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Using a natural action of the permutation group S3 on the set
of irreducible polynomials, we attach to each subgroup of S3 the
family of its invariant polynomials. Enumeration formulas for the
trivial subgroup and for one transposition subgroup were given
by Gauss (1863) (for prime fields) [1] and Carlitz (1967) (for all
finite base fields) [2]. Respectively, they allow to enumerate all irre-
ducible and self-reciprocal irreducible polynomials. In our context,
the last remaining case concerned the alternating subgroup A3. We
give here the corresponding enumeration formula restricted to F2
base field. We wish this will give an interesting basis for subse-
quent developments analogous to those of Meyn (1990) [3] and
Cohen (1992) [4].

© 2010 Elsevier Inc. All rights reserved.

1. The action of S3 on PPP
1

The group of permutations of 3 elements (say 1, 2, 3) is a 6 elements non-commutative group. Its
subgroups are well known:

• Three cyclic subgroups of order 2, containing respectively the transpositions (12), (23), (13). These
subgroups are conjugated.

• One cyclic subgroup of order 3 generated by the “cycle” c = (123). This subgroup is distinguished
and called the alternating group A3.
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The group is generated by any set of two transpositions. For example, let us take u = (12) and
v = (23) then uv = c, vu = c2, and uvu = vuv = (13). These relations form a presentation of S3. This
presentation is not unique. One finds very often in the literature:

U 2 = 1, V 3 = 1, U V U = V 2

(take u = U and uv = V ).
In the projective line over F2, the F2-rational points can be identified with the set of 3 elements:

P
1(F2) = {

(0,1), (1,1), (1,0)
}
.

We call these elements respectively 0,1,∞.
The automorphism group of the projective line is the group PGL2(F2). Its F2-rational elements

subset is PGL2(F2) = GL2(F2): the group of invertible 2 × 2-matrices with coefficients in F2. GL2(F2)

acts as usual on the F2-vector space F2 × F2

(
a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)

with ad − bc = 1. Using the projective coordinates we get the classical homographic action

(x : 1) →
(

ax + b

cx + d
: 1

)
and ∞ →

(
a

c
: 1

)

if the denominators are �= 0. When denominators are 0, we use the ∞ point in the usual way.
This article is founded on the isomorphism:

GL2(F2) � S3.

We easily can explicit this map. We list the elements of GL2(F2):

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
.

The corresponding projective transformations are:

x → x, x + 1,
x

x + 1
,

1

x
,

1

x + 1
,

x + 1

x

and the corresponding permutations of the three points of the projective line are:

Id, (01), (1∞), (0∞), (01∞), (0∞1).

2. S3 action on irreducible polynomials of FFF2[X]

To define a left action of S3 on the set

I = {
P ∈ F2[X], P irreducible

} \ {X, X + 1}

(0 or 1 are not zeros of P ), it is sufficient to define it for the two transpositions
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P (01) = P (X + 1),

P (0∞) = Xdeg P P

(
1

X

)
.

For ease of notation these previous operations will be written as:

P+(X) = P (X + 1),

P∗(X) = Xdeg P P

(
1

X

)
.

The polynomial P∗ is called the reciprocal of P .
Other elements actions are defined by composition. For example the cycle (01∞) = (0∞) ◦ (01)

gives, using left action Pσ◦τ = (P τ )σ :

P (01∞) = (
P+)∗

.

In the same way we write:

P (0∞1) = P (01)(0∞) = (
P∗)+

,

P (1∞) = P (01)(0∞)(01) = P (0∞)(01)(0∞) = ((
P+)∗)+ = ((

P∗)+)∗
.

We shall omit the parentheses in the sequel, like in ((P+)∗)+ = P+∗+ .
We leave to the reader the easy task of verifying the coherence of the following zoology:

Definition 1. A polynomial P ∈ I is called

• alternate when it satisfies one of the equivalent conditions

P∗+ = P ⇔ P∗ = P+;
• self-reciprocal when P∗ = P ;
• periodic when P+ = P ;
• median when it satisfies one of the equivalent conditions

P+∗+ = P ⇔ P+ is self-reciprocal ⇔ P∗ is periodic.

The polynomial X2 + X + 1 is the intersection of any two of these classes.

