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Nitric oxide (NO) is one of the most pleiotropic signaling molecules at systemic and cellular levels,
participating in vascular tone regulation, cellular respiration, proliferation, apoptosis and gene expres-
sion. Indeed NO actively participates in trophoblast invasion, placental development and represents the
main vasodilator in this tissue. Despite the large number of studies addressing the role of NO in the
placenta, its participation in placental vascular development and the effect of altered levels of NO on
placental function remains to be clarified. This review draws a time-line of the participation of NO
throughout placental vascular development, from the differentiation of vascular precursors to the
consolidation of vascular function are considered. The influence of NO on cell types involved in the origin
of the placental vasculature and the expression and function of the nitric oxide synthases (NOS)
throughout pregnancy are described. The developmental processes involved in the placental vascular bed
are considered, such as the participation of NO in placental vasculogenesis and angiogenesis through
VEGF and Angiopoietin signaling molecules. The role of NO in vascular function once the placental
vascular tree has developed, in normal pregnancy as well as in pregnancy-related diseases, is then
discussed.

� 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Placental vascular development represents a crucial process for
adequate fetal development. In fact, pregnancy pathologies, such as,
gestational diabetesmellitus (GDM), intrauterine growth restriction
(IUGR) andpre-eclampsia (PE) are relatedwith vascular dysfunction
in the placental bed [1,2]. The etiology of this dysfunction remains to
be fully understood [3,4] but even though these conditions have
detrimental effects on the fetus in late gestation they seem to be
influenced by early embryo development, and are exacerbated by
environmental cues through gestation such as oxidative stress, local
oxygen tension and metabolic disorders [5e7].

The placenta originates from the outer cell layer of the morula,
called trophoblast, which proliferates after implantation, invades the
decidua and differentiates into cytotrophoblast and syncytiotropho-
blast, forming the primary villi. These villi are invaded by mesen-
chymalcellsderived fromtheembryo (secondaryvilli)which through
vasculogenesis generate vascular capillaries, forming the tertiary villi.
These villi contunually undergo transformation and maturation
during gestation and this includes (1) further differentiation of
cytotrophoblast to syncytiotrophoblast, (2) branching angiogenesis
and growth of the vascular tree, and (3) longitudinal growth of
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capillaries and maturation of vascular vessels [8,9]. Thus, placental
vasculogenesis, angiogenesis and vascular function are interrelated
processes that influence fetal growth throughout gestation.

Nitric oxide (NO) produced by the endothelial and inducible NO
synthases (eNOS and iNOS, respectively) actively regulate embryo
development, implantation and trophoblast invasion [10e12].
Furthermore, vascular tone in the placenta is controlled by several
vasoactive mediators, of which NO is the most important [13]. On
the other hand, vasculogenesis and angiogenesis depend on the
expression of several signaling molecules, such as vascular endo-
thelial growth factor (VEGF) and its receptors VEGFR-1 (Flt-1) and
VEGFR-2 (Flk-1), transforming growth factor b-1 (TGF b-1), angio-
poietin (Ang-) 1 and 2 [9,14], which exert their effects in part
through NO synthesis. However, despite the evidence of the
participation of NO in implantation and angiogenesis, both in the
embryo and under physiologic adaptations, its role on vascular
development in the placenta is not completely understood. Here
we review direct and indirect data that relate NO synthesis with
placental vascular development and function during gestation.
2. Expression of nitric oxide synthases in the placenta

During gestation NOS isoform expression is dynamically regu-
lated in the placenta (Fig. 1), which show heterogeneous properties
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Fig. 1. Schematic representation of NOS isoform expression in the placenta. Changes in
total NOS (blue background), eNOS (red line) and iNOS (green line) expression in
placenta throughout pregnancy. Graph shows NOS levels described for different
species (i.e. human, mouse, porcine, rat and sheep) determined by enzymatic activity
and/or protein expression. Data derived from Refs. [15e17, 19, 21e24, 184]. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

