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Abstract

Asymptotic expansion for the Laguerre polynomials and for their associated functions is extended to the
case of a weight function which is the product of the Laguerre weight function by a polynomial, nonnegative
on the interval [0;∞[.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Let P be a nonnegative polynomial on [0;∞[, let �n(PwL; x) be the orthonormal polynomial with
respect to the weight function PwL where wL is the Laguerre weight function and let qn(PwL; x) be
its associated function

qn(PwL; x) =
∫ ∞

0

�n(PwL; t)
x − t

P(t)wL(t) dt; x∈C\[0;+∞[:

The aim of this paper is to establish a uniform asymptotic expansion for �n(PwL; x) and qn(PwL; x) for
x in any compact subset K of C\[0;∞[. The results given in this paper are based on the asymptotic
expansion of the Laguerre polynomial given by Szeg:o in [8] and on the asymptotic expansion of
its associated function given by Elliott in [3]. Similar ideas and methods, used for the asymptotic
expansion of the error in Gauss–Laguerre quadrature formulae, can be found in [4].
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The question of asymptotics of orthogonal polynomials is very large. The present paper has found
inspiration in [9], where the weight function was the Jacobi weight multiplied Erst by a polynomial,
and second by an analytic function. As pointed out by the referees, there exists other kind of studies,
namely [1], based on the studies of the recurrence relations (see more references therein) for the
weight exp(−P(x)), or tending to more precise results but for the special case of the Jacobi (in fact
Gegenbauer) polynomials [2].

The paper is organized as follows: in Section 2, we will recall the asymptotic expansion for the
Laguerre orthonormal polynomial, and we will give some notations and general results concerning
orthogonal polynomials. In Sections 3 and 4, we will give an asymptotic expansion, respectively,
for �n(PwL; x) and for qn(PwL; x).

2. Notations and preliminaries results

In this section, we give Erst some notations and deEnitions. Then, we give an asymptotic expansion
of the leading coeFcient of the orthonormal polynomial �n(PwL; x).

Everywhere in the sequel, the argument of complex numbers is deEned in the interval [0; 2�[ and
the function

√
z coincide with the real square root for z real, positive. Everywhere also, K will be

the standard notation for a compact subset of C\[0;∞[.
First, let us present the two following deEnitions.

De�nition 1. We denote by Z the set of holomorphic functions on C\[0;∞[, and ZK the set of
holomorphic functions on K .

De�nition 2. Let X be a Banach space and let S(X ) be the class of all sequences (xn)n; xn ∈X
admitting an asymptotic expansion of the form

xn ∼ a0 +
a1√
n
+
a2
n

+
a3
n
√
n
+ · · ·

where a0; a1; : : :∈X and a0 not identically null. This means that for each k, the sequence (rk;1; rk;2; : : :),
deEned by the relation

xn = a0 +
a1√
n
+
a2
n

+
a3
n
√
n
+ · · ·+ ak

nk=2
+

rk+1; n

n(k+1)=2 ;

is bounded.
S(X; a0) is similarly deEned with a preassigned a0.

Let �n(wL; x) be the orthonormal Laguerre polynomial with respect to the weight function wL(x)=
x�e−x, � real, x∈ ]0;∞[ and let kn(wL) be its leading coeFcient

kn(wL) =
1√

�(n+ 1)�(n+ �+ 1)
:

The leading coeFcient kn(wL) can also be written in the following form:

∃(�n(wL))n ∈ S(C; 1) such that kn(wL) =
n−�=2

�(n+ 1)
�n(wL): (1)
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Adapting the Szeg:o’s theorem given in ([8], p. 199) for the orthogonal Laguerre polynomials to
the orthonormal’s ones, we get the following result (the same result for Jacobi polynomials can be
found in [5]).

Theorem 1. Let x∈C\[0;∞[ and let � be any real. We have for all compact K ⊂ C\[0;∞[ and

for g(x) =
1

2
√
�
ex=2(−x)−(�=2)− 1

4

∃(�n(wL; x))n ∈ S(ZK; 1) such that �n(wL; x) = (−1)ne2
√−nxn−

1
4 g(x)�n(wL; x):

The remainder is uniform with respect to x in any compact set K.
Now, we will give the following theorem which is a modiEcation of Theorem 2 given by Verlinden

in [9].

Theorem 2. Let p¿ 2 and let (xn)n ∈ S(C).