3. Hexagons

Definition 2. The hexagon of P ∈ I is the orbit of P :

Hex(P ) = {
Pσ

∣∣ σ ∈ S3
} = {

P , P∗, P+, P∗+, P+∗, P∗+∗ = P+∗+}
.

A hexagon is included in I and has 1, 2, 3 or 6 distinct elements. In each hexagon, all polynomials
have the same degree. The degree of a hexagon is the degree of its elements. Consequently we can
define the function hex(n) (resp. h1(n), h2(n), h3(n), h6(n)) on integers � 2 as the number of all
hexagons (resp. 1, 2, 3, 6 element(s) hexagons) of degree n and we have

hex(n) = h1(n) + h2(n) + h3(n) + h6(n).

Our goal is to describe these orbits.



166 J.F. Michon, P. Ravache / Finite Fields and Their Applications 16 (2010) 163–174
We suppose that P ∈ I . The n roots of P in the algebraic closure F2 are distinct and conjugated
by Frobenius. We can write them

g, g2, . . . , g2n−1
.

Any one of them generates the field F2n .

3.1. 1 element hexagon

A hexagon has only one element if and only if P = P∗ = P+ . This implies that, if g is a root of P ,
g−1 and g + 1 are roots too. We have

g + 1 = g2k
and g−1 = g2l

for two integers k, l < n, then

g = g22k = g22l
.

The roots of P are distinct and conjugated, then

g = g22k ⇒ 2k = 0 mod n,

and for the same reason

2l = 0 mod n,

and so

k = l = 0 mod n/2.

As we cannot have neither k = 0, nor l = 0, the only possibility is k = l = n/2. Consequently

g + 1 = g−1

and P = X2 + X + 1.
The only hexagon with 1 irreducible element is

Hex
(

X2 + X + 1
)
.

The function value h1(n) is 0 for n > 2 and h1(2) = 1.

3.2. 2 elements hexagons

The orbit of P has two elements if it is invariant under the subgroup A3 with 3 elements, more
explicitly when

P∗+ = P and P �= P∗.

Then the orbits of the alternate polynomials other than X2 + X + 1 are exactly the 2 elements
orbits of our action of S3 on F2[X]. If P is alternate, its orbit is

Hex(P ) = {
P , P∗ = P+}

.
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For example, the degree < 12 alternate polynomials are X2 + X + 1 (which is also self-reciprocal),
X3 + X + 1, X3 + X2 + 1, X9 + X + 1, X9 + X8 + 1.

Theorem 1. The alternate polynomials are exactly the irreducible factors of the polynomials

Bk(X) = X2k+1 + X + 1

for k ∈ N.
If P is alternate, then deg P ≡ 0 mod 3 or P = X2 + X + 1. If deg P = 3m, then P |Bm or P |B2m.

Proof. Let g be a root of any irreducible polynomial P , then 1 + 1/g is a root of P∗+ .
Let P be an irreducible factor of a Bk , then deg P � 2 because 0 and 1 are not roots of Bk . Any

root g of P is a root of Bk so

g2k = 1 + 1

g
.

This implies that the set of all roots of P is invariant under the map

T : g → 1 + 1

g

(defined on F2n \ {0,1}), then P∗ = P+ and P is alternate.
Reciprocally, if P is alternate and g any of its roots, then

g2k = 1 + 1

g

for some integer 0 � k < n = deg P . Consequently P |Bk .
The transformation T has order 3 and permutes the roots of P because P is alternate. If deg P > 3,

no root of P can be fixed by this transformation because in this case we would have

g = 1 + 1

g

and g would be a root of the irreducible X2 + X + 1, which is a contradiction. Consequently the
number of roots of P is multiple of 3,

deg P = n ≡ 0 mod 3.

Because T 3 = I , we have

g23k = g.

This implies that g is an element of the field F23k so, if deg P = n

F2n ⊆ F23k .

Then

3k = 0 mod n

and the bound on k above gives k = n/3 or k = 2n/3. �
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The preceding theorem leads to

Definition 3. Let P be an irreducible alternate polynomial of degree 3m. If P |Bm we say that the type
of P is 1. If P |B2m we say that its type is 2.

We don’t need to define the type of P = B0.

