A Characterization of Four-Dimensional Unimodular Groups

Kok-Wee Phan
University of Notre Dame, Notre Dame, Indiana 46556
Communicated by Richard Brauer
Received July 19, 1969

In this paper we shall show that the four-dimensional unimodular group over the finite field of odd characteristic q is characterized by the structure of the centralizer of an element of order 2 . Let H_{q} denote the centralizer in $L_{4}(q)$ of an involution contained in the center of an S_{2}-subgroup of $L_{4}(q)$. Our characterization is given by the following:

Theorem. Let G be a finite group of even order with the following properties:
(a) G has no subgroup of index 2 ;
(b) G contains an involution t such that the centralizer $C_{G}(t)=H$ of t in G is isomorphic to H_{q}.

Then G is isomorphic to $L_{4}(q)$.
The method of our proof is the familiar one. Briefly we aim to construct a subgroup of G which is a (B, N)-pair in the sense of Tits and finally to show that this subgroup is G itself. It turns out that the information needed for the construction can be obtained by the study of the fusion of involutions. Since these involutions fuse differently when $q \equiv-1(\bmod 4)$ and when $q \equiv 1(\bmod 4)$, it appears best to treat the two cases separately for the sake of clarity but at the expense of some repetition.

As is often the case with this type of work, a detailed knowledge of the structure of H_{q} is essential. We shall freely use results on the structure of H_{q} without proof, which are essentially simple deductions from Dickson's list of all subgroups of $L_{2}(q)$. Our arguments are group theoretic but rely on character theory implicitly via the work of Gorenstein-Walter [4].

The notation is standard. See for example, Gorenstein's book [3]. The symbols $N(X)$ and $C(X)$ shall denote the normalizer and centralizer, respectively, in the group G of the theorem of some subset X of G.

1. Structure of tie group H_{q}

Let \tilde{V} be a four-dimensional vector space over the finite field F_{q} where q is odd. We shall identify a linear transformation of \tilde{V} with the corresponding
matrix in terms of a fixed basis of \tilde{V}. For every $x \in S L(2, q)$, let $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}$ denote the matrices

$$
\left(\begin{array}{lll}
x & & \\
& 1 & \\
& & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & x
\end{array}\right)
$$

respectively. Let $L_{i}{ }^{\prime}=\left\langle x_{i}{ }^{\prime} \mid x \in S L(2, q)\right\rangle(i=1,2)$. The matrix

$$
t_{0}^{\prime}=\left(\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

is an involution in $S L(4, q)$. Let $H_{q}{ }^{\prime}$ denote the group of matrices $\left(\alpha_{i j}\right)$ in $S L(4, q)$ which commute projectively with $t_{0}{ }^{\prime}$, i.e.,

$$
\left(\alpha_{i j}\right)^{-1} t_{0}^{\prime}\left(\alpha_{i j}\right) t_{0}^{\prime} \in Z(S L(4, q))
$$

the center of $S L(4, q)$. It is easy to see that $H_{q}{ }^{\prime}$ is a splitting extension of $L_{1}{ }^{\prime} \times L_{2}{ }^{\prime}$ by a dihedral group $\left\langle u^{\prime}, w^{\prime}\right\rangle$ of order $2(q-1)$ where

$$
u^{\prime}=\left(\begin{array}{cccc}
& & 1 & 0 \\
& & 0 & 1 \\
1 & 0 & & \\
0 & 1 & &
\end{array}\right), \quad w^{\prime}=\left(\begin{array}{cccc}
1 & & & \\
& \lambda & & \\
& & 1 & \\
& & & \lambda^{-1}
\end{array}\right)
$$

λ a primitive element of F_{q}.
Form the factor group $H_{q}=H_{q}{ }^{\prime} / Z(S L(4, q))$ which clearly is the centralizer in $L_{4}(q)$ of the involution $t_{0}=t_{0}^{\prime} Z(S L(4, q))$. In the natural homomorphism of $H_{q}{ }^{\prime}$ onto H_{q}, let the images of $L_{i}{ }^{\prime}, x^{\prime}$ be L_{i}, x, respectively, where $x^{\prime} \in H_{q}{ }^{\prime}$.

Let $q=p^{f}, q-1=2^{\alpha} d, q+1=2^{\beta} e$ where d and e are odd. When $q \equiv-1(\bmod 4), \quad \alpha=1, \quad \beta \geqslant 2, \quad|Z(S L(4, q))|=2 \quad$ and $\quad\left|H_{q}\right|=$ $(q-1)^{3} q^{2}(q+1)^{2}$. When $q \equiv 1(\bmod 4), \alpha \geqslant 2, \beta=1,|Z(S L(4, q))|=4$ and $\left|H_{u}\right|=\frac{1}{2}(q-1)^{3} q^{2}(q+1)^{2}$. Comparing the order of H_{u} with that of $L_{4}(q), t_{0}$ is indeed an involution contained in the center of an S_{2}-subgroup of $L_{4}(q)$.

We shall need the images α_{1}, c_{1}, and θ_{1} in H_{q} of the following matrices in $H_{q}{ }^{\prime}$:

$$
\alpha_{1}^{\prime}=\left(\begin{array}{cccc}
\lambda & & & \\
& \lambda^{-1} & & \\
& & 1 & \\
& & & 1
\end{array}\right) ; \quad c_{1}^{\prime}=\left(\begin{array}{ccc}
0 & 1 & \\
-1 & 0 & \\
& & 1 \\
& & \\
& & \\
& &
\end{array}\right) ; \quad \theta_{1}^{\prime}=\left(\begin{array}{ccc}
1 & 0 & \\
-1 & 1 & \\
& & 1 \\
& & \\
& &
\end{array}\right)
$$

Set $\alpha_{2}=u \alpha_{1} u, \quad c_{2}=u c_{1} u, \quad \theta_{2}=u \theta_{1} u, \quad l=\left(w^{2} \alpha_{1} \alpha_{2}^{-1}\right)^{2^{\alpha-1}}, \quad m=\left(\alpha_{1} \alpha_{2}^{-1}\right)^{2^{\alpha-1}}$, $n=\left(\alpha_{1} \alpha_{2}\right)^{2^{\alpha-1}}$. The symbols introduced in this section shall keep their meaning throughout the paper.

$$
\text { 2. The case } q \equiv-1(\bmod 4)
$$

Here we have $\alpha=1, \beta \geqslant 2$, and H_{q} is a splitting extension of the central product $L_{1} L_{2}$ (i.e., $\left[L_{1}, L_{2}\right]=1, L_{1} \cap L_{2}=t_{0}$) by the dihedral group $\langle u, \mathfrak{w}\rangle$. From now on we shall identify H_{a} with $H=C_{G}(t)$, the centralizer of t in G in the theorem. Hence $t_{0}=t$.

(2.1.1) S_{2}-subgroup of H

It is well-known that $G L(2, q)$, where $q \equiv-1(\bmod 4)$, contains elements x, y with $O(x)=2(q+1), O(y)=2$ and $\operatorname{det}(x)=\operatorname{det}(y)=-1$ such that $\langle x, y\rangle$ satisfies the relation $y x y=x^{q}$. Therefore $\left\langle x^{e}, y\right\rangle$ has order $2^{\beta+2}$ and is a S_{2}-subgroup of $G L(2, q)$. We check that $y^{-1} x^{e} y=\left(x^{e}\right)^{q}=\left(x^{e}\right)^{\beta^{B}-1}$ since $q \equiv 2^{\beta}-1\left(\bmod 2^{\beta+1}\right)$ and so $\left\langle x^{e}, y\right\rangle$ is a semidihedral group. We may choose x such that

$$
x^{2^{8-1} e}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let β_{1} be the image in H_{q} of the following matrix in H_{q}^{\prime} :

$$
\left(\begin{array}{ll}
x & \\
& y
\end{array}\right)
$$

Set $\beta_{2}=u \beta_{1} u, b_{i}=\beta_{i}^{2 e}, v=w^{(q-1) / 2}, d_{i}=v \beta_{i}{ }^{e}(i=1,2)$. We compute that $O\left(b_{i}\right)=2^{\beta}, O\left(d_{i}\right)=4$ and that the following relations hold: $Q_{i}=$ $\left\langle b_{i}, d_{i}\right\rangle \subseteq L_{i} \quad$ is generalized quaternion; $\quad v b_{i} v=b_{i}^{-1} ; \quad v d_{i} v=b_{i} d_{i}^{-1} ;$ $u v=v u(i=1,2)$. Hence $Q=\langle u, v\rangle Q_{1} Q_{2}$ is an S_{2}-subgroup of H which has order $2^{2 \beta+3}$ and center $Z(Q)=\langle t\rangle$.

(2.1.2) Conjugate classes of involutions in H

Every involution $t^{\prime} \neq t$ in $Q_{1} Q_{2}$ has the form $t^{\prime}=x_{1} y_{2}$ where $x_{1} \in Q_{1}$, $y_{2} \in Q_{2}$ and $x_{1}{ }^{2}=y_{2}{ }^{2}=t$. Since all elements of order 4 in $S L(2, q)$ are conjugate, it follows that t^{\prime} is conjugate to $t_{3}=\left(b_{1} b_{2}\right)^{2^{\beta-2}}=c_{1} c_{2}$ in H.

