Finite Fields and Their Applications 16 (2010) 163-174

On different families of invariant irreducible polynomials over \mathbb{F}_2

Jean Francis Michon, Philippe Ravache*

Université de Rouen, LITIS EA 4108, BP 12 – 76801 Saint-Étienne du Rouvray cedex, France

ARTICLE INFO

Article history: Received 7 October 2009 Revised 4 January 2010 Available online 12 February 2010 Communicated by D. Panario

Keywords: Irreducible polynomials Finite fields Permutations

ABSTRACT

Using a natural action of the permutation group \mathfrak{S}_3 on the set of irreducible polynomials, we attach to each subgroup of \mathfrak{S}_3 the family of its invariant polynomials. Enumeration formulas for the trivial subgroup and for one transposition subgroup were given by Gauss (1863) (for prime fields) [1] and Carlitz (1967) (for all finite base fields) [2]. Respectively, they allow to enumerate all irreducible and self-reciprocal irreducible polynomials. In our context, the *last* remaining case concerned the alternating subgroup \mathfrak{A}_3 . We give here the corresponding enumeration formula restricted to \mathbb{F}_2 base field. We wish this will give an interesting basis for subsequent developments analogous to those of Meyn (1990) [3] and Cohen (1992) [4].

© 2010 Elsevier Inc. All rights reserved.

1. The action of \mathfrak{S}_3 on \mathbb{P}^1

The group of permutations of 3 elements (say 1, 2, 3) is a 6 elements non-commutative group. Its subgroups are well known:

- Three cyclic subgroups of order 2, containing respectively the transpositions (12), (23), (13). These subgroups are conjugated.
- One cyclic subgroup of order 3 generated by the "cycle" c = (123). This subgroup is distinguished and called the alternating group \mathfrak{A}_3 .

^{*} Corresponding author. Fax: +33 (0) 2 32 95 51 87. E-mail addresses: jean-francis.michon@litislab.fr (J.F. Michon), philippe.ravache@litislab.fr (P. Ravache).

^{1071-5797/\$ –} see front matter $\ @$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.ffa.2010.01.004

The group is generated by any set of two transpositions. For example, let us take u = (12) and v = (23) then uv = c, $vu = c^2$, and uvu = vuv = (13). These relations form a presentation of \mathfrak{S}_3 . This presentation is not unique. One finds very often in the literature:

$$U^2 = 1$$
, $V^3 = 1$, $UVU = V^2$

(take u = U and uv = V).

In the projective line over \mathbb{F}_2 , the \mathbb{F}_2 -rational points can be identified with the set of 3 elements:

$$\mathbb{P}^{1}(\mathbb{F}_{2}) = \{(0, 1), (1, 1), (1, 0)\}.$$

We call these elements respectively $0, 1, \infty$.

The automorphism group of the projective line is the group $PGL_2(\mathbb{F}_2)$. Its \mathbb{F}_2 -rational elements subset is $PGL_2(\mathbb{F}_2) = GL_2(\mathbb{F}_2)$: the group of invertible 2 × 2-matrices with coefficients in \mathbb{F}_2 . $GL_2(\mathbb{F}_2)$ acts as usual on the \mathbb{F}_2 -vector space $\mathbb{F}_2 \times \mathbb{F}_2$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

with ad - bc = 1. Using the projective coordinates we get the classical homographic action

$$(x:1) \rightarrow \left(\frac{ax+b}{cx+d}:1\right) \text{ and } \infty \rightarrow \left(\frac{a}{c}:1\right)$$

if the denominators are \neq 0. When denominators are 0, we use the ∞ point in the usual way.

This article is founded on the isomorphism:

$$GL_2(\mathbb{F}_2) \simeq \mathfrak{S}_3.$$

We easily can explicit this map. We list the elements of $GL_2(\mathbb{F}_2)$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

The corresponding projective transformations are:

$$x \to x, x+1, \frac{x}{x+1}, \frac{1}{x}, \frac{1}{x+1}, \frac{x+1}{x}$$

and the corresponding permutations of the three points of the projective line are:

Id, (01), (1 ∞), (0 ∞), (01 ∞), (0 ∞ 1).