Proposition 1. P and P∗ have distinct types.

Proof. Let P be an irreducible alternate polynomial of type 1. The reciprocal P∗ is also irreducible
alternate of the same degree. Suppose deg P = 3m, then P |Bm and let g be a root of P . We have

g2m = 1 + 1

g
.

Then h = g−1 is a root of P∗ and

h−2m = 1 + h,

h2m = 1

1 + h
,

h22m =
(

1

1 + h

)2m

= 1

1 + h2m = 1 + 1

h
,

hence B2m(h) = 0, so P∗|B2m .
The demonstration for a type 2 polynomial follows the same lines. �
For example P = B1 = X3 + X + 1 is alternate. Then P∗ = X3 + X2 + 1 is a factor of

B2 = (
X2 + X + 1

)(
X3 + X2 + 1

)
.

Proposition 1 implies the following:

Corollary 1. Among all the alternate polynomials of degree 3m, half of them divides Bm, while the other half
divides B2m.

Proposition 2. Bk has no multiple roots.

Proof. We have Bk(X) = X2k+1 + X +1 and its derivative B ′
k(X) = X2k +1 = (X +1)2k

. Since Bk(1) �= 0
then Bk(X) and B ′

k(X) have no common root so Bk has no multiple roots. �
Proposition 3. (X2 + X + 1)|Bk if and only if k is even.

Proof. Let α be a root of X2 + X + 1 then α3 = 1. We have 2k + 1 = (−1)k + 1. If k is even Bk(α) =
α2 + α + 1 = 0, and if k is odd Bk(α) = α. �
Theorem 2. Let P be an irreducible polynomial of degree 3m then P |Bk if and only if the three conditions are
fulfilled:

• P is alternate;
• m|k;
• k

m mod 3 is equal to the type of P .
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Proof. We prove first that the conditions are necessary.
We know from Theorem 1 that P is alternate. Using the same arguments as above, all the roots

of Bk are in F23k , and the smallest field containing the roots of P is F23m . If P |Bk this implies
F23m ⊆ F23k and m|k.

Let us write k = ml for some integer l, and let g be a root of P then, if P is of type 1:

g2m = 1 + 1

g
= g2k = g2ml

.

Because all the 3m roots of P are distinct and from properties of Frobenius operator we have

m = ml mod 3m

then

l = 1 mod 3.

If P is of type 2, then

g22m = 1 + 1

g
= g2k = g2ml

and l = 2 mod 3 for the same reasons.
We prove now that the properties are sufficient.
Let P ∈ I be an alternate polynomial of degree 3m. Suppose that the type of P is t and k = lm

with l = t mod 3, then for any root g of P :

g2k = g2lm = g2tm = 1 + 1

g
.

The last equality is a consequence of the definition of the type. Then g is always a root of Bk and
P |Bk . �

We give two simple examples:
For k = 2: B2 = X5 + X +1 = (X2 + X +1)(X3 + X2 +1). The alternate irreducible factor X3 + X2 +1

corresponds to m = 1 and its type is 2. We verify easily that its type is 2 because, if g is a root of
this factor, then

g22 = 1 + 1

g
.

For k = 3: B3 = X9 + X + 1. From our Theorem 2, only m = 3 can give irreducible factors (of
type 1) of B3 and such irreducible factor will have degree 3 · 3 = 9. So B3 is alternate, irreducible and
of type 1.

We can now settle our main result, which is a simple consequence of Theorem 2:

Theorem 3. Consider h2(3m) with m � 1, i.e., half of the number of alternate irreducible polynomials of
degree 3m. Then for any k � 1:

2k − (−1)k =
∑
d|k

k
d �≡0 mod 3

3dh2(3d). (1)
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Proof. Let E Bk be the set of all the polynomials of degree � 3 dividing Bk , then from Proposition 2

E Bk =
⋃
d|k

k
d ≡1 mod 3

E1(3d) ∪
⋃
d|k

k
d ≡2 mod 3

E2(3d),

with E1(3d) (resp. E2(3d)) the set of all irreducible alternate polynomials of degree 3d and type 1
(resp. type 2) dividing Bk . Then, taking the degrees, we have

∑
Q ∈E Bk

deg Q =
∑
d|k

k
d ≡1 mod 3

3d Card
(

E1(3d)
) +

∑
d|k

k
d ≡2 mod 3

3d Card
(

E2(3d)
)
.