By an easy computation all involutions in $u Q_{1} Q_{2}-Q_{1} Q_{2}$ have the form $u x_{1} x_{2}^{-2}=u^{x_{1}}$ or $u t x_{1} x_{2}^{-1}=(u t)^{x_{1}}$ where $x_{i} \in Q_{i}$ and so are conjugate in H to u and $u t$, respectively. It is easily verified that u is not conjugate to $u t$ in H. Similarly all involutions in $u v Q_{1} Q_{2}-Q_{1} Q_{2}$ lie in two conjugate classes of H with representatives $u v$ and $u v t$. Lastly involutions in $v Q_{1} Q_{2}-Q_{1} Q_{2}$ have the form $v b_{1}{ }^{i} b_{2}{ }^{j}$ for some integers i and j and are conjugate to v.

Thus we have shown that there are seven classes of involutions in H with representatives $t, t_{3}, u, u t, u v, u v t$, and v.
(2.1.3) Centralizers of involutions in H.

The centralizer $C_{H}\left(t_{3}\right)$ of t_{3} in H is $A=\left\langle l, \beta_{1}{ }^{2}, \beta_{2}{ }^{2}, t_{4}\right\rangle\langle u, v\rangle$ where $t_{4}=d_{1} d_{2}$. An S_{2}-subgroup of A is $\varnothing=\left\langle b_{1}, b_{2}, t_{4}\right\rangle\langle u, v\rangle$ and is of index 2 in Q. The center $Z(\widetilde{Q})=\left\langle t, t_{3}\right\rangle$ is a four group. The commutator group Q^{\prime} is $\left\langle b_{1}{ }^{2}, b_{1} b_{2}\right\rangle$. Every clementary Abclian group of order 16 in Q is conjugate to one of the following:

$$
\begin{aligned}
& E_{1}=\left\langle t, t_{3}, t_{4}, u\right\rangle, \\
& E_{2}=\left\langle t, t_{3}, b_{1} d_{1} d_{2}, u v\right\rangle,
\end{aligned}
$$

and

$$
E_{3}=\left\langle t, t_{3}, u, v\right\rangle .
$$

The centralizer $C_{H}(u)$ of u in H is $\langle t, u, v\rangle B$ where

$$
B-\left\langle x_{1} x_{2} \mid x \in S L(2, q)\right\rangle \cong L_{2}(q) .
$$

We have $C_{H}(u)=C_{H}(u t)$. Similarly $C_{H}(u v)=\langle t, u, v\rangle C$ where

$$
C=\left\langle x_{1} x_{2}{ }^{\prime \prime} \mid x \in S L(2, q)\right\rangle \cong L_{2}(q) \quad \text { and } \quad C_{H}(u v)=C_{H}(u v t) .
$$

Finally,

$$
C_{H}(v)=\left\langle t, t_{3}, u, v\right\rangle\langle l, m, n\rangle=E_{3}\langle l, m, n\rangle .
$$

We check that $\langle l, m, n\rangle$ is a normal 2 -complement of $C_{H}(v)$.
(2.1.4) S_{p}-subgroups of H.

Let

$$
T_{1}=\left\langle\theta_{1}{ }^{x} \mid x \in\langle n, v\rangle\right\rangle ; \quad T_{2}=T_{1}{ }^{u}
$$

and

$$
T=\left\langle\left(\theta_{1} \theta_{2}\right)^{x} \mid x \in\langle n, v\rangle\right\rangle .
$$

Clearly $T_{1} T_{2}=T_{1} \times T_{2}$ is an S_{p}-subgroup of H and is elementary of order q^{2}. We have

$$
C_{H}\left(T_{1} T_{2}\right)=\langle t, l\rangle T_{1} T_{2}
$$

and

$$
N_{H}\left(T_{1} T_{2}\right)=\langle t, v\rangle\langle l, m, n\rangle T_{1} T_{2} .
$$

By direct computation, $\left(c_{2} \theta_{2}\right)^{3}=1$.

(2.1.5) The maximal normal subgroup of H of odd order

It is easily seen that $O(H)=\langle l\rangle$ of order $(q-1) / 2$ and that H does not have a normal subgroup K such that $|H| K \mid \neq 1$ and is odd.
Let $X \subseteq\langle l\rangle$. Then $C_{H}(X)=\left\langle v, l_{\rangle} L_{1} L_{2}\right.$ and $\left[H: C_{H}(l)\right]=2$.

2.2 Fusion of Involutions

We shall show that G has two classes of involutions when $q \equiv-1(\bmod 4)$.
(2.2.1) $A S_{2}$-subgroup of H is an S_{2}-subgroup of G.

Proof. This is obvious since Q, an S_{2}-subgroup of H, has cyclic center $\langle t\rangle$ (2.1.1).
(2.2.2) The involution t_{3} is not conjugate to t in G.

Proof. By way of contradiction, suppose that t_{3} is conjugate to t in G. 'Then there exists an S_{2}-subgroup S of $C_{G}\left(t_{3}\right)$ containing $Q=\left\langle b_{1}, b_{2}, t_{4}\right\rangle\langle u, v$ and $[S: \mathscr{Q}]=2$. Hence $\check{Q} \triangleleft S$. Let $x \in S-\widetilde{Q}$. By (2.1.3), we may assume $E_{1}^{x} \subseteq \mathscr{Q}$ is E_{1}, E_{2} or E_{3}. If $E_{1}^{x}=E_{1}$, then $N\left(E_{1}\right) \nsubseteq H$. Suppose that $E_{1}^{x}=E_{2}$. It follows that $\left(E_{1} \tilde{Q}^{\prime}\right)^{x}=E_{2} \tilde{Q}^{\prime}$. Both $E_{1} \tilde{Q}^{\prime}$ and $E_{2} \tilde{Q}^{\prime}$ are normal subgroups of an S_{2}-subgroup Q of G and so by Burnside's result [3, Ch. 7, 1.1] are conjugate in G if and only if they are conjugate in $N(Q) \subseteq N(Z(Q))=$ $N\langle t\rangle=H$, a contradiction to the structure of H. If $E_{1}{ }^{x}=E_{3}$, then $E_{2}{ }^{y}=E_{2}$ for a suitable $y \in S-Q$. Thus either $E_{1}{ }^{x}=E_{1}$ or $E_{2}{ }^{y}=E_{2}$ for some $x, y \in S-\check{\sim}$.
(i) Suppose $E_{1}^{x}=E_{1}$ and $q \equiv 3(\bmod 8)$. Then $|Q|=2^{7}$ and $E_{1} \triangleleft Q$. From the structure of H, we have $C\left(E_{1}\right)=E_{1}$ and so $\mathscr{N}=N\left(E_{1}\right) / E_{1}$ is isomorphic to a subgroup of $G L(4,2) \cong A_{8}$. Clearly Q / E_{1}, dihedral of order 8 , is a S_{2}-subgroup of \mathscr{A}.

Let $\mathscr{M}=O(\mathscr{N})$. Suppose that $\mathscr{M} \neq 1$. Consider the action of the four-group

$$
\mathscr{F}=\left\langle b_{1} E_{1}, d_{1} E_{1} \subseteq \mathscr{N} \text { on } \mathscr{M} .\right.
$$

There exists an element $\sigma_{1} \sigma_{2}$ in $B \subseteq C<t, u>$ of order 3 acting fixed-point-free on $\left\langle t_{3}, t_{4}\right\rangle$ and so $\sigma_{1} \sigma_{2} E_{1} \in \mathscr{N}$. Moreover $\sigma_{1} \sigma_{2} E_{1}$ also acts fixed-point-free on \mathscr{F}. Hence using Brauer-Wilandt's result [7] and the fact that the centralizer of any involution in A_{8} has order $2^{6} \cdot 3$ or $2^{5} \cdot 3$ [8], it follows that $|\mathscr{M}|=3^{3}$ or 3 . Since $\left|A_{8}\right|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot$ the first case is not possible. Hence $|\mathscr{M}|=3$ and so $\mathscr{M} \mathscr{F}=\mathscr{M} \times \mathscr{F}$. We shall now look at $N_{\mathscr{N}}(\mathscr{F})=$ $N\left\langle E_{1}, b_{1}, d_{1}\right\rangle \cap N\left(E_{1}\right) / E_{1}$. Since $Z\left\langle E_{1}, b_{1}, d_{1}\right\rangle=\langle t\rangle$, it follows that $N\left\langle E_{1}, b_{1}, d_{1}\right\rangle \subseteq H$ and so

$$
N\left\langle E_{1}, b_{1}, d_{1}\right\rangle \cap N\left(E_{1}\right) / E_{1} \cong A_{4},
$$

