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A new method for treating ordinary Bose and Fermi statistics as well as 
many types of parastatistics is proposed. Number operators are used to distin- 
guish among different types of statistics, and uniqueness results for Bose, Fermi, 
parabose and parafermi statistics are obtained. 

1. INTRODUCTION 

The uniqueness results for the free Boson [13, Theorem 1’1 and free Fermion 
[14, Theorem 2.11 fields are strikingly different. In each case the creation 
operators, C(z), satisfy simple relations. For Boson fields 

[C”(4, C(Y)1 = <Y, a (1-l) 

[CM, C(Y)1 = 0 (14 

and for Fermion fields 

[C”M qs)l+ = (Y, Z>> U-3) 

ma C(Y)l+ = 0. (1.4) 

Although these relations are similar in form they are dissimilar in character since 
(1.3) and (1.4) can be satisfied by bounded operators on a Hilbert space while 
(1.1) and (1.2) cannot. The creation operators for a Boson field must be un- 
bounded and so domain questions must be considered. This complication is 
eliminated by replacing these relations with the Weyl relation 

W(s) W(y) = e+i1m<z~~>W(2f + y). (1.5) 

This is formally equivalent to (1.1) and (1.2) if W(x) = eiR@) where R(z) is the 
closure of (=J)l/z(C(z) + C*(z)). Relation (1.5) is special to Bosons and there 
does not seem to be a way to generalize it for other types of statistics. 
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We examine a different approach to (I .I) and (1.2) or similar relations 
involving possibly unbounded operators. For Boson and Fermion fields the 
operator 

n(x) = C(z) c*(z) (1.6) 

represents the number of particles in the state x when j/ z 11 = 1. In general, 
number operators should satisfy 

L44, C(Y)1 = <Y, x> w4. (1.7) 

When n(z) is given by (1.6), (1.7) is satisfied by both Boson and Fermion fields 
(although only in a formal sense for Bosons). If z is a unit vector, (1.7) is formally 
equivalent to 

where P, is the projection onto the one-dimensional space spanned by Z. Since 
eitn(*) is unitary when n(z) is self-adjoint, (1.8) may make sense even when the 
creation operators are unbounded. In fact, it actually holds for both Bosons and 
Fermions. 

Although (1.6) and (1.8) do not distinguish between Bosons and Fermions, 
the requirement that a certain operator (in this case the one defined by (1.6)) 
represents a number operator (so that (1.8) holds), determines many of the 
important qualities of the statistics. 

In Section 2 we use this observation to produce uniqueness theorems for 
Boson and Fermion fields which are very similar in form and do not use the 
Weyl relation. The power of this procedure is demonstrated by the simplicity 
with which it can be extended to other types of statistics. In Section 3 we use 
two other choices for n(x), 

and 
n(x) = g(c(z) C”(z) + C”(z) C(x)) (1.9) 

n(z) = *(c(z) C”(z) - c*(z) C(z)) (1.10) 

and obtain uniqueness results for the corresponding fields. These fields, the 
paraboson and parafermion fields, are the best known generalizations of the 
Boson and Fermion fields. 

Thus, by making a specific choice of n(a) and requiring that (1.8) holds, we 
obtain uniqueness results of similar form for Boson, Fermion, paraboson and 
parafermion fields. Other choices for n(z) are undoubtedly possible and the 
resulting statistics may be treated by these methods. 