Then

(
n∑

k=1

xk
kp=2

)
n

∈ S(C); and

(
n∏

k=1

(
1 +

xk
kp=2

))
n

∈ S(C):

Proof. Let

xn = a0 +
k−1∑
h=1

ah
nh=2

+
rk;n
nk=2

; Mk = sup
n

|rk;n|:

As xn are bounded, the two parts of the conclusion (sum and product) are equivalent. For the same
reason, as p¿ 2, the series

∑∞
1 xj=jp=2 converges, and so to obtain the conclusion, we will prove

that ( ∞∑
j=n

xj
jp=2

)
n

∈ S(C):

This last quantity will be obtained as the following limit (this will be justiEed in time)
∞∑
j=n

xj
jp=2

= lim
z→1

∞∑
j=n

zj−n xj
jp=2

:

Then
∞∑
j=n

zj−n xj
jp=2

=
∞∑
j=n

zj−n

jp=2
a0 + · · ·+

∞∑
j=n

zj−n

j(p+k−1)=2 ak−1 +
∞∑
j=n

zj−nrk; j
j(p+k)=2

=�(z; p=2; n) a0 + · · ·+ �(z; (p+ k − 1)=2; n)ak−1 +
∞∑
j=n

zj−nrk; j
j(p+k)=2

where, for |z|¡ 1; s¿ 0, x¿ 0, � is deEned by

�(z; s; x) =
∞∑
l=0

zl

(x + l)s
=

1
�(s)

∫ ∞

0

ts−1e−xt

1− ze−t dt: (2)
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For any z in the disc of convergence, �(z; s; x) has an asymptotic expansion (using Watson lemma
[7] c0(s; z)n−s + · · · , and so

∑∞
j=n z

j−nxj=jp=2 has an asymptotic expansion.
In Eq. (2), the power series on the right-hand side converges for z = 1 if s¿ 1, so this series

converges uniformly with respect to z in an angle with vertex 1, i.e. contained in (|z|¡ 1 ∪ {1})
the disc of convergence plus the point 1 on the border of the disc. As all the involved powers
p=2; · · · (p+ k)=2 are strictly greater than 1, this allows to take z=1 in the preceding formulae, and
Enally

p¿ 2 ⇒
( ∞∑

j=n

xj
jp=2

)
n

∈ S(C);

which ends the proof.

Theorem 3. Let w be an admissible weight function on [0;∞[, and let r be a real number. Let
�′n(w; x) be the monic orthogonal polynomial associated to the weight function w on [0;∞[, hn(x)=

(−1)nn−
1
4+r=2�(n+ 1)e2

√−nx and 'n(w; x) = �′n(w; x)=hn(x).
If ('n(w; x))n ∈ S(ZK) for some compact K ⊂ C\[0;∞[, then,

(�(n+ 1)nr=2kn(w))n ∈ S(C):

Proof. As the weight function w is Exed throughout the proof, it will be omitted. Let a′n and b′n be
such that

x�′n(x) = �′n+1(x) + a′n�
′
n(x) + b′n�

′
n−1(x): (3)

Substituting �n(x) = kn�′n(x) in the recurrence formula for the orthonormal polynomials

x�n(x) = cn+1�n+1(x) + dn�n(x) + cn�n−1(x);

we obtain the recurrence formula for the �′n(x)

x�′n(x) = cn+1
kn+1

kn
�′n+1(x) + dn�′n(x) + cn

kn−1

kn
�′n−1(x): (4)

It follows that

cn+1
kn+1

kn
= 1; cn

kn−1

kn
= b′n:

Hence

k2n = k20

n∏
j=1

1
b′j
: (5)

Let us now divide Eq. (3) by hn = (−1)nn−
1
4+r=2�(n + 1)e2

√−nx, and let '̃n = e2
√−nx'n. Thus we

get

x'̃n(x) = sn'̃n+1(x) + a′n'̃n(x) +
b′n
sn−1

'̃n−1(x) (6)
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with sn=−(n+1)(1+1=n)−
1
4+r=2. This relation is true for all x, so can be derived. The two relations

are then considered as a linear system with respect to the constants a′n; b′n. In this system the value
of x is of no importance as a′n; b′n are known to be constant. For sake of simplicity, we will write
the computations for x =−1.
Thus, we get from (6) the following linear system with respect to a′n; b′n, where �n = '̃n(−1) and

