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SUMMARY

Plant innate immunity relies on the recognition of
pathogen effector molecules by nucleotide-binding-
leucine-rich repeat (NB-LRR) immune receptor fami-
lies. Previously we have shown the N immune re-
ceptor, a member of TIR-NB-LRR family, indirectly
recognizes the 50 kDa helicase (p50) domain of To-
bacco mosaic virus (TMV) through its TIR domain.
We have identified an N receptor-interacting protein,
NRIP1, that directly interacts with both N’s TIR do-
main and p50. NRIP1 is a functional rhodanese sulfur-
transferase and is required for N to provide complete
resistance to TMV. Interestingly, NRIP1 that normally
localizes to the chloroplasts is recruited to the cyto-
plasm and nucleus by the p50 effector. As a conse-
quence, NRIP1 interacts with N only in the presence
of the p50 effector. Our findings show that a chloro-
plastic protein is intimately involved in pathogen
recognition. We propose that N’s activation requires
a prerecognition complex containing the p50 effector
and NRIP1.

INTRODUCTION

Plants have evolved a refined, two-branched system of innate

immunity to prevent the ingress of would be phytopathogens.

The first line of defense employs receptors that detect nonspe-

cific microbial-associated molecular patterns (MAMPs) such as

flagellin (Ausubel, 2005). In response, pathogens have evolved

effector molecules to evade MAMP-triggered immunity (MTI). If

a pathogen evades this line of defense, it must overcome a sec-

ond line of defense to become pathogenic. This defense system,

recently termed ‘‘effector-triggered immunity’’ (ETI) (Jones and

Dangl, 2006), employs specific plant-encoded immune recep-

tors called resistance (R) proteins to recognize specific patho-

gen-encoded effectors. Although ETI relies solely on germ-line

encoded molecules, it remarkably provides disease resistance

that rivals both the specificity and the range of mammalian adap-

tive immunity.
Plant immune receptors contain domains that are also found in

pattern recognition receptors (PRRs) required for mammalian in-

nate immunity. The vast majority of plant immune receptors have

a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain

(NB-LRR), which are also present in the animal CATERPILLER/

NOD/NLR superfamily of intracellular PRRs (Ausubel, 2005; Soo-

saar et al., 2005). Plant NB-LRR proteins are subdivided into two

sub-classes by their amino-terminal domain: CC-NB-LRRs have

a coiled-coiled (CC) domain and TIR-NB-LRRs have a Toll-inter-

leukin-1 (TIR) homology domain. The TIR domain is also found

in important animal innate immunity proteins, such as Toll in

Drosophila and Toll-like receptors (TLRs) in mammals (Ausubel,

2005; Soosaar et al., 2005). Despite their structural similarities

with animal innate immunity molecules, plant immune receptors

are functionally more similar to mammalian adaptive immunity in

that they recognize specific pathogen effectors rather than non-

specific PAMPs.

Historically, it was posited that one immune receptor recog-

nizes one pathogen effector by a direct interaction. Indeed, the

immune receptors Pi-ta, RRS1, N, and L alleles were shown to

directly interact with their corresponding pathogen effectors (De-

slandes et al., 2003; Dodds et al., 2006; Jia et al., 2000; Ueda

et al., 2006). However, many attempts to observe such direct in-

teractions between other receptor-effector pairs have been un-

successful. Considering the limited repository of plant immune

receptors compared to the vast number of pathogens, it was

proposed that immune receptors may also recognize effectors

indirectly by monitoring key host factors (Jones and Dangl,

2006). This model of recognition, eloquently termed the ‘‘guard

hypothesis,’’ proposes immune receptors ‘‘guard’’ key host fac-

tors required for pathogen virulence (Van der Biezen and Jones,

1998). Pathogen effectors interact with or modify these host

factors and immune receptors perceive the altered host factor

to initiate a defense response.

An indirect recognition mechanism has been shown for multi-

ple R proteins and their cognate pathogen effectors. RIN4 is the

classic example of a host target that is guarded by CC-NB-LRRs

and is modified by pathogen effectors (Mackey et al., 2002). The

immune receptors RPM1 and RPS2 recognize modifications to

RIN4 induced by three different pathogen effectors (Axtell and

Staskawicz, 2003; Mackey et al., 2003). Similarly, RPS5 recog-

nizes the cleavage of the host factor, PBS1, by the pathogen
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effector, AvrPphB (Ade et al., 2007; Shao et al., 2003). The Cf-2

immune receptor recognizes its pathogen effector by monitoring

a host cysteine protease (Rooney et al., 2005). Finally, Pto, which

was originally identified as an immune receptor, may actually be

a host factor guarded by the NB-LRR protein, Prf (Mucyn et al.,

2006).

Interestingly, indirect pathogen recognition has beendescribed

only for CC-NB-LRRs and the LRR receptor-like Cf-2 protein. TIR-

NB-LRRs, however, comprise approximately 60% of the total

NB-LRRs in the Arabidopsis genome, (Meyers et al., 2003), sug-

gesting that TIR containing NB-LRRs are a significant class of

immune receptors. Recently we have shown that N, an immune

receptor belonging to the TIR-NB-LRR class, recognizes To-

bacco mosaic virus (TMV) by an association of N’s TIR domain

with the 50 kDa helicase domain of TMV’s replicase (p50)

(Burch-Smith et al., 2007). N immune receptor is localized to the

cytoplasm and the nucleus. While it was shown that nuclear N is

required for a defense response, recognition of the p50 effector

by N occurs within the cytoplasm (Burch-Smith et al., 2007). Inter-

estingly, N’s TIR domain fails to directly interact with p50 in yeast

two-hybrid and in vitro assays, suggesting that N and p50 associ-

ate indirectly in planta (Burch-Smith et al., 2007).

Since the N(TIR) association with p50 is indirect, other factors

must play a role in the N immune receptor recognition of the p50

effector protein. To search for such factors, we conducted a

yeast-two hybrid screen with N’s TIR domain. We identified a

host protein called N receptor-interacting protein 1 (NRIP1)

that associates with both N’s TIR domain and the p50 effector

in yeast-two hybrid assays. We show by coimmunoprecipitation

and fluorescence microscopy in intact, living tissue that NRIP1

interacts with both N and p50. NRIP1 is required for N-mediated

resistance to TMV and has in vitro sulfurtransferase activity.

Interestingly, NRIP1 is normally localized to chloroplasts, but is

recruited to the cytoplasm and nucleus by the p50 effector. We

envision that after NRIP1 changes localization, it forms a mature

p50-NRIP1 complex that is recognized through N’s TIR domain

to activate successful defense signaling. Our findings present

a novel model for the involvement of host factors in effector

recognition.