a contradiction to $\mathscr{M} \mathscr{F} \cong \mathscr{M} \times \mathscr{F}$. Thus $\mathscr{M}=1$.
Next we consider $C_{\mathcal{N}}\left(b_{1} E_{1}\right) \supseteq Q / E_{1}$ where $\left\langle b_{1} E_{1}\right\rangle=Z\left(Q / E_{1}\right)$. Suppose that $Z\left(S / E_{1}\right) \subseteq \mathscr{Q} / E_{1}$ is $\left\langle v E_{1}\right\rangle$ or $\left\langle b_{1} v E_{1}\right\rangle$. Then $\left\langle E_{1}, b_{1}\right\rangle$ is conjugate to $\left\langle E_{1}, v\right\rangle$, or $\left\langle E_{1}, b_{1} v\right\rangle$. This is a contradiction since $Z\left(E_{1}, v\right\rangle=\left\langle t, t_{3}, u\right\rangle$ and $Z\left\langle E_{1}, b_{1} v\right\rangle=\left\langle t, t_{3}, u t_{4}\right\rangle$ whereas $Z\left\langle E_{1}, b_{1}\right\rangle=\left\langle t, t_{3}\right\rangle$. Thus $Z\left(S / E_{1}\right)-$
$\left\langle b_{1} E_{1}\right\rangle$ showing that $\left|C_{\mathscr{l}}\left(b_{1} E_{1}\right)\right|>8$ and also \mathscr{N} has two classes of involutions since we already know all involutions in $\left\langle b_{1} E_{1}, d_{1} E_{1}\right\rangle$ are conjugate in \mathscr{N}. By our earlier remark about A_{8}, it follows that $\left|C_{\mathscr{N}}\left(b_{1} E_{1}\right)\right|=2^{3} \cdot 3$ and we may apply Gorenstein-Walter's result [4] to get $\mathscr{N} \cong P G L(2, r)$ where $r \pm 1=\frac{1}{2}(24)$. But then $|\mathscr{N}|$ does not divide $\left|A_{8}\right|$. Hence E_{1} cannot be normal in S.
(ii) $E_{1}{ }^{x}=E_{1}$ and $q \equiv 7(\bmod 8)$. Again we have $C\left(E_{1}\right)=E_{1}$ and $\mathscr{N}=N\left(E_{1}\right) / E_{1}$ is isomorphic to a subgroup of A_{8}. By an casy computation, $N_{H}\left(E_{1}\right) / E_{1} \cong S_{4}$ and $\mathscr{F}=\left\langle c_{1} E_{1}, d_{1} E_{1}\right\rangle$ where $c_{1}=b_{1}^{2 \beta-2}$ is an S_{2}-subgroup of $N_{H}\left(E_{1}\right) / E_{1}$. Since

$$
Z\left\langle c_{1}, d_{1}, E_{1}\right\rangle=\langle t\rangle,\left\langle c_{1} E_{1}, d_{1} E_{1}\right\rangle
$$

is an S_{2}-subgroup of \mathscr{N}. In particular \mathscr{N} has only one class of involutions. By a similar argument as in (i), $O(\mathscr{N})=1$.

Since $E_{1}^{x}=E_{1},\left\langle x, c_{1}, E_{1}\right\rangle \subseteq S \cap N\left(E_{1}\right)$. Hence $\left\langle x, c_{1}\right\rangle E_{1} / E_{1}$ is an S_{2}-subgroup of \mathscr{N} distinct from \mathscr{F}. Therefore $\left|C_{\mathcal{N}}\left(c_{1} E_{1}\right)\right|>2^{2}$ and thus $\left|C_{\mathcal{N}}\left(c_{1} E_{1}\right)\right|=2^{2} \cdot 3$. By the result of Gorenstein-Waltor [4], it follows that $\mathcal{N} \cong L_{2}(r)$ where $r \pm 1=12$, a contradiction as before. So we have shown that E_{1} is not normal in S.

By repeating the same argument to the case when $E_{2}{ }^{y}=E_{2}$, this again leads to a contradiction showing the falsity for our assumption that t_{3} is conjugate to t.
(2.2.3) If $2^{\beta+4}$ divides the order of $C(u t)$ or $C(u)$ then u and ut lie in different conjugate classes of G. Furthermore if $2^{A+4}|C(u t)|$ and u is conjugate to t in G, then there exists an element z_{1} in $C(B)$ such that $t^{z_{1}}=u ; u^{z_{1}}=t$, $v^{z_{1}}=v$, or uvt.

Proof. Suppose $2^{\beta+4}$ divides $|C(u t)|$. There exists a group $S \subseteq C(u t)$ of order 2^{B+4} containing

$$
U=\left\langle t, u, v, b_{1} b_{2}, d_{1} d_{2}\right\rangle
$$

of order $2^{\beta+3}$. It follows that $U<1 S$. Let $z_{1} \in S-U$. We have $Z(U)=$ $\left\langle t, t_{3}, u\right\rangle$ and $U^{\prime}=\left\langle b_{1} b_{2}\right\rangle$. Hence $Z(U) \cap U^{\prime}=\left\langle t_{3}\right\rangle$ char U and so $t_{3}^{z_{1}}==t_{3}$. Now $Z(U)$ being characteristic in U is normalized by z_{1}. Thus $t^{z_{1}} \in\left\{t, t t_{3}, u, u t_{3}\right\}$. Clearly $t^{z_{1}} \neq t$ or $t t_{3}$ since $z_{1} \notin H$ and $t t_{3} \sim_{H} t_{3}$. It follows that $t^{z_{1}}=u$ or $u t_{3}$ and correspondingly $\left(t t_{3}\right)^{z_{1}}=u t_{3}$ or u. By (2.2.2) and the fact that $u t_{3} \sim_{H} u t$ we have proved the first part of the lemma. If $2^{\beta+4}| | C(u) \mid$, we prove in the same way that u and $u t$ lie in different conjugate classes of G.

Suppose $2^{\beta+4} \| C(u t) \mid$ and $u \sim t$, it follows that $t^{z_{1}}=u$ and $u^{z_{1}}=t$ since $z_{1}{ }^{2} \in U \subseteq C\langle t, u\rangle$. Thus $z_{1} \in N\langle t, u\rangle$ and therefore z_{1} normalizes $C\langle t, u\rangle$. Since $B=(C\langle t, u\rangle)^{\prime}, z_{1} \in N(B)$. Because $q=p^{f}=-1(\bmod 4)$,
f is odd. The outer automorphism group of $B \cong L_{2}(q)$ has order $2 f$. Hence replacing z_{1} by $z_{1} x$, where $x \in\langle v\rangle B$ if necessary, we get that $z_{1} \in C(B)$ without affecting our earlier conclusions. Finally we must have $v^{z_{1}}=v y$ for some $y \in\langle t, u\rangle B$. Since $v z_{1}^{-1} v z_{1}$ centralizes B, it follows that $y \in\langle t, u\rangle$. If $y=t$, then $z_{z_{1}}^{2}=u v t$, a contradiction since $z_{1}^{2} \in H$ and v is not conjugate to $u v t$ in H. Similarly $y \neq u$, and we are done.
(2.2.4) If $2^{\beta+4}$ divides the order of $C(u v t)$ or $C(u v)$, then uv and uvt lie in different classes of G. Furthermore if $2^{\beta+4}| | C(u v) \mid$ and $u v$ is conjugate to t in G, then there exists an element \approx_{2}, in $C(C)$, such that $t^{z_{2}}=u v,(u v)^{z_{2}}=t$, $v^{z_{2}}=v$, or $u t$.

Proof. As in (2.2.3).
(2.2.5) The involution t is conjugate to an element in $\{u, v, u v\}$.

Proof. By way of contradiction suppose that G is 2 -normal. Since $\langle t\rangle$ is the center of an S_{2}-subgroup Q of G, it follows from Hall-Grün's theorem [3, Ch. 7, 5.2], that the greatest 2-factor group of G is isomorphic to that of $N(Z(Q))=H$, i.e., to $H / L_{1} L_{2}\langle I\rangle$, a four-group. This is a contradiction to condition (a) of the theorem.

Because G is not 2-normal, it implies that there exists x in G such that $t \in Q \cap Q^{x}$ but $\langle t\rangle$ is not the center of Q^{x}. So $t^{x} \neq t$. On the other hand $t \in Q^{x}$ and hence t and t^{x} commute, i.e., $t^{x} \in H$. Without loss of generality we may assume that $t^{x} \in\{u, u t, v, u v, u v t\}$ by (2.1.2) and (2.2.2). Interchanging u by $u t$ and/or v by $v t$, if necessary, we get that $t^{x} \in\{u, v, u v\}$. This completes the proof.

Our next lemma is crucial to the whole paper.
(2.2.6) The group G has precisely two classes of involutions \mathscr{K}_{1} and \mathscr{K}_{2} with the representatives t and ut, respectively: $\mathscr{K}_{1} \cap H$ is the union of four conjugate classes of H with representatives $t, u, u v, v ; \mathscr{K}_{2} \cap H$ is the union of three conjugate classes with representatives $t_{3}, u t$, uvt.

Proof. Suppose that $u \sim t$. Then by the proof of (2.2.3) $u t \sim t_{3}$. Hence the subgroup $\left\langle u, b_{1}, b_{2}, d_{1}, d_{2}\right\rangle$, a maximal subgroup of Q, has two classes of involutions in G with representatives t and t_{3}. Since G has no subgroup of index 2, by Thompson's lemma [3, Ch. 7, Ex. 3], v, uv, wvt are conjugate to t or t_{3}. By (2.2.4), interchanging v by $v t$, if necessary, it follows that $u v \sim t$ and $u v t \sim t_{3}$. To decide whether v is conjugate to t or t_{3}. we use (2.2.3) and (2.2.4) to get the following possibilities:
(i) $v^{z_{1}}=v, v^{z_{2}}=u t$. Then $(v t)^{z_{1}}=u v$. This is a contradiction since $v \sim_{H} v t$ whereas $u t$ and $u v$ lie in different conjugate classes of G.
(ii) $v^{z_{1}}=u v t, v^{z_{2}}=v$. Then $(v t)^{z_{2}}=u$, again a contradiction as before.
(iii) $v^{z_{1}}=u v t, v^{z_{2}}=u t$. Then $(C\langle t, v\rangle)^{z_{1}}-C\langle u$, $u v t\rangle$ and so, by (2.1.3) has an S_{2}-subgroup of order 2^{4}. We compute from (2.2.4) that $z_{2} \in C\langle u$, $u v t\rangle$ and $z_{2} \in N\left\langle u, v, t, t_{3}\right\rangle$. Hence

$$
\left\langle z_{2}, u, v, t, t_{3}\right\rangle \subseteq C\langle u, u v t\rangle
$$

has order at least 2^{5}, a contradiction.
Thus we must be in case (iv).
(iv) $v^{z_{1}}=v, v^{z_{2}}=v$. Then it follows $(v t)^{z_{1}}=u v \sim t$, proving all the assertions of the lemma.