To set the framework for our discussion we state a few definitions. 
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Let H and K be complex Hilbert spaces and let C be a function from H into 
the set of closed, densely defined operators on K such that 

C(z + Y) ’ cc4 + C(Y), (1.11) 

C(P) = YC(4 (1.12) 

for all .z, y E H and all nonzero complex numbers, y. Then {H, C, K} will be 
called a quantum structure over H. To avoid trivialities we will always assume 
that C(z) is not identically zero for any z. If in addition, r is a continuous 
unitary representation of the unitary group on H by operators on K and v is a 
unit vector in K such that 

r(u) C(z) r( q-1 = C( Uz) (1.13) 
and 

r( U)v = v, (1.14) 

then (H, C, K, P, v} will be called an invariant quantum structure over H. An 
(invariant) quantum structure is called bounded if C(z) is a bounded operator 
on K for each z E H. An (invariant) quantum structure is irreducible if the only 
projections, P, on K such that 

C(z)P 3 PC(z) 

for all z E H are P = 0 and P = I. This is equivalent to the statement that the 
only unitary operators, V, on K such that 

VC(x) v-1 = C(z) 

for all z E H are scalar multiples of the identity. 
Two quantum structures {H, C, K) and {H, C’, K’} over H are unitarily 

equivalent if there is a unitary operator @ from K onto K’ such that for all z E H, 

C(z) = @w(z) D-1. 

Invariant quantum structures, {H, C, K, F, V} and {H, C’, K’, I”, o’} are 
unitarily equivalent if in addition @ satisfies 

v’ = div 

and for all unitary operators, U, on H 

r’(u) = m(u) @j-l. 
Suppose that {H, C, K, r, V> is an invariant quantum structure. If A is a 

(not necessarily bounded) self-adjoint operator on H then eitA is a continuous 
one-parameter unitary group on H and by the continuity of I’, I’(F) is a 
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continuous one-parameter unitary group on K. Thus, there is a unique self- 
adjoint operator on K, represented by dr(A), such that r(eitA) = eitdrcA). Since 
r(eitA)u = V, dr(A)v = 0. If A > 0 implies that dr(A) > 0 then I’ or 
{H, C, K, r, v} is called positive. For two commuting self-adjoint operators A 
and B on H, dr(A) and Z(B) are commuting self-adjoint operators on K since 
two self-adjoint operators commute if and only if their corresponding one- 
parameter unitary groups commute. If in addition A < B and r is positive then 
dr(A) < n(B). 

Suppose {H, C, K} is a quantum structure over H, M is a closed subspace of H 
and P is the projection onto &I. A self-adjoint operator, n, on K which is bounded 
from below is called a number operator for M if 

(1.15) 

for all y E H. If n’ is another number operator for M then e-itn’eitn commutes 
with each C(z). When (H, C, K) . is irreducible, n’ and n differ by a scalar. Since 
eZniP = 1, e2dn commutes with each C(z). Irreducibility implies that the 
spectrum of n is discrete and separated by integers. Thus there is at most one 
number operator for M which is non-negative and has 0 in its spectrum. Such a 
number operator will be called normalized. 

The normalized number operator for M can be interpreted as the number of 
particles (whose state is) in the subspace M. If nw = jw (that is, w hasj particles 
in M) and x E M then w E Dom(C(x)) implies 

Therefore C(z)w E Dam(n) and 

nC(x)w = (j + 1) C(z)w. 

Thus, C(z)w has (j + 1) particles in M. Under similar domain restrictions, 
C*(z)w has (j - 1) particles in M. Similarly, if z E ML then C(z)w and C*(x)w 
have j particles in M. The interpretation of n as the number operator for M is 
therefore consistent with the interpretation of C(z) as a creation operator and 
C*(z) as an annihilation operator. 

Two special cases are most important. When M is the one-dimensional space 
spanned by a vector 2: E H and n is a number operator for M, then n is also 
called a number operator for x and 

eit”qy)e --it?2 = qe WY)* (1.16) 

When x is a unit vector, C(z) C*( z is the normalized number operator for x ) 
for both Bosons and Fermions. The other special case is M = H. In this case 
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a number operator for M is called a total number operator and we usually denote 
it by N. Since 

and 

N commutes with C(x) C*(z) and C*(z) C(Z). 
If (H, C, K, r, V} is an irreducible positive invariant quantum structure over 