RESULTS

NRIP1 Interacts with the N Immune
Receptor’s TIR Domain
To search for novel proteins that mediate the association

between the N immune receptor with the p50 effector, we con-

ducted a yeast two-hybrid screen with the TIR domain of N as

bait. We identified NRIP1, which was represented by six identi-

cal, independent clones in the screen. Next, we isolated the

full-length NRIP1 coding sequence from Nicotiana benthamiana

(EU332891) for direct yeast two-hybrid analyses with the full-

length or with individual domains of N. Yeast containing the

N(TIR) domain as bait and NRIP1 as prey activated LEU2 expres-

sion and grew on media lacking leucine (Figure 1A, row 2). There-

fore, NRIP1 and N(TIR) interact directly in a yeast two-hybrid

assay. In contrast, NRIP1 does not interact with the TIR domain

of another TIR-NB-LRR resistance protein, BS4 (Figure 1A, row

1) suggesting that NRIP1 specifically interacts with N’s TIR
450 Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc.
domain. NRIP1 failed to interact with the NB, LRR, and TIR-NB

domains of N or the full-length N protein (Figure 1A, rows 3–6).

The lack of an interaction between full-length N and NRIP1 in

yeast two-hybrid assays may be caused by the limitations of

studying interactions in yeast. Therefore, we conducted in vivo

coimmunoprecipitations using transient Agrobacterium infiltra-

tion to investigate the association of N and NRIP1 in plants. We

fused the full genomic clone of NRIP1, including its endogenous

50 and 30 regulatory sequences and introns (EU332890), with the

Cerulean variant of enhanced cyan fluorescent protein (ECFP) to

generate NRIP1-Cerulean. For N expression, we used the previ-

ously described full genomic clone of N fused to a tandem affinity

purification (TAP) tag (gN-TAP) (Burch-Smith et al., 2007). NRIP1-

Cerulean and gN-TAP were coexpressed in N. benthamiana with

or without the p50 effector from the U1-eliciting strain of TMV,

hereafter referred to as p50. Isolated gN-TAP immunocomplexes

contained NRIP1-Cerulean (Figure 1B, bottom panel, lanes 1 and

2), confirming the in vivo association of N and NRIP1. Interest-

ingly, this association was enhanced by p50 (Figure 1B, bottom

panel, lane 2). We also confirmed the association of

N’s TIR domain and NRIP1-Cerulean. NRIP1-Cerulean coimmu-

noprecipitated with N(TIR)-TAP in the absence and presence of

p50, but not with TAP alone (Figure 1B, bottom panel, lanes

3–5). Thus, NRIP1 associates with full-length N in vivo, even

though it did not interact in a yeast two-hybrid assay.

NRIP1 Is Required for N-Mediated Resistance to TMV
To examine the biological significance of NRIP1 in N-mediated

defense against TMV, we used our well established virus-

induced gene silencing (VIGS) system and TMV expressing

GFP (TMV-GFP) movement assay (Liu et al., 2002). Briefly, if a

gene is silenced that is dispensable for N-mediated resistance,

inoculation with TMV-GFP does not result in systemic infection.

Silencing a gene required for N function, however, results in

TMV-GFP movement throughout the plant. To determine if

NRIP1 is required by N, we knocked down NRIP1 expression us-

ing either VIGS-NRIP1(30) containing the 30 region of NRIP1 for

high silencing specificity or VIGS-NRIP1(FL) containing the full-

length NRIP1 mRNA sequence for robust silencing efficiency.

As a negative control we used VIGS-NbSTR14 that silences an

unrelated, chloroplastic sulfurtransferase with high homology

to Arabidopsis STR14 (Bauer et al., 2004; Yang et al., 2003).

Nine days after the introduction of VIGS vectors, plants were

infected with TMV-GFP and virus movement was monitored

under ultraviolet (UV) light. In the VIGS NbSTR14-silenced plants

and vector control, TMV-GFP was restricted to the inoculated

leaves and was unable to spread to the upper parts of the plant

(Figure 1C, rows 4 and 5). However, TMV-GFP spread to the

upper parts of NRIP1(30)-silenced, NRIP1(FL)-silenced, and

N-silenced control plants (Figure 1C, rows 1–3, and Figure S1D

available online). The amount of TMV-GFP movement compared

to N-silenced plants was �47% in NRIP1(30)- and �77% in

NRIP1(FL)-silenced plants (Figure S1C). These data suggest

that silencing NRIP1 partially abrogates N’s function. Alterna-

tively, the hypomorphic phenotype may be a result of incomplete

silencing of NRIP1, since NRIP1 mRNA levels were reduced by

only 86% ± 9.3% in NRIP1(FL)-silenced plants and 47% ±

4.6% in NRIP1(30)-silenced plants compared to VIGS vector



Figure 1. NRIP1 Interacts with the TIR Domain of N and Is Required for N-Mediated Resistance to TMV

(A) NRIP1 interacts with N’s TIR domain in a yeast two-hybrid assay (row 2) but not with other N domains or with full-length N (rows 3–6). NRIP1 does not interact

with the TIR domain from the R protein, BS4 (row 1), or LexA alone (row 7). Interactions were determined by the ability to turn on the LEU2 reporter gene and

subsequent growth on plates lacking leucine (column 3).

(B) Coimmunoprecipitation of NRIP1-Cerulean with either gN-TAP or N(TIR)-TAP in the presence or absence of p50. All proteins were expressed transiently in N.

benthamiana. The top panel shows the input of NRIP1-Cerulean detected with a-GFP. Middle panel shows gN-TAP, N(TIR)-TAP or TAP control immunoprecip-

itated with IgG beads and detected with a-Myc to the 9xMyc in the TAP tag. The bottom panel shows the NRIP1-Cerulean coimmunoprecipitated with gN-TAP,

N(TIR)-TAP or TAP and detected with a-GFP. NRIP1-Cerulean coimmunoprecipitated with gN-TAP and N(TIR)-TAP in the absence (lanes 1 and 3) and presence

(lanes 2 and 4) of p50. The TAP alone control was not pulled down (lane 5).

(C) N-containing N. benthamiana plants were infiltrated with VIGS vector control, VIGS-NbSTR14, VIGS-N, VIGS-NRIP1(30), or VIGS-NRIP1(FL). Silenced plants

were infected with TMV-GFP 9 days after infiltration of silencing constructs. TMV-GFP appears green on a background of reddish-brown chlorophyll autofluor-

escence under UV light. TMV-GFP overcomes N-mediated resistance and moves from the inoculated leaves to upper, uninfected leaves in NRIP1(30)- and

NRIP1(FL)-silenced plants (rows 1 and 2, respectively), while in NbSTR14-silenced plants (row 4) and the vector control plants (row 5), the virus does not spread

to the upper uninfected parts of the plants. TMV-GFP moved robustly in N-silenced plants (row 3).
Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc. 451



controls (Figure S1A). Taken together, these results indicate that

NRIP1 is partially required for an effective N-mediated resistance

response to TMV.