B.J. Krause et al. / Placenta 32 (2011) 797e805798
and distribution (Table 1). In fact, at least eNOS and iNOS have been
found in diverse species since early stages of placental development
[15e19]. The iNOS isoform is expressed mainly at the feto-maternal
interface in the first stages of pregnancy [20]. Apparently, there is an
increase in iNOS activity throughout pregnancy which peaks at mid
gestation [21e24]. On the other hand, in human first trimester
placenta, eNOS is expressed in syncytiotrophoblast, early endothe-
lium within the primitive villous capillaries, intermediate and
extravillous trophoblast [15,16], contributing to the total NO
production at this stage [25]. As pregnancy continues there is an
increase and redistribution of eNOS expression, mainly to syncy-
tiotrophoblast and endothelial cells [16,17,26,27]. There is an
up-regulation of eNOS expression in the endothelium of chorionic
arteries during the second half of gestation, described in fetal sheep
[28], which seems to be reduced in animal models of IUGR [19,29].
However, in human IUGR there is not agreement about the expres-
sion levels of eNOS [16,26,27,30]. Additionally, differences in eNOS
levels do not explain by themselves the phenotypes observed in
pregnancy diseases. To gain a more complete picture, it is necessary
to determine how other molecules implicated in L-arginine metab-
olism, such as iNOS, arginases and reactive oxygen species, regulate
NO synthesis and bioavailability. Thus, further studies addressing
these aspects are required.

3. Nitric oxide and placental vasculogenesis

Vasculogenesis is the process by which vessels are formed from
mesenchymal-derived hemangioblasts which differentiate into
endothelial cells [8]. In general, initiation of vasculogenesis requires
the expression of VEGF [31], the mitogenic effects of which are
mediated by NO [32,33]. However, studies in NOS-knockout mice
have shown that NOS deficiency does not prevent embryonic
vascular development, although NO synthesis is required for
adequate vascular structure and function [34,35]. Furthermore,
expression of eNOS in embryonic vascular development represents
Table 1
Kinetic parameters of recombinant human NOS (Refs. [185e189]) and placental NOS
distribution (Ref.s [16,17,19,21e24,190]). EVT, extravillous trophoblast; ST, syncy-
tiotrophoblast; EC, endothelial cell; SMC, smooth muscle cell; n.d., not described.

eNOS iNOS nNOS

Kinetic parameter
Vmax(nmol � min�1 � mg�1) 170 800 425
Km for L-arginine (mmol/l) 2.5 22 0.8
Km for O2 (mmol/l) 4 130 350

Placental distribution
Early gestation EVT, ST EVT, ST n.d.
Mid gestation ST, EC ST n.d.
Late gestation EC ST SMC
a late hallmark of differentiation during vasculogenesis, which
could be related to the emergence of cardiac activity [36] and its
role is prominent during the consolidation and growth of the
vascular system [37,38].

However, the site from which the vascular progenitors for
placental and embryo vasculogenesis emerge is still debated. It is
now broadly accepted that in the embryo vascular progenitors
emerge from intra- and extra-embryonic mesodermal tissues [39],
whilst in the placenta they arise from the extra-embryonic meso-
derm [1]. Additionally, there is growing evidence for a crucial role
of the yolk sac in embryo and placental vascular development [40].
Indeed, using Ncx-1 knockout mice which fail to initiate cardiac
contraction Lux et al. [41] showed that all the hematopoietic
progenitor cells emerge from the yolk sac. Furthermore, a study in
mice yolk sac demonstrated that vasculogenesis at this level is
initiated by NO [42]. These authors described the spatio-temporal
expression pattern of iNOS and eNOS, which was related to vas-
culogenesis in the yolk sac. In the first stage, at 7 days of embryonic
development (E7.0), iNOS-derived NO synthesized by endodermal
cells induces the differentiation of adjacent extra-embryonic
mesodermal cells to form a primary capillary plexus. After that,
eNOS expression increases in the yolk sac mesodermal cells [36,42]
accompanied by a decrease in iNOS expression in the endoderm
[42]. Experimental inhibition of NOS activity at E6.5 completely
arrests the development of the primary capillary plexus [42].
Altogether, these data suggest that NO could be crucial for placental
vasculogenesis.

4. Nitric oxide and placental angiogenesis

Growth and consolidation of the placental vascular tree occurs
by angiogenesis. In this process single vessels are formed by
endothelial precursor cells (EPC) which differentiate into endo-
thelial cells, and/or proliferate from endothelial cells. These vessels
can grow in two ways, (1) non-branching angiogenesis, which
implies an increase in the length of the villous vessels, and (2)
branching angiogenesis, in which multiple short capillary loops are
formed [8], increasing the vascular surface area. After these
processes have taken place, the vessels mature and their structures
stabilize. Additional maturation and specialization in the vascular
system is influenced by environmental cues, such as blood flow,
oxygen tension, oxidative stress which could be signaled by
epigenetic mechanisms [43]. All these factors have been implicated
in the development and function of the human placenta [5e7].