2. \mathfrak{S}_3 action on irreducible polynomials of $\mathbb{F}_2[X]$

To define a left action of \mathfrak{S}_3 on the set

$$\mathcal{I} = \{ P \in \mathbb{F}_2[X], P \text{ irreducible} \} \setminus \{ X, X + 1 \}$$

(0 or 1 are not zeros of P), it is sufficient to define it for the two transpositions

$$P^{(01)} = P(X+1),$$
$$P^{(0\infty)} = X^{\deg P} P\left(\frac{1}{X}\right).$$

For ease of notation these previous operations will be written as:

$$P^{+}(X) = P(X+1),$$
$$P^{*}(X) = X^{\deg P} P\left(\frac{1}{X}\right)$$

The polynomial P^* is called the **reciprocal** of *P*.

Other elements actions are defined by composition. For example the cycle $(01\infty) = (0\infty) \circ (01)$ gives, using left action $P^{\sigma \circ \tau} = (P^{\tau})^{\sigma}$:

$$P^{(01\infty)} = \left(P^+\right)^*.$$

In the same way we write:

$$P^{(0\infty1)} = P^{(01)(0\infty)} = (P^*)^+,$$

$$P^{(1\infty)} = P^{(01)(0\infty)(01)} = P^{(0\infty)(01)(0\infty)} = ((P^+)^*)^+ = ((P^*)^+)^*.$$

We shall omit the parentheses in the sequel, like in $((P^+)^*)^+ = P^{+*+}$.

We leave to the reader the easy task of verifying the coherence of the following zoology:

Definition 1. A polynomial $P \in \mathcal{I}$ is called

• alternate when it satisfies one of the equivalent conditions

$$P^{*+} = P \quad \Leftrightarrow \quad P^* = P^+;$$

- **self-reciprocal** when $P^* = P$;
- **periodic** when $P^+ = P$;
- median when it satisfies one of the equivalent conditions

 $P^{+*+} = P \iff P^+$ is self-reciprocal $\Leftrightarrow P^*$ is periodic.

The polynomial $X^2 + X + 1$ is the intersection of any two of these classes.

3. Hexagons

Definition 2. The **hexagon** of $P \in \mathcal{I}$ is the orbit of P:

$$Hex(P) = \{ P^{\sigma} \mid \sigma \in \mathfrak{S}_3 \} = \{ P, P^*, P^+, P^{*+}, P^{+*}, P^{*+*} = P^{+*+} \}.$$

A hexagon is included in \mathcal{I} and has 1, 2, 3 or 6 distinct elements. In each hexagon, all polynomials have the same degree. The degree of a hexagon is the degree of its elements. Consequently we can define the function hex(n) (resp. $h_1(n)$, $h_2(n)$, $h_3(n)$, $h_6(n)$) on integers ≥ 2 as the number of all hexagons (resp. 1, 2, 3, 6 element(s) hexagons) of degree n and we have

$$hex(n) = h_1(n) + h_2(n) + h_3(n) + h_6(n).$$

Our goal is to describe these orbits.

We suppose that $P \in \mathcal{I}$. The *n* roots of *P* in the algebraic closure $\overline{\mathbb{F}_2}$ are distinct and conjugated by Frobenius. We can write them

$$g, g^2, \ldots, g^{2^{n-1}}$$

Any one of them generates the field \mathbb{F}_{2^n} .

3.1. 1 element hexagon

A hexagon has only one element if and only if $P = P^* = P^+$. This implies that, if g is a root of P, g^{-1} and g + 1 are roots too. We have

$$g + 1 = g^{2^k}$$
 and $g^{-1} = g^{2^l}$

for two integers k, l < n, then

$$g = g^{2^{2k}} = g^{2^{2l}}.$$

The roots of *P* are distinct and conjugated, then

$$g = g^{2^{2k}} \Rightarrow 2k = 0 \mod n$$

and for the same reason

 $2l = 0 \mod n$,

and so

$$k = l = 0 \mod n/2$$
.

