On different families of invariant irreducible polynomials over \mathbb{F}_{2}

Jean Francis Michon, Philippe Ravache*
Université de Rouen, LITIS EA 4108, BP 12-76801 Saint-Étienne du Rouvray cedex, France

A R TICLE I N F O

Article history:

Received 7 October 2009
Revised 4 January 2010
Available online 12 February 2010
Communicated by D. Panario

Keywords:

Irreducible polynomials
Finite fields
Permutations

Abstract

Using a natural action of the permutation group \mathfrak{S}_{3} on the set of irreducible polynomials, we attach to each subgroup of \mathfrak{S}_{3} the family of its invariant polynomials. Enumeration formulas for the trivial subgroup and for one transposition subgroup were given by Gauss (1863) (for prime fields) [1] and Carlitz (1967) (for all finite base fields) [2]. Respectively, they allow to enumerate all irreducible and self-reciprocal irreducible polynomials. In our context, the last remaining case concerned the alternating subgroup \mathfrak{A}_{3}. We give here the corresponding enumeration formula restricted to \mathbb{F}_{2} base field. We wish this will give an interesting basis for subsequent developments analogous to those of Meyn (1990) [3] and Cohen (1992) [4].

© 2010 Elsevier Inc. All rights reserved.

1. The action of \mathfrak{S}_{3} on $\mathbb{P}^{\mathbf{1}}$

The group of permutations of 3 elements (say 1, 2, 3) is a 6 elements non-commutative group. Its subgroups are well known:

- Three cyclic subgroups of order 2, containing respectively the transpositions (12), (23), (13). These subgroups are conjugated.
- One cyclic subgroup of order 3 generated by the "cycle" $c=(123)$. This subgroup is distinguished and called the alternating group \mathfrak{A}_{3}.

[^0]The group is generated by any set of two transpositions. For example, let us take $u=$ (12) and $v=(23)$ then $u v=c, v u=c^{2}$, and $u v u=v u v=(13)$. These relations form a presentation of \mathfrak{S}_{3}. This presentation is not unique. One finds very often in the literature:

$$
U^{2}=1, \quad V^{3}=1, \quad U V U=V^{2}
$$

(take $u=U$ and $u v=V$).
In the projective line over \mathbb{F}_{2}, the \mathbb{F}_{2}-rational points can be identified with the set of 3 elements:

$$
\mathbb{P}^{1}\left(\mathbb{F}_{2}\right)=\{(0,1),(1,1),(1,0)\}
$$

We call these elements respectively $0,1, \infty$.
The automorphism group of the projective line is the group $P G L_{2}\left(\mathbb{F}_{2}\right)$. Its \mathbb{F}_{2}-rational elements subset is $P G L_{2}\left(\mathbb{F}_{2}\right)=G L_{2}\left(\mathbb{F}_{2}\right)$: the group of invertible 2×2-matrices with coefficients in $\mathbb{F}_{2} . G L_{2}\left(\mathbb{F}_{2}\right)$ acts as usual on the \mathbb{F}_{2}-vector space $\mathbb{F}_{2} \times \mathbb{F}_{2}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

with $a d-b c=1$. Using the projective coordinates we get the classical homographic action

$$
(x: 1) \rightarrow\left(\frac{a x+b}{c x+d}: 1\right) \quad \text { and } \quad \infty \rightarrow\left(\frac{a}{c}: 1\right)
$$

if the denominators are $\neq 0$. When denominators are 0 , we use the ∞ point in the usual way.
This article is founded on the isomorphism:

$$
G L_{2}\left(\mathbb{F}_{2}\right) \simeq \mathfrak{S}_{3} .
$$

We easily can explicit this map. We list the elements of $G L_{2}\left(\mathbb{F}_{2}\right)$:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