)n = '̃′
n(−1)

a′n�n +
b′n
sn−1

�n−1 =−sn�n+1 − �n;

a′n)n +
b′n
sn−1

)n−1 =−sn)n+1 − )n + �n:

So, by elimination of a′n, we get for b′n, and for n¿ 1
b′n
sn−1

(
)n−1

)n
− �n−1

�n

)
=

�n
)n

− sn

(
)n+1

)n
− �n+1

�n

)
:

From the deEnitions of the �’s and )’s ('̃n(x) = e
√−nx'n(x)), we get

�n
)n

=
'n(−1)

−√
n'n(−1) + '′

n(−1)
;

�n+1

�n
=

e2
√
n+1

e2
√
n

'n+1(−1)
'n(−1)

;

)n+1

)n
=

e2
√
n+1

e2
√
n

−√
n+ 1'n+1(−1) + '′

n+1(−1)
−√

n'n(−1) + '′
n(−1)

:

The asymptotic expansion of 'n induces asymptotic expansions for �n=)n, �n+1=�n, )n+1=)n. Taking
in account sn = −(n + 1)(1 + 1=n)−1=4+r=2, the classical computations for formal series leads to an
expansion of b′n. The term of largest degree is n2 (coming from sn−1sn), but a careful computation
shows that the second term (n3=2) is zero, and the third is rn, so Enally we End that the sequence
b′n possesses an asymptotic expansion of the form

b′n = n2


1 + r

n
+

N−1∑
j=3

lj

n
j
2

+ O
(

1
nN=2

) : (7)

Let us now consider the sequence (cn)n deEned by: cn= n((n+1)=n)r=2 and let us write k2n given in
(5) in the following form:

k2n =
k20∏n
j=1 c

2
j

n∏
j=1

c2j
b′j

=
k20

�(n+ 1)2
(n+ 1)−r

n∏
1

c2j
b′j
: (8)

Since the sequence (c2n)n possesses an asymptotic expansion (c2n=n2(1+ r=n+ · · ·)) we deduce from
(7) that the sequence (c2n=b

′
n)n possesses an asymptotic expansion

c2n
b′n

= 1 +
N−1∑
j=3

hj
nj=2

+ O
(

1
nN=2

)
:
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Using Theorem 2 and formula 8, we obtain that (
∏n

j=1 c
2
j =b

′
j)n ∈ S(C), and Enally that

(�(n+ 1)nr=2kn)n ∈ S(C):

3. Asymptotic expansion of the orthonormal polynomial

In this section, we will give an uniform asymptotic expansion on compact sets K ⊂ C\[0;∞[
of �n(wm; x) which is the orthonormal polynomial with respect to wm(x) = Rm(x)wL(x) deEned for
x∈ [0;∞[ and where (Rm)m is a sequence of polynomials of degree m, nonnegative on [0;∞[ and
satisfying the following recurrence formula:

Rm+1(x) = (x − xm+1)Rm(x); xm+1 ∈ ]−∞; 0];

or

Rm+2(x) = (x − ym+1)(x − ym+1)Rm(x); ym+1 ∈C\]−∞; 0[:

Using P1 for a polynomial of degree 1 and P2 for a polynomial of degree 2, let us Erst remark that
the sequence (wm) satisEes the recurrence formula

wm+1(x) = P1(xm+1; x)wm(x);

or

wm+2(x) = P2(ym+1; x)wm(x); (9)

with w0(x) = wL(x), P1(xm+1; x) = (x − xm+1), P2(ym+1; x) = (x − ym+1)(x − ym+1), P1 and P2 being
positive on the real positive semi-axis.

Our starting point is the ChristoMel formula given by Szeg:o in ([8], p. 29)

Q(x)Ln(Qw; x) =

∣∣∣∣∣∣∣∣∣∣∣

�n(w; x) �n+1(w; x) : : : �n+m(w; x)

�n(w; z1) �n+1(w; z1) : : : �n+m(w; z1)

...
...