NRIP1 Is Localized to the Chloroplasts
in the Absence of p50 Effector
Previously we have shown that the p50-N association occurs in

the cytoplasm (Burch-Smith et al., 2007); therefore, we investi-

gated if NRIP1 is in the same location. The subcellular localiza-

tion prediction program, TargetP (Emanuelsson et al., 2000),

predicts that NRIP1 contains a putative chloroplast-targeting se-

quence (Figure S2). Furthermore, homologs of NRIP1 from

Nicotiana tobacum and Arabidopsis thaliana localize to chloro-

plasts (Bauer et al., 2004; Yang et al., 2003). To determine

NRIP1’s subcellular localization, we generated homozygous

transgenic plants containing NRIP1 tagged with Cerulean under

the control of NRIP1’s genomic promoter. Confocal microscopy

of intact, living leaf tissue from these transgenic plants revealed

NRIP1-Cerulean fluorescence in large, discrete structures that

colocalized with chloroplast autofluorescence (Figure 2A).

More specifically, NRIP1-Cerulean was observed in stromules,

suggesting that NRIP1-Cerulean is localized to the soluble, stro-

mal fraction of chloroplasts (Figure 2A).

It was unclear how chloroplast localized NRIP1 can interact

with cytoplasmic and nuclear localized N. Therefore to test if

N alters the subcellular localization of NRIP1, we also generated

homozygous transgenic NRIP1-Cerulean plants with the N gene.

Both NRIP1 and N were under the control of their native pro-

moters. Our analyses indicated that NRIP1-Cerulean localized

exclusively to the chloroplasts both with and without N (Fig-

ure S3A, columns 1 and 2), suggesting that N does not affect

NRIP1’s subcellular localization.

The p50 Effector Alters the Subcellular Localization
of NRIP1
Next, we tested whether p50 alters the localization of NRIP1

in NRIP1-Cerulean transgenic plants. Surprisingly, in non-N-

containing plants transient expressing p50-TAP, NRIP1-Ceru-

lean fluorescence was observed not only in the chloroplasts,

but also in the cytoplasm and the nucleus. (Figure 2B, column

3). The altered localization was enhanced when p50-TAP was in-

filtrated into N-containing transgenic NRIP1-Cerulean plants

(Figure 2B, column 4). Interestingly, we observed a strong induc-

tion of stromules in NRIP1-Cerulean N-containing transgenics

expressing p50-TAP (Figure 2B, column 4, and Figure S3B, col-

umn 4). Expression of TAP alone had no effect on NRIP1’s chlo-

roplast localization in non-N and N-containing NRIP1 transgenic

plants (Figure 2B, columns 1 and 2).). Interestingly, unlike NRIP1-

Cerulean, the localization of the closest Arabidopsis homolog

AtSEN1 was not altered in the presence of p50, and remained

solely in the chloroplasts (Figure S4). These results suggest

that NRIP1 is a Solanaceae-specific component recruited by

TMV’s p50 effector.

Next, we tested if TMV infection will have a similar effect as the

p50 effector on the localization of NRIP1-Cerulean. Localization

of NRIP1-Cerulean was altered to include the nucleus and cyto-

plasm when TMV was expressed in non-N-containing NRIP1

transgenic plants and enhanced in N-containing NRIP1 trans-
452 Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc.
genic plants (Figure S3A, columns 3 and 4). Together these re-

sults indicate that NRIP1 subcellular localization is dependent

on TMV’s p50 effector.

NRIP1 Interacts with the p50 Effector
Given that p50 alters the localization of NRIP1, we tested if p50

and NRIP1 interact. We first examined this interaction in a yeast

two-hybrid assay. We found that yeast carrying p50 as bait and

NRIP1 as prey activated expression of the LEU2 reporter gene

(Figure 3A), suggesting that p50 and NRIP1 interact directly in

a yeast two-hybrid assay.

To determine if NRIP1 and p50 associate in vivo, genomic

NRIP1 including its endogenous 50 and 30 regulated sequences

fused to Cerulean was transiently coexpressed with p50-TAP

or TAP-tag alone. We first determined if transiently expressed

NRIP1-cerulean levels are comparable to that of NRIP1-Cerulean

levels expressed in transgenic plants. Western blot analysis re-

veals similar protein levels in the transient Agroinfiltration expres-

sion (Figure 3B, lanes 1 and 2) compared to the transgenic NRIP1-

Cerulean lines (Figure 3B, lanes 3 and 4). High levels of expression

typically associated with transient expression by Agroinfiltration

were kept in check by using a short 46 hr expression time, native

promoters,and byomittingsilencingsuppressors.Therefore, tran-

siently expressing NRIP1 is unlikely to result in overexpression.

NRIP1-Cerulean was transiently coexpressed with p50-TAP or

TAP-tag alone (Figure 3C, middle panel). NRIP1-Cerulean coim-

munoprecipitated with p50-TAP but did not with TAP alone (Fig-

ure 3C, bottom panel, lanes 1 and 3). We also tested if NRIP1-

Cerulean can associate with the noneliciting p50-U1-Ob (Abbink

et al., 2001). Interestingly, p50-U1-Ob-TAP can also associate

with NRIP1-Cerulean (Figure 3C, lane 2). These results suggest

that NRIP1 associates with p50 derived from both the eliciting

and noneliciting strains of TMV in vivo. Furthermore, NRIP1

is the first host protein reported to directly interact with both

N and p50.

The change of NRIP1’s subcellular localization in the presence

of p50, prompted us to carefully look at NRIP1 interactions in

intact, living tissue. To this end, we monitored the association

of transiently expressed p50 and NRIP1 in living N. benthamiana

leaves using Bimolecular Fluorescence Complementation (BiFC)

assays (Hu et al., 2002). To conduct BiFC, we split the YFP var-

iant, Citrine, at the 155th amino acid. NRIP1, in the context of its

full genomic regulatory sequence, was tagged with the carboxy-

terminal half of Citrine (YC155) to create NRIP1-YC. p50 was

tagged with the amino-terminal half of Citrine (YN155) to create

p50-YN. Rather than overexpressing p50 using the strong 35S

viral promoter, which can result in nonspecific BiFC (TBS and

SPD-K, unpublished results), we placed p50 under the weaker

50 and 30 regulatory sequences of N. The widely used reporter

gene, b-glucoronidases (GUS), tagged with YN155, under the

control of the 50 and 30 regulatory sequences of N (GUS-YN),

was used as a control. NRIP1-YC and p50-YN were coex-

pressed in N. benthamiana. Reconstituted fluorescence was

detected in the cytoplasm, nuclei and chloroplasts (Figure 3D,

column 2). Coexpression of NRIP1-YC and GUS-YN did not re-

constitute fluorescence (Figure 3D, column 1). As expected,

NRIP1-YC, p50-YN, and GUS-YN did not produce fluorescence

when expressed separately (Figure S5). These results confirm



Figure 2. NRIP1 Localization Is p50-Dependent

(A) In NRIP1-Cerulean transgenic plants, NRIP1-Cerulean colocalized with the red autofluorescence of chloroplasts. NRIP1-Cerulean was found in stromules

(arrows). The scale bar represents 20 mm.