The corresponding projective transformations are:

$$
x \rightarrow x, x+1, \frac{x}{x+1}, \frac{1}{x}, \frac{1}{x+1}, \frac{x+1}{x}
$$

and the corresponding permutations of the three points of the projective line are:

$$
I d, \quad(01), \quad(1 \infty), \quad(0 \infty), \quad(01 \infty), \quad(0 \infty 1)
$$

2. \mathfrak{S}_{3} action on irreducible polynomials of $\mathbb{F}_{2}[X]$

To define a left action of \mathfrak{S}_{3} on the set

$$
\mathcal{I}=\left\{P \in \mathbb{F}_{2}[X], P \text { irreducible }\right\} \backslash\{X, X+1\}
$$

(0 or 1 are not zeros of P), it is sufficient to define it for the two transpositions

$$
\begin{aligned}
P^{(01)} & =P(X+1), \\
P^{(0 \infty)} & =X^{\operatorname{deg} P} P\left(\frac{1}{X}\right) .
\end{aligned}
$$

For ease of notation these previous operations will be written as:

$$
\begin{aligned}
P^{+}(X) & =P(X+1), \\
P^{*}(X) & =X^{\operatorname{deg} P} P\left(\frac{1}{X}\right) .
\end{aligned}
$$

The polynomial P^{*} is called the reciprocal of P.
Other elements actions are defined by composition. For example the cycle $(01 \infty)=(0 \infty) \circ(01)$ gives, using left action $P^{\sigma \circ \tau}=\left(P^{\tau}\right)^{\sigma}$:

$$
P^{(01 \infty)}=\left(P^{+}\right)^{*}
$$

In the same way we write:

$$
\begin{aligned}
P^{(0 \infty 1)} & =P^{(01)(0 \infty)}=\left(P^{*}\right)^{+}, \\
P^{(1 \infty)} & =P^{(01)(0 \infty)(01)}=P^{(0 \infty)(01)(0 \infty)}=\left(\left(P^{+}\right)^{*}\right)^{+}=\left(\left(P^{*}\right)^{+}\right)^{*} .
\end{aligned}
$$

We shall omit the parentheses in the sequel, like in $\left(\left(P^{+}\right)^{*}\right)^{+}=P^{+*+}$.
We leave to the reader the easy task of verifying the coherence of the following zoology:
Definition 1. A polynomial $P \in \mathcal{I}$ is called

- alternate when it satisfies one of the equivalent conditions

$$
P^{*+}=P \quad \Leftrightarrow \quad P^{*}=P^{+} ;
$$

- self-reciprocal when $P^{*}=P$;
- periodic when $P^{+}=P$;
- median when it satisfies one of the equivalent conditions

$$
P^{+*+}=P \quad \Leftrightarrow \quad P^{+} \text {is self-reciprocal } \Leftrightarrow P^{*} \text { is periodic. }
$$

The polynomial $X^{2}+X+1$ is the intersection of any two of these classes.

3. Hexagons

Definition 2. The hexagon of $P \in \mathcal{I}$ is the orbit of P :

$$
\operatorname{Hex}(P)=\left\{P^{\sigma} \mid \sigma \in \mathfrak{S}_{3}\right\}=\left\{P, P^{*}, P^{+}, P^{*+}, P^{+*}, P^{*+*}=P^{+*+}\right\} .
$$

A hexagon is included in \mathcal{I} and has $1,2,3$ or 6 distinct elements. In each hexagon, all polynomials have the same degree. The degree of a hexagon is the degree of its elements. Consequently we can define the function $\operatorname{hex}(n)$ (resp. $h_{1}(n), h_{2}(n), h_{3}(n), h_{6}(n)$) on integers $\geqslant 2$ as the number of all hexagons (resp. 1, 2, 3, 6 element(s) hexagons) of degree n and we have

$$
\operatorname{hex}(n)=h_{1}(n)+h_{2}(n)+h_{3}(n)+h_{6}(n) .
$$

Our goal is to describe these orbits.