�n(w; zm) �n+1(w; zm) : : : �n+m(w; zm)

∣∣∣∣∣∣∣∣∣∣∣
; (10)

where w is an admissible weight function, Q(x)=
∏m

1 (x−zj) is a nonnegative polynomial on [0;∞[,
Ln(Qw; x) is an orthogonal polynomial with respect to the weight function Qw on [0;∞[ and �n(w; x)
is the orthonormal polynomial with respect to the weight function w on [0;∞[. In case of multiple
zero zk , the corresponding rows of the determinant are replaced by derivatives of consecutive orders
of the polynomials �n(w; x); : : : ; �n+m(w; x).
Applying the Christofell’s formula with Q = P1(xm+1; :) and w = wm, we get

P1(xm+1; x)Ln(wm+1; x) =

∣∣∣∣∣
�n(wm; x) �n+1(wm; x)

�n(wm; xm+1) �n+1(wm; xm+1)

∣∣∣∣∣ (11)

where Ln(wm+1; x) is a (not normalized) orthogonal polynomial with respect to wm+1 on [0;∞[.
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Let �′n(wm; x) be the monic orthogonal polynomial with respect to wm on [0;∞[ and k ′n(wm+1) the
leading coeFcient of Ln(wm+1; x).

Identifying both sides of (11), we get

k ′n(wm+1) =

∣∣∣∣∣
0 kn+1(wm)

�n(wm; xm+1) �n+1(wm; xm+1)

∣∣∣∣∣=−kn+1(wm)�n(wm; xm+1):

Hence, for the unitary polynomial �′n(wm+1; x), (11) becomes

P1(xm+1; x)�′n(wm+1; x) =−

∣∣∣∣∣
�n(wm; x) �n+1(wm; x)

�n(wm; xm+1) �n+1(wm; xm+1)

∣∣∣∣∣
kn+1(wm)�n(wm; xm+1)

: (12)

For the second case Q = P2(ym+1; :) and w = wm, we have to share the cases where ym+1 is
complex so the roots ym+1 and Nym+1 are distinct, and the case where ym+1 is positive real. If ym+1

is real, then there is a double root for Q=P2(ym+1; :) and the Szeg:o formula has to be written with
derivatives in the last row. We concentrate on the Erst case of two complex conjugate roots, the
second one being very similar

P2(ym+1; x)Ln(wm+2; x) =

∣∣∣∣∣∣∣∣
�n(wm; x) �n+1(wm; x) �n+2(wm; x)

�n(wm; ym+1) �n+1(wm; ym+1) �n+2(wm; ym+1)

�n(wm; ym+1) �n+1(wm; ym+1) �n+2(wm; ym+1)

∣∣∣∣∣∣∣∣
: (13)

The leading coeFcient is

k ′n(wm+2) = kn+2(wm)

∣∣∣∣∣
�n(wm; ym+1) �n+1(wm; ym+1)

�n(wm; ym+1) �n+1(wm; ym+1)

∣∣∣∣∣ :
Hence, for the unitary polynomial �′n(wm+2; x), (13) becomes

P2(ym+1; x)�′n(wm+2; x) =

∣∣∣∣∣∣∣∣
�n(wm; x) �n+1(wm; x) �n+2(wm; x)

�n(wm; ym+1) �n+1(wm; ym+1) �n+2(wm; ym+1)

�n(wm; ym+1) �n+1(wm; ym+1) �n+2(wm; ym+1)

∣∣∣∣∣∣∣∣
kn+2(wm)

∣∣∣∣∣
�n(wm; ym+1) �n+1(wm; ym+1)

�n(wm; ym+1) �n+1(wm; ym+1)

∣∣∣∣∣
: (14)

Theorem 4. Let x∈K , a compact subset of C\[0;∞[. Let m∈N , and let (wm)m be the sequence
of weight functions de;ned by (9). Then, the orthonormal polynomials with respect to the weight
function wm on [0;∞[, �n(wm; x) and their leading coe<cient kn(wm) satisfy

�n(wm; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm; x);

kn(wm) =
n−(�+m)=2

�(n+ 1)
�n(wm);
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with g(x) = 1
2
√
� e

x=2(−x)−�=2− 1
4 , � real, (�n(wm; x))n ∈ S(ZK) for all compact K and (�n(wm))n

∈ S(C). The residuals are uniform with respect to x∈K for all compact K.

The uniform convergence follows from the deEnition of S(ZK). To avoid some repetitions, we
prove the following lemma.

