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Utility of Adaptive Strategy and Adaptive
Design for Biomarker-facilitated Patient
Selection in Pharmacogenomic or
Pharmacogenetic Clinical Development
Program
Sue-Jane Wang*

In the early to late phases of conventional clinical trials, improvement of disease status at study baseline is
the anchor of an effective treatment measured by therapeutic response. These population-based clinical
trials do not formally account for disease-associated marker genotype or genome-associated therapeutic
response. We discuss alternative study designs in pharmacogenomic or pharmacogenetic clinical trials for
genomic or genetic biomarker development, and for formally assessing the clinical utility of genomic or
genetic (composite) biomarkers. A two-stage adaptive strategy from completed, ongoing or prospectively
planned pharmacogenomic or pharmacogenetic clinical trials is described for development of a genomic
or genetic biomarker. We present two types of adaptive design: (1) the genomic biomarker is developed
external to the clinical trial, which is designed for treatment effect inference; and (2) first-stage data are used
to explore a genomic biomarker, but statistical inference of treatment effect in the genomically or genetically
defined biomarker subset is only performed at the second stage of the same trial. When the null hypothesis
of no treatment effect in all randomized patients and the genomic patient subset are prospectively specified,
we compare the statistical power between fixed and adaptive designs. We also compare the two types of
adaptive design. Results from simulation studies showed that adaptive design is more powerful than fixed de-
sign for those genomic or genetic biomarkers whose clinical utility is predictive of treatment effect. Pursuit
of adaptive design gains at least 20% to more than 30% genomic patient subset power when the genomic
biomarker status is readily usable at study initiation, in comparison to when it is explored using the first-
stage data of the same clinical trial. In exploratory studies, adaptive strategy provides wide flexibility in the
process of genomic or genetic biomarker development. In contrast, an adaptive design trial that employs
limited flexibility, and is an adequate and well-controlled investigation, has a greater power gain than 
a fixed design trial, in which the genomic biomarker is capable of predicting treatment effects that pertain
only to the prespecified genomic or genetic patient subset. [J Formos Med Assoc 2008;107(12 Suppl):
S19–S27]
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Conventional clinical trials are designed around

the primary objective and the primary efficacy

endpoint of the study. For instance, will the addi-

tion of the experimental treatment prolong sur-

vival when compared with standard care alone in

lung cancer patients? If the study concludes that

the new treatment is effective, the average treat-

ment effect, such as median survival in the above

example, and its standard error obtained from

the clinical trial, are used to provide a two-sided

95% confidence interval for the treatment effect,

which is applicable to all randomized patients

studied. This is often referred to as a one-size-

fits-all approach.

Pharmacogenomic or pharmacogenetic clinical

trials aim to identify effective therapeutics which

are to be facilitated by the genomic or genetic char-

acteristics of the patient (sub)population under in-

vestigation. To achieve this goal, the conventional

clinical trial design that addresses only the treat-

ment effect in all randomized patients has been

critically challenged. Study designs that allow the

clinical trial to address an additional study objec-

tive such as new treatment may only be effective in

patient subsets characterized by a genomic or ge-

netic profile. In this paper, we use the term genomic

collectively to also represent genetic, unless the

term genetic is specifically stated. We lay out the

utility of an adaptive strategy for genomic bio-

marker development, and discuss adaptive design

in pharmacogenomic clinical trials that build on

two study objectives. Is there a treatment effect in

all patients studied or is the effect only applicable

to a subset of patients who can be characterized by

the genomic biomarker1 or genomic classifier?2

When genomic materials or biological speci-

mens are a part of the data collection in clinical

trials, exploration of a genomic biomarker may

be pursued retrospectively from completed clinical

studies or from ongoing or prospectively planned

clinical trials. Here, we consider those biomarkers

whose presence can influence treatment outcome,

and whose status is or should have been known

prior to treatment initiation. In the following sec-

tion on Adaptive Strategy, I present a two-stage

adaptive strategy to explore a genomic biomarker.