If $u v \sim t$, then using exactly the same argument as before, the lemma follows.

If $v \sim t$, then $M=\left\langle v, b_{1}, b_{2}, d_{1}, d_{2}\right\rangle$ is a maximal subgroup of Q and has two classes of involutions in G by our assumption and (2.2.2). By Thompson's lemma [3] $u, u t, u v, u v t$ are conjugate to t or t_{3}. Using (2.2.3) and (2.2.4), interchanging u by $u t$ and/or v by $v t$ if necessary, the lemma follows.

Since one of the three cases must happen by (2.2.5), the proof is complete.
As a consequence of the above lemma, $v^{z_{1}}=v$ and $v^{z_{2}}=v$.
(2.3) Centralizer of an involution in \mathscr{K}_{2}.

We begin this section with a closer look at the structure of an S_{2}-subgroup $\check{O}=\left\langle u, v, b_{1}, b_{2}, d_{1} d_{2}\right\rangle$ of $C_{H}\left(t_{3}\right)$. Obviously \check{Q} is an S_{2}-subgroup of $C_{G}\left(t_{3}\right)$. We note that $v d_{1} d_{2}$ is an element of order 2^{β} and $\left(v d_{1} d_{2}\right)^{2^{\beta-1}}=t_{3}$. The centralizer $C_{O}\left(v d_{1} d_{2}\right)$ is $\left\langle v d_{1} d_{2}\right\rangle \times\left\langle v d_{1} d_{1} d_{2}, u t\right\rangle$ of order $2^{2 \beta+1}$. The group $\left\langle v b_{1} d_{1} d_{2}, u t\right\rangle$ is dihedral of order $2^{\beta+1}$ and all its involutions lie in \mathscr{K}_{2}. The element $v d_{1} d_{2}$ is inverted by elements in $\widetilde{\sim}-C_{\overparen{Q}}\left\langle v d_{1} d_{2}\right\rangle$.

Let

$$
K=N\left\langle v d_{1} d_{2}, v b_{1} d_{1} d_{2}, u t\right\rangle \cap C_{G}\left(t_{3}\right) .
$$

Since

$$
\left\langle t, t_{3}\right\rangle=\Omega_{1}\left(Z\left\langle v d_{1} d_{2}, v b_{1} d_{1} d_{2}, u t\right\rangle\right),
$$

it follows that

$$
K \subseteq N\left\langle t, t_{3}\right\rangle \cap C\left(t_{3}\right) .
$$

By (2.2.2), $K \subseteq C\left\langle t, t_{3}\right\rangle$ and so $K=\widetilde{Q} \times\langle l\rangle$.
Now let S be an S_{2}-subgroup of $C(u t)$ containing $U=\left\langle t, u, v, b_{1} b_{2}, d_{1} d_{2}\right\rangle$. By (2.2.6), $S \cong \tilde{Q}$. Hence there is an element $s \in S$ conjugate to $v d_{1} d_{2}$ and we have $U \cap\langle s\rangle=\langle u t\rangle$. Clearly $t \notin C(s)$ and so by the structure of \tilde{Q}, t inverts s. Since $C_{S}(s)$ is of index 2 in S, either $v t$ or v belongs to $C_{S}(s)$. Suppose that $v t \in C_{S}(s)$. Then $\left(s^{2^{\beta-2}}\right)^{-1} v t \cdot t\left(s^{2^{\beta-2}}\right)=u v t$, a contradiction to (2.2.6). Hence $v \in C_{S}(s)$. Similarly we show that $d_{1} d_{2} \in C_{S}(s)$. Hence

$$
C_{S}(s)=\langle s\rangle \times\left\langle u v t d_{1} d_{2}, u \sigma t\right\rangle
$$

We note that $\left\langle u v t d_{1} d_{2}, u v t\right\rangle$ is dihedral of order $2^{\beta+1}$ and all its involutions lie in \mathscr{K}_{2}.

We shall next show a series of minor results in preparation for the determination of the structure of $C(u t)$.
(i) The involution t is not conjugate to involutions of $\left\langle u t, t_{3}\right\rangle$ in $C(u t)$.

It is only necessary to show that t is not conjugate to $u t t_{3}$ in $C(u t)$ since $u t$ is a central involution and $t_{3} \in \mathscr{K}_{2}$.

We have $Z(S)=\left\langle u t, t_{3}\right\rangle$ and so it is conjugate to $Z(\bar{Q})=\left\langle t t_{3}, t_{3}\right\rangle$. Hence

$$
\left|C\left\langle u t, t_{3}\right\rangle=\right| C\left\langle t t_{3}, t_{3}\right\rangle=2(q-1)(q+1)^{2}
$$

On the other hand,

$$
|C\langle t, u t\rangle|=2^{2} \cdot q\left(q^{2}-1\right) .
$$

Hence t is not conjugate to $u t t_{3}$ in $C(u t)$.
(ii) The group $C(u t)$ has a subgroup M of index 2 such that

$$
\left.\langle s\rangle \times u v t d_{1} d_{2}, u v t\right\rangle \subseteq M .
$$

Let S^{*} be the focal group of S in $C(u t)$. By definition,

$$
S^{*}=\left\langle x y^{-1} \mid x, y \in S, x_{C_{(u t)}} y\right\rangle
$$

Since $B \subseteq C(u t)$; there exists an element $b \in B$ such that $d_{1} d_{2}=t_{3}{ }^{b} \cdot t_{3}$ and so $d_{1} d_{2} \in S^{*}$. By (2.2.4) and (2.2.6), $z_{2} \in C(u t)$. Since $t t_{3} \in C$ and $z_{2} \in C(C)$ we compute that $\left(u v t t_{3}\right)^{z_{2}}=t_{3}$. Hence $u \tau \cdot t \in S^{*}$. Also $s^{2} \in S^{*}$ since t inverts s. Thus

$$
\tilde{S}=\left\langle s^{2}\right\rangle \times\left\langle d_{1} d_{2}, u v t \subseteq S^{*} .\right.
$$

An element $s x$ in $s \tilde{S}$ is either a root of $u t$ or $u t t_{3}$ and $O(s x)>2$. But elements in $t \tilde{S}$ are either involutions or roots of t_{3}. Since $t_{3}, u t, u t t_{3}$ are not conjugate to one another in $C(u t)$, no element in $s \tilde{S}$ can be conjugate to an element in $t \tilde{S}$. Similarly no element in $s \tilde{S}$ can be conjugate to an element in $t s \tilde{S}$ in $C(u t)$. It follows, then, either $S^{*}=\tilde{S}$ or $S^{*}=\left\langle s,<\left\langle d_{1} d_{2}, u v t\right\rangle\right.$. In either case, there exists a subgroup M of index 2 in $C(u t)$ and $\langle s\rangle \times\left\langle d_{1} d_{2}, u v t\right\rangle \subseteq M$.
(iii) Let K be 2-commutator group of M. Then $K / O(K)$ is isomorphic to $L_{2}\left(q^{2}\right)$.

By the first theorem of Grün [3, Ch. 7, 4.2], M / K is isomorphic to $\tilde{S} / \tilde{S}^{*}$ where $\quad \tilde{S}^{*}-\left\langle\tilde{S} \cap N_{M}(\tilde{S})^{\prime}, \tilde{S} \cap\left(\widetilde{S}^{\prime}\right)^{x} \mid x \in M\right\rangle$. The remarks at the beginning show that $N_{M}(\tilde{S})=\tilde{S} \times\langle l\rangle$ and so

$$
\tilde{S} \cap N_{M}(\tilde{S})^{\prime}-\tilde{S}^{\prime}-\left\langle\left(u v t d_{1} d_{2}\right)^{2}\right\rangle-\left\langle b_{1} b_{2}\right\rangle
$$

Since $B \subseteq M$, there is an element $b \in B$ such that $\left\langle d_{1} d_{\mathbf{2}}\right\rangle \subseteq \tilde{S} \cap\left(\tilde{S}^{\prime}\right)^{b}$. Either \approx_{2} or $t z_{2}$ is in M. In any case

$$
\left(t_{3}\right)^{z_{2}}=t_{3}^{z_{2} t}=u v t t_{3}
$$

Hence $\left\langle u v t, d_{1} d_{2}\right\rangle \subseteq \widetilde{S}^{*}$.
Suppose there is an $x \in M$ such that $x^{-1}\left(b_{1} b_{2}\right)^{i} x=s^{j} y$ for some $y \in\left\langle u v t, d_{1} d_{2}\right\rangle$, and $s^{j} \neq 1$. If $O\left(s^{j}\right) \geqslant O(y)$, then $s^{j} y$ is a root of $u t$ or $u t t_{3}$. Hence $s^{j} y$ cannot be conjugate to $\left(b_{1} b_{2}\right)^{i}$ which is a root of t_{3}. If $O\left(s^{j}\right)<O(y)$, then $O(y)>2$. Therefore $y=\left(b_{1} b_{2}\right)^{k}$. Both $\left\langle\left(b_{1} b_{2}\right)^{i}\right\rangle$ and $\left\langle s^{j}\left(b_{1} b_{2}\right)^{k}\right.$; are normal subgroups of \widetilde{S}. By Burnside's theorem [3, Ch. 7, 4.3], they are conjugate in $N_{M}(\bar{S})$, a contradiction. Thus we have shown that $\bar{S}^{*}=\left\langle d_{1} d_{2}, u v t\right\rangle$. Hence an S_{2}-subgroup \tilde{S}^{*} of K is dihedral of order $2^{\beta+1}$.