We suppose that $P \in \mathcal{I}$. The n roots of P in the algebraic closure $\overline{\mathbb{F}_{2}}$ are distinct and conjugated by Frobenius. We can write them

$$
g, g^{2}, \ldots, g^{2^{n-1}}
$$

Any one of them generates the field $\mathbb{F}_{2^{n}}$.

3.1. 1 element hexagon

A hexagon has only one element if and only if $P=P^{*}=P^{+}$. This implies that, if g is a root of P, g^{-1} and $g+1$ are roots too. We have

$$
g+1=g^{2^{k}} \quad \text { and } \quad g^{-1}=g^{2^{1}}
$$

for two integers $k, l<n$, then

$$
g=g^{2^{2 k}}=g^{2^{2 l}}
$$

The roots of P are distinct and conjugated, then

$$
g=g^{2^{2 k}} \Rightarrow 2 k=0 \bmod n
$$

and for the same reason

$$
2 l=0 \quad \bmod n,
$$

and so

$$
k=l=0 \quad \bmod n / 2 .
$$

As we cannot have neither $k=0$, nor $l=0$, the only possibility is $k=l=n / 2$. Consequently

$$
g+1=g^{-1}
$$

and $P=X^{2}+X+1$.
The only hexagon with 1 irreducible element is

$$
\operatorname{Hex}\left(X^{2}+X+1\right)
$$

The function value $h_{1}(n)$ is 0 for $n>2$ and $h_{1}(2)=1$.

3.2. 2 elements hexagons

The orbit of P has two elements if it is invariant under the subgroup \mathfrak{A}_{3} with 3 elements, more explicitly when

$$
P^{*+}=P \quad \text { and } \quad P \neq P^{*}
$$

Then the orbits of the alternate polynomials other than $X^{2}+X+1$ are exactly the 2 elements orbits of our action of \mathfrak{S}_{3} on $\mathbb{F}_{2}[X]$. If P is alternate, its orbit is

$$
\operatorname{Hex}(P)=\left\{P, P^{*}=P^{+}\right\} .
$$

For example, the degree <12 alternate polynomials are $X^{2}+X+1$ (which is also self-reciprocal), $X^{3}+X+1, X^{3}+X^{2}+1, X^{9}+X+1, X^{9}+X^{8}+1$.

Theorem 1. The alternate polynomials are exactly the irreducible factors of the polynomials

$$
B_{k}(X)=X^{2^{k}+1}+X+1
$$

for $k \in \mathbb{N}$.
If P is alternate, then $\operatorname{deg} P \equiv 0 \bmod 3$ or $P=X^{2}+X+1$. If $\operatorname{deg} P=3 m$, then $P \mid B_{m}$ or $P \mid B_{2 m}$.
Proof. Let g be a root of any irreducible polynomial P, then $1+1 / g$ is a root of P^{*+}.
Let P be an irreducible factor of a B_{k}, then $\operatorname{deg} P \geqslant 2$ because 0 and 1 are not roots of B_{k}. Any root g of P is a root of B_{k} so

$$
g^{2^{k}}=1+\frac{1}{g}
$$

This implies that the set of all roots of P is invariant under the map

$$
T: g \rightarrow 1+\frac{1}{g}
$$

(defined on $\overline{\mathbb{F}_{2^{n}}} \backslash\{0,1\}$), then $P^{*}=P^{+}$and P is alternate.
Reciprocally, if P is alternate and g any of its roots, then

$$
g^{2^{k}}=1+\frac{1}{g}
$$

for some integer $0 \leqslant k<n=\operatorname{deg} P$. Consequently $P \mid B_{k}$.
The transformation T has order 3 and permutes the roots of P because P is alternate. If $\operatorname{deg} P>3$, no root of P can be fixed by this transformation because in this case we would have

$$
g=1+\frac{1}{g}
$$

and g would be a root of the irreducible $X^{2}+X+1$, which is a contradiction. Consequently the number of roots of P is multiple of 3 ,

$$
\operatorname{deg} P=n \equiv 0 \quad \bmod 3 .
$$

Because $T^{3}=I$, we have

$$
g^{2^{3 k}}=g .
$$

This implies that g is an element of the field $\mathbb{F}_{2^{3 k}}$ so, if $\operatorname{deg} P=n$

$$
\mathbb{F}_{2^{n}} \subseteq \mathbb{F}_{2^{3 k}}
$$

Then

$$
3 k=0 \quad \bmod n
$$

and the bound on k above gives $k=n / 3$ or $k=2 n / 3$.