H and P is a projection of H, then U(P) is a number operator for PH. Since 
U(P) 3 0 and dr(P)v = 0, dr(P) is the normalized number operator for PH. 
In particular, if z is a nonzero vector in H then dr(P,) is the normalized number 
operator for z. dr(l) is the normalized total number operator. If v E Dom(C*(z)), 
as will usually be the case, then 

q1> c*(z)v = -c*(x)v, 

and the positivity of r implies that 

c*(x)v = 0. (1.17) 

For a given quantum structure {H, C, K), & will represent the algebra 
with unit generated by the creation and annihilation operators. For x E H, 
d8 will represent the algebra with unit generated by those creation operators 
C(y) and those annihilation operators C*(y) for which y is either parallel or 
orthogonal to x. &’ and &“, will represent the subalgebras of LX? and dz, 
respectively, generated by the creation operators alone. 

2. BOSONS AND FERMIONS 

The two most important examples of irreducible positive invariant quantum 
structures are the Fock-Cook Boson quantum structure and the Fock-Cook 
Fermion quantum structure. These were proposed by Fock [2] in 1932 but the 
first rigorous mathematical work was done by Cook [l] in 1953. In Cook’s paper 
the creation operators which we denote by C(x) are denoted by ~~(4) for Bosons 
and w,J+) for Fermions. H corresponds to % and K corresponds to 6 (Bosons) 
and ‘$1 (Fermions). &‘(A) corresponds to Q(A) and v corresponds to the 
number 1. 

As indicated in Section 1, the choice of (1.6) as the number operator does not 
distinguish Bosons from Fermions. We make the distinction by requiring that 
(1.1) or (1.3) holds in the special case y = x. That is, we require the creation 
operators to behave correctly in one dimension and let (1.8) determine the 
relationship between particles in different states. We first state the results when 
H is finite dimensional for these are particularly simple. 
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THEOREM 1. Suppose H is a finite dimensional complex Hilbert space and 
{H, C, K} is an irreducible quantum structure over H such that for all x E H, 

and 
c*(4 C(z) = C(z) C”(z) + II 2 II2 (2.1) 

n(x) = C(z) C”(z) 

is a number operator for z when x is a unit vector. Then {H, C, K} is unitarily 
equivalent to the Fock-Cook Boson quantum structure over H. 

THEOREM 2. Suppose H is a Jinite dimensional complex Hilbert space and 
(H, C, K) is an irreducible quantum structure over H such that for all z E H, 

and 
C”(4 C(4 + cc4 C”(z) = II 2 II2 (2.2) 

n(z) = C(x) C*(z) 

is a number operator for x when z is a unit vector. Then {H, C, K} is unitarily 
equivalent to the Fock-Cook Fermion quantum structure over H. 

Notice that these two theorems differ only in the one-dimensional relation (2.1) 
or (2.2). (2.2) implies that the creation operators are bounded since C*(x) C(z) 
is a positive self-adjoint operator which is less than I\ z 112. Equation (2.1), of 
course, does not imply boundedness. In fact, (2.1) cannot be satisfied by 
bounded operators unless z = 0. We start with the proof of Theorem 1. 

Proof of Theorem 1. Relation (2.1) implies that if z is a unit vector, then n(z) 
has purely discrete spectrum with eigenvalues 0, 1,2,... . See, for example, 
[7, Lemma 4.4.11. Equation (1.8) implies that 

6 itn(z)C*(y)e-itnfZ) = C*(eitPzy) 

and so if y is orthogonal to z then n(z) commutes with n(y). Let {e, , e, ,..., eJ 
be an orthonormal basis for H. Let nj = n(ei) and Pj = Ppj . (q , “J ,..., n,> 
is a set of commuting self-adjoint operators each with discrete spectrum so 
there exists a vector w E K which is simultaneously an eigenvector for each nj . 
Suppose njw = ajw. Each crj is a nonnegative integer. 

e ityy*(ei)w = eitn5c*(e,) e-itnjeit%w 

= (1 + (eP - 1) 8,) eit”C*(e,)w. 

