be a subset of nodal points which is dense on (0, T ). Let X = X̃ . Then q(x) = q̃(x) a.e. on

(0, T ), h = h̃, H = H̃ . Thus, the specification of X uniquely determines the potential q(x) on (0, T ) and the coefficients of the boundary
conditions. The function q(x) and the numbers h, H can be constructed via the formulae

q(x) = g′
k(x) − 1

T

(
gk(T ) − gk(0)

)
, (28)

h = gk(0)

2
, H = − gk(T )

2
− (−1)k b2

b1 + (−1)kb2

T /2∫
0

q(t)dt, (29)

where gk(x) is calculated by (27).
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Proof. Formulae (28)–(29) follow from (27) and (4). Note that by (27), we have

g′
k(x) = p(x) −

(
ω + (−1)k+1ω1

T

)
(30)

hence

gk(T ) − gk(0) =
T∫

0

p(x)dx − (
ω + (−1)k+1ω1

) = −(
ω + (−1)k+1ω1

)
. (31)

Then (28) can by derived directly from (30) and (31). Similarly, we can derive (29). Note that if X = X̃ , then (26) yields
gk(x) ≡ g̃k(x), x ∈ [0, T ]. By virtue of (28)–(29), we get q(x) = q̃(x) a.e. on (0, T ), h = h̃, H = H̃ . �

Analogously one can prove the following more general assertion.

Theorem 5. Let X ⊂ XB be dense on (0, T ). If X = X̃ , then q(x) = q̃(x) a.e. on (0, T ), h = h̃, H = H̃ .

Proof. The consequence follows directly from (28)–(29). �
Alternatively, we can obtain a reconstruction formula of potential function from the nodal lengths. For X ⊂ XB we denote

ΛX := {n: ∃ jx j
n ∈ X}.

Definition 1. Let X ⊂ XB . The set X is called twin if together with each of its points x j
n the set X contains at least one of

adjacent nodal points x j−1
n or/and x j+1

n .

Let us go on to the investigation of an incomplete inverse nodal problem when nodal points are given only on a part of
the interval. First we will prove an auxiliary assertion.

Lemma 1. Fix n, j. Let x j
n = x̃ j

n , x j+1
n = x̃ j+1

n , and let q(x) = q̃(x) a.e. on (x j
n, x j+1

n ). Then λn = λ̃n.

Proof. On the interval x ∈ (x j
n, x j+1

n ) we consider the boundary value problem Bnj for Eq. (1) with the matching condi-

tions (3) (if T /2 ∈ (x j
n, x j+1

n )) and with the boundary conditions

y
(
x j

n
) = y

(
x j+1

n
) = 0.

The function yn(x) = ϕ(x, λn) is the eigenfunction of B , and simultaneously it is the eigenfunction of Bnj . Since yn(x) has no

zeros for x ∈ (x j
n, x j+1

n ), it follows that λn is the first eigenvalue of Bnj , and yn(x) is the first eigenfunction. Since q(x) = q̃(x)

a.e. on (x j
n, x j+1

n ), one has λn = λ̃n . �
Theorem 6. Fix k = 0 ∨ 1 and b ∈ (0, T /4). Let X ⊂ Xk

B ∩ (b, T ) be a dense on (b, T ) twin subset of nodal points such that the system

of functions {cos 2ρnx}n∈ΛX is complete in L2(0,b). Let X = X̃ and H = H̃ . Then q(x) = q̃(x) a.e. on (0, T ), and h = h̃.

Proof. Since X = X̃ , it follows that gk(x) ≡ g̃k(x) for x ∈ (b, T ), and consequently, g′
k(x) = g̃′

k(x) a.e. on (b, T ). Together
with (27) this yields q(x) − q̃(x) = d a.e. on (b, T ), where d is a constant. Denote q0(x) := q̃(x) + d, x ∈ (0, T ). Then q(x) =
q0(x) a.e. on (b, T ). Let {λ0

n}n�1 be the spectrum of L(q0, h̃, H̃). By Lemma 1, λn = λ0
n for n ∈ ΛX . Applying Theorem 1 we

obtain q(x) = q0(x) a.e. on (0, T ), and h = h̃. Thus, q(x) = q̃(x)+d a.e. on (0, T ). Using the relation
∫ T

0 q(t)dt = ∫ T
0 q̃(t)dt = 0,

we calculate d = 0, i.e. q(x) = q̃(x) a.e. on (0, T ). �
Theorem 7. Fix b ∈ (0, T /2). Let X := XB ∩ [b, T ). If X = X̃ , H = H̃ , then q(x) = q̃(x) a.e. on (0, T ), and h = h̃.

Proof. The proof is similar to that of Theorem 6. Let X = X1 ∪ X2, where Xk = Xk
B ∩ (b, T ). Fix k = 0 or 1, by the same

arguments in the proof of Theorem 6, we have q(x) = q0(x) := q̃(x) + d in (b, T ) and h = h̃. Applying Lemma 1, we have
λn = λ̃n , where {λn}n�0 = σ(L) and {λ̃n}n�0 = σ(L̃). By Theorem 1 and the fact

∫ T
0 q(t)dt = ∫ T

0 q̃(t)dt = 0, we obtain d = 0,

q(x) = q̃(x) a.e. on (0, T ), and h = h̃. �
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