Lemma 1. Let us suppose that, with the preceding notations ((�n(wm; x))n and (�n(wm+1))n are,
respectively, elements of S(ZK) for all compact K ⊂ C\[0;∞[ and S(C))

�n(wm; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm; x);

kn(wm) =
n−r=2

�(n+ 1)
�n(wm):

If wm+1(x) = (x − xm+1)wm(x), then, there exists (�n(wm+1; x))n and (�n(wm+1))n (respectively,
elements of S(ZK) and S(C)), such that

�n(wm+1; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm+1; x);

kn(wm+1) =
n−(r+1)=2

�(n+ 1)
�n(wm+1);

and if wm+2(x) = (x − ym+1)(x − Nym+1)wm(x), then, there exists (�n(wm+2; x))n and (�n(wm+2))n
(respectively, elements of S(ZK) and S(C)), such that

�n(wm+2; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm+2; x);

kn(wm+2) =
n−(r+2)=2

�(n+ 1)
�n(wm+2):

Proof. The considered points x; y; z are supposed to be in some compact K . Throughout the proof,
we will consider the functions F;G and hn;j deEned on C\[0;∞[ by

F(x; y) =
√−y −√−x;

G(x; y; z) =
√
zyF(z; y) +

√
xzF(x; z) +

√
yxF(y; x);

hn; j(x) =
e2

√−(n+j)x

e2
√−nx

:

Since �n(wm; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm; x), we have from (12),

P1(xm+1; x)�′n(wm+1; x) =
(−1)n

kn+1(wm)
(n+ 1)−

1
4 e2

√−nxg(x)
�n(wm; xm+1)

'n(wm; xm+1; x)

where

'n(wm; xm+1; x) =

∣∣∣∣∣
�n(wm; x) hn;1(x)�n+1(wm; x)

�n(wm; xm+1) hn;1(xm+1)�n+1(wm; xm+1)

∣∣∣∣∣ :
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The conclusion concerning the leading coeFcient kn(wm+1) will follow from Theorem 3, so we have
to prove that (�′n=hn)n ∈ S(ZK) for some hn.

Using the recurrence assumption, kn+1(wm) is written, with (�n(wm))n ∈ S(C) as

kn+1(wm) =
(n+ 1)−r=2

�(n+ 2)
�n+1(wm):

From here, the computations are algebraic sums and products of series, so with no diFculties. The
interesting steps are the followings.

Since (�n(wm; x))n ∈ S(ZK), there exists (Tn(wm; xm+1; x))n ∈ S(ZK) such that

'n(wm; xm+1; x) =
F(x; xm+1)√

n
Tn(wm; xm+1; x):

So, 1n being the expansion of (1 + 1=n)1=2, we get for the unitary polynomial �′n(wm+1; x)

P1(xm+1; x)�′n(wm+1; x) = g(x)hn(x)Hn(x);

hn(x) = (−1)nn−
1
4+(r+1)=2�(n+ 1)e2

√−nx;

Hn(x) = 1n
F(x; xm+1)Tn(wm; xm+1; x)
�n+1(wm)�n(wm; xm+1)

;

and Enally, we can use Theorem 3

(Hn(x))n ∈ S(ZK); so
(
�′n(wm+1; x)

hn(x)

)
n

∈ S(ZK)

and one of the required result is obtained

∃(�n(wm+1))n ∈ S(C) such that kn(wm+1) =
(n+ 1)(r+1)=2

�(n+ 1)
�n(wm+1):

Then for the orthonormal polynomial �n(wm+1; x) = kn(wm+1)�′n(wm+1; x), we have

P1(xm+1; x)�n(wm+1; x) = (−1)nn−
1
4 e2

√−nxg(x)
(
1 +

1
n

)−(r+1)=2

�n(wm+1)Hn(x):

Since the sequence ((1+1
n)

−(r+1)=2�n(wm+1)Hn(x)=P1(xm+1; x))n ∈ S(ZK), there exists
(�n(wm+1; x))n ∈ S(ZK), such that

�n(wm+1; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm+1; x):

Let us give a sketch of the proof for wm+2(x) = P2(ym+1; x)wm(x), (ym+1 ∈C), which goes on
similarly

P2(ym+1; x)�′n(wm+2; x) =
(−1)n

kn+2(wm)
(n+ 1)−

1
4 e2

√−nxg(x)
'n(wm; Nym+1;ym+1)

'′
n(wm; ym+1; x)
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where 'n(wm; y; x) is the same as previously, and