Therefore C*(e,)w is in the domain of nj and 

nJ*(e,)w = (aj - Sij) C*(ei)W. 
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C*(e,)w # 0 unless 01~ = 0, so 

C*(esp ... C*(eJa2C*(el)g1w 

is a (non-zero) eigenvector of each nj with eigenvalue 0. Let v be such an eigen- 
vector which is normalized to be a unit vector. 

Let 

N = 44 + 44 + ... + n(e,). (2.3) 
eitNqz) e-itN = ~(~itP,~itPz , . . e%x) 

= C(e it(P,+P,+...+P,)Z 
) 

= C(e%). 

Thus N is a total number operator. Since N 3 0 and NV = 0, N is normalized. 
The normalized total number operator is unique so N is independent of the 
orthonormal basis chosen in the definition (2.3). If 11 z I/ = 1 and N is defined 
in terms of an orthonormal basis including z, we then see that C(z) C*(z) 
commutes with and is less than or equal to N. By (2.1), C*(z) C(z) also commutes 
with N and is less than or equal to N + 1, We now use the following lemma. 

LEMMA 1. Suppose {H, C, K} is an irreducible quantum structure with 
normalized total number operator N such that for each z E H, C(z) C*(z) and 
C*(z) C(z) are bounded on each eigenspace of N. Let v be a non-zero vector in K 
such that NV = 0. Then v is in the domain of each operator in &, C*(x)v = 0 for 
each x E H and 9 = &‘v is a dense subset of K which is a core for each C(z) and 
C*(z). Each monomial in ~2 when applied to v gives an eigenvector of N (if it is 
not zero) with eigenvalue equal to the number of creation operators minus the number 
of annihilation operators in the monomial. 

We have stated this lemma in more generality than we need here because it 
will be used later in a more general setting. The lemma does not assume that H 
is finite dimensional. We have shown that the hypotheses of the lemma are 
satisfied in the current situation. 

Proof of Lemma 1. Let 

Ki=(w~K:Nw=jw} 

and let Qj be the projection onto Kj . N has spectrum in (0, 1,2,...} so Cj”=, Qi 
converges strongly to the identity. Let z be an arbitrary fixed vector in H and 
let C = C(z). C*C and CC* commute with N and are bounded operators from 
Kj into Kj . Thus C is a bounded operator from Ki into K,+l and C* is a bounded 
operator from K,+l into Ki. Since v E K,,, v E Dom(C*) and since C*v E 
K-i = {0}, C*v = 0. A simple inductive argument shows that every monomial 
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in & has v in its domain and maps v into Ki where j is the difference between the 
number of creation operators and the number of annihilation operators in the 
monomial. 

We next show that 58 is dense. Let 

let Pj be the projection onto gj (the closure of Bj) and let P = Cj”=, Pi . Pj < Qj 
so each Pi commutes with each Pi. Since 58 is invariant under C and C*, C maps 
Bj into gj+r and C* maps a,,, into gj . Suppose w E Dam(C). 

QjCw = CQjelw 

so 

Cw = f CQjw. 
j=Q 

If u E Ki , then a simple manipulation yields 

so 
(PCQjw, u) = (CPjw, u) 

Thus, 
PCQjw = CP,w. 

PCw = 2 PCQjw = $ CP,w = CPw, 
j=Q j=Q 

and so P is a projection such that 

PC c CP. 

Since z was arbitrary, the irreducibility implies that P = 0 or P = I. Since 
v E 9, P # 0. Therefore P = I and 3 is dense. 