Participation of NO in angiogenesis is more clearly established
than it is in vasculogenesis. Angiogenesis has been studied in vitro
using endothelial cells from the human umbilical vein (HUVEC).
Animals with experimentally-induced eNOS deficiency show
defective vascular development throughout the vascular tree,
which is mainly associated with decreased vessel maturation and
disorganization [35,44]. Despite the initial evidence that showed an
inhibitory role for NO in angiogenesis [45], further studies have
demonstrated that exogenous NO [46,47] or over-expression of
eNOS [48,49] induce proliferation of endothelial cells and angio-
genesis. In contrast, inhibition of NOS [50,51] or deletion of the
eNOS gene [52] are accompanied by deficient angiogenesis in the
embryo and placenta. Additionally, NO induces proliferation in fetal
endothelial cells coming from different vascular beds [53e55] and
regulates the caliber of central vessels [56].

The main molecular mediators of angiogenesis, VEGF and
angiopoietin [57] depend mainly on NO synthesis to induce new
vessel formation. In endothelial cells VEGF induces eNOS-
dependent NO synthesis through the activation of VEGFR-1 [58]
and VEGFR-2 [59]. It has been shown that VEGF-induced angio-
genesis requires NO synthesis [32] derived from eNOS activity
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[60e62]. Moreover, migration of endothelial cells and EPC is regu-
lated by NO. VEGF-induced migration requires the activation of
eNOS through PKCd [33], Akt [63] and HSP90 [64]. Nitric oxide
facilitates cell migration in angiogenesis, increasing the expression
of adhesion molecules (i.e. integrin avb3) [65,66] and extracellular
matrix metalloproteases (i.e. MT1-MMP, MMP-9 and MMP-13)
allowing the invasion of endothelial cells and new vessel forma-
tion [67e69]. Angiopoietin activates eNOS via PI3K/Akt [70] and
ERK1/2 [71] pathways, leading to proliferation and angiogenesis.
Additionally, Ang-1 increases the expression of eNOS [72], whilst
eNOS over-expression enhances the angiogenic response to Ang-1
[49]. Moreover, the Ang-1/eNOS pathway contributes to vessel
maturation and stabilization [49,72]. In this context, capillary
formation and maintenance is influenced by the expression of VE-
cadherin, which is regulated by VEGF and Ang-1 [73,74]. It has been
shown that NO induces the expression and function of VE-cadherin
[75e77]modifying the stability andpermeabilityof the endothelium.

Additionally, NO donors induce proliferation in ovine placental
endothelial cells via activation of MEK1/2 [54]. On the other hand,
eNOS [36] and Akt [78] knockout mice show reduced placental
development with decreased vascularization. Moreover, NO
increases the levels of VEGF [46] and Ang-1 [79,80] in endothelium.
All these data show that NO is not only an effector of angiogenic
pathways, but an inducer andpositive feedback signal for Ang-1- and
VEGF-induced angiogenesis.

5. Placental angiogenesis in diseases of pregnancy

Placental dysfunction is present in some diseases of pregnancy
(i.e. GDM, IUGR and PE) [1,2,81], and accompanied by abnormal
expression of angiogenic mediators [82e86] and altered NO
synthesis [2]. Interestingly Akt null mice fetuses present IUGR [37],
detectable as early as E8.5 [38], a time at which the placental
vascular development depends only on angiogenesis. In various
models of IUGR the expression of eNOS and angiogenic factors is
higher during the first half of pregnancy compared with normal
fetuses [19,87e89]. However, by the end of gestation these levels
fall below those seen in normal placentae [19,29,87,88] suggesting
a possible failure of the compensatorymechanismswhich normally
sustain placental development and the consequently, fetal growth.

In contrast to IUGR, placentae from GDM pregnancies are larger
than normal [90] showing decreased formation of terminal villi and
increased numbers of intermediate villi in relation to gestational
age [81]. Studies in rats have suggested that the increased growth
and vascularization in GDM are associated with higher levels of
MMP-2 and MMP-9, the activities of which are positively regulated
by NO [91]. These data suggest that NO not only regulates endo-
thelial cell proliferation and migration in the placenta, but partic-
ipates in the stabilization of the new vessels.

However, there is no well established level of NO required for
adequate placental angiogenesis. High NO levels can prevent
angiogenesis [45,92,93], and its effect on cell survival and prolif-
eration depends on its concentration [94]. This could explain in part
why pregnancy diseases, such as IUGR and PE, show higher levels of
placental NO [95e98] and nitrosative stress [99] without adequate
placental vascularization.