In the section after that on Adaptive Design, I 

define the composite hypothesis and describe a

two-stage adaptive design in pharmacogenomic

or pharmacogenetic clinical trials. Adaptive de-

signs are compared with fixed designs when the

composite hypothesis is pursued.

Adaptive Strategy

There are many types of study design in pharma-

cogenomic or pharmacogenetic clinical trials.3 One

distinction among the possible designs is the ge-

nomic objective to investigate treatment effect in

a genomic patient (sub)population either in an

exploratory framework or in a statistical inferential

setting. The genomic patient population may be

the study population or a subpopulation of a

clinical trial. The genomic objective dictates the

study design. In addition, the availability of the

well-defined genomic biomarker and the accept-

ability of the diagnostic assay entail the appropri-

ateness of the study design in pharmacogenomic

or pharmacogenetic clinical trials.

Figure 1 contrasts the timing of genomic data

capture and the usage of genomic (composite)

biomarker information in pharmacogenomic or

pharmacogenetic clinical trials.

Development of genomic biomarkers
In clinical studies where the genomic objective is

exploratory, or clinical development of a genomic

(composite) biomarker is in progress, a two-stage

adaptive strategy can add to the design flexibility

efficiently. This is applicable to retrospective, 

ongoing, and prospective studies.

As shown in Figure 2, a two-stage adaptive strat-

egy for genomic biomarker development consists

of systematically training the genomic data for

exploration and discovery in stage 1, and prelim-

inarily validating the clinical utility of the trained

genomic biomarker in stage 2.4,5 There is abundant

statistical and bioinformatics literature for stage

1 and 2 development.2,6,7

Once a genomic biomarker is developed, ap-

proaches to validation such as leave-one-out, 
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k-folds cross-validation or bootstrap methods are

often used to assess the prediction accuracy. How-

ever, prediction error has been shown to be too

liberal using cross-validation approaches than

using independent validation.8 Validation per-

formed from a separate prospectively planned

study of the same patient population contains rig-

orous objective criteria for estimation of the pre-

diction error or prediction accuracy. During the

development process of a genomic (composite)

biomarker, studies that employ a two-stage adap-

tive strategy are considered exploratory, mostly to

generate a genomic hypothesis for later phase

study design consideration.

Preliminary clinical utility assessment
When a genomic biomarker is developed using

microarray technology or genotyping approach,

clear, commercially available diagnostics may be

required. Examples are AmpliChip9 and Mamma-

Print®.10 These diagnostics are used to classify 

patients into subsets. The clinical utility of the ge-

nomic biomarker may be prognostic of disease state

or drug effect, or predictive of treatment outcome

to be tested in adequate and well-controlled phar-

macogenomic or pharmacogenetic clinical trials.

For preliminary clinical utility assessment,

cross-validation performed in stage 2 provides es-

timated prediction accuracy, including sensitivity

and specificity of the genomic biomarker. The pos-

itive and negative predictive values of the diagnos-

tics can also be estimated if the pharmacogenomics

trial is a two-arm, placebo-controlled clinical trial

designed to explore patient subsets which are to be

ruled in for efficacy or ruled out because of seri-

ous adverse events. When previously completed

or ongoing trial data are used to develop genomic

biomarkers, the collected genomic biological spec-

imen may be used to assess the preliminary clinical

utility of an experimental diagnostics.

The major statistical issue here is the data

quality of the stored genomic samples. Some ge-

nomic samples yield unknown genomic biomarker

status, which is a type of missing data problem.

Baseline demographics,
disease characteristics

background medication

Clinical outcomes:
primary, secondary efficacy,

safety endpoints

Baseline genomic or genetic samples
(e.g. tissue, biospecimen, blood, PBMC)

Pharmacogenomic or pharmacogenetic 
randomized controlled clinical trial

No 

Is an established genomic (composite)
biomarker classifier or a genomic or genetic
diagnostic assay available at study baseline?