As we cannot have neither k = 0, nor l = 0, the only possibility is k = l = n/2. Consequently

$$g + 1 = g^{-1}$$

and $P = X^2 + X + 1$.

The only hexagon with 1 irreducible element is

 $Hex(X^2 + X + 1).$

The function value $h_1(n)$ is 0 for n > 2 and $h_1(2) = 1$.

3.2. 2 elements hexagons

The orbit of *P* has two elements if it is invariant under the subgroup \mathfrak{A}_3 with 3 elements, more explicitly when

$$P^{*+} = P$$
 and $P \neq P^*$.

Then the orbits of the **alternate** polynomials other than $X^2 + X + 1$ are exactly the 2 elements orbits of our action of \mathfrak{S}_3 on $\mathbb{F}_2[X]$. If *P* is alternate, its orbit is

$$Hex(P) = \{P, P^* = P^+\}.$$

167

For example, the degree < 12 alternate polynomials are $X^2 + X + 1$ (which is also self-reciprocal), $X^3 + X + 1$, $X^3 + X^2 + 1$, $X^9 + X + 1$, $X^9 + X^8 + 1$.

Theorem 1. The alternate polynomials are exactly the irreducible factors of the polynomials

$$B_k(X) = X^{2^k + 1} + X + 1$$

for $k \in \mathbb{N}$.

If P is alternate, then deg $P \equiv 0 \mod 3$ or $P = X^2 + X + 1$. If deg P = 3m, then $P|B_m$ or $P|B_{2m}$.

Proof. Let g be a root of any irreducible polynomial P, then 1 + 1/g is a root of P^{*+} .

Let *P* be an irreducible factor of a B_k , then deg $P \ge 2$ because 0 and 1 are not roots of B_k . Any root g of *P* is a root of B_k so

$$g^{2^k} = 1 + \frac{1}{g}.$$

This implies that the set of all roots of P is invariant under the map

$$T:g \to 1+\frac{1}{g}$$

(defined on $\overline{\mathbb{F}_{2^n}} \setminus \{0, 1\}$), then $P^* = P^+$ and P is alternate.

Reciprocally, if *P* is alternate and *g* any of its roots, then

$$g^{2^k} = 1 + \frac{1}{g}$$

for some integer $0 \le k < n = \deg P$. Consequently $P|B_k$.

The transformation *T* has order 3 and permutes the roots of *P* because *P* is alternate. If deg P > 3, no root of *P* can be fixed by this transformation because in this case we would have

$$g = 1 + \frac{1}{g}$$

and g would be a root of the irreducible $X^2 + X + 1$, which is a contradiction. Consequently the number of roots of P is multiple of 3,

$$\deg P = n \equiv 0 \mod 3$$
.

Because $T^3 = I$, we have

$$g^{2^{3k}} = g$$

This implies that g is an element of the field $\mathbb{F}_{2^{3k}}$ so, if deg P = n

$$\mathbb{F}_{2^n} \subseteq \mathbb{F}_{2^{3k}}.$$

Then

$$3k = 0 \mod n$$

and the bound on *k* above gives k = n/3 or k = 2n/3. \Box

The preceding theorem leads to

Definition 3. Let *P* be an irreducible alternate polynomial of degree 3m. If $P|B_m$ we say that the **type** of *P* is 1. If $P|B_{2m}$ we say that its type is 2.

We don't need to define the type of $P = B_0$.

Proposition 1. *P* and *P*^{*} have distinct types.

Proof. Let *P* be an irreducible alternate polynomial of type 1. The reciprocal P^* is also irreducible alternate of the same degree. Suppose deg P = 3m, then $P | B_m$ and let *g* be a root of *P*. We have

$$g^{2^m}=1+\frac{1}{g}.$$

Then $h = g^{-1}$ is a root of P^* and

$$\begin{split} h^{-2^m} &= 1+h, \\ h^{2^m} &= \frac{1}{1+h}, \\ h^{2^{2m}} &= \left(\frac{1}{1+h}\right)^{2^m} = \frac{1}{1+h^{2^m}} = 1+\frac{1}{h}, \end{split}$$

hence $B_{2m}(h) = 0$, so $P^*|B_{2m}$.