Next we shall show that K has only one class of involutions. Since $B \cong L_{2}(q)$ does not have a 2 -factor group, $B \subseteq K$ and so $d_{1} d_{2}$ is conjugate to t_{3} in K. For a suitable $i, s^{i} z_{2} \in K$ and then $t_{3}^{i^{i} z_{2}}=u v t t_{3}$. Hence K has only one class of involutions. Since

$$
C\left(t_{3}\right) \cap K \subseteq C\left(t_{3}\right) \cap C(u t) \cong C\left(t, t_{3}\right)
$$

$C\left(t_{3}\right) \cap K$ has Abelian 2-complement. By the result of Gorenstein-Walter [4] $K / O(K) \cong A_{7}$ or $L_{2}(r)$. The case $K / O(K) \cong A_{7}$ is possible only if $q=3$ since $K / O(K)$ contains

$$
B\langle u v t\rangle O(K) / O(K) \cong P G L(2, q)
$$

If $q=3$, then $\mid C\left\langle u t, t_{3}\right\rangle=2^{6}$. But the centralizer of an involution in A_{7} has order $2^{3} \cdot 3$, a contradiction. Since $K / O(K)$ contains a subgroup isomorphic to $\operatorname{PGL}(2, q)$, it follows that q^{2} divides r, [5, Ka. $\left.I I, 8.27\right]$. On the other hand

$$
\left(C\left(t_{3}\right) \cap K\right)\langle s, t\rangle=C\left(t_{3}\right) \cap C(u t)=C_{G}^{-}\left\langle t, t_{3}\right\rangle
$$

and so

$$
\left|C\left(t_{3}\right) \cap K\right|=\left(q^{2}-1\right) e .
$$

Hence $r=q^{2}$, proving our result.
(iv) The group K is a direct product of a cyclic group $O(K)$ of order e and a group D isomorphic to $L_{2}\left(q^{2}\right)$. Moreover, $B\langle u v t\rangle \subseteq D,\langle s\rangle O(K)$ is cyclic of order $q+1$ and t inverts $\langle s\rangle O(K)$.

Since $C_{K / O(K)}\left(t_{3} O(K)\right)=C_{K}\left(t_{3}\right) O(K) / O(K)$ and the fact that the centralizer of an involution in $L_{2}\left(q^{2}\right)$ has order $q^{2}-1$, we have $\left|C_{K}\left(t_{3}\right) O(K) / O(K)\right|=$ $q^{2}-1$. Since $\left|C_{K}\left(t_{3}\right)\right|=\left(q^{2}-1\right) e,\left|C_{O(K)}\left(t_{3}\right)\right|=e$.

Because $L_{2}\left(q^{2}\right)$ is simple, clearly K is the smallest normal subgroup of M
with a 2-factor group. So $O(K)$ char K char M. It follows that $O(K) \triangleleft C(u t)$. Hence $\langle v, t\rangle$ acts on $O(K)$. Since

$$
C(t) \cap C(u t)=\langle t, u, v\rangle B
$$

does not have normal subgroup of odd order, $C_{O(K)}(t)=1$. By (2.2.3) and $(2.2 .4), z_{1}, z_{2}$ are in $C(u t)$ and $t^{z_{2} z_{1}}=v t$. So $C_{O(K)}(v t)=1$. By the theorem of Brauer-Wielandt [7],

$$
O(K)\left|=\left|C_{O(K)}(v)\right|=\left|C_{O(K)}(u v t)\right|=\left|C_{(o K)}\left(t_{3}\right)\right|=e .\right.
$$

Hence

$$
O(K) \subseteq C\left(t_{3}\right) \cap C(u t) \cong C\left\langle t, t_{3}\right\rangle
$$

and so $O(K)$ is cyclic.
When $e=1$, the assertions of the lemma are now clear. Suppose $e \neq 1$. Since B does not have a normal subgroup of odd order, $B \cap O(K)=1$. Therefore $B O(K)$ is a splitting extension of $O(K)$ by B. We have $[K: B O(K)]=q\left(q^{2}+1\right)$ which is prime to ϵ. By a result of Gaschütz [5, Ka.I, 17.4], K splits over $O(K)$. This means there exists a subgroup $D \cong L_{2}\left(q^{2}\right)$ such that $K=D O(K)$ and $D \cap O(K)=1$. Since centralizers of all involutions of D contains $O(K)$, and D is generated by involutions, $D O(K)=D \times O(K)$. Clearly $B\langle u v t\rangle \subseteq D$.

From the fact that $C\left(v d_{1} d_{2}\right) \cap C\left(t t_{3}\right)$ is a subgroup of index 2 in $\left.C<t, t_{3}\right\rangle$ it follows that $C(s) \cap C\left(t_{3}\right)$ is a subgroup of index 2 in $C(u t) \cap C\left(t_{3}\right)$ and $O(K) \subseteq C(s)$, i.e., $O(K)\langle s\rangle$ is cyclic of order $q+1$. By the structure of $C(t) \cap C\left(t_{3}\right)$ it follows that t invests $\left.O(K)<s\right\rangle$.

Using all the results obtained so far, we are able to prove the following important lemma.
(2.3.1) The centralizer $C(u t)$ of ut in G has the following structure:

$$
C(u t)=(\langle\kappa\rangle \times D)\langle t\rangle
$$

where $\left\langle\boldsymbol{\kappa}\right.$ is cyclic of order $q+1 ; D \cong L_{2}\left(q^{2}\right),\langle t\rangle D$ is isomorphic to the extension of $L_{2}\left(q^{2}\right)$ by the field automorphisms of order 2, and tinverts $\langle\kappa\rangle$.

Proof. From (iv), we have $D \triangleleft C(u t)$. The factor group $\mathscr{F}=C(u t) /(C(D) \cap C(u t)) D$ is a 2 -group since $O(K) \subseteq C(D) \cap C(u t)$. Because $q=p^{f} \equiv-1(\bmod 4), f$ is odd. It follows that an S_{2}-subgroup of the outer automorphism group of $L_{2}\left(q^{2}\right)$ is a four-group. The group $C(u t)$ cannot involve $P G L\left(2, q^{2}\right)$ because an S_{2}-subgroup of $P G L\left(2, q^{2}\right)$ is dihedral of order $2^{\beta+2}$ and has an element of order $2^{\beta+1}$ whereas $C(u t)$ does not have such an element. Thus $|\mathscr{F}|=1$ or 2 .

Suppose that $t \in(C(D) \cap C(u t)) D$. Then $t=x y$ where $x \in C(D) \cap C(u t)$, $y \in D$. Both t and x centralize $B\langle u v t\rangle$ and so y centralizes $B\langle u z t\rangle$. By the
structure of $L_{2}\left(q^{2}\right)$, this implies $y=1$. Then $t \in C(D)$, a contradiction. Hence $t \notin(C(D) \cap C(u t)) D$. So $|\hat{\mathscr{F}}|=2$.

Since $(C(D) \cap C(u t)) D / D$ is a subgroup of index 2 in $C(u t) / D \cong\langle t, s, O(K)\rangle$ and $(C(D) \cap C(u t)) D / D \cong C(D) \cap C(u t)$, we get that $C(D) \cap C(u t)$ is either cyclic or dihedral of order $q+1$. Suppose that it is dihedral. I.et $\approx \neq u t$ be an involution of $C(D) \cap C(u t)$. Clearly $z \in \mathscr{K}_{2}$ and D is the unique subgroup of $C(z)$ isomorphic to $L_{2}\left(q^{2}\right)$. Let $K=(C(D) \cap C(z)) D$ be a subgroup of index 2 in $C(z)$. We shall look at the centralizer of the four-group $z, v\rangle$. Since

$$
C(v) \cap K\left|=2\left(q^{2}-1\right), \quad\right| C(v) \cap C(z) \mid=2^{2} \cdot\left(q^{2}-1\right) \quad \text { or } \quad 2 \cdot\left(q^{2}-1\right) .
$$

But this is a contradiction since $C\langle x, t\rangle$ has order $2(q-1)(q+1)^{2}$ or $2^{2} q\left(q^{2}-1\right)$ for all $x \in \mathscr{K}_{2} \cap H$. Hence we have shown that $C(D) \cap C(u t)==$ $\langle\kappa\rangle$ is cyclic of order $q+1$. Since $\langle\kappa\rangle=Z(\langle\kappa\rangle \times D)$ char $\langle\kappa\rangle \times D, t$ normalizes $\langle\kappa\rangle$. Because $C(u t) / D$ is dihedral, t must invert κ. We have $D=(\langle\kappa\rangle \times D)^{\prime}$ and so is normalized by t inducing outer automorphism on D.