Stratified randomization is an option
in addition to a prespecified statistical

analysis plan

Yes 

Prospective statistical analysis plan
to also study therapeutic effect in
genomic or genetic subgroup(s)

Conventional clinical trial

Figure 1. Diagram of timing of genomic data capture and usage of genomic (composite) biomarker information in pharma-
cogenomic or pharmacogenetic clinical trials. The dashed line represents conventional randomized controlled clinical trial. The
solid lines with arrows represent the chronologic timeline of a genomic drug trial. PBMC=peripheral blood mononuclear cells.

Completed trials
Ongoing trials
Prospective trials 

Stage 1
Exploration/discovery

(training dataset) 

Stage 2
Preliminary validation

(test dataset) 

• Prespecify the statistical methodologies to systemati-
 cally explore and develop a genomic or genetic
 biomarker classifier, e.g. using 60% of accrued patients
 for stage 1 exploration/discovery—the training set
• Cross-validate the potential classifier effect using the
 remaining data (to be) collected in stage 2

Figure 2. Development of a genomic (composite) biomarker
two-stage adaptive/flexible strategy for exploration.
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A compounding issue is that the genomic objec-

tive is not a primary objective of these trials. As a

consequence, only optional consent is needed for

the exploratory genomic objective. The genomic

samples so collected are convenience samples of a

double-blind randomized controlled trial. These

characteristics can easily be lost for a randomized

comparison of a treatment effect within a genomic

subset. The clinical event following treatment 

intervention serves as the clinical truth, and the

diagnostic assay using biological specimens to

classify patients serves as the test result. Prevalence

of positive genomic biomarkers can be estimated

using only data from placebo patients.

Adaptive Design

An adaptive design consists of three components:

(1) a prospectively planned modification of one

or more specified design elements; (2) a modifi-

cation performed in a specified manner based on

an interim analysis of data from subjects in the

study; and (3) interim analyses at prespecified

time points, performed either fully blinded or

unblinded, and with or without a formal statistical

hypothesis test.

Genomic biomarker or diagnostic assay
available prior to treatment assignment
Depending on the genomic study objective, there

are several design options.3 Ideally, there should be

a developed genomic biomarker and an accept-

able diagnostic assay available at study initiation

to classify patients’ biomarker status (Figures 1

and 2). In such cases, a two-stage adaptive de-

signed pharmacogenomic or pharmacogenetic

trial can be devised. The basic setup considered

in this paper is that, at trial initiation, all patients

are randomized, preferably stratifying by their

biomarker status to ensure randomization balance

within each genomic patient subset. Statistical

inference of a treatment effect relative to its com-

parator is formally assessed in all patients ran-

domized and in the patient subset defined by the

presence of the genomic biomarker. We refer to

this as the composite hypothesis. It is worthwhile

noting that assessment of differential treatment

effects between biomarker-positive and -negative

patients is only of secondary interest, which is

also known as the interaction hypothesis.3

The composite hypothesis is specified a priori.

The adaptive features at the end of stage 1 interim

analysis may be to conduct: (1) a futility or safety

assessment of the patient subset with absence of

the genomic biomarker; (2) an interim predictive

power assessment of treatment effect in the patient

subset with the genomic biomarker; (3) an increase

in total sample size; and (4) an increase in sam-

ple size in the to-be-enriched genomic biomarker

patient subset. One can also build in a formal in-

terim analysis for early efficacy decision as in adap-

tive group sequential design. However, we generally

discourage such adaptation, especially if an interim

analysis is performed early when the sample size

is small.