6. Nitric oxide in placental vascular maturation

The adequate morphology and function of the vascular tree at
different levels (i.e. arteries/veins, and conduit/resistance/exchange
vessels) are modulated by environmental cues, such as, blood flow,
oxygen levels, oxidative stress and epigenetic factors [43]. In
addition, these signals have a functional relationship with the
eNOS-derived NO. Shear stress induces the differentiation of
human placenta-derived pluripotent cells to endothelial cells [100],
and the specialization of endothelial progenitor cells to “arterial”
endothelial cells [101]. In this context, the ability of new endothelial
cells to generate vessels depends on the release of NO from
pre-existing endothelial cells [102]. Additionally, shear stress is the
main stimulus for NO release in placental vessels [103] and for
angiogenesis via eNOS activation [104,105]. Indeed in the focal
adhesion kinase (FAK e a critical shear stress sensor) knockout
mouse there is impaired placental vascular development [106].
Thus, it can be proposed that the increase in placental blood flow
during gestation [23,107] drives placental vascular maturation, in
part, through NO synthesis.

Hypoxia is an important factor that regulates placental devel-
opment and angiogenesis. In fact, a fine tuning of oxygen levels
throughout pregnancy are required, being hypoxia associated with
beneficial and detrimental effects on development [6]. It stimulates
trophoblast invasion, differentiation, survival [6], angiogenesis
[108,109] and vasculogenesis [108]. The angiogenic effect of
hypoxia can occur via VEGF and eNOS, which are activated by
hypoxia-inducible factor-a (HIF-a), a key transcription factor
operating in hypoxia [108,109]. However, chronic hypoxia is asso-
ciated with reduced fetal and placental development [110], and in
the mouse embryo high levels of HIF-a induce defective chorionic
villi and placental vascular development [111]. Prolonged hypoxia is
also related with endothelial cell apoptosis via p53 [112] and
nuclear factor kB (NF-kB) [113]. There is some uncertainty about the
effect of hypoxia on eNOS expression and activity. Some reports
have shown an induction of eNOS expression in hypoxia [114e116],
whilst others suggest a down-regulation [117e119]. These differ-
ences could be explained, in part, by the different vascular beds,
endothelial cell types (i.e. arteries [114,116] and veins [117e119]).
Additionally, NO has a dual effect on HIF levels: short exposures to
hypoxia (2 h) activates eNOS and increases HIF-1a [120,121],
however, after 4 h of hypoxia NO increases the levels of prolyl
hydroxylases (PHD), which under normal oxygen levels induce HIF-
1a degradation [121,122]. Alternatively, NO-dependent activation
of PHD can occur through a change in oxygen consumption [123]
via inhibition of mitochondrial respiration [124]. Prolonged expo-
sure to hypoxia is associated with decreased eNOS activity, endo-
thelial cell apoptosis and deficient placental vascular development,
indicating that placental angiogenesis is very sensitive to oxygen
levels. This suggests that NO participates in responses to acute
hypoxia via inducing HIF and contributes to a negative feedback
process in chronic hypoxia.

During placental vascularmaturation and development epigenetic
mechanisms play a key role. The expression of genes implicated in
trophoblast invasion are influenced by histone post-translational
modifications (HPTM) [125], whilst placental growth and function
are regulated by DNAmethylation (imprinting) andHPTM [126e128].
Moreover, IUGR placentae show epigenetic modifications [129e131]
which correlate with abnormal placental development. On the other
hand, thefirst stages of vasculardevelopment are controlledmainly by
genetic processes; however, endothelial specialization and vessel
maturation are controlled by epigenetic mechanisms [43]. There is
growing evidence that endothelial precursor cell differentiation,
endothelial cell specialization, and shear stress- and hypoxia-induced
responses are modulated by epigenetic mechanisms, such as, DNA
methylation,HPTMandnon-coding small RNA-mediatedmechanisms
[132,133]. Shear stress- and VEGF-induced differentiation of endo-
thelial precursor cells activate histone deacetylase (HDAC) 1 and 3,
increasing the expressionofVEGFR-2andeNOS [134].HDAC inhibition
reduces the VEGF-induced angiogenesis through down-regulation of
VEGFR-1 and -2 expression [135], whilst histone methyl transferase
activity is required for migration and vessel sprouting [136]. Addi-
tionally,hypoxia-inducedangiogenesis requiresHDAC1activity,which
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decreases the expression of von Hippel-Lindau, increasing HIF-1a
levels [137]. Interestingly, reduced angiogenesis induced by HDAC
inhibition is not reversed by VEGF supplementation, but is restored by
NO restitutionwith S-nitroso-N-acetylpenicillamine (SNAP) [138]. The
promoter region of the eNOS gene shows a cell-specific pattern of
epigenetic modifications [133]. There are subtle differences in the
epigenetic markers between micro and macrovascular endothelial
cells [139] arguing for a role for the differential expression of eNOS in
different vascular beds. Altogether these data show that in endothelial
cells eNOS expression is highly regulated by epigenetic mechanisms
with important effects on angiogenesis. Additionally, there is growing
evidence that NO exerts control on epigenetic mechanisms (reviewed
in Illi et al. [140]).