(B) NRIP1-Cerulean localized to the chloroplasts in wild-type NRIP1-Cerulean (column 1) and N-containing NRIP1-Cerulean (Column 2) transgenic plants ex-

pressing TAP alone. NRIP1-Cerulean redistributed to chloroplasts, cytoplasm, and nucleus in the presence of p50-TAP in NRIP1-Cerulean transgenic plants with-

out N (column 3) and with N (column 4). Red structures are chloroplasts. Yellow arrows mark stromules. The scale bars represent 20 mm.
Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc. 453



Figure 3. NRIP1 Associates with p50

(A) NRIP1 interacts with LexA-p50 (top row) but not LexA alone (bottom row) in a yeast two-hybrid assay. The interaction was determined by the ability to turn on

the LEU2 reporter gene and to grow on plates lacking leucine (column 3).

(B) TAP alone or p50-TAP was expressed in non-N-containing (lanes 1 and 3) or N-containing (lanes 2 and 4) NRIP1-Cerulean transgenic plants. Transient

expression of NRIP1-Cerulean was coexpressed with p50-TAP in non-N-containing (lane 1) or N-containing (lane 2) N. benthamiana plants. The level of

TAP-containing proteins was detected with a-Myc antibodies to the 9xMyc in the TAP tag (top panel). The level of NRIP1-Cerulean was detected with a-GFP

antibodies (middle panel). a-PEPC was used to detect largest PEPC band as a loading control (bottom panel).

(C) Coimmunoprecipitation of NRIP1-Cerulean with p50. Top panel shows input of NRIP1-Cerulean detected with a-GFP. Middle panel shows p50-TAP, p50-U1-

Ob-TAP, or TAP control immunoprecipitated with IgG beads. a-Myc was used to detect the 9xMyc in the TAP tag. The bottom panel is NRIP1-Cerulean coim-

munoprecipitated with p50-TAP, p50-U1-Ob-TAP, or TAP control and detected with a-GFP (TAP proteins detected by a-GFP are not shown). NRIP1-Cerulean

was pulled down by both p50-TAP (lane 1) and p50-U1-Ob-TAP (lane 2) but not the TAP-alone control (lane 3).

(D) BiFC assays to confirm the interaction of NRIP1 with p50. Coexpression of NRIP1-YC with p50-YN reconstituted BiFC (panel 2) but not with GUS-YN (panel 1).

The scale bars represent 20 mm.
that p50 can interact with and alter the localization of NRIP1-

Cerulean in intact tissue.

NRIP1 Associates with N in Intact, Living Tissue Only
in the Presence of p50
The association of NRIP1 with N was strengthened by the pres-

ence of p50 in coimmunoprecipitation assays (Figure 1B, lane 2).
454 Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc.
To examine this association in the context of subcellular localiza-

tion, we conducted BiFC assays by transiently expressing pro-

teins in N. benthamiana leaves. NRIP1-YC was coexpressed

with the previously characterized gN-YN, which expresses N

fused to YN155 in N’s full genomic context (Burch-Smith et al.,

2007). Coexpression ofNRIP1-YC and gN-YN withCeruleanalone

did not result in fluorescence (Figure 4, column 1) suggesting that



Figure 4. NRIP1 Associates with N Only in the Presence of p50

BiFC assays were used to study the association of NRIP1 and N in the context of subcellular compartmentalization. Coexpression of NRIP1-YC and N-YN did not

result in Citrine BiFC in the presence of Cerulean alone (column 1). However, in the presence of p50-Cerulean, NRIP1-YC and N-YN resulted in Citrine BiFC

(column 3). NRIP1-YC and the control GUS-YN did not reconstitute Citrine BiFC in the presence of p50-Cerulean (column 2). The scale bars represent 20 mm.
under normal conditions NRIP1 and N do not associate. This result

was not surprising because NRIP1-Cerulean does not share N’s

subcellular localization. However, in the presence of p50-Ceru-

lean, NRIP1-YC and gN-YN reconstituted fluorescence (Figure 4,

column 3). As expected, NRIP1-YC and GUS-YN do not associ-

ate, even in the presence of p50-Cerulean (Figure 4, column 2).

These results confirm that N and NRIP1 associate only in the pres-

ence of p50 in intact, living tissue.
Ectopic Expression of NRIP1 in the Cytoplasm
and Nucleus without p50 Does Not Induce
N-Mediated Defense
Since p50 causes NRIP1 to partially move to the same location

as N, we wanted to determine if N simply recognizes the change

of NRIP1’s localization to activate a defense response. To this

end, we deleted the chloroplast targeting signal peptide (SP)

of NRIP1 to form (-SP)NRIP1-Cerulean. Transiently expressed
Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc. 455



(-SP)NRIP1-Cerulean constitutively localizes to the cytoplasm

and nucleus (Figure S6). When (-SP)NRIP1-Cerulean was coex-

pressed with TAP alone in N-containing plants, it did not induce

hypersensitive response (HR) cell death (Figure 5A, top left).

However, coexpression of (-SP)NRIP1-Cerulean with p50-TAP

induces HR cell death (Figure 5A, top right). Thus, ectopically

expressing NRIP1 and N in the cytoplasm and nucleus was not

sufficient to trigger N-mediated defense responses. Hence, we

hypothesize that N recognizes only a mature NRIP1-p50 prere-

cognition complex, or alternatively, requires unknown compo-

nents that are recruited by or contained within a NRIP1-p50

prerecognition complex.