Let \mathscr{A} be the extension of $\operatorname{PGL}(2, q)$ by the field automorphism σ of order 2 . Let ζ be a primitive element of the finite field $F_{q^{2}}$. Set

$$
\omega=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad \gamma=\left(\begin{array}{cc}
\zeta^{\text {de }} & 0 \\
0 & \zeta^{-d e}
\end{array}\right) ; \quad \delta=\left(\begin{array}{cc}
1 & \\
& \zeta^{d e}
\end{array}\right) \sigma
$$

where $q^{2}-1=2^{\beta+1} d e$. We verify that

$$
\begin{gathered}
\omega^{2} \equiv 1 \equiv \equiv \gamma^{2^{3}}, \omega \gamma \omega \equiv \gamma^{-1}, \quad \delta^{-1} \gamma \delta=\gamma^{-1} \\
\delta^{2} \equiv \gamma^{-(q+1) / 2} ; \\
\delta^{-1} \omega \delta \equiv \gamma^{4} \beta\left(\bmod Z\left(G L\left(2, q^{2}\right)\right)\right)
\end{gathered}
$$

We check that $\langle\omega, \gamma, \delta\rangle$ is an S_{2}-subgroup of $\left\langle L_{2}\left(q^{2}\right), \delta\right\rangle$. We compute that

$$
(\delta \omega)^{2}=\delta^{2} \delta^{-1} \omega \delta \omega==\gamma^{-(q+1) / 2} \gamma^{q} \omega \omega \gamma^{(q-1) / 2} .
$$

Since $(q-1) / 2$ is odd $\delta \omega$ has order $2^{\beta+1}$. By our earlier remark, $C(u t)$ does not have an element of order 2^{B+1}. It follows that $D\langle t\rangle \cong\left\langle L_{2}\left(q^{2}\right), \sigma\right\rangle$ and the lemma is proved.
(2.4) Some subgroups of G.
(2.4.1) There exists an element μ satisfying the following relations:

$$
\begin{array}{r}
\mu^{2}=v ; \quad t^{\mu}=v t ; \quad t_{3}{ }^{\mu}=u v t t_{3} ; \quad u^{\mu}=u v, \\
I\rangle^{\mu}=\langle\boldsymbol{m}\rangle ;\langle m\rangle^{\mu}=\langle l\rangle \quad \text { and } \quad n^{\mu}=n .
\end{array}
$$

Proof. Let λ^{\prime} be an element of order $\left(q^{2}-1\right) / 2$ in $D \subseteq C(u t)$ such that $u v t \in\left\langle\lambda^{\prime}\right\rangle$. Set $\mu=\kappa^{(/++1) / 4} \lambda^{\prime\left(q^{2}-1\right) / 8}$. Then $\mu^{2}=v$ and $t^{u}=v t$. Since $\mu \in C(u t)$, $u^{u}=u v$. Because $t_{3} \in D$ and $t_{3} \in C_{D}(u v t)$ which is dihedral, by the structure of $L_{2}\left(q^{2}\right)$, we have $t_{3}{ }^{\mu}=u v t t_{3}$.

Suppose that $\langle l \neq 1$. From the above relations we see that $\mu \in N\langle t, \sigma$ and so μ normalizes $\langle l, m, n\rangle$, which is the normal 2-complement of $C\langle t, v$. Since $\langle l\rangle$ centralizes $t_{3},\left\langle l^{\mu}\right\rangle$ centralizes $t_{3}{ }^{\mu}=u v t t_{3}$. On the other hand

$$
C\left(u v t t_{3}\right) \cap\langle, m, n\rangle=\cdots
$$

Hence

$$
\langle l\rangle^{\mu}=\langle m\rangle \quad \text { and } \quad\langle m\rangle^{\mu}=\langle l\rangle^{n^{2}} \cdots\langle l\rangle
$$

Since $n \in B \subseteq D$ and $\langle n\rangle \subseteq C_{D}(u \tau t)$, both κ and λ^{\prime} centralize n and so $n^{\mu}=n$. The proof is now complete.
(2.4.2) Let $F=\langle t, v\rangle\langle l, m, n$. The normalizer $N=N\langle t, v\rangle$ of $\langle t, v\rangle$ in G is the group $\left\langle u, c_{2}, u t, t_{3}, F\right\rangle$ and N / F is isomorphic to the symmetric group on four letters. Moreover, $\left(\mu c_{2}\right)^{3}=1=\left(c_{2} \mu u t\right)^{3}$.

Proof. By (2.4.1), $\mu \in N\left\langle\iota, v^{\rangle}\right.$and from the action of μ on $\left\langle\iota, v_{,}\right.$, $\mu \notin\left\langle c_{2}, C\langle t, v\rangle\right.$. Since $C\langle v, t\rangle-\left\langle u, t_{3}\right\rangle F$ and because the automorphism group of a four-group has order 6, it follows that N / F has order 24.

Let r_{1}, r_{2}, r_{3} be the cosets $\mu F, c_{2} F$, and $\mu u t F$, respectively. We check that

$$
r_{1}^{2}-r_{2}^{2}=r_{3}^{2}=1, \quad r_{1} r_{3}=r_{3} r_{1} .
$$

By an easy computation, we verify that $\left(\mu c_{2}\right)^{3}$ and $\left(c_{2} \mu u t\right)^{3}$ is in $Z\left(C\left\langle t, v_{\rangle}\right)=\right.$ $\langle v, t\rangle$ and since both μc_{2} and $c_{2} \mu u t$ act fixed-point-free on $\langle v, t\rangle$, it follows $\left(\mu c_{2}\right)^{3}=1=\left(c_{2} \mu u t\right)^{3}$ proving our lemma.
(2.5) S_{p}-subgroups of G.

With Lemmas (2.4.1) and (2.4.2), we are now able to determine the structure of a p-subgroup of G, which turns out eventually to be an S_{p}-subgroup of G.

Let W be the unique S_{p}-subgroup of D containing

$$
T=\left\langle\left(\theta_{1} \theta_{2}\right)^{x}: x \in\langle v, n\rangle .\right.
$$

We have $C(u t) \cap C(W)=\langle\kappa\rangle W$ and

$$
C(u t) \cap N(W)=\left\langle t, \kappa, \lambda^{\prime}\right\rangle W .
$$

Here we have used the fact W is a $T I$ group in $D ; t, \kappa,\left\langle\lambda^{\prime}\right\rangle \geq m, u v t$ normalize a subgroup T of W. Clearly κ^{e} : is an S_{2}-subgroup of $C(W)$ and
is cyclic. By the transfer theorem of Burnside [3, Ch. 7, 4.3], $C(W)$ has a normal 2-complement M and $C(W)=\left\langle\kappa^{e}\right\rangle M$. Since M is a characteristic subgroup of $C(W), M \triangleleft N(W)$. Furthermore, by the Frattini argument

$$
N(W)=\left(N\left\langle\kappa^{e}\right\rangle \cap N(W)\right) C(W)=(C(u t) \cap N(W)) C(W)=\left\langle t, \kappa, \lambda^{\prime}\right\rangle M .
$$

We note that an S_{p}-subgroup of $C(W)$ is also an S_{p}-subgroup of $N(W)$.
The four group $\langle u, t\rangle$ acts on M. Consider

$$
C_{M}(t) \subseteq C(T) \cap C(t)=\langle l, t\rangle T_{1} T_{2} .
$$

Suppose that a nontrivial subgroup X of $\langle\kappa\rangle$ is in $C_{M}(t)$. Then $X^{\mu} \subseteq\langle m\rangle$ is in M since $\mu \in N(W)$. (See 2.4.1). This is a contradiction since no subgroup of $\langle m\rangle$ can centralize T. If $\left(T_{1} T_{2}-T\right) \cap M \neq \varnothing$, it implies that there is $1 \neq x \subset T_{1} \cap M$. But then

$$
T_{1}=\left\langle x^{y}\right| y \in\langle u v t, n\rangle \subseteq M
$$

since $\langle u v t, n\rangle \subseteq\left\langle\lambda^{\prime}\right\rangle$ and so $C_{M}(t)=T_{1} T_{2}$. Therefore, either $C_{M}(t)=T$ or $T_{1} T_{2}$. By the theorem of Brauer-Wielandt [7],

$$
|M|\left|C_{M}\langle t, u\rangle\right|^{2}=\left|C_{M}(u t)\right|\left|C_{M}(t)\right| \mid C_{M}(u)
$$

i.e., $|M|=q^{2} e$ or $q^{4} e$ since

$$
C_{M}(u)=\left(\kappa^{(q+1) / 4}\right)^{-1} C_{M}(t) \kappa^{(q+1) / 4} .
$$

Hence an S_{p}-subgroup of $N(W)$ has order q^{2} or q^{4}.
Suppose $|M|=q^{2} e$. This means that W is an S_{p}-subgroup of G and so is $T_{1} T_{2}$. However,

$$
C\left(T_{1} T_{2}\right) \cap C(t)=\langle t, l\rangle T_{1} T_{2}
$$

and clearly $\langle t\rangle$ is an S_{2}-subgroup of $C\left(T_{1} T_{2}\right)$. This is a contradiction since $C(W)$ has an S_{2}-subgroup $\left\langle\kappa^{e}\right\rangle$ of order 2^{β} and $\beta>1$. Thus $|M|=q^{4} e$.

Hence we have $C_{M}(t)=T_{1} T_{2}$. Since $\mu \in N(W)$,

$$
C_{M}(v t)=\left(C_{M}(t)^{\mu}=T_{1}{ }^{u} T_{2}{ }^{\mu}=T_{3} T_{4}\right.
$$

where $T_{3}=T_{1}{ }^{\mu}, T_{4}=T_{2}{ }^{\mu}$. By the result of Brauer-Wielandt [7], $\left|C_{M}(v)\right|=e$. Again $\langle u t, u v t\rangle \subseteq N(W)$ acts on M and, by the result of Brauer-Wielandt [7], $\left|C_{M}(u v t)\right|=q^{2} e$. Since $u v t$ is conjugate to $u t$ in G, a group of order q^{2} is normal in any subgroup of odd order containing it. In other words we have shown that M contains a normal S_{p}-subgroup R. It follows that $\left\langle T_{1}, T_{2}, T_{3}, T_{4}\right\rangle=R$ and is elementary Abelian of order q^{4} since R is a direct product of W with the normal elementary Abelian group of order q^{2} in $C_{M}(u \nabla t)$. Thus we have proved the following:
(2.5.1) The group $R=\left\langle T_{1}, T_{2}, T_{1}{ }^{\mu}, T_{2}{ }^{\mu}\right\rangle$ is elementary Abelian of order q^{4}.