The preceding theorem leads to
Definition 3. Let P be an irreducible alternate polynomial of degree $3 m$. If $P \mid B_{m}$ we say that the type of P is 1 . If $P \mid B_{2 m}$ we say that its type is 2 .

We don't need to define the type of $P=B_{0}$.
Proposition 1. P and P^{*} have distinct types.
Proof. Let P be an irreducible alternate polynomial of type 1 . The reciprocal P^{*} is also irreducible alternate of the same degree. Suppose $\operatorname{deg} P=3 m$, then $P \mid B_{m}$ and let g be a root of P. We have

$$
g^{2^{m}}=1+\frac{1}{g}
$$

Then $h=g^{-1}$ is a root of P^{*} and

$$
\begin{aligned}
h^{-2^{m}} & =1+h \\
h^{2^{m}} & =\frac{1}{1+h} \\
h^{2^{2 m}} & =\left(\frac{1}{1+h}\right)^{2^{m}}=\frac{1}{1+h^{2^{m}}}=1+\frac{1}{h},
\end{aligned}
$$

hence $B_{2 m}(h)=0$, so $P^{*} \mid B_{2 m}$.
The demonstration for a type 2 polynomial follows the same lines.
For example $P=B_{1}=X^{3}+X+1$ is alternate. Then $P^{*}=X^{3}+X^{2}+1$ is a factor of

$$
B_{2}=\left(X^{2}+X+1\right)\left(X^{3}+X^{2}+1\right) .
$$

Proposition 1 implies the following:
Corollary 1. Among all the alternate polynomials of degree $3 m$, half of them divides B_{m}, while the other half divides $B_{2 m}$.

Proposition 2. B_{k} has no multiple roots.
Proof. We have $B_{k}(X)=X^{2^{k}+1}+X+1$ and its derivative $B_{k}^{\prime}(X)=X^{2^{k}}+1=(X+1)^{2^{k}}$. Since $B_{k}(1) \neq 0$ then $B_{k}(X)$ and $B_{k}^{\prime}(X)$ have no common root so B_{k} has no multiple roots.

Proposition 3. $\left(X^{2}+X+1\right) \mid B_{k}$ if and only if k is even.
Proof. Let α be a root of $X^{2}+X+1$ then $\alpha^{3}=1$. We have $2^{k}+1=(-1)^{k}+1$. If k is even $B_{k}(\alpha)=$ $\alpha^{2}+\alpha+1=0$, and if k is odd $B_{k}(\alpha)=\alpha$.

Theorem 2. Let P be an irreducible polynomial of degree $3 m$ then $P \mid B_{k}$ if and only if the three conditions are fulfilled:

- P is alternate;
- $m \mid k$;
- $\frac{k}{m} \bmod 3$ is equal to the type of P.

Proof. We prove first that the conditions are necessary.
We know from Theorem 1 that P is alternate. Using the same arguments as above, all the roots of B_{k} are in $\mathbb{F}_{2^{3 k}}$, and the smallest field containing the roots of P is $\mathbb{F}_{2^{3 m}}$. If $P \mid B_{k}$ this implies $\mathbb{F}_{2^{3 m}} \subseteq \mathbb{F}_{2^{3 k}}$ and $m \mid k$.