To test if N recognizes a NRIP1-p50 complex, we used BiFC

assays to determine if (-SP)NRIP1 and N can associate in the

presence of p50. Coexpression of (-SP)NRIP1-YC and N-YN did

not reconstitute fluorescence (Figure 5B, column 2). However,

coexpression of (-SP)NRIP1-YC and N-YN in the presence of

p50-Cerulean reconstituted fluorescence (Figure 5B, column 3),

but the coexpression of (-SP)NRIP1-YC and GUS-YN in the

presence of p50-Cerulean did not result in BiFC (Figure 5B, col-

umn 1). As expected, (-SP)NRIP1-YC can associate with p50-YN

(Figure 5C, column 2). These findings support our hypothesis that

a mature NRIP1-p50 complex (possibly containing other compo-

nents) is required for NRIP1 to interact with N. Therefore, in intact

tissue where subcellular localization is undisturbed, NRIP1 only

associates with N when it is in a complex with p50.

NRIP1 Is a Functional Sulfurtransferase
and This Activity Is Not Required for Its
Association with p50 and N
NRIP1 is homologous to rhodaneses that catalyze the in vitro

transfer of a sulfur atom from suitable sulfur donors to nucleo-

philic sulfur acceptors. Thiosulfate:cyanide sulfurtransferases

(TSTs) use thiosulfate as a sulfur donor and 3-mercaptopyruva-

te:cyanide sulfurtransferases (MSTs) use 3-mercaptopyruvate

as a sulfur donor in vitro (Bordo and Bork, 2002). To characterize

NRIP1’s rhodanese activity, we tested whether purified GST-

NRIP1 uses thiosulfate or 3-mercaptopyruvate as a sulfur donor,

and transfers that sulfur atom to cyanide. NRIP1 was able to use

thiosulfate as a substrate (Figure 6A, line 1) but not 3-mercapto-

pyruvate (Figure 6A, line 2). Furthermore, a mutant NRIP1(C145S)

that lacks the catalytic cysteine in the predicted active site (Miller-

Martini et al., 1994), exhibited no sulfurtransferase activity

(Figure 6A, line 3) indicating that NRIP1 is a canonical TST

rhodanese.

Next, we tested if NRIP1’s sulfurtransferase activity is required

for itsassociationwithp50orN. Toabolish the sulfurtransferase ac-

tivity, we mutated the active site of NRIP1-Cerulean and NRIP1-YC

to create NRIP1(C145S)-Cerulean and NRIP1(C145S)-YC respec-

tively. Mutating its active site does not affect NRIP1’s ability to lo-

calize to chloroplasts or to redistribute localization in the presence

of p50 (Figure 6B, columns 1 and 2). To examine the association of

NRIP1(C145S)withNand p50we usedBiFCassays.Coexpression

of NRIP1(C145S)-YC and N-YN in the presence of p50-Cerulean

(fluorescence not shown) results in BiFC (Figure 6D, column 2).

The transient expression of NRIP1 constructs containing the

C145S was lower (data not shown) and required the presence of

the silencing suppressor, p19, for 3 days; presumably to allow ac-
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cumulation of sufficient protein to observe the association. Further-

more, coexpression of NRIP1(C145S)-YC and GUS-YN expressed

with p50-Cerulean (fluorescence not shown) did not reconstitute

fluorescence, even in the presence of P19 (Figure 6D, panel 1).

As expected, NRIP1(C145S)-YC did not associate with the GUS-

YN control (Figure 6C, column 1); but, NRIP1(C145S)-YC and

p50-YN associated, reconstituting Citrine fluorescence (Figure 6,

column 2). These results suggest that NRIP1’s ability to associate

with N or p50 is independent of its sulfurtransferase activity.

DISCUSSION

Recently, we showed that the TIR domain of the N immune re-

ceptor is both necessary and sufficient for the association with

the p50 effector (Burch-Smith et al., 2007). Since N and p50 do

not directly interact in a yeast two-hybrid or an in vitro pull

down assay, other host components may be required for this

association (Burch-Smith et al., 2007). Our investigation of N-

interacting proteins has identified NRIP1 as a TIR domain inter-

acting protein. NRIP1 interacts directly with N’s TIR domain

and TMV’s p50 effector in yeast two-hybrid analyses and is the

first protein identified that interacts with both a TIR-NB-LRR

immune receptor and its cognate elicitor. In planta, NRIP1 is re-

cruited by p50 to the same subcellular locations where N and

p50 associate, but NRIP1 associates with N only in the presence

of the p50 effector. We show that NRIP1 is a functional rhoda-

nese sulfurtransferase, but that activity is not required for p50

or N to associate with NRIP1. Furthermore, NRIP1 is required

for a complete N-mediated defense response against TMV.

Taken together, our data suggest that p50 and NRIP1, possibly

along with other host proteins, constitute a prerecognition com-

plex that is recognized by N (Figure 7).

A Chloroplastic Protein Functions
in Effector-Triggered Immunity
The localization of R proteins, pathogen effectors, and key host

factors during plant innate immunity has revealed important

insights into recognition mechanisms. Chloroplastic proteins

are often overlooked since no immune receptors have been pre-

dicted to be chloroplast localized. However, chloroplasts have

an additional role in effector-triggered immunity during the regu-

lation of HR-associated programmed cell death, particularly that

resulting from viral infection (Seo et al., 2000). Chloroplasts syn-

thesize salicylic acid (SA) (Wildermuth et al., 2001), an important

local and systemic signaling molecule in the establishment and

maintenance of defense (Durrant and Dong, 2004). Interestingly,

carbonic anhydrase in the chloroplasts is an SA-binding protein

(SABP3) that is required for an effective defense response

(Slaymaker et al., 2002).

Here, we show an important, novel role for a chloroplast-local-

ized protein during plant innate immunity as part of a plant

immune receptor complex. Confocal fluorescence microscopy

allowed us to observe NRIP1 in its native state and subcellular

location in the stroma of N. benthamiana chloroplasts. Remark-

ably, TMV’s p50 effector drastically altered NRIP1’s subcellular

localization to include the cytoplasm and nucleus, in addition

to the chloroplasts. An interesting question is how does p50 alter

the localization of NRIP1? A low level of NRIP1 must exist in the



Figure 5. Constitutively Localized

Cytoplasmic (-SP)NIP Interacts with N Only

in the Presence of p50

(A) (-SP)NRIP1-Cerulean coexpressed with p50-

TAP (top right) induces HR cell death in N-contain-

ing N. benthamiana plants. (-SP)NRIP1-Cerulean

coexpressed with TAP alone (top left) does not in-

duce cell death. HR occurs normally when Ceru-

lean alone is coexpressed with p50-TAP (bottom

right). Coinfiltration of Cerulean alone and TAP

alone does not induce HR (bottom left). The black

outlines mark the site of infiltration.

(B) BiFC assays were implemented to study the

association of (-SP)NRIP1 with N. Coexpression

of (-SP)NRIP1 with N-YN in the presence of p50-

Cerulean (data not shown) reconstituted Citrine

BiFC (panel 3). However, coexpression of (-SP)

NRIP1 and GUS-YN with p50-Cerulean (data not

shown) did not reconstitute Citrine BiFC (panel 1).