'′
n(wm; ym+1; x)

=

∣∣∣∣∣∣∣∣
�n(wm; x) hn;1(x)�n+1(wm; x) hn;2(x)�n+2(wm; x)

�n(wm; ym+1) hn;1(ym+1)�n+1(wm; ym+1) hn;2(ym+1)�n+2(wm; ym+1)

�n(wm; Nym+1) hn;1( Nym+1)�n+1(wm; Nym+1) hn;2( Nym+1)�n+2(wm; Nym+1)

∣∣∣∣∣∣∣∣
:

Since (�n(wm; x))n ∈ S(ZK), there exists (T ′
n(wm; ym+1; x))n ∈ S(ZK) such that

'′
n(wm; ym+1; x) =

G(x; ym+1; Nym+1)
n
√
n

T ′
n(wm; ym+1; x):

Using the recurrence assumption to express kn+2(wm), there exists (�n(wm))n ∈ S(C) such that

kn+2(wm) =
(n+ 2)−r=2

�(n+ 3)
�n+2(wm)

so, 1′
n being the expansion of (1+1=n)5=4(1+2=n)(2+r)=2, we get for the unitary polynomial �′n(wm+2; x)

P2(ym+1; x)�′n(wm+2; x) = g(x)h̃n(x)H̃ n(x)

h̃n(x) = (−1)nn−
1
4+(r+2)=2�(n+ 1)e2

√−nx

H̃ n(x) = 1′
n

G(x; Nym+1;ym+1)T ′
n(wm; ym+1; x)

�n+2(wm)F(ym+1; Nym+1)Tn(wm; ym+1; Nym+1)
:

Then, we use again Theorem 3

∃(�n(wm+2))n ∈ S(C) such that kn(wm+2) =
(n+ 1)−(r+2)=2

�(n+ 1)
�n(wm+2):

Then for the orthonormal polynomial �n(wm+2; x) = kn(wm+2)�′n(wm+2; x), we have

P2(ym+1; x)�n(wm+2; x) = (−1)nn−
1
4 e2

√−nxg(x)
(
1 +

1
n

)−(r+2)=2

�n(wm+2)H̃ n(x):

Since the sequence ((1 + 1
n)

−(r+2)=2�n(wm+2)H̃ n(x)=P2(ym+1; x))n ∈ S(ZK), there exists
(�n(wm+2; x))n ∈ S(ZK), such that

�n(wm+2; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm+2; x):

The result would be similar for the case of a real positive double root ym+1. This ends the proof of
the lemma which is used now for the

Proof of the theorem. Taking m= 0 in the lemma, we get the initialisation of the theorem, i.e.

�n(wL; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wL; x);

kn(wL) =
n−�=2

�(n+ 1)
�n(wL)
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and so inductively, we get the result for all m

�n(wm; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm; x);

kn(wm) =
n−(�+m)=2

�(n+ 1)
�n(wm):

4. Asymptotic expansion of the associated function

In this section, we will give the uniform asymptotic expansion on compact subsets of C\[0;∞[
of the associated function qn(wm; x) given by

qn(wm; x) =
∫ ∞

0

�n(wm; t)
x − t

wm(t) dt; x∈C\[0;∞[;

where the sequence of weight functions (wm)m is given by (9).
Let us Erst give the expression of the uniform asymptotic expansion for the associated function

qn(wL; x) on compact sets of C\[0;∞[.
To do this, following the notations given by Elliott in [3] we will set

zn = 4
(
n+

�+ 1
2

)
; 32 =−x:

We have for �¿ 0 and x∈C\[0;∞[,

qn(wL; x) = (−1)n+1 2
1+�

z�=2n

√
�(n+ �+ 1)
�(n+ 1)

(−x)�=2e−x=2Vn;N (x); (15)

with

Vn;N (x) = K�
(√−znx

) N−1∑
j=0

Aj(3)

zjn
− K�+1

(√−znx
) N−1∑

j=0

Bj(3)

z
j+1

2
n

+O
( |AN (3)|

zNn

)
(16)

where the O-term holds uniformly on any compact sets of C\[0;∞[ and K� are the Bessel functions
of the second kind. The functions Aj and Bj are deEned on C\[0;∞[ by

A0(3) = 1;

2Bs(3) =−A′
s(3) +

∫ 3

0

{
t2As(t)− (2�+ 1)

t
A′
s(t)
}

dt;