Let us write $k=m l$ for some integer l, and let g be a root of P then, if P is of type 1 :

$$
g^{2^{m}}=1+\frac{1}{g}=g^{2^{k}}=g^{2^{m l}}
$$

Because all the $3 m$ roots of P are distinct and from properties of Frobenius operator we have

$$
m=m l \bmod 3 m
$$

then

$$
l=1 \quad \bmod 3
$$

If P is of type 2 , then

$$
g^{2^{2 m}}=1+\frac{1}{g}=g^{2^{k}}=g^{2^{m l}}
$$

and $l=2 \bmod 3$ for the same reasons.
We prove now that the properties are sufficient.
Let $P \in \mathcal{I}$ be an alternate polynomial of degree $3 m$. Suppose that the type of P is t and $k=\operatorname{lm}$ with $l=t \bmod 3$, then for any root g of P :

$$
g^{2^{k}}=g^{2^{l m}}=g^{2^{t m}}=1+\frac{1}{g}
$$

The last equality is a consequence of the definition of the type. Then g is always a root of B_{k} and $P \mid B_{k}$.

We give two simple examples:
For $k=2: B_{2}=X^{5}+X+1=\left(X^{2}+X+1\right)\left(X^{3}+X^{2}+1\right)$. The alternate irreducible factor $X^{3}+X^{2}+1$ corresponds to $m=1$ and its type is 2 . We verify easily that its type is 2 because, if g is a root of this factor, then

$$
g^{2^{2}}=1+\frac{1}{g}
$$

For $k=3: B_{3}=X^{9}+X+1$. From our Theorem 2, only $m=3$ can give irreducible factors (of type 1) of B_{3} and such irreducible factor will have degree $3 \cdot 3=9$. So B_{3} is alternate, irreducible and of type 1 .

We can now settle our main result, which is a simple consequence of Theorem 2:
Theorem 3. Consider $h_{2}(3 m)$ with $m \geqslant 1$, i.e., half of the number of alternate irreducible polynomials of degree $3 m$. Then for any $k \geqslant 1$:

$$
\begin{equation*}
2^{k}-(-1)^{k}=\sum_{\substack{d \mid k \\ d \not d \equiv 0 \\ \bmod 3}} 3 d h_{2}(3 d) . \tag{1}
\end{equation*}
$$

Proof. Let $E B_{k}$ be the set of all the polynomials of degree $\geqslant 3$ dividing B_{k}, then from Proposition 2

$$
E B_{k}=\bigcup_{\substack{d \mid k \\ d=1 \bmod 3}} E_{1}(3 d) \cup \bigcup_{\substack{d \mid k \\ d \\ d} 2 \bmod 3} E_{2}(3 d),
$$

with $E_{1}(3 d)$ (resp. $\left.E_{2}(3 d)\right)$ the set of all irreducible alternate polynomials of degree $3 d$ and type 1 (resp. type 2) dividing B_{k}. Then, taking the degrees, we have

$$
\sum_{Q \in E B_{k}} \operatorname{deg} Q=\sum_{\substack{d \mid k \\ d=1 \bmod 3}} 3 d \operatorname{Card}\left(E_{1}(3 d)\right)+\sum_{\substack{d \mid k \\ d \\ d} 2 \bmod 3} 3 d \operatorname{Card}\left(E_{2}(3 d)\right) .
$$

Corollary 1 implies

$$
\begin{aligned}
\sum_{Q \in E B_{k}} \operatorname{deg} Q & =\sum_{\substack{d \left\lvert\, k \\
\frac{k}{d}=1 \bmod 3\right.}} 3 d h_{2}(3 d)+\sum_{\substack{d \left\lvert\, k \\
\frac{k}{d} \equiv 2 \bmod 3\right.}} 3 d h_{2}(3 d) \\
& =\sum_{\substack{d \mid k \\
d \neq \equiv 0 \bmod 3}} 3 d h_{2}(3 d) .
\end{aligned}
$$

Moreover, from Proposition 3 we know that

$$
\begin{aligned}
\sum_{Q \in E B_{k}} \operatorname{deg} Q & = \begin{cases}2^{k}-1 & \text { if } k \text { is even, } \\
2^{k}+1 & \text { if } k \text { is odd }\end{cases} \\
& =2^{k}-(-1)^{k},
\end{aligned}
$$

which concludes our proof.
As we saw previously, a hexagon with two elements in the set of irreducible polynomials of degree $3 m$ in $\mathbb{F}_{2}[X]$ is made of two alternate polynomials, so the number of these hexagons is equal to $h_{2}(3 m)$.