When the composite hypothesis is the primary

study objective, a study where no design element

is adapted is a fixed design, within which a pre-

specified multiplicity adjustment method is in

place, e.g. Hochberg procedure. Compared with

the fixed design, the attractive utility of adaptive

design in terms of gaining the study power to de-

tect a treatment effect in the genomic subset is

when the genomic biomarker is predictive of treat-

ment effect, viz. those solid subset power curves

for 1= (� > 0, �g+= 0.4, �g−= 0) denoted by AD-1

(adaptive design 1) and 2 = (� = 0, �g + = 0.4,

�g− < 0) denoted by AD-2 versus those dashed

subset power curves for FD-1 (fixed design 1) and

FD-2 depicted in Figure 3. With 1 = (� > 0, �g + =
0.4, �g−= 0), the true standardized effect size is 0.4

in the genomic-biomarker-positive subset and no

treatment effect in the biomarker-negative subset

(�g− = 0). Similarly, with 2 = (� = 0, �g + = 0.4,

�g− < 0), in the extreme situation, the null overall

treatment effect is the result of the treatment effect

being offset because it benefits one type of geno-

mically defined patient subset, but is futile to the

complementary genomic subset. In contrast, when

the genomic biomarker is prognostic-predictive of

treatment effect, viz. there appears to be differential
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treatment effects between biomarker-positive

and -negative patient subsets with treatment dif-

ferences on an order of magnitude. In such cases,

there is essentially no genomic subset power gain

with the adaptive design approach (see AD-3 

versus FD-3 in Figure 3).11

Genomic materials collected, but biomarker
status not known prior to treatment
assignment
When exploration of clinical utility and develop-

ment of a genomic biomarker is prospectively

planned using stage 1 data, there is clearly no es-

tablished genomic biomarker or acceptable diag-

nostic assay at study initiation. Let us assume that

one is willing to accept that emerging scientific

findings external to the clinical trial independently

validate the prediction accuracy of a genomic bio-

marker preliminarily developed within the trial

and before its completion. In this case, a two-stage

adaptive design may be pursued.12 The adaptive

signature design by Freidlin and Simon12 uses in-

terim stage 1 data to identify existence of a sensitive

genomic patient subset.

Wang et al13 studied the performance charac-

teristics of a two-stage adaptive design when the

genomic biomarker was readily available at study

baseline versus when it was only available at the

end of stage 1 interim analysis. Using a one-sided

equal α-split of 0.0125 for each of the two prospec-

tively specified hypotheses,12 simulation studies13

have shown that, when the genomic biomarker

is predictive of clinical outcome, an adaptive design

with available genomic biomarker status at study

baseline yields at least 20% to more than 30%

subset power improvement, compared to adaptive

design without available genomic biomarker status

at trial initiation (Figure 4).13 This is roughly a

15–30% subset power gain for prognostic utility

(Figure 5A in Wang et al,13 which is reproduced

as Figure 5 in this article).

Discussion

In previously completed controlled clinical trials

where genomic biological specimens were col-

lected prior to trial initiation, we rationalized the

feasibility of genomic biomarker exploration using

a two-stage adaptive strategy. The exploration could

be driven by the completed studies succeeding in

demonstrating a treatment effect. However, re-

defining a responsive genomic patient subpop-

ulation may become necessary because of the

changing definition of disease or syndrome in

the clinical community, or de-selecting an unsafe

genomic patient subpopulation may become ethi-

cally plausible because of irreversible drug-related
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Figure 3. Power comparison for �g+ with the Hochberg method (1 = (�, 0.4, 0); 2= (0, 0.4, �g− < 0); 3= (0.2, 0.4, �g−)).
�, �g+ and �g− are the standardized effect sizes for all randomized patients, the genomic biomarker positive patients,
and the genomic biomarker negative patients. Sample size ratio is the ratio of sample size in genomic biomarker positive
patients over all randomized patients. FD = fixed design; AD = adaptive design. 1 and 2 refer to the genomic biomarker
that is predictive of treatment effect, 3 refers to prognostic prediction of treatment effect.



S.J. Wang

S24 J Formos Med Assoc | 2008 • Vol 107 • No 12 Suppl

adverse events.14 The exploration could also be

driven by studies failing to statistically demon-

strate treatment effects based on all the patients

studied.