Each element of 5@ is a finite linear combination of eigenvectors of N. Every Kj 
is invariant under j C / = (C*C)r/a and ( C ( is bounded on Kj so each eigen- 
vector of Nis an analytic vector for 1 C I. (See [S, Section X.61 for a discussion of 
analytic vectors.) Thus B is a total set of analytic vectors for / C [ and is therefore 
a core for 1 C 1 [S, Theorem X.391. &B is therefore also a core for C. (See 
[I 1, Lemma 2.11.) A similar argument applies to C*. 1 

We now continue the proof of Theorem 1. If w E 9 then 

c*(z) C(z)w = C(z) c*(z)w + I/ z 112 w 

and polarization of this yields 

c*(z) C(Y)W = C(Y) c*(w + (y, z>w. (2.4) 
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This, and 
C”(z)v = 0 (2.5) 

imply that any vector in 9 is equal to an element in the form A’er with A’ E &“. 
If wr and wa E 9, wi = Aiv, wa = A,v with A, , A, E &, then 

(~1, wz> = (A,v, 4~) = (v, A+,&+ 

where A+, is the formal adjoint of A,. Since AtlA, E &‘, AtlA,v E J&V. Suppose 
A+,A,v = A’v with A’ E &‘. A’ is a sum of monomials, each of which maps v 
into a vector orthogonal to v unless the monomial is a multiple of the identity. 
Thus, the inner products of elements of 9 are determined by (2.4) and (2.5). 

If {H, C’, K’} is the Fock-Cook Boson structure over H with vacuum v’, 
then we can construct a unitary operator @: K + K’ by requiring that if A E d, 
@(Av) is the vector in K’ obtained by replacing each C(z) in A by C’(x), each 
C*(z) by C’*(z) and v by v’. @ is well defined because it preserves inner products. 
C(z) and @-%“(z)@ agree on 9. 9 is a core for C(z) and @9 is a core for C’(z) 
so C(z) and @-V’(z)@ are equal. 1 

The proof of Theorem 2 is similar to the one given for Theorem 1. It is easier 
in that the creation operators must be bounded so questions about domains do 
not arise. 

Proof of Theorem 2. Let z be a fixed unit vector, C = C(z) and ti = n(z). 
We first show that the spectrum of n contains only 0 and 1. Equation (2.2) implies 
that 0 < n < 1. Differentiation of (1.16) with respect to t at t = 0 gives 

[n, C] = c. (2.6) 

On the other hand, (2.2) gives 

[n, C] = nc - cn 

= cc*c - c=c* 

= C(I - cc*) - C2C” 

= c - 2cQc*. 

Therefore C2C* = Cn = 0 so 

C*Cn = 0, 

(I - n)n = 0. 

Thus n has spectrum consisting solely of 0 and 1. From (2.6) it follows that 

nC2 = C2(2 + n) 

5842911-3 
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so that if w is an eigenvector of n then C2w = 0 for otherwise it would be an 
eigenvector of n with eigenvalue at least 2. Thus Ca = 0. 

Polarization of (2.2) and C(X)~ = 0 give 

C”(4 C(Y) + C(Y) C”(4 = (Y, z>, (2.7) 

cc4 C(Y) + C(Y) cc4 = 0. V-8) 

It is well known that the irreducibility together with (2.7) and (2.8) give uni- 
queness. See, for example, [7, Theorems 4.14.1 and 4.15.11. 1 

When the number of degrees of freedom is infinite (H is infinite dimensional) 
there are many representations of the Boson and Fermion relations. (See, for 
example, [3,4].) I n order to insure uniqueness we assume we have a positive 
invariant quantum structure. 

THEOREM 3. Suppose {H, C, K, P, v} is an irreducible positive invariant 
quantum structure over H such that for all z E H, 

and 
C”(4 C(x) = q-q C”(4 + II 2 II2 

n(x) = C(x) C”(2) 

is a number operator for x when x is a unit vector. Then (H, C, K, P, v} is unitarily 
equivalent to the Fock-Cook Boson invariant quantum structure over H. 

THEOREM 4. Suppose {H, C, K, P, v} is an irreducible positive invariant 
quantum structure over H such that for all x E H, 

and 
c*@) C(z) + C(x) C”(z) = II 2 /I2 

n(z) = C(x) C*(z) 

is a number operator for z when z is a unit vector. Then (H, C, K, P, v> is um’tarily 
equivalent to the Fock-Cook Fermion invariant quantum structure over H. 