We are interested next in the structure of $C\left(T_{1}\right)$ and prove the following result:
(2.5.2) Let

$$
\begin{gathered}
\theta_{3}=\theta_{1}^{\mu} ; \quad \theta_{4}=\theta_{2}^{\mu} ; \quad \theta_{5}=\theta_{3}^{c_{2}} ; \quad \theta_{6}-\theta_{4}^{c_{2}} ; \\
T_{3}=T_{1}^{\mu} ; \quad T_{4}=T_{2}^{\mu} ; \quad T_{5}=T_{3}^{c_{2}} ; \quad T_{6}=T_{5}^{c_{2}}
\end{gathered}
$$

Then

$$
P=T_{1} T_{2} T_{3} T_{4} T_{5} T_{6}
$$

is a p-subgroup of G of order q^{6} and $B=P F$ is a subgroup of order $\frac{1}{2}(q-1)^{3} q^{6}$ with $F \subseteq N(P)$.

Proof. We have $C\left(T_{1}\right) \cap C(t)=L_{2}\langle l\rangle T_{1}$ where $L_{2} \cong S L(2, q)$. An S_{2}-subgroup of L_{2} is a generalized quaternion group of order $2^{\beta+1}$. Obviously it is also an S_{2}-subgroup of $C\left(T_{1}\right)$. By the theorem of Brauer-Suzuki [3, Ch. 12, 1.1], $C\left(T_{1}\right)=\left(C(t) \cap C\left(T_{1}\right)\right) U$ where $U=O\left(C\left(T_{1}\right)\right)$. Clearly $T_{1} \subseteq U$ and since $\langle l\rangle=Z\left(L_{2}\langle l\rangle\right)$ has odd order, $\langle l\rangle \subseteq U$. It follows that $C\left(T_{1}\right)=L_{2} U$ and $L_{2} \cap U=1$ since L_{2} has no nontrivial normal subgroup of odd order.

By (2.5.1), we see that $C(v t) \cap U \supseteq\langle l\rangle T_{3} T_{4}$. From the isomorphism of $C(v t)$ with $C(t)$, the largest odd order subgroup containing $T_{1} T_{2}$ in $C(t)$ is $\langle l, m, n\rangle T_{1} T_{2}$. It follows that

$$
C(v t) \cap U \subseteq\left(\langle l, m, n\rangle T_{1} T_{2}\right)^{\mu}=\langle l, m, n\rangle T_{3} T_{4}
$$

and so

$$
C(v t) \cap U=\langle l\rangle T_{3} T_{4} .
$$

Also

$$
C(v) \cap U=(C(v t) \cap U)^{c_{2}}=\langle l\rangle T_{5} I_{6}
$$

where

$$
T_{5}=T_{3}^{c_{2}} ; \quad T_{6}=T_{4}^{c_{2}} .
$$

By the theorem of Brauer-Wielandt $|U|=q^{5} \cdot(q-1) / 2$.
Suppose that $\langle l\rangle \neq 1$. Then $\langle l\rangle=\langle m\rangle^{\mu}$ normalizes $\left(T_{1} T_{2}\right)^{\mu}=T_{3} T_{4}$ and similarly $\langle l\rangle^{c_{2}}=\langle l\rangle$ normalizes $\left(T_{3} T_{4}\right)^{c_{2}}=T_{5} T_{6}$. By Gorenstein-Walter's lemma [4], every element of U has the unique expression $l^{i} x y z$ where $x \in T_{1}$, $y \in T_{3} T_{4}, z \in T_{5} T_{6}$. Let $\langle r\rangle=X \subseteq\langle l\rangle$ and $g_{1} g_{2} \in N_{U}(X)$ where $g_{1} \in T_{5} T_{6}$, $g_{2} \in T_{5} T_{6}$. Then $\left(g_{1} g_{2}\right)^{-1} r g_{1} g_{2}=r^{j}$, i.e., $r g_{1} g_{2}=r^{j}\left(g_{1}^{r^{j}}\right)\left(g_{2}\right)^{r^{j}}$. By the unique expression for elements of U and the fact that $g_{1}^{r^{j}} \in T_{3} T_{4}, g_{2}^{r^{j}} \in T_{5} T_{6}$, it follows that $r=r^{j}, g_{1}=g_{1}^{r^{j}}, g_{2}=g_{2}^{r^{j}}$. In other words $N_{U}(X)=C_{U}(X)$.

This in turn implies that U has a normal \tilde{p}-complement for every prime \tilde{p} dividing $(q-1) / 2$ by the transfer theorem of Burnside [3, Ch. 7, 4.3]. It follows that U has a normal p-subgroup V. Obviously

$$
\left\langle T_{1}, T_{3}, T_{4}, T_{5}, T_{6}\right\rangle \subseteq V \quad \text { and thus } \quad V=T_{1} T_{3} T_{4} T_{5} T_{6}
$$

Since V char U, V is normal in $N\left(T_{1}\right)$.
It is clear now that $P=T_{2} V$ is a p-group of order q^{6}. Since $F \subseteq N\left(T_{2}\right)$ and $F \subseteq N\left(T_{1}\right), B=P F$ is a group of order $\frac{1}{2}(q-1)^{3} q^{6}$ and $F \subseteq N(P)$.

$$
\text { 3. The case } q \equiv 1 \text { (mod 4). }
$$

Here $\alpha \geqslant 2, \beta-1$, and H is a nonsplitting extension of the central product $L_{1} L_{2}$ by the dihedral group $\langle u, w\rangle$ with

$$
\langle u, w\rangle \cap L_{1} I_{\bullet_{2}}=\left\langle w^{(q-1) / 2}\right\rangle=\left\langle\left(\alpha_{1} \alpha_{2}\right)^{(q-1) / 4}\right\rangle
$$

(See Section 1 for notation).

$$
\begin{equation*}
S_{2} \text {-subgroup of } H \tag{3.1.1}
\end{equation*}
$$

Set

$$
a_{1}=\alpha_{1}^{d} ; \quad a_{2}=u a_{1} u ; \quad c_{2}=u c_{1} u ; \quad v=w^{d}
$$

It is easily seen that

$$
Q=\langle u, v\rangle\left\langle a_{1}, c_{1}, a_{2}, c_{2}\right\rangle
$$

is an S_{2}-subgroup of H and $Z\langle\underset{\sim}{Q}\rangle=\langle t\rangle$. The group $Q_{i}=\left\langle a_{i}, c_{i}\right\rangle$ is a generalized quaternion group. Further we have the following relations:

$$
\left[a_{i}, v\right]=1, c_{1}^{v}=a_{1} c_{1} ; \quad c_{2}^{v}=a_{\Sigma}^{-1} c_{2} .
$$

(3.1.2) Conjugate classes of involutions in H

Exactly as in the previous case, involutions in $Q_{1} Q_{2}-\langle\boldsymbol{t}\rangle$ lie in one conjugate class of H with representative $t_{3}=c_{1} c_{2}$.

Suppose that $u v^{2 i} x_{1} y_{2}$ is an involution where $x_{1} \in L_{1}, y_{2} \in L_{2}$. Then $y_{2}=\left(v^{-2 i} x_{2}^{-1} v^{2 i}\right) h$ where $h=1$ or t. Hence all involutions in $u v^{2 i} Q_{1} Q_{2}-Q_{1} Q_{2}$ have the forms $(u)^{v^{i} x_{1}}$ or $(u t)^{v^{i} x_{1}}$. It follows that they all lie in one conjugate class with representative u since $u t=\left(a_{1} v\right)^{-2^{\alpha-2}} u\left(a_{1} v\right)^{2^{\alpha-2}}$. Similarly all involutions in $u v^{2 i+1} Q_{1} Q_{2}-Q_{1} Q_{2}$ are conjugate to $u v$ in H.

If $q \equiv 5(8), \alpha=2$. Then $\left(v Q_{1} Q_{2} \cup v^{-1} Q_{1} Q_{2}\right)-Q_{1} Q_{2}$ does not have involutions. If $q \equiv 1(8)$, by a straight-forward but tedious computation, all involutions in $v^{i} Q_{1} Q_{2}-Q_{1} Q_{2}$ are conjugate to $z=v^{2^{\alpha-2}}\left(a_{1} a_{2}\right)^{2^{\alpha-3}}$.