2As+1(3) =
(2�+ 1)

3
Bs(3)− B′

s(3) +
∫ 3

0
t2Bs(t) dt + rs+1;

where the constants rs+1 are chosen so that

As+1(0) = 0; for s= 0; 1; 2; : : : :
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Theorem 5. Let x∈C\[0;∞[ and let �¿ 0. Let, also, h(x) =
√
�e−x=2(−x)(�=2)− 1

4 . Then, for all
compact K, subset of C\[0;∞[, there exists (7n(wL; x))n ∈ S(ZK; 1), such that

qn(wL; x) = (−1)n+1e2
√−nxn−

1
4 h(x)7n(wL; x):

The residuals are uniform with respect to x∈K .

Proof. Let K and �¿ 0. With Vn;N given by (16), we have from [3], uniformly on K

∀N ∈N; qn(wL; x) = (−1)n+1 2
1+�

z�=2n

√
�(n+ �+ 1)
�(n+ 1)

(−x)�=2e−x=2Vn;N (x):

Let us set 7n(wL; x) = qn(wL; x)=(−1)n+1e−2
√−nxn−

1
4 h(x). Then, we get

∀N ∈N; 7n(wL; x)
21+�√
�

n
1
4

z�=2n

√
�(n+ �+ 1)
�(n+ 1)

(−x)14 Vn;N (x)
e−2

√−nx
: (17)

From ([6], p. 215) we have since �
2 6 arg

√−x6 3�
2 ,

K�
(√−znx

) ∼√ �
2
√−znx e

−√−znx
2F0

(
1
2
+ �;

1
2
− �;− 1

2
√−znx

)
; |zn| → ∞

with 2F0(a; b; z) given by

2F0(a; b; z) =
∞∑
j=0

(a)j(b)j
j!

zj:

Then, we have, uniformly on K ,

∀N ∈N; 2(−x)14 e2
√−nx

√
�

K�
(√−znx

)
=

√
2

z
1
4
n

e−
√−znx

e−2
√−nx


 N∑

j=0

aj(x)

zk=2n
+O

(
1

z(N+1)=2
n

)
with aj(x) = (−1)j[( 12 + �)j( 12 − �)j=(j!)2j(−x)j=2].
On the other hand, we have, uniformly on K ,

∀N ∈N; e−
√−znx

e−2
√−nx

= 1 +
N∑
j=1

bj(
√−x)
nj=2

+ O
(

1
n(N+1)=2

)

where the bj are polynomials of degree j. Hence, we get uniformly on the compact K ,

∀N ∈N; 2(−x)14 e−2
√−nx

√
�

K�
(√−znx

)
=

1

n
1
4


 N∑

j=0

cj(x)
nj=2

+ O
(

1
n(N+1)=2

) ;
with c0(x) = a0(x) = 1.

We also have

∀N ∈N; 2�n
1
4

z�=2n

√
�(n+ �+ 1)
�(n+ 1)

= n
1
4


1 + N∑

j=1

cj
nj=2

+ O
(

1
n(N+1)=2

) :
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Therefore, using the Taylor expansion of the functions Aj(3), we get

2�+1

√
�

n
1
4

z�=2n

√
�(n+ �+ 1)
�(n+ 1)

K�
(√−znx

)
(−x)− 1

4 e−2
√−nx

N−1∑
j=0

Aj(3)

zjn

=1 +
N∑
j=1

dj(x)
nk=2

+ O
(

1
n(N+1)=2

)
; (18)

where the dk are holomorphic functions on C\[0;∞[ and the O-term holds uniformly on K .
By the same way, we prove that

2�+1

√
�

n
1
4

z�=2n

√
�(n+ �+ 1)
�(n+ 1)

K�+1
(√−znx

)
(−x)− 1

4 e−2
√−nx

N−1∑
j=0

Bj(3)

zj+1
n

=
N∑
j=0

fj(x)
n(j+1)=2 + O

(
1

n(N+1)=2

)
; (19)

where the fk are holomorphic functions on C\[0;∞[ and the O-term holds uniformly on K .
Hence, we get the result from (17)–(19).

Now, to give asymptotic expansion for qn(wm; x), we must as in the previous section, discuss two
cases.