Using Möbius inversion with characters (see Appendix A) on (1) we can give a formula for computing $h_{2}(3 m)$:

Theorem 4. The number $h_{2}(n)$ of hexagons with two elements of given degree $n \geqslant 2$ is 0 if $n \not \equiv 0 \bmod 3$, else with $n=3 m$:

$$
\begin{equation*}
h_{2}(3 m)=\frac{1}{3 m} \sum_{\substack{d \mid m \\ d \neq 0 \bmod 3}} \mu(d)\left(2^{m / d}-(-1)^{m / d}\right) \tag{2}
\end{equation*}
$$

Proof. To obtain h_{2} from the preceding theorem, we use elementary results about Dirichlet's characters and convolution. Short explanations are given in Appendix A.

Let us define the arithmetic functions:

$$
\begin{aligned}
& f(m)=2^{m}-(-1)^{m} \\
& g(m)=3 m h_{2}(3 m)
\end{aligned}
$$

for any $m \geqslant 1$. Let χ_{3} be the principal Dirichlet's character modulo 3 (see Appendix A), then the formula (1) can be written as

$$
f(m)=\sum_{\substack{d \mid m \\ d \neq 0 \bmod 3}} g\left(\frac{m}{d}\right)=\sum_{d \mid m} \chi_{3}(d) g\left(\frac{m}{d}\right)
$$

or, using Dirichlet's convolution, we obtain

$$
f=\chi_{3} * g .
$$

Consequently

$$
\mu \chi_{3} * f=g
$$

This last equality gives (2).
The first values of h_{2} are

$3 m$	3	6	9	12	15	18	21	24	27	30
$h_{2}(3 m)$	1	0	1	1	2	3	6	10	19	33

Eventually, we give a bound for $h_{2}(3 m)$:
Corollary 2. For integer $m \geqslant 1$:

$$
\left|3 m h_{2}(3 m)-2^{m}\right| \leqslant 2^{\lfloor m / 2\rfloor+1}+\lfloor m / 2\rfloor-1 .
$$

Proof. From formula (1) we have

$$
3 m h_{2}(3 m)=2^{m}-(-1)^{m}+\sum_{\substack{d \mid m, d \geqslant 2 \\ d \neq 0 \bmod 3}} \mu(d)\left(2^{m / d}-(-1)^{m / d}\right)
$$

Hence

$$
\begin{aligned}
\left|3 m h_{2}(3 m)-2^{m}\right| & \leqslant 1+\sum_{1 \leqslant i \leqslant\lfloor m / 2\rfloor}\left(2^{i}+1\right) \\
& \leqslant 1+2\left(2^{\lfloor m / 2\rfloor}-1\right)+\lfloor m / 2\rfloor=2^{\lfloor m / 2\rfloor+1}+\lfloor m / 2\rfloor-1 .
\end{aligned}
$$

3.3. 3 elements hexagons

The results of this section are well known because, as we shall see below, this case is connected to the self-reciprocal irreducible (sri) polynomials. We refer to [4], [3] or [5] for more details and proofs.

Each of the polynomials in a 3 elements orbit $\operatorname{Hex}(P)$ is invariant by one of the 3 subgroups of order 2 in \mathfrak{S}_{3}. In other words each 3 elements orbit is the orbit of a sri-polynomial of \mathcal{I} (we recall that $X+1$ is discarded from \mathcal{I}).