Proof of Theorem 3. dP(P,) is also a number operator for z and so by the 
irreducibility, for each unit vector x E H there is a scalar, a(x), such that 

dr(P,) = C(z) c*(2) + a(z). 

dP(P,)v = 0 so v E Dom(dP(P,)) and thus v E Dom(C*(z)). As noted in 
Section 1, the positivity of r implies that C*(z)v = 0 so a(z) = 0. N = dP(1) 
is the normalized total number operator and NV = 0. Since positivity implies 

dr(Pz) < dT), 

C(2) C”(x) < iv. 
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Thus, Lemma 1 is applicable. As in Theorem 1 inner products of elements of Av 
are determined and we have uniqueness. 1 

Proof of Theorem 4. As in Theorem 2, (2.7) and (2.8) hold. As in Theorem 3, 
C*(z)v = 0 for all z E H. It is well known that the Fermion relations together 
with the existence of a vacuum imply uniqueness. See, for example, 
[7, Theorem 4.14.11. 1 

3. PARABOSONS AND PARAFERMIONS 

We now show that similar results hold for the paraboson and parafermion 
fields. The paraboson field relations 

NC*@), cc41, > WI = KY9 x> w4, (3.1) 

Pw~ c(41+ 7 C(Y)1 = 0 (3.2) 

and the parafermion field relations 

Kc*649 cc41, C(Y)1 = -KY, x> C(4, (3.3) 

RW, cc41, C(Y)1 = 0 (3.4) 

were introduced by Green [5] in 1953. They generalize the Boson and Fermion 
relations in the sense that operators which (formally) satisfy (1.1) and (1.2) also 
(formally) satisfy (3.1) and (3.2) while operators which satisfy (1.3) and (1.4) 
also satisfy (3.3) and (3.4). The most important representations of the paraboson 
and parafermion relations are described in [6]. See also [9]. For a fixed complex 
Hilbert space H and for each positive integer p, an irreducible representation 
of the paraboson (respectively, parafermion) relations can be constructed from p 
copies of the free Fock-Cook Boson (respectively, Fermion) field over H in such 
a way that it canonically inherits a positive invariant quantum structure from the 
Fock-Cook fields. We will call this the free paraboson (parafermion) invariant 
quantum structure of order p over H. For p = 1, this reduces to the Fock-Cook 
Boson (Fermion) invariant quantum structure. The quantum structures of 
different orders are inequivalent. 

We will prove the following theorems. 

THEOREM 5. Suppose {H, C, K, r, w} is an irreducible positive invariant 
quantum structure over the injinite dimensional Hilbert space H such that for each 
z E H, C*(z) C(z) and C(z) C*(z) commute and 

n(z) = g(c(.z) c*(z) + c*(z) C(z)) 

is a number operator for z when z is a unit vector. Then for some positive integer p, 



34 STEVEN ROBBINS 

(H, C, K, P, v} is unitarily equivalent to the free paraboson invariant quantum 
structure of order p over H. 

THEOREM 6. Suppose {H, C, K, P, v} is a bounded, irreducible positive 
invariant quantum structure over H such that for each z E H, 

n(x) = gc(x) C”(x) - C”(x) C(x)) 

is a number operator for x when x is a unit vector. Then for some positive integer p, 
(H, C, K, P, v> is unitarily equivalent to the free parafermion invariant quantum 
structure of order p over H. 

The following general lemma will be of use. 