7. Nitric oxide and placental vascular function

The placenta lacks adrenergic and cholinergic innervation [141],
thus its vascular tone is regulated mainly by local factors derived
from the endothelium and blood cells. Studies in the later 1980’s
and early 1990’s show that the endothelium from chorionic and
umbilical vessels releases NO [142,143]. Further studies demon-
strated that in umbilical vessels the production of NO and its
vasodilator effect is higher than that of prostacyclin I-2 [144,145].
Like other vascular beds, placental vessels express the molecular
mediators of the classical NO-dependent pathway which includes
the soluble guanylate cyclase (sGC) [146], cGMP-dependent protein
kinase and cGMP-specific phosphodiesterases [147,148]. Nitric
oxide exerts its effects via activation of the sGC [149] and modu-
lation of potassium channel activity (BKCa) [150,151] (Fig. 2). The NO
synthesis at this level can be induced by histamine [142], adenosine
[143,152], ATP [143], calcitonin gene-related peptide (CGRP)
[153,154], and shear stress [103,155]. The later is an important
stimulus which activates eNOS through its phosphorylation at
serine 1177 via ERK1/2 and Akt in placental endothelium [156]
increasing its long term expression [157].

Oxygen level is the most important factor controlling placental
vascular reactivity; hypoxia in vivo and ex vivo increases placental
vascular tone. In isolated placental vessels low oxygen levels reduce
Fig. 2. Nitric oxide-dependent vasodilation in the placenta. Vasodilator effects of NO in place
2) by shear stress (SS), adenosine (Ado), ATP, VEGF or PlGF; and b) increasing intracellular
activate eNOS leading to NO production, which diffuses to the adjacent smooth muscle lay
dependent (PKG) and -independent (BKCa) fashion.
the maximal response to vasodilator agents [158] and increase that
to vasoconstrictors [158e160]. Studies in sheep have shown that NO
synthesis plays a key role maintaining placental blood flow during
acute episodes of hypoxemia [161]. In perfused human cotyledons
NOS inhibition and hypoxia independently increase placental
perfusion pressure to a similar degree, effects prevented by NO
donors [162], suggesting that the effect of hypoxia is mediated in
part via low NOS activity. The effect of hypoxia in placental vascu-
lature depends on the vessels studied (Fig. 3). In isolated chorionic
arteries hypoxia increases the maximal response to KCl and the
thromboxaneA-2mimetic U46619 [159,160]. However, themaximal
response to the NO-donor SNP is unaffected by acute changes in the
PO2 [160] in these vessels. In contrast, in chorionic and umbilical
veins an acute reduction on PO2 has a positive effect on the vaso-
dilator response to NO [160] and NOS activity [163], whilst there is
no change in the response tovasoconstrictors [160]. The effect of PO2
on NO-induced responses in umbilical arteries has not been
resolved; Lovren & Triggle [150] showed that the maximal vasodi-
lator response and sensitivity to NO were reduced at low PO2
(<55 mmHg, slightly higher than normal fetal PO2, which is
25e30mmHg) comparedwith higher oxygen levels (>300mmHg);
however Leung et al. [164] observed no changes in NO-induced
vasodilation with changes in pO2. The study of the molecular
mechanisms activated by hypoxia in placental endothelium has
been carried out only in HUVEC. It has been demonstrated that
HUVEC exposed to 24 h of hypoxia show a decrease in L-arginine
transport and eNOS activity [117,118].