Conversely, if $P \in \mathcal{I}$ is a sri-polynomial, then:

$$
\operatorname{Hex}(P)=\left\{P, P^{+}, P^{+*}\right\},
$$

P^{+}is invariant by (1∞) action and P^{+*} is invariant by (01) action (it is a periodic polynomial).

The degree of a sri-polynomial P is even, because the inverse of the roots of P are also roots.
We emphasize on the fact that over \mathbb{F}_{2} the sri-polynomials set plays exactly the same role as periodic or median polynomials. Nevertheless sri-polynomials draw much more attention, and a lot of work were devoted to them, because they are easy to recognize by visual inspection of their coefficients.

Theorem 5. (See Meyn [3].)
i) Each sri-polynomial of degree $2 n(n \geqslant 1)$ over \mathbb{F}_{2} is a factor of the polynomial

$$
H_{n}(X)=X^{2^{n}+1}+1 .
$$

ii) Each irreducible factor of degree $\geqslant 2$ of H_{n} is a sri-polynomial of degree $2 d$, where d divides n such that n / d is odd.

Corollary 3. The median (resp. periodic) irreducible polynomials in \mathcal{I} are the irreducible factors of

$$
X^{2^{k}}+X^{2^{k}-1}+1\left(\text { resp. } X^{2^{k}}+X+1\right) \quad k \geqslant 1 .
$$

Proof. We get the polynomial $X^{2^{k}}+X^{2^{k}-1}+1$ (resp. $X^{2^{k}}+X+1$) applying the transformation + (resp. $+*$) on $X^{2^{k}+1}+1$.

Theorem 6. (See Carlitz [2].) The number of degree $2 m(m \geqslant 1)$ sri-polynomials in $\mathbb{F}_{2}[X]$ is

$$
S(2 m)=\frac{1}{2 m} \sum_{d \mid m, d \text { odd }} \mu(d) 2^{\frac{m}{d}}
$$

where μ is the Möbius function.
We refer to [5] for a demonstration of Carlitz formula in the same spirit as our paper.
Following our definitions,

$$
h_{3}(n)=S(n) \text { for } n \text { even, } n>2
$$

and $h_{3}(n)=0$ for all other values of n. The case $n=2$ corresponds to the polynomial $X^{2}+X+1$ which gives a 1 element orbit.

The first values of h_{3} and S are

$2 m$	2	4	6	8	10	12	14	16	18	20
$h_{3}(2 m)$	0	1	1	2	3	5	9	16	28	51
$S(2 m)$	1	1	1	2	3	5	9	16	28	51

The value $S(1)=1$ could be added: it corresponds to the polynomial $X+1$ (which is not in our set $\mathcal{I})$. The sequence $S(n)(n \geqslant 1)$ is registered as the sequence A48 in [6].

3.4. 6 elements hexagons

A famous formula of Gauss [1] gives the number $I(n)$ of irreducible polynomials of degree n in $\mathbb{F}_{2}[X]$:

$$
\begin{equation*}
I(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) 2^{\frac{n}{d}} . \tag{3}
\end{equation*}
$$

From (3) and the enumerations formulas we obtain the number of 6 elements hexagons of degree n, for $n \geqslant 2$:

$$
h_{6}(n)=\frac{1}{6}\left[I(n)-h_{1}(n)-2 h_{2}(n)-3 h_{3}(n)\right] .
$$

4. Conclusion

We gather the different results of previous sections in a short table, starting from $n=2$ because we excluded the polynomials of degree 1 from our enumerations:

n	h_{1}	h_{2}	h_{3}	h_{6}	hex	I(n)
2	1	0	0	0	1	1
3	0	1	0	0	1	2
4	0	0	1	0	1	3
5	0	0	0	1	1	6
6	0	0	1	1	2	9
7	0	0	0	3	3	18
8	0	0	2	4	6	30
9	0	1	0	9	10	56
10	0	0	3	15	18	99
11	0	0	0	31	31	186
12	0	1	5	53	59	335
13	0	0	0	105	105	630
14	0	0	9	189	198	1161
15	0	2	0	363	365	2182
16	0	0	16	672	688	4080
17	0	0	0	1285	1285	7710
18	0	3	28	2407	2438	14532
19	0	0	0	4599	4599	27594
20	0	0	51	8704	8755	52377

The sequence hex is A11957 [6]. It appears very unexpectedly in a 1981 work of T.J. McLarnan about packing atoms in chemistry $[7,8]$.