The demonstration for a type 2 polynomial follows the same lines. $\hfill\square$

For example $P = B_1 = X^3 + X + 1$ is alternate. Then $P^* = X^3 + X^2 + 1$ is a factor of

$$B_2 = (X^2 + X + 1)(X^3 + X^2 + 1).$$

Proposition 1 implies the following:

Corollary 1. Among all the alternate polynomials of degree 3m, half of them divides B_m , while the other half divides B_{2m} .

Proposition 2. B_k has no multiple roots.

Proof. We have $B_k(X) = X^{2^k+1} + X + 1$ and its derivative $B'_k(X) = X^{2^k} + 1 = (X+1)^{2^k}$. Since $B_k(1) \neq 0$ then $B_k(X)$ and $B'_k(X)$ have no common root so B_k has no multiple roots. \Box

Proposition 3. $(X^2 + X + 1)|B_k$ if and only if k is even.

Proof. Let α be a root of $X^2 + X + 1$ then $\alpha^3 = 1$. We have $2^k + 1 = (-1)^k + 1$. If k is even $B_k(\alpha) = \alpha^2 + \alpha + 1 = 0$, and if k is odd $B_k(\alpha) = \alpha$. \Box

Theorem 2. Let *P* be an irreducible polynomial of degree 3m then $P|B_k$ if and only if the three conditions are fulfilled:

- P is alternate;
- m|k;
- $\frac{k}{m}$ mod 3 is equal to the type of P.

Proof. We prove first that the conditions are necessary.

We know from Theorem 1 that *P* is alternate. Using the same arguments as above, all the roots of B_k are in $\mathbb{F}_{2^{3k}}$, and the smallest field containing the roots of *P* is $\mathbb{F}_{2^{3m}}$. If $P|B_k$ this implies $\mathbb{F}_{2^{3m}} \subseteq \mathbb{F}_{2^{3k}}$ and m|k.

Let us write k = ml for some integer l, and let g be a root of P then, if P is of type 1:

$$g^{2^m} = 1 + \frac{1}{g} = g^{2^k} = g^{2^{ml}}.$$

Because all the 3m roots of P are distinct and from properties of Frobenius operator we have

$$m = ml \mod 3m$$

then

$$l=1 \mod 3$$

If P is of type 2, then

$$g^{2^{2m}} = 1 + \frac{1}{g} = g^{2^k} = g^{2^{ml}}$$

and $l = 2 \mod 3$ for the same reasons.

We prove now that the properties are sufficient.

Let $P \in \mathcal{I}$ be an alternate polynomial of degree 3*m*. Suppose that the type of *P* is *t* and k = lm with $l = t \mod 3$, then for any root *g* of *P*:

$$g^{2^k} = g^{2^{lm}} = g^{2^{lm}} = 1 + \frac{1}{g}.$$

The last equality is a consequence of the definition of the type. Then g is always a root of B_k and $P|B_k$. \Box

We give two simple examples:

For k = 2: $B_2 = X^5 + X + 1 = (X^2 + X + 1)(X^3 + X^2 + 1)$. The alternate irreducible factor $X^3 + X^2 + 1$ corresponds to m = 1 and its type is 2. We verify easily that its type is 2 because, if g is a root of this factor, then

$$g^{2^2} = 1 + \frac{1}{g}.$$

For k = 3: $B_3 = X^9 + X + 1$. From our Theorem 2, only m = 3 can give irreducible factors (of type 1) of B_3 and such irreducible factor will have degree $3 \cdot 3 = 9$. So B_3 is alternate, irreducible and of type 1.