Development of a genomic biomarker is ex-

ploratory in its process. The critical issues are not

necessarily the multiplicity that occurs in the se-

lection of gene features or prediction models, or

the strong control of falsely identifying baseline

genomic biomarkers for patient classification. The

main clinical question is whether there is a useful

clinical utility of the developed genomic biomarker
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Figure 5. Power comparison for �g+ under adaptive designs with the standardized effect sizes for all randomized patients,
the genomic biomarker positive patients, and the genomic biomarker negative patients: � = 0.2, �g+= 0.4, �g− (a function
of �, �g+, and the sample size ratio). Sample size ratio is the ratio of sample size in genomic biomarker positive patients
over all randomized patients. AD = adaptive design with alpha allocation by Wang et al;13 FS = adaptive design by Freidlin
and Simon;12 0.0125 refers to a one-sided 1.25% type I error rate (equal allocation) for testing H0: �g+ = 0 and H0: � = 0
each; 0.005 refers to a one-sided 0.5% type I error rate for testing H0: �g+ = 0 and the remaining one-sided 2% type I
error rate for testing H0: � = 0; Hochberg refers to testing the two hypotheses following the adaptive design using the
Hochberg procedure by Wang et al.13
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Figure 4. Power comparison for �g+ under adaptive designs with the standardized effect sizes for all randomized patients,
the genomic biomarker positive patients, and the genomic biomarker negative patients: � (a function of �g+, �g− and
the sample size ratio), �g+=0.4, �g−=0. Sample size ratio is the ratio of sample size in genomic biomarker positive patients
over all randomized patients. AD = adaptive design with alpha allocation by Wang et al;13 FS = adaptive design by Freidlin
and Simon;12 0.0125 refers to a one-sided 1.25% type I error rate (equal allocation) for testing H0: �g+ = 0 and H0: � = 0
each; 0.005 refers to a one-sided 0.5% type I error rate for testing H0: �g+ = 0 and the remaining one-sided 2% type I
error rate for testing H0: � = 0; Hochberg refers to testing the two hypotheses following the adaptive design using the
Hochberg procedure by Wang et al.13



or an added clinical utility over existing baseline

clinical indicators. Therefore, a two-stage adaptive

strategy provides flexibility when it comes to in-

vestigating several plausible statistical methods,

selecting individual genes/single nucleotide poly-

morphisms and several plausible prediction algo-

rithms and developing a genomic (composite)

biomarker. Through an iterative process searching

for a genomic biomarker, ultimately, the genomic

biomarker that best informs the clinical utility of

drug response or treatment effect will be brought

forward for genomic inference of a treatment effect

in the drug development process.

It has been argued that DNA is highly stable

physically and biologically. Thus, DNA genotyping

data will be the same regardless of when the DNA

samples are acquired, if these samples are properly

stored and maintained. Consequently, if the geno-

typing laboratory is blinded to the clinical outcome

data and the treatment assignment, some have

argued that designing a prospective pharmacoge-

nomic study to test the clinical composite hypoth-

esis using available unblinded clinical data is

possible from previously completed drug trials,

assuming that the study sample size is sufficiently

powered for the genomic hypothesis. This is known

as a prospective/retrospective study design.14

The scientific validity of a prospective/retro-

spective study design depends on the intended

clinical utility of the established genomic bio-

marker and an acceptable diagnostic assay for

patient classification.14 The prospectiveness of the

prospective/retrospective study design in terms of

prespecified modification of design elements in

a two-stage adaptive design trial might be accept-

able using previous successfully completed clini-

cal trials for the “new” composite hypothesis, but

not in failed trials that no longer have an objec-

tive type I error definition and which should be

considered hypothesis generation at best.

However, the scientific validity of the prospec-

tive/retrospective study design has been a subject

of controversy. It is challenging when the intended

clinical utility is “predictive of drug effect at

group level”, and the two-stage adaptive design13

gives a large power gain over the conventional

one-size-fits-all design or fixed design with pre-

specified multiplicity adjustment of the composite

hypothesis. One cannot rule out the possibility of

iterative discovery from retrospective sources, such

as previously completed clinical trials, being used

in hypothesis generation. The multiplicity that re-

sults from iterative discovery may be of concern.