First case: wm+1(x) = P1(xm+1; x)wm(x). Then, multiplying (12) by kn(wm+1), we get

P1(xm+1; x)�n(wm+1; t) =−kn(wm+1)
kn+1(wm)

∣∣∣∣∣
�n(wm; t) �n+1(wm; t)

�n(wm; xm+1) �n+1(wm; xm+1)

∣∣∣∣∣
�n(wm; xm+1)

:

Now, multiplying the previous equality by wm(t)=(x − t) and integrating from zero to inEnity, we
get

qn(wm+1; x) =−kn(wm+1)
kn+1(wm)

∣∣∣∣∣
qn(wm; x) qn+1(wm; x)

�n(wm; xm+1) �n+1(wm; xm+1)

∣∣∣∣∣
�n(wm; xm+1)

: (20)

Second case: wm+2(x) = P2(ym+1; x)wm(x). Then, multiplying (14) by kn(wm+2), we get similarly

qn(wm+2; x) =
kn(wm+2)
kn+2(wm)

∣∣∣∣∣∣∣∣
qn(wm; x) qn+1(wm; x) qn+2(wm; x)

�n(wm; ym+1) �n+1(wm; ym+1) �n+2(wm; ym+1)

�n(wm; ym+1) �n+1(wm; ym+1) �n+2(wm; ym+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
�n(wm; ym+1) �n+1(wm; ym+1)

�n(wm; ym+1) �n+1(wm; ym+1)

∣∣∣∣∣
: (21)

The analogous result is obtained for ym+1 real. We are now ready to give the last result, the
asymptotic expansion of the associated function
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Theorem 6. Let �¿ 0 and let (wm)m be the sequence of weight functions de;ned by (9).

Then, with h(x) =
√
�(−x)�=2− 1

4 e−x=2, for all compact K , subset of C\[0;∞[, there exists
(7n(wm; x))n ∈ S(ZK) such that the associated function qn(wm; x) satis;es

qn(wm; x) = (−1)n+1n−
1
4 e−2

√−nxh(x)7n(wm; x):

The residuals are uniform with respect to x∈K .

Proof. To avoid repetition, we prove the result only for the case wm+1(x) = P1(xm+1; x)wm(x). The
case wm+2(x)=P2(ym+1; x)wm(x) can be proved with the same arguments. Throughout the proof, we
will use F(x; y) =

√−y −√−x and we will consider a compact set K , subset of C\[0;∞[.
For m= 0, the result comes from Theorem 5.
The initial step to go from w0 = wL to w1 is the same as the general one. So let us suppose that

qn(wm; x) = (−1)n+1n−
1
4 e−2

√−nxh(x)7n(wm; x), with (7n(wm; x))n ∈ S(ZK).

Since �n(wm; x) = (−1)nn−
1
4 e2

√−nxg(x)�n(wm; x), we get

qn(wm+1; x) = (−1)n+1 kn(wm+1)
kn+1(wm)

(n+ 1)−
1
4 e−

√−nxh(x)
'′′
n (wm; xm+1; x)
�n(wm; xm+1)

;

with

'′′
n (wm; xm+1; x) =−

∣∣∣∣∣∣
7n(wm; x) e−2

√
−(n+1)x

e−2
√−nx 7n+1(wm; x)

�n(wm; xm+1)
e2
√−(n+1)xm+1

e2
√−nxm+1

�n+1(wm; xm+1):

∣∣∣∣∣∣
On one hand, we have from Theorem 4, kn(wm+1)=kn+1(wm) =

√
n9n(wm+1) with (9n(wm+1))n

∈ S(C).
On the other hand,

'′′
n (wm; xm+1; x) =

F(x; xm+1)√
n

'̃′′
n (wm+1; x);

where ('̃′′
n (wm+1; x))n ∈ S(ZK).

Hence, there exists (7n(wm+1; x))n ∈ S(ZK), such that

qn(wm+1; x) = (−1)n+1n−
1
4 e−2

√−nxh(x)7n(wm+1; x):

5. Conclusion

In this paper, it was shown that an asymptotic expansion for the orthonormal polynomials with
respect to the Laguerre weight function wL and for its associated function, valid outside the interval
[0;∞[, can be extended to the weight functions PwL where P is a nonnegative polynomial on [0;∞[.
The natural question arising now is: what about asymptotics when the polynomial P is replaced by
an holomorphic function. The answer to this question will be given in a future paper.
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