We can now settle our main result, which is a simple consequence of Theorem 2:

Theorem 3. Consider $h_2(3m)$ with $m \ge 1$, i.e., half of the number of alternate irreducible polynomials of degree 3m. Then for any $k \ge 1$:

$$2^{k} - (-1)^{k} = \sum_{\substack{d \mid k \\ \frac{k}{d} \neq 0 \mod 3}} 3dh_{2}(3d).$$
(1)

Proof. Let EB_k be the set of all the polynomials of degree ≥ 3 dividing B_k , then from Proposition 2

$$EB_{k} = \bigcup_{\substack{d \mid k \\ \frac{k}{d} \equiv 1 \mod 3}} E_{1}(3d) \cup \bigcup_{\substack{d \mid k \\ \frac{k}{d} \equiv 2 \mod 3}} E_{2}(3d),$$

with $E_1(3d)$ (resp. $E_2(3d)$) the set of all irreducible alternate polynomials of degree 3*d* and type 1 (resp. type 2) dividing B_k . Then, taking the degrees, we have

$$\sum_{\substack{Q \in EB_k}} \deg Q = \sum_{\substack{d \mid k \\ \frac{k}{d} \equiv 1 \mod 3}} 3d \operatorname{Card}(E_1(3d)) + \sum_{\substack{d \mid k \\ \frac{k}{d} \equiv 2 \mod 3}} 3d \operatorname{Card}(E_2(3d)).$$

Corollary 1 implies

$$\sum_{\substack{Q \in EB_k}} \deg Q = \sum_{\substack{d|k \\ \frac{k}{d} \equiv 1 \mod 3}} 3dh_2(3d) + \sum_{\substack{d|k \\ \frac{k}{d} \equiv 2 \mod 3}} 3dh_2(3d)$$
$$= \sum_{\substack{d|k \\ \frac{k}{d} \neq 0 \mod 3}} 3dh_2(3d).$$

Moreover, from Proposition 3 we know that

$$\sum_{Q \in EB_k} \deg Q = \begin{cases} 2^k - 1 & \text{if } k \text{ is even,} \\ 2^k + 1 & \text{if } k \text{ is odd} \end{cases}$$
$$= 2^k - (-1)^k,$$

which concludes our proof. \Box

As we saw previously, a hexagon with two elements in the set of irreducible polynomials of degree 3m in $\mathbb{F}_2[X]$ is made of two alternate polynomials, so the number of these hexagons is equal to $h_2(3m)$.

Using Möbius inversion with characters (see Appendix A) on (1) we can give a formula for computing $h_2(3m)$:

Theorem 4. The number $h_2(n)$ of hexagons with two elements of given degree $n \ge 2$ is 0 if $n \ne 0 \mod 3$, else with n = 3m:

$$h_2(3m) = \frac{1}{3m} \sum_{\substack{d \mid m \\ d \neq 0 \text{ mod } 3}} \mu(d) \left(2^{m/d} - (-1)^{m/d} \right).$$
(2)

Proof. To obtain h_2 from the preceding theorem, we use elementary results about Dirichlet's characters and convolution. Short explanations are given in Appendix A.

Let us define the arithmetic functions:

$$f(m) = 2m - (-1)m,$$

$$g(m) = 3mh_2(3m)$$

for any $m \ge 1$. Let χ_3 be the principal Dirichlet's character modulo 3 (see Appendix A), then the formula (1) can be written as

$$f(m) = \sum_{\substack{d \mid m \\ d \neq 0 \text{ mod } 3}} g\left(\frac{m}{d}\right) = \sum_{d \mid m} \chi_3(d) g\left(\frac{m}{d}\right)$$

or, using Dirichlet's convolution, we obtain

$$f = \chi_3 * g.$$

Consequently

$$\mu \chi_3 * f = g.$$

This last equality gives (2). \Box

The first values of h_2 are

3m	3	6	9	12	15	18	21	24	27	30
$h_2(3m)$	1	0	1	1	2	3	6	10	19	33

Eventually, we give a bound for $h_2(3m)$:

Corollary 2. For integer $m \ge 1$:

$$\left|3mh_2(3m)-2^m\right| \leq 2^{\lfloor m/2 \rfloor+1}+\lfloor m/2 \rfloor-1.$$

Proof. From formula (1) we have

$$3mh_2(3m) = 2^m - (-1)^m + \sum_{\substack{d \mid m, d \ge 2 \\ d \neq 0 \text{ mod } 3}} \mu(d) \left(2^{m/d} - (-1)^{m/d} \right).$$