LEMMA 2. Suppose {H, C, K}, N and v satisfy the hypotheses of Lemma 1 
and let z be a fixed unit vector in H. Suppose there exists a number operator, n, for z 
which has v as an eigenvector. Then for w E dv, 

for ally E H. 

b, C(Y)IW = (Y, z> C@)w (35) 

Proof. It is sufficient to show that (3.5) holds for all vectors in the form 
w = Av where A is a monomial in LZ$ . For such a monomial, define the length 
of A to be the sum of the number of creation operators and the number of 
annihilation op&ators in A. Suppose nv = av. By induction on the length of A 
it is easy to see that w is an eigenvector of n with eigenvalue equal to OL plus the 
number of creation operators, C(y), in A withy parallel to z minus the number of 
annihilation operators, C*(y), with y parallel to z. If y is parallel to .a, 

nC(y)w = C(y>(n + 1)~ 
so 

[n, CbW = C(Y)W, 

while if y is orthogonal to a, 

nC(y)w = C(y)nw 
so 

In, C(y)lw = 0. 

By representing a general y E H as a sum of vectors parallel and orthogonal to x 
and using the linearity of C(.), (3.5) follows. 1 

Proof of Theorem 5. Since C*(z) C(z) and C(z) C*(x) are positive and 
commute, their sum is closed so n(z) is self-adjoint. N = dP(1) is the normalized 
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total number operator and NV = 0. If z is a unit vector then dr(P,) and n(z) 
are both number operators for z so there is a scalar o(a) such that 

U(P,) = f(z) - cd(z). 

Since dI”(P,) < dF(l) = N, n(z) and thus C(z) C*(x) and C*(x) C(z) are 
bounded on each eigenspace of N. Thus, Lemma 1 applies. Since for every 
ZEH, 

c*(z)v = 0, (3.6) 

c*(z) C(z)v = 2a(z)v. 

If U is a unitary operator on H, 

r(u) C”(z) C(z)v = 244 r(u)v = 24z)v 

q U) C”(z) C(z) r( q-1 v = 2c4z)v 

C”(7J.z) C(Uz)v = 24z)v. 

Thus, c+) = a(U ) z an s 01 z is independent of z when z is a unit vector. d o ( ) 
Let a(z) = 4~. Then for arbitrary z E H, 

c*(z) C(z)v = p j/ z 112 v. (3.7) 

Polarization of this gives 

c*(Y) cwv = PC% YN. (3.8) 

By Lemma 2, on &v, 

b44, C(Y)1 = (Y, z> C(4 (3.9) 

and polarization of this (in x) gives that on tin, (3.1) holds. It has been shown 
[6, Appendix 21 that (3.1), (3.6) and (3.8) imply that p is a positive integer when 
H is infinite dimensional. Inner products of elements of &‘v are determined 
by (3.1) (3.6) and (3.8). S ince &v is a core for C(z), we may now construct a 
unitary equivalence (as in Theorem 1) between {H, C, K, I’, v} and the free 
paraboson invariant structure of order p over H. 1 

Theorem 5 should be compared with [12, Theorem 21 in which irreducibility 
is not assumed but instead v is required to be an analytic vector for n(z) and &V 
is assumed to be dense. 

We give a proof of Theorem 6 which is similar to that of Theorem 5 using 
Lemmas 1 and 2. These, of course, are much more powerful than are needed 
here since C(z) is now bounded and thus the domain questions do not arise. 
However, these lemmas, now that they have been established, provide a short 
proof of Theorem 6. 
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Proof of Theorem 6. The relation 

and its adjoint can be used to show that n(z) commutes with C(z) C*(z) and 
thus C(z) C*(z) and C*(z) C( z commute. N = O(1) and w satisfy the hypoth- ) 
eses of Lemma 1. As in the proof of Theorem 5, 

U(P,) = n(z) - a(z) 

where c@) is again independent of z but this time a(z) is negative. If U(Z) = -ip, 
(3.6) and (3.8) hold. Relation (3.9) is now satisfied on all of K and polarization 
gives (3.3). Again, (3.3), (3.6) and (3.8) imply that p is a positive integer 
[6, Appendix I] (even when H is finite dimensional). Thus, {H, C, K, I’, TV} is 
unitarily equivalent to the free parafermion invariant quantum structure of 
order p over H. 1 
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