8. Placental vascular reactivity and nitric oxide synthesis in
diseases of pregnancy

As previously discussed, in normal conditions NO is the main
vasodilator in the placenta. For this reason several studies have
characterized alteration in placental NO synthesis in an attempt to
explain the vascular dysfunction observed in pregnancy diseases,
such as IUGR, PE and GDM. Alterations in placental vascular reac-
tivity in these conditions are associated with changes in vascular
tree structure and vasoactive response pathways. In IUGR and
ntal vessels can be induced via; a) activation of protein kinases (i.e. PKC, Akt and ERK1/
calcium concentration induced by agonists (i.e. CGRP and histamine). Both pathways
er. Noteworthy, NO action on placental smooth muscle cells occurs either in a cGMP-



Fig. 3. Effects of acute hypoxia in placental vasculature. Depicted in this figure is the
vascular response of placental (umbilical and chorionic) vessels to an acute reduction
in oxygen levels.
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IUGR/PE placentae the villous tree has longer capillaries with fewer
branches [165] and lower caliber umbilical vessels [166,167]
compared with normal placenta. However, there are no alter-
ations in the maximal responses to vasoconstrictor agents in IUGR
chorionic vessels [168,169]. In contrast, the response to
NO-dependent vasodilator agents is decreased in IUGR and PE.
IUGR chorionic arteries show a reduced vasodilator response to
VEGF and PIGF [168], whilst in PE the response to CGRP is practi-
cally absent [170]. It is noteworthy that in these vessels the
response to exogenous NO is not altered [171], however the
amplitude and frequency of NO-dependent spontaneous tone
oscillations are reduced in IUGR chorionic arteries and can be
invoked in normal vessels by inhibiting NO synthesis [172]. As other
metabolic pathways which use L-arginine, such arginases, could
compete with eNOS in the placental endothelium, they may play
a role under these circumstances. It has been shown that arginase-2
expression is increased in chorionic villi endothelium in PE [173].
Furthermore, we have recently demonstrated in HUVEC that
arginase-2 levels and activity are up-regulated by hypoxia [174];
however the role of arginase activity in the control of placental
vascular reactivity remains to be determined. These data suggest
that vascular dysfunction in diseases of pregnancy is mainly due to
changes in vessel structure and activation of NO-synthesis path-
ways by vasodilator agents rather than by altered responses to NO
and vasoconstrictors.

The expression of NOS and NO-metabolites levels in placental
endothelium in pregnancy pathologies cannot be easily correlated
with the vascular dysfunction observed. Rutherford and colleagues
[95] reported increased levels of NOS in chorionic villi of IUGR and
PE placentae and these were decreased in umbilical vessels
compared with normal placenta. Similarly, increased levels of NO-
metabolites in umbilical cord blood [96] and placental tissue [98] of
IUGR pregnancies have been reported. The source of this NO is still
unclear. Initial studies carried out by Myatt and colleagues [26]
found increased levels of eNOS in the endothelium of IUGR and
PE placentae. However, other authors have found decreased levels
of eNOS in these conditions [30,173] that can be correlated with the
vascular dysfunction determined in vivo [30]. Additionally, in
HUVEC from PE [175] and IUGR [118] pregnancies, decreased eNOS
expression and activity can be observed. Apparently, HUVEC
chronically exposed to hypoxia, as occurs in IUGR pregnancies, do
not regulate the L-arginine/NO pathway in response to hypoxia and
present a persistent hypoxia-like phenotype [117,118]. An expla-
nation for the increased levels of NO-metabolites together with
increased placental vascular resistance in IUGR and PE could be due
to higher iNOS expression. Giannubilo and colleagues [30] found
that eNOS protein levels negatively correlate with the pulsatility
Index (PI) determined by Doppler ultrasound, whilst iNOS levels in
IUGR placental endothelium show a positive correlation with PI.
Additionally, normal HUVEC exposed to PE-derived umbilical
plasma show higher iNOS expression [176]. Under these conditions
increased levels of nitrosative stress have been described [99].
HUVEC exposed to oxidative stress down-regulate eNOS and
up-regulate iNOS expression [177], effects which are increased by
shear stress and lead to nitrosative stress and cell apoptosis [178].
Increased endothelial iNOS expression has been implicated in
vascular dysfunction [179,180] and in animal models of diabetes
[181,182], atherosclerosis [179] and aging [183]. Thus NO and
NO-metabolite levels are not necessarily associated with improved
placental endothelial function and further studies are required to
determine the source of NO (i.e. eNOS or iNOS) in diseases of
pregnancy characterized by placental vascular dysfunction.
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