The new sequences h_{2} and h_{6} are now registered as A165920 and A165921 [6].

Appendix A

For the article to be self contained we give a quick explanation of (more or less) known results on Möbius inversion with Dirichlet's characters.

An arithmetic function is a map $f: \mathbb{N}-\{0\} \rightarrow \mathbb{Z}$.
For two given arithmetic functions $f, g: \mathbb{N}-\{0\} \rightarrow \mathbb{Z}$ one defines their (Dirichlet's) convolution as

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

for any integer $n \geqslant 1$. The convolution is associative, commutative, distributive on the sum, and the arithmetical function

$$
\delta(n)= \begin{cases}1 & \text { if } n=1, \\ 0 & \text { else }\end{cases}
$$

is the neutral element of the convolution.
The Möbius function identity

$$
\sum_{d \mid n} \mu(d)=\delta(n)
$$

can be translated as

$$
1 * \mu=\delta .
$$

In other words, μ is the inverse of the constant function 1. The Möbius inversion formula is an immediate consequence of it:

$$
f=1 * g \quad \Rightarrow \quad g=f * \mu
$$

Let us consider the principal Dirichlet's character modulo n :

$$
\chi_{n}(a)= \begin{cases}1 & \text { if }(a, n)=1, \\ 0 & \text { if }(a, n) \neq 1 .\end{cases}
$$

Given two arithmetical functions f and g, we write $f g$ the pointwise multiplication of the two functions.

Proposition 4. For any prime number p, and arithmetical functions f, g :

$$
\left(f \chi_{p}\right) *\left(g \chi_{p}\right)=(f * g) \chi_{p}
$$

The demonstration is straightforward. In particular, taking $f=1$ and $g=\mu$, we obtain

Corollary 4.

$$
\chi_{p} *\left(\mu \chi_{p}\right)=\delta \chi_{p}=\delta
$$

The inverse of χ_{p} for convolution is $\mu \chi_{p}$.

References

[1] C.F. Gauss, Disquisitiones generales de congruentiis. Werke II, 1863, pp. 220-221; our thanks to http://gdz.sub.unigoettingen.de/en/gdz/.
[2] L. Carlitz, Some theorems on irreducible reciprocal polynomials over a finite field, J. Reine Angew. Math. 227 (1967) 212220.
[3] H. Meyn, On the construction of irreducible self-reciprocal polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990) 43-53.
[4] S.D. Cohen, The explicit construction of irreducible polynomials over finite fields, Des. Codes Cryptogr. 2 (1992) $169-174$.
[5] H. Meyn, W. Götz, Self-reciprocal polynomials over finite fields, Publ. I.R.M.A. Strasbourg 413 (S-21) (1990) 82-90.
[6] N.J.A. Sloane, The on-line encyclopedia of integer sequences, 2009; http://www.research.att.com/~njas/sequences/.
[7] T.J. McLarnan, Z. Krist. 155 (1981) 269-291.
[8] N.J.A. Sloane, Parthasarathy Nambi, Integer sequences related to chemistry, Poster to be presented at the Amer. Chem. Soc. National Meeting, San Francisco, 2006.

[^0]: * Corresponding author. Fax: +33 (0) 232955187.

 E-mail addresses: jean-francis.michon@litislab.fr (J.F. Michon), philippe.ravache@litislab.fr (P. Ravache).