Hence

$$\begin{aligned} \left| 3mh_2(3m) - 2^m \right| &\leq 1 + \sum_{1 \leq i \leq \lfloor m/2 \rfloor} \left(2^i + 1 \right) \\ &\leq 1 + 2\left(2^{\lfloor m/2 \rfloor} - 1 \right) + \lfloor m/2 \rfloor = 2^{\lfloor m/2 \rfloor + 1} + \lfloor m/2 \rfloor - 1. \quad \Box \end{aligned}$$

3.3. 3 elements hexagons

The results of this section are well known because, as we shall see below, this case is connected to the **self-reciprocal irreducible (sri)** polynomials. We refer to [4], [3] or [5] for more details and proofs.

Each of the polynomials in a 3 elements orbit Hex(P) is invariant by one of the 3 subgroups of order 2 in \mathfrak{S}_3 . In other words each 3 elements orbit is the orbit of a sri-polynomial of \mathcal{I} (we recall that X + 1 is discarded from \mathcal{I}).

Conversely, if $P \in \mathcal{I}$ is a sri-polynomial, then:

$$Hex(P) = \{P, P^+, P^{+*}\},\$$

 P^+ is invariant by (1 ∞) action and P^{+*} is invariant by (01) action (it is a periodic polynomial).

The degree of a sri-polynomial P is even, because the inverse of the roots of P are also roots. We emphasize on the fact that over \mathbb{F}_2 the sri-polynomials set plays exactly the same role as periodic or median polynomials. Nevertheless sri-polynomials draw much more attention, and a lot of work were devoted to them, because they are easy to recognize by visual inspection of their coefficients.

Theorem 5. (See Meyn [3].)

i) Each sri-polynomial of degree 2n $(n \ge 1)$ over \mathbb{F}_2 is a factor of the polynomial

$$H_n(X) = X^{2^n+1} + 1.$$

ii) Each irreducible factor of degree ≥ 2 of H_n is a sri-polynomial of degree 2d, where d divides n such that n/d is odd.

Corollary 3. The median (resp. periodic) irreducible polynomials in \mathcal{I} are the irreducible factors of

$$X^{2^k} + X^{2^k-1} + 1$$
 (resp. $X^{2^k} + X + 1$) $k \ge 1$.

Proof. We get the polynomial $X^{2^k} + X^{2^k-1} + 1$ (resp. $X^{2^k} + X + 1$) applying the transformation + (resp. +*) on $X^{2^k+1} + 1$. \Box

Theorem 6. (See Carlitz [2].) The number of degree 2m ($m \ge 1$) sri-polynomials in $\mathbb{F}_2[X]$ is

$$S(2m) = \frac{1}{2m} \sum_{d|m,d \text{ odd}} \mu(d) 2^{\frac{m}{d}}$$

where μ is the Möbius function.

We refer to [5] for a demonstration of Carlitz formula in the same spirit as our paper. Following our definitions,

$$h_3(n) = S(n)$$
 for *n* even, $n > 2$

and $h_3(n) = 0$ for all other values of *n*. The case n = 2 corresponds to the polynomial $X^2 + X + 1$ which gives a 1 element orbit.

The first values of h_3 and S are

2m	2	4	6	8	10	12	14	16	18	20
$h_3(2m)$	0	1	1	2	3	5	9	16	28	51
S(2m)	1	1	1	2	3	5	9	16	28	51

The value S(1) = 1 could be added: it corresponds to the polynomial X + 1 (which is not in our set \mathcal{I}). The sequence S(n) ($n \ge 1$) is registered as the sequence A48 in [6].