Corollary 1 implies

∑
Q ∈E Bk

deg Q =
∑
d|k

k
d ≡1 mod 3

3dh2(3d) +
∑
d|k

k
d ≡2 mod 3

3dh2(3d)

=
∑
d|k

k
d �≡0 mod 3

3dh2(3d).

Moreover, from Proposition 3 we know that

∑
Q ∈E Bk

deg Q =
{

2k − 1 if k is even,

2k + 1 if k is odd

= 2k − (−1)k,

which concludes our proof. �
As we saw previously, a hexagon with two elements in the set of irreducible polynomials of degree

3m in F2[X] is made of two alternate polynomials, so the number of these hexagons is equal to
h2(3m).

Using Möbius inversion with characters (see Appendix A) on (1) we can give a formula for com-
puting h2(3m):

Theorem 4. The number h2(n) of hexagons with two elements of given degree n � 2 is 0 if n �≡ 0 mod 3, else
with n = 3m:

h2(3m) = 1

3m

∑
d|m

d �≡0 mod 3

μ(d)
(
2m/d − (−1)m/d). (2)

Proof. To obtain h2 from the preceding theorem, we use elementary results about Dirichlet’s charac-
ters and convolution. Short explanations are given in Appendix A.

Let us define the arithmetic functions:

f (m) = 2m − (−1)m,

g(m) = 3mh2(3m)
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for any m � 1. Let χ3 be the principal Dirichlet’s character modulo 3 (see Appendix A), then the
formula (1) can be written as

f (m) =
∑
d|m

d �=0 mod 3

g

(
m

d

)
=

∑
d|m

χ3(d)g

(
m

d

)

or, using Dirichlet’s convolution, we obtain

f = χ3 ∗ g.

Consequently

μχ3 ∗ f = g.

This last equality gives (2). �
The first values of h2 are

3m 3 6 9 12 15 18 21 24 27 30

h2(3m) 1 0 1 1 2 3 6 10 19 33

Eventually, we give a bound for h2(3m):

Corollary 2. For integer m � 1:

∣∣3mh2(3m) − 2m
∣∣ � 2�m/2�+1 + �m/2� − 1.

Proof. From formula (1) we have

3mh2(3m) = 2m − (−1)m +
∑

d|m,d�2
d �≡0 mod 3

μ(d)
(
2m/d − (−1)m/d).

Hence

∣∣3mh2(3m) − 2m
∣∣ � 1 +

∑
1�i��m/2�

(
2i + 1

)

� 1 + 2
(
2�m/2� − 1

) + �m/2� = 2�m/2�+1 + �m/2� − 1. �
3.3. 3 elements hexagons

The results of this section are well known because, as we shall see below, this case is connected
to the self-reciprocal irreducible (sri) polynomials. We refer to [4], [3] or [5] for more details and
proofs.

Each of the polynomials in a 3 elements orbit Hex(P ) is invariant by one of the 3 subgroups of
order 2 in S3. In other words each 3 elements orbit is the orbit of a sri-polynomial of I (we recall
that X + 1 is discarded from I ).

Conversely, if P ∈ I is a sri-polynomial, then:

Hex(P ) = {
P , P+, P+∗},

P+ is invariant by (1∞) action and P+∗ is invariant by (01) action (it is a periodic polynomial).
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The degree of a sri-polynomial P is even, because the inverse of the roots of P are also roots.
We emphasize on the fact that over F2 the sri-polynomials set plays exactly the same role as pe-

riodic or median polynomials. Nevertheless sri-polynomials draw much more attention, and a lot of
work were devoted to them, because they are easy to recognize by visual inspection of their coeffi-
cients.

Theorem 5. (See Meyn [3].)

i) Each sri-polynomial of degree 2n (n � 1) over F2 is a factor of the polynomial

Hn(X) = X2n+1 + 1.

ii) Each irreducible factor of degree � 2 of Hn is a sri-polynomial of degree 2d, where d divides n such that
n/d is odd.