Also, coexpression of (-SP)NRIP1-YC and N-YN

without p50 did not result in Citrine BiFC (panel 2)

The scale bars represent 20 mm.

(C) BiFC assays were implemented to study the

association of (-SP)NRIP1 with p50. Coexpression

of (-SP)NRIP1-YC with p50-YN reconstituted BiFC

(panel 2) but not with GUS-YN (panel 1). The scale

bars represent 20 mm.
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Figure 6. NRIP1’s Sulfurtransferase Activity Is Not Required for NRIP1 to Associate with p50

(A) NRIP1 exhibits thiosulfate sulfurtransferase activity in in vitro assays. GST-NRIP1 generates Fe(SCN)3 with sodium thiosulfate as a substrate (line 1) but not

with 3-mercaptopyruvate (line 2). An inactive mutant (C145S) of NRIP1 was unable to use sodium thiosulfate as a substrate (line 3). Production of Fe(SCN)3 was

quantified in a spectrophotometer at OD460.

(B) NRIP1(C145S)-Cerulean localized to the chloroplasts of N. benthamiana epidermal cells (column 1). NRIP1(C145S)-Cerulean changed localization to the

cytoplasm and nucleus in the presence of p50-Citrine (column 2). The scale bars represent 20 mm.

(C) Coexpression of NRIP1(C145S)-YC and N-YN in the presence of p50-Cerulean (data not shown) produced BiFC (column 2) but not with GUS-YN (column 1).

The scale bars represent 20 mm.

(D) Coexpression of NRIP1(C145S)-YC with p50-YN produced Citrine BiFC fluorescence (column 2) but not with GUS-YN (column 1). The scale bars represent

20 mm.
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Figure 7. Model of Recognition by an

N-NRIP1-p50 Complex

(A) In uninfected plants, NRIP1 localizes to the

stroma of chloroplasts and N localizes to the cyto-

plasm and nucleus (data not shown).

(B) When TMV infects the plant, NRIP1 is first re-

tained in or recruited to the cytoplasm by TMV’s

p50 domain via protein-protein interactions.

(C) NRIP1 mediates the association of p50 and N’s

TIR domain to form an active immune complex in

the cytoplasm. This complex may contain un-

known (?) host components required for the

activation that are only recruited by a NRIP1-p50

complex. Activated cytoplasmic N either enters

the nucleus or sends a signal to nuclear-localized

N to initiate a defense response.
cytoplasm since NRIP1 must travel through the cytoplasm

before it is imported. Hence, one possibility is p50 intercepts

NRIP1 on its way to the chloroplasts. The binding of p50 to

NRIP1 may directly mask NRIP1’s chloroplast targeting signal

or p50 may indirectly disrupt global chloroplast import affecting

the translocation of NRIP1 and possibly other chloroplastic

proteins. Alternatively, chloroplast-localized NRIP1 may be re-

leased into the cytoplasm and nucleus. The export of NRIP1

may be similar to the release of pro-cell-death signals, such as

cytochrome c, from the mitochondria (Reviewed in (Gogvadze

et al., 2006). One of the key initiation steps of apoptosis in mam-

malian cells is the permealization of mitochondrial membranes

and subsequent release of prodeath signals. Released cyto-

chrome c leads to activation of the apoptosome in the cytoplasm

and this initiates a caspase cascade leading to cell death (Zou

et al., 1999). Similarly, NRIP1 may be released from chloroplasts

by a p50-induced permealization of the outer membrane by an

unknown mechanism or using the machinery required for retro-

grade signaling (see below). Since the recognition of pathogens

by plant immune receptors results in a type of programmed

cell death (hypersensitive response), it is possible that NRIP1

or other chloroplastic factors act as prodeath signals that are

recognized by immune receptors such as N.

The strong induction of thread-like stromules in plants under-

going a defense response (Figure 2 and Figure S3) suggests that

there may be a general alteration of chloroplast structure follow-

ing pathogen recognition. Stromules are associated with stress

responses, such as high temperatures (Holzinger et al., 2007)

and it is likely that the induction of stromules is a general re-

sponse to abiotic and biotic stresses (this study). Although the

exact role of stromules remains elusive, one putative function

is to increase the surface area of chloroplasts to aid in the trans-

port to and from the cytosol or organelles (Natesan et al., 2005).

Stromules have been observed in close contact with nuclei in

electron and confocal micrographs (Holzinger et al., 2007;

Kwok and Hanson, 2004). We also observed the tips of numer-

ous stromules in contact with nuclei (data not shown). Currently,

there is no evidence suggesting stromules directly connect

nuclei and chloroplasts; however, their close association may

enhance the import of chloroplastic factors, such as NRIP1, to

the nucleus. Stromules may have an important role during chlo-
roplast-to-nucleus or chloroplast-to-cytoplasm retrograde sig-

naling. Chloroplast-to-cytoplasm retrograde signaling that leads

to release of NRIP1 or other chloroplastic proteins might activate

the cell death process through immune receptors. Additionally,

chloroplast-to-nucleus retrograde signaling might participate in

the transcriptional reprogramming during pathogen defense.

Furthermore, NRIP1 may have an unknown function within the

nucleus. Increasing the size of NRIP1 with two copies of CFP

does not disrupt NRIP1’s nuclear localization (data not shown);

therefore, NRIP1 does not passively diffuse into the nucleus,

but may be actively imported by an unknown mechanism.

A second question related to NRIP1’s localization is why does

p50 alter the localization of NRIP1? The association of p50 (and

p50-U1-Ob) with NRIP1 suggests NRIP1 may play a role in

TMV’s infection cycle. Several other host factors are known to

function in basal immunity, in addition to their roles in effector-

triggered immunity (Jones and Dangl, 2006). It is possible that

NRIP1 also possesses an additional role in basal immunity.

Interestingly, the expression of NRIP1’s Arabidopsis homolog

AtSEN1 is regulated in response to defense-related molecules

such as SA and during basal defense (Schenk et al., 2005).

NtDin1, the close tobacco homolog of NRIP1, is required for

the function of molybedenum containing proteins such as nitrate

reductase and xanthine dehydrogenase (Yang et al., 2003) that

have been implicated in the formation of reactive oxygen species

that function during defense (Apel and Hirt, 2004; Shapiro, 2005).