3.4. 6 elements hexagons

A famous formula of Gauss [1] gives the number I(n) of irreducible polynomials of degree n in $\mathbb{F}_2[X]$:

$$I(n) = \frac{1}{n} \sum_{d|n} \mu(d) 2^{\frac{n}{d}}.$$
(3)

From (3) and the enumerations formulas we obtain the number of 6 elements hexagons of degree *n*, for $n \ge 2$:

$$h_6(n) = \frac{1}{6} \Big[I(n) - h_1(n) - 2h_2(n) - 3h_3(n) \Big].$$

4. Conclusion

We gather the different results of previous sections in a short table, starting from n = 2 because we excluded the polynomials of degree 1 from our enumerations:

n	h_1	h_2	h_3	h_6	hex	<i>I</i> (<i>n</i>)
2	1	0	0	0	1	1
3	0	1	0	0	1	2
4	0	0	1	0	1	3
5	0	0	0	1	1	6
6	0	0	1	1	2	9
7	0	0	0	3	3	18
8	0	0	2	4	6	30
9	0	1	0	9	10	56
10	0	0	3	15	18	99
11	0	0	0	31	31	186
12	0	1	5	53	59	335
13	0	0	0	105	105	630
14	0	0	9	189	198	1161
15	0	2	0	363	365	2182
16	0	0	16	672	688	4080
17	0	0	0	1285	1285	7710
18	0	3	28	2407	2438	14532
19	0	0	0	4599	4599	27594
20	0	0	51	8704	8755	52377

The sequence *hex* is A11957 [6]. It appears very unexpectedly in a 1981 work of T.J. McLarnan about packing atoms in chemistry [7,8].

The new sequences h_2 and h_6 are now registered as A165920 and A165921 [6].

Appendix A

For the article to be self contained we give a quick explanation of (more or less) known results on Möbius inversion with Dirichlet's characters.

An **arithmetic function** is a map $f : \mathbb{N} - \{0\} \to \mathbb{Z}$.

For two given arithmetic functions $f, g: \mathbb{N} - \{0\} \to \mathbb{Z}$ one defines their (Dirichlet's) **convolution** as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

for any integer $n \ge 1$. The convolution is associative, commutative, distributive on the sum, and the arithmetical function

$$\delta(n) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{else} \end{cases}$$

is the neutral element of the convolution.

The Möbius function identity

$$\sum_{d|n} \mu(d) = \delta(n)$$

can be translated as

 $1 * \mu = \delta$.

In other words, μ is the inverse of the constant function 1. The **Möbius inversion formula** is an immediate consequence of it:

 $f = 1 * g \implies g = f * \mu.$

Let us consider the **principal** Dirichlet's character modulo *n*:

$$\chi_n(a) = \begin{cases} 1 & \text{if } (a, n) = 1, \\ 0 & \text{if } (a, n) \neq 1. \end{cases}$$

Given two arithmetical functions f and g, we write fg the pointwise multiplication of the two functions.

Proposition 4. For any prime number p, and arithmetical functions f, g:

$$(f\chi_p)*(g\chi_p)=(f*g)\chi_p.$$

The demonstration is straightforward. In particular, taking f = 1 and $g = \mu$, we obtain

Corollary 4.

$$\chi_p * (\mu \chi_p) = \delta \chi_p = \delta.$$

The inverse of χ_p for convolution is $\mu \chi_p$.

References

- C.F. Gauss, Disquisitiones generales de congruentiis. Werke II, 1863, pp. 220–221; our thanks to http://gdz.sub.unigoettingen.de/en/gdz/.
- [2] L. Carlitz, Some theorems on irreducible reciprocal polynomials over a finite field, J. Reine Angew. Math. 227 (1967) 212– 220.
- [3] H. Meyn, On the construction of irreducible self-reciprocal polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990) 43–53.
- [4] S.D. Cohen, The explicit construction of irreducible polynomials over finite fields, Des. Codes Cryptogr. 2 (1992) 169-174.
- [5] H. Meyn, W. Götz, Self-reciprocal polynomials over finite fields, Publ. I.R.M.A. Strasbourg 413 (S-21) (1990) 82-90.
- [6] N.J.A. Sloane, The on-line encyclopedia of integer sequences, 2009; http://www.research.att.com/~njas/sequences/.
- [7] T.J. McLarnan, Z. Krist. 155 (1981) 269-291.
- [8] N.J.A. Sloane, Parthasarathy Nambi, Integer sequences related to chemistry, Poster to be presented at the Amer. Chem. Soc. National Meeting, San Francisco, 2006.

174