Corollary 3. The median (resp. periodic) irreducible polynomials in I are the irreducible factors of

X2k + X2k−1 + 1
(
resp. X2k + X + 1

)
k � 1.

Proof. We get the polynomial X2k + X2k−1 + 1 (resp. X2k + X + 1) applying the transformation +
(resp. +∗) on X2k+1 + 1. �
Theorem 6. (See Carlitz [2].) The number of degree 2m (m � 1) sri-polynomials in F2[X] is

S(2m) = 1

2m

∑
d|m,d odd

μ(d)2
m
d

where μ is the Möbius function.

We refer to [5] for a demonstration of Carlitz formula in the same spirit as our paper.
Following our definitions,

h3(n) = S(n) for n even, n > 2

and h3(n) = 0 for all other values of n. The case n = 2 corresponds to the polynomial X2 + X + 1
which gives a 1 element orbit.

The first values of h3 and S are

2m 2 4 6 8 10 12 14 16 18 20

h3(2m) 0 1 1 2 3 5 9 16 28 51
S(2m) 1 1 1 2 3 5 9 16 28 51

The value S(1) = 1 could be added: it corresponds to the polynomial X + 1 (which is not in our
set I ). The sequence S(n) (n � 1) is registered as the sequence A48 in [6].

3.4. 6 elements hexagons

A famous formula of Gauss [1] gives the number I(n) of irreducible polynomials of degree n
in F2[X]:

I(n) = 1

n

∑
d|n

μ(d)2
n
d . (3)
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From (3) and the enumerations formulas we obtain the number of 6 elements hexagons of degree n,
for n � 2:

h6(n) = 1

6

[
I(n) − h1(n) − 2h2(n) − 3h3(n)

]
.

4. Conclusion

We gather the different results of previous sections in a short table, starting from n = 2 because
we excluded the polynomials of degree 1 from our enumerations:

n h1 h2 h3 h6 hex I(n)

2 1 0 0 0 1 1
3 0 1 0 0 1 2
4 0 0 1 0 1 3
5 0 0 0 1 1 6
6 0 0 1 1 2 9
7 0 0 0 3 3 18
8 0 0 2 4 6 30
9 0 1 0 9 10 56

10 0 0 3 15 18 99
11 0 0 0 31 31 186
12 0 1 5 53 59 335
13 0 0 0 105 105 630
14 0 0 9 189 198 1161
15 0 2 0 363 365 2182
16 0 0 16 672 688 4080
17 0 0 0 1285 1285 7710
18 0 3 28 2407 2438 14532
19 0 0 0 4599 4599 27594
20 0 0 51 8704 8755 52377

The sequence hex is A11957 [6]. It appears very unexpectedly in a 1981 work of T.J. McLarnan about
packing atoms in chemistry [7,8].

The new sequences h2 and h6 are now registered as A165920 and A165921 [6].

Appendix A

For the article to be self contained we give a quick explanation of (more or less) known results on
Möbius inversion with Dirichlet’s characters.

An arithmetic function is a map f : N − {0} → Z.
For two given arithmetic functions f , g : N−{0} → Z one defines their (Dirichlet’s) convolution as

( f ∗ g)(n) =
∑
d|n

f (d)g

(
n

d

)

for any integer n � 1. The convolution is associative, commutative, distributive on the sum, and the
arithmetical function

δ(n) =
{

1 if n = 1,

0 else

is the neutral element of the convolution.
The Möbius function identity

∑
d|n

μ(d) = δ(n)
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can be translated as

1 ∗ μ = δ.

In other words, μ is the inverse of the constant function 1. The Möbius inversion formula is an
immediate consequence of it:

f = 1 ∗ g ⇒ g = f ∗ μ.

Let us consider the principal Dirichlet’s character modulo n:

χn(a) =
{

1 if (a,n) = 1,

0 if (a,n) �= 1.

Given two arithmetical functions f and g , we write f g the pointwise multiplication of the two
functions.

Proposition 4. For any prime number p, and arithmetical functions f , g:

( f χp) ∗ (gχp) = ( f ∗ g)χp.

The demonstration is straightforward. In particular, taking f = 1 and g = μ, we obtain

Corollary 4.

χp ∗ (μχp) = δχp = δ.

The inverse of χp for convolution is μχp .
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