Thus, the disruption of chloroplasts may have the desirable con-

sequence of reducing the host’s capacity for effective defense

responses. Indeed, the bacterial effector HopI1 localizes to chlo-

roplasts, disrupts their structure, and suppresses SA production,

presumably to aid in the successful colonization of the host by

the pathogen (Jelenska et al., 2007). In addition, silencing a com-

ponent of photosystem II of chloroplasts results in a 10-fold

increase in TMV accumulation (Abbink et al., 2002) and depletion

of photosystem II core complex by TMV is the cause for yellow

mosaic symptoms (Lehto et al., 2003). It is likely then that

NRIP1 is not the only chloroplastic protein that will be affected

by TMV and it is tempting to speculate that other chloroplastic

proteins may function like NRIP1 during defense against other

pathogens. Indeed, we found a strong putative chloroplast tar-

geting signal within the recently discovered Tm-1 gene product
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that confers resistance to tomato mosaic virus (ToMV) (Ishibashi

et al., 2007). Moreover, Tm-1 protein directly binds to the repli-

case proteins of ToMV and inhibits virus replication.

NRIP1 Is a Novel Component of the N Immune
Receptor Complex
Mounting evidence suggests that the amino-terminal variable

domain of NB-LRR immune receptors is required for indirect rec-

ognition of pathogens, and the carboxy-terminal LRR domain

recognizes pathogens via direct interactions. The host factors,

RIN4, PBS1, and Pto bind N-terminal domains of NB-LRR

proteins (Ade et al., 2007; Mackey et al., 2002; Mucyn et al.,

2006). In this study, we demonstrated that NRIP1 binds to the

N-terminal TIR domain of N and the p50 effector using three in-

dependent methods. In yeast two-hybrid assays, NRIP1 associ-

ates with the TIR domain of N but not with full-length N; however,

in coimmunoprecipitation assays, NRIP1 associates with both

the TIR domain alone and full-length N. We were not surprised

by this discrepancy between yeast two-hybrid and in vivo assays

because a similar difference was observed for another NB-LRR

immune receptor, RPM1, and the associated host factor,

TIP49a (Holt et al., 2002). Although N and N(TIR) coimmunopre-

cipitate with NRIP1 in the absence of p50, in BiFC assays that

maintained subcellular compartmentalization in living cells,

NRIP1 did not interact with N unless p50 was present (Figure 4).

Moreover, ectopically expressing NRIP1 in the cytoplasm by

removing its chloroplast targeting peptide was not sufficient for

NRIP1 and N to associate without p50 (Figure 5). In conclusion,

the combination of yeast two-hybrid, coimmunoprecipitations,

and BiFC assays has created a unique NRIP1 interaction dataset

that no single technique could produce.

Our interaction dataset suggests that NRIP1 is a host factor

that facilitates or supports the association of N and p50 within

an immune receptor complex. Multiple lines of evidence support

this hypothesis. First, N and p50 do not directly associate in vivo,

and therefore, the association is likely mediated by other host

factors (Burch-Smith et al., 2007). NRIP1 interacts with the TIR

domain of N, which mediates the indirect association of N and

p50. In coimmunoprecipitation assays, p50 complexes contain

both N (Burch-Smith et al., 2007) and NRIP1 (Figure 3); and,

N complexes contain both NRIP1 (Figure 1) and p50 (data not

shown). Finally, NRIP1 only associates with N in the presence

of p50, suggesting that a NRIP1-N complex never forms, and

only a p50-NRIP1-N complex activates defense. The existence

of such complexes containing plant immune receptors, host pro-

teins, and their pathogen effectors is in agreement with the guard

hypothesis (Van der Biezen and Jones, 1998), which proposes

immune receptors monitor key host factors to detect pathogens

and subsequently activate defense responses. However, in a sig-

nificant departure from the original guard hypothesis, N does not

constitutively associate with the host factor NRIP1, but instead, is

part of a prerecognition complex containing p50 and NRIP1. As

a result, NRIP1 is not a traditional guardee of N and reveals a pu-

tative novel mode of pathogen detection by immune receptors.

Activation of an N Immune Receptor Complex
In all other known cases that adhere to the postulates of the

guard hypothesis, activation of the immune receptor occurs
460 Cell 132, 449–462, February 8, 2008 ª2008 Elsevier Inc.
when a constitutively associated host factor is modified by the

pathogen effector (Jones and Dangl, 2006 and refs therein).

We had therefore speculated that the modification recognized

by N immune receptor was the mislocalization of NRIP1 to the

cytoplasm and nuclei. To our surprise, the colocalization of

(-SP)NRIP1 and N was not sufficient for the two proteins to inter-

act, or to activate N-mediated defense in the absence of p50

effector (Figure 5). Furthermore, both the eliciting p50 and

N-evading p50-U1-Ob altered the localization of NRIP1. This

implies that an additional modification besides NRIP1’s change

in localization must be recognized for N to activate defense.

Intriguingly, both the eliciting p50 from TMV-U1 and the N-

evading chimera p50-U1-Ob, can interact with NRIP1 in vivo,

but only p50 from TMV-U1 is recognized by N. Also, p50-U1-

Ob can direct the change in localization of NRIP1 and allow

NRIP1, (-SP)NRIP1, and NRIP1(C145S) to associate with N in

a BiFC assay (data not shown); in all these functions p50-U1-

Ob is indistinguishable from the eliciting p50-U1. Hence, the

association of N and NRIP1 alone cannot account for N’s ability

to discriminate between p50 and p50-U1-Ob. How does N

discriminate between p50 and p50-U1-Ob in this complex?

The eliciting p50 may make an unknown modification of NRIP1

that is not induced by p50-U1-Ob.

One possibility is N recognizes a modification of NRIP1’s

sulfurtransferase activity. NRIP1 has in vitro thiosulfate sulfur-

transferase activity and its activity is not required for its change

in localization or the association with N or p50 in vivo (Figure 6).

However, it is important to distinguish between associations and

activation. NRIP1’s sulfurtransferase activity is not required for

a NRIP1-N association, but it may be required for activation of

N. Unfortunately, a lack of true knockouts in N. benthamiana pre-

vented us from doing complementation experiments with the

mutant NRIP1(C145S) to unambiguously answer this question.

We have not identified a possible in vivo substrate for NRIP1 dur-

ing an N-mediated defense response; indeed, the identification

of the biological substrates of rhodaneses over the past 50 years

has been largely unsuccessful (Bordo and Bork, 2002). Given

that NRIP1 changes localization in the presence of p50, NRIP1’s

substrate may also change upon virus infection as it moves from

the chloroplasts to the cytoplasm and nucleus. NRIP1 may mod-

ify p50, N, or an unknown component only when p50 is present,

and N may recognize this modification.