The validity of the two-stage adaptive design can

also be challenged because of the unavailability of

a homegrown assay or an unacceptable diagnostic

assay that lacks performance characteristics ex-

pressed by sensitivity, specificity, accuracy, positive

predictive value, negative predictive value, and re-

ceiver operating characteristic curve. The funda-

mental issues are the completeness of ascertaining

biological specimens in all randomized patients,

whether the specimen quality allows accurate clas-

sification of all randomized patients, the amount

of missing data on genomic biomarker classifica-

tion status caused by specimen quality, and the

convenience genomic samples due to optional bio-

specimen collection. Thus, the issue of the level of

scientific rigor and the various issues of bias of

prospective/retrospective investigations that arise

from the design, analysis, conduct and interpreta-

tion of a completed clinical trial cannot be ignored.

When the specificity and sensitivity add up to

100% or positive and negative predictive values

add up to 100%, it is likely that a genomic patient

subset will be randomly selected, which shows

no clinical utility of the genomic biomarker or

the diagnostic assay. When the diagnostic perfor-

mances deviate from random classification, there

are always trade-offs between sensitivity and speci-

ficity, and similarly, between positive and negative

predictive values. In general, high sensitivity is

favored for early, less expensive, noninvasive tests,

and high specificity is favored for later stages

when more expensive and invasive tests are per-

formed. Alternatively, predictive value may be

used for diagnostic performance. The trade-offs

for the predictive value of a genomic biomarker

may be more serious for its predictive clinical utility

than for its prognostic clinical utility. In the case

of MammaPrint®, which has been approved for

its prognostic clinical utility, a reasonably high

Biomarker-facilitated patient adaptation in pharmacogenomic clinical trials
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negative predictive value may be acceptable for

detecting no metastatic breast cancer within 5 years.

For rare clinical events, a high negative predictive

value is easily achievable and the positive predictive

value is naturally low, e.g. MammaPrint® was ap-

proved on the basis of a high negative predictive

value of 0.95 (95% confidence interval of 0.91–

0.99), but a very low positive predictive value (0.22,

with 95% confidence interval of 0.16–0.28) for

metastatic breast cancer within 5 years.15

Studies with the genomic objective that a ge-

nomic biomarker is predictive of treatment effect

should only be prospectively planned and de-

signed, and should not be a secondary attempt

from within a previously completed clinical trial.

This is because one predicts a future event, and not

a future event in the past tense. In addition, the de-

sign of the original trials might add exploratory ge-

nomic objectives at best when there was a lack of

emerging scientific evidence. Thus, the original trial

would be unlikely to accommodate the DNA anal-

ysis in its formal primary study objective or its key

secondary objective, from which these completed

studies cannot possibly make themselves prospec-

tive for collection of legitimate future events.

Genomic technology4,5,9,10 promises a revolu-

tion in therapeutic discovery and clinical investi-

gation that aims to provide more precise diagnosis

and prognosis, a better understanding of drug 

action, and the ability to better define therapeutic

strategies. Pharmacogenomic clinical trials provide

the link between target agent and target (sub)pop-

ulation, by way of enriching genomic patient pop-

ulation or adaptively enriching genomic patient

subpopulation. To achieve these goals, one can

think ahead in early phase drug development to

seek an influential genomic biomarker that sup-

ports or discovers the drug mechanism of action

or identifies drug targets. Adaptive approaches

are feasible. The successful treatment of individual

patients based on a predictive genomic biomarker

that provides added clinical value and clinical

utility can be viewed as a substantial first step 

toward personalized medicine.

We have introduced and discussed two-

stage adaptive strategy for genomic biomarker

development and two-stage adaptive design to pre-

identify genomic or genetically prone patients who

are expected to respond (better) to therapy, in the

sense of treatment risk/benefit balance, than pa-

tients without these genomic or genetic character-

istics in pharmacogenomic and pharmacogenetic

clinical trials.
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