Alternatively, the p50-NRIP1 complex may bind in a different

conformation that is recognized by N, whereas an inactive

p50-U1-Ob-NRIP1 complex goes undetected. Another possibil-

ity is that after the association with N’s TIR domain, the specific

activation of N occurs only when p50-U1 interacts with N’s LRR

domain. Lastly, we must entertain the possibility that an un-

known host factor is brought to this complex only by the eliciting

p50. NRIP1 may simply bring p50 and N together, and an

unknown factor that binds only to the eliciting p50, but not

p50-U1-Ob, may be required for that association to induce the

activation of N.

Model for N Perception of TMV’s p50 Effector
We propose that N perception of p50 occurs in three distinct

phases: association, specific recognition, and immune receptor

activation. This investigation focuses on the first association



phase, and will provide the necessary framework for future stud-

ies. In our model, NRIP1 normally localizes to the chloroplasts

and N to the cytoplasm (Figure 7A) and nucleus (data not shown).

In the presence of p50, NRIP1 is recruited to the same subcellu-

lar compartments that contain the N immune receptor (Fig-

ure 7B). There it forms a prerecognition complex with p50 (Fig-

ure 7B). The p50-NRIP1 complex associates with N, possibly

along with other host factors (?) and cytoplasmic N is activated

by an unknown mechanism (Figure 7C). Once cytoplasmic N is

activated, it either enters the nucleus to become nuclear acti-

vated N or sends a signal to activate the nuclear pool of N. Nu-

clear N then signals a defense response. To carefully study

NRIP1’s role during the activation of N, a detailed analysis that

is beyond the scope of this paper will be required. Ideally, the

components found in NRIP1-containing and N complexes will

be isolated. Preliminary results show that NRIP1 belongs to a

high molecular weight complex in the presence of p50 (data

not shown). Second, we need to conduct a detailed analysis of

NRIP1 and N modifications in the presence and absence of

p50 and p50-U1-Ob.

We have identified NRIP1 as a host protein that interacts with

both N and p50. NRIP1 mediates the association of the N

immune receptor and the pathogen-encoded p50 effector. To-

gether, N, NRIP1 and p50 constitute a core recognition complex

that allows the plant to detect the presence of TMV in infected

cells. Our data implicates NRIP1 as a chloroplastic protein inti-

mately involved in pathogen recognition by a plant immune

receptor; and as a result, it emphasizes the growing importance

of studying plant innate immunity in the context of the subcellular

localization of immune receptors, pathogen effectors, and asso-

ciated host proteins.

EXPERIMENTAL PROCEDURES

Transient Expression by Agroinfiltration

GV2260 Agrobacterium containing expression vectors were grown overnight,

pelleted, resuspended in infiltration medium containing 10 mM MgCl2, 10 mM

2-Morpholinoethanesulfonic acid and 200 mM acetosyringone, and induced

at room temperature for 2 hr. Strains containing N-derived constructs were in-

filtrated into N. benthamiana leaves at OD600 = 1.8 and those containing p50-,

NRIP1-, or AtSEN1-derived constructs were infiltrated at OD600 = 1.0-1.2. For

coinfiltration, equal volumes of Agrobacterium were mixed. 4–5 week-old N.

benthamiana plants grown on 24 hr light carts were used for all assays.

Monitoring Protein Expression Levels

and Coimmunoprecipitation Assays

Plant tissue expressing proteins of interest was collected and ground in liquid

nitrogen. Protein was extracted with buffer containing 50 mM NaCl, 20 mM

Tris/HCl (pH 7.5), 1 mM EDTA, 0.1% Triton X-100, 10% glycerol, 3 mM DTT,

2 mM NaF, 1mM PMSF and Complete protease inhibitors (Roche). Equal

amounts of protein were loaded onto polyacrylamide gels and transferred to

PVDF membrane (Millipore) for Western blot analysis. Antibodies used were

as follows: mouse anti-MYC (Santa Cruz), mouse anti-GFP (Covance or

AbCam), rabbit anti-PEPC (Rockland) and anti-mouse or anti-rabbit horserad-

ish peroxidase conjugate (Sigma). For coimmunoprecipitation assays, protein

extracts were incubated with 100 ml of IgG-Sepharose bead slurry (GE Health-

care) equilibrated with extraction buffer and tumbled for 2–3 hr at 4�C. The

beads were washed three times with extraction buffer containing 150 mM

NaCl. 60 ml of 23 SDS loading buffer was added to each sample and boiled

for 4 min. 30ml of IP was used for immunoblotting as described in Burch-Smith

et al. (2007).
Fluorescence Microscopy

Live plant imaging was performed on a Zeiss LSM510 META confocal micro-

scope (Carl Zeiss) using a 403 C-Apochromat water immersion objective lens

(NA 1.2). Tissue samples were cut from N. benthamiana leaves at approxi-

mately 46 hpi. The 458 nm and 514 nm laser lines of a 25mW argon laser (Co-

herent) with appropriate emission filters were used to image Cerulean and Cit-

rine with chloroplasts respectively. Alternatively, a 458 nm laser line of a 25 mW

argon laser and a META detector was used for chloroplast autofluorescence.

Images within a panel were taken using the same confocal settings and

adjusted together in Photoshop CS.

VIGS Assay and GFP Imaging

All Agrobacterium cultures were adjusted to an OD600 = 1.0 and pTRV1 was

mixed 1:1 with pTRV2 control, pTRV-N, or pTRV2-NRIP1. These cultures

were infiltrated onto N-containing N. benthamiana plants grown at 24�C–

26�C under continuous light. Eight days postinfiltration, plants were rub-inoc-

ulated with TMV-GFP. GFP imaging was conducted under a 100 W UV spot-

light (Sylvania) using a CAMEDIA E20 digital camera (Olympus) fitted with

a MCON-35 macro lens (Olpymus) and a yellow filter (HOYA, K2).

RNA Isolation and RT-PCR Analysis

Total RNA was extracted from NRIP1(30)-, NRIP1(FL)-, N-, NbSTR14-, and

vector control-silenced N-containing plants using RNeasy Mini Kit (QIAGEN).

First strand cDNA was synthesized using 2 mg of total RNA and SuperScript

II reverse transcriptase (Invitrogen). Semiquantitative RT-PCR was performed

as described in Liu et al. (2002).

Rhodanese Sulfurtransferase Assay

Proteins were expressed and purified from E. coli cells (see Supplemental

Experimental Procedures). Thiosulfate and 3-mercaptopyruvate rhodanese

sulfurtransferases activities were assayed by quantifying the formation of thio-

cyanate (SCN-) as the formation of the red Fe(SCN)3 complex as described in

Papenbrock and Schmidt (2000).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, and six figures and can be found with this article online

at http://www.cell.com/cgi/content/full/132/3/449/DC1/.
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