Hence we have shown that H has four conjugate classes of involutions with representatives t, t_{3}, u, and $u v$ when $q=5(8)$. When $q \equiv 1(8), H$ has five conjugate classes of involutions with representatives $t, t_{3}, u, u v$, and z.
(3.1.3) Centralizers of involutions in H

Let $s=(v)^{2^{\alpha-1}}=\left(\alpha_{1} \alpha_{2}\right)^{2^{\alpha-2}}$. Then

$$
C_{H}(s)=\left\langle u, w^{\prime}\right\rangle\left\langle\alpha_{1}, \alpha_{2}, t_{3}\right\rangle
$$

where $t_{3}=c_{1} c_{2}$ of order $(q-1)^{3}$. Set

$$
l=\left(w^{2} \alpha_{1} \alpha_{2}^{1}\right)^{2 \alpha-1} ; \quad m-\left(\alpha_{1}{ }^{1} \alpha_{2}\right)^{2 \alpha-1} ; \quad n=\left(\alpha_{1} \alpha_{2}\right)^{2 \alpha-1} .
$$

We may write

$$
C_{H}(s)-\langle u, v\rangle\left\langle a_{1}, a_{2}, t_{3}\right\rangle\langle l, m, n\rangle
$$

where $\langle l, m, n\rangle$ is the normal 2 -complement of $C_{H}\langle s\rangle$ of order d^{3}.
The centralizer $C_{H}(u)$ of u in H is $\langle t, u\rangle B$ where

$$
B=\left\langle x_{1} x_{2} \mid x \in S L(2, q)\right\rangle \cong L_{2}(q)
$$

Similarly $C_{H}(u v) \cong\langle t, u v\rangle C$ where

$$
C=\left\langle x_{1} v^{-1} x_{2} v: x \in S L(2, q)\right\rangle \cong L_{2}(q) .
$$

In the case $q \equiv 1(8)$, the centralizer $C_{H}(z)$ of z in $I I$ is $L_{1}\left\langle w, \alpha_{2}\right\rangle$ and $\left\langle\varepsilon, a_{1}, a_{2}, c_{1}\right\rangle$ is an S_{2}-subgroup of $C_{H}(z)$, whose commutator group is $\left\langle a_{1}\right.$. It is easily checked that $C_{H}(z)$ does not contain elementary Abelian groups of order 16.
(3.14) S_{p}-subgroups of H

Let $T_{1}=\left\langle\theta_{1}^{x} \mid x \in\langle v, n\rangle\right\rangle$ and $T_{2}=T_{1}{ }^{u}$. Clearly $T_{1} T_{2}=T_{1} \times T_{2}$ is an S_{0}-subgroup of H and is elementary Abeiian. We have

$$
C_{H}\left(T_{1} T_{2}\right)=\left\langle w^{2} \alpha_{\alpha_{1}} \alpha_{2}^{-1}\right\rangle T_{1} T_{2}
$$

and

$$
N_{H}\left(T_{1} T_{2}\right)-\left\langle v, u, \alpha_{1}, \alpha_{2}\right\rangle T_{1} T_{2} .
$$

(3.2) Fusion of involutions

We shall show that G has only one class of involutions when $q=5(8)$ and two classes of involutions when $q=I(8)$.
(3.2.1) An S_{2}-subgroup of H is an S_{2}-subgroup of G.

Proof. Obvinus, since an S_{2}-subgroup Q of H has cyclic center $\langle t\rangle$.
(3.2.2) When $q \equiv 1(8)$, the conjugate class in H containing z does not fuse with other conjugate classes of H.

Proof. By (3.1.3) an S_{2}-subgroup of $C_{H}(z)$ is

$$
T=\left\langle v, a_{1}, a_{2}, c_{1}\right\rangle
$$

of order $2^{3 x-1}$. Suppose that z is conjugate to t in G. Then there exists a 2 -group S containing T such that $[S: T]=2$. Since $T^{\prime}=\left\langle a_{1}\right\rangle$ char T and $T \triangleleft S,\left\langle a_{1}\right\rangle \triangleleft S$. But then it follows that there is an $x \in S-H$ centralizing $t=\left(a_{1}\right)^{2_{\alpha-1}}$ a contradiction. Hence \approx is not conjugate to t in G and incidentally, we have also shown that T is an S_{2}-subgroup of $C_{G}(z)$.

This implies that z is not conjugate to $u, u v$, or s since $C(u), C(u v)$, and $C(s)$ all have elementary Abelian groups of order 16 but $C(z)$ does not. This completes the proof.
(3.2.3) If u is conjugate to t in G, then s is conjugate to t in G.

Proof. By (3.1.3), $T=\langle t, u\rangle\left\langle a_{1} a_{2}, c_{1} c_{2}\right\rangle$ is an S_{2}-subgroup of $C_{H}(u)$. By our assumption there exists an element x in a 2-group S of $C(u)$ containing T such that $x \in S-H$, and x normalizes T.

If $q=5(8), T$ is elementary Abelian. Let

$$
S_{1}=\left\{s, t s, t_{3}, t t_{3}, s t_{3}, t s t_{3}\right\}
$$

all of whose involutions are conjugate in H. Similarly

$$
S_{2}=\left\{u, u t, u s, u t s, u t_{3}, u t t_{3}, u s t_{3}, u t s t_{3}\right\}
$$

consisting of involutions conjugate in H. We have $S_{1} \cup S_{2} \cup\{t, 1\}=T$. Since $x \notin H, t^{x} \neq t$. If $t^{x} \equiv S_{1}$ or $s^{x} \in S_{2}$, then we are finished. Hence we may assume $t^{x} \in S_{2}$ and $s^{x} \in S_{1}$. Then $(t s)^{x} \in S_{2}$. The result follows because s is conjugate to $t s$ in H and from the assumption that u is conjugate to t.

If $q \equiv 1(8), \quad T$ is non-Abelian and $Z(T)=\langle t, u, s\rangle$. We have $T^{\prime}=\left\langle\left(a_{1} a_{2}\right)^{2}\right\rangle$. Thus x normalizes both $Z(T)$ and $Z(T) \cap T^{\prime}=\langle s\rangle$. Hence $s^{x}=s$. If $t^{x}=t s$, then we are finished; otherwise $t^{x} \in Z(T)-\langle t, s\rangle$. The result follows as before.
(3.2.4) If $u v$ is conjugate to t in G, then s is conjugate to t in G.

Proof. As in (3.2.3).
(3.2.5) If s is conjugate to t in G, then G has only one class of involutions when $q \equiv 5(8)$ and two classes of involutions when $q \equiv 1(8)$.

Proof. Let $M=\left\langle a_{1}, c_{1}, a_{2}, c_{2}\right\rangle$. It is a maximal subgroup of an S_{2}-subgroup Q of G. Since G does not have a subgroup of index 2,
by Thompson's lemma, [3, Ch. 7, Ex. 3], u and $u v$ are conjugate to some involutions in M. The result follows from (3.1.2) and (3.2.2).
(3.2.6) When $q \equiv 5(8), G$ has only one class of involutions. When $q \equiv 1(8), G$ has precisely two classes of involutions.

Proof. Using exactly the same arguments as in (2.2.5), we can show that t is conjugate to an element in $\{u, u r, s\}$. The resuit then follows from (3.2.3), (3.2.4), and (3.2.5).

(3.3) Some subgroups of G)

The results of this section are needed for the construction of a subgroup G_{0}, which is a (B, N) pair.

Let i be an involution in H conjugate to t in G. We observe that $N_{H}\langle i, t\rangle / C\langle i, t\rangle$ has order 2 . Consider the four-group $A=\langle t, u\rangle$. Let $x \in N(A) \cap C(u)-C(A)$ which exists because of (3.2.6) and the above observation. Then $t^{x}=u t, u t^{x}=t$. Since $x \in N(A), x$ normalizes $C(A)$ and hence normalizes $C(A)^{\prime}=B$, i.e., $B^{r}=B$.

When $q \equiv 1(8)$, we have $\left(v^{2} a_{1} a_{2}^{-1}\right)^{2^{x-3}} \in N(A)$ and centralizes B. Put $z^{\prime}=x^{-1}\left(v^{2} a_{1} a_{2}^{-1}\right)^{2^{\alpha-3}} x$. Hence z^{\prime} centralizes $B^{x}=B$. Let $\nu=z^{\prime} \cdot\left(v^{2} a_{1} a_{2}^{-1}\right)^{2^{\alpha-3}}$ and $\mu=\left[z^{\prime}, v^{2^{\alpha-2}}\right]$. We compute that the following relations hold:

$$
\begin{gathered}
t^{v}=u ; \quad u^{v}=u t ; \quad u t^{t}=t ; \quad v \in C(B) ; \\
t^{\mu}=t s ; \quad u^{\mu}=u s ; \quad \alpha_{1} \alpha_{2}{ }^{\prime \prime}=\alpha_{1} \alpha_{2} ; \quad t_{3}{ }^{\mu}=u t s t_{3} .
\end{gathered}
$$

Because

$$
\mu^{2} \in C\left(t, s, u, t_{3}=\left\langle t, s, u, t_{3}\right.\right.
$$

and since μ does not fix any element in $t, s, u, t_{3}-\langle u t, s\rangle, \mu^{2} \in\langle u t, s\rangle$. If $\mu^{2}=1$, $u t$ or $u t s$, replacing μ by $\mu u, u t_{3}$ or $\mu u t_{3}$, respectively, we may assume that $\mu^{2}=s$ without affecting the previous relations.

When $q \equiv 5(8), v a_{1}$ acts as an outer automorphism of order 2 on B. Hence $\left(v a_{1}\right)^{x}$ acts as an outer automorphism of order 2 on $B^{x}=B$. Because $q=p^{f} \equiv 5(8), f$ is odd. The outer automorphism group of $B=L_{2}(q)$ is Abelian of order $2 f$. Hence $\left(v a_{1}\right)\left(v a_{1}\right)^{x}$ is inner on B. Therefore $\nu=v a_{1}\left(v a_{1}\right)^{x} b$ centralizes B for a suitable $b \in B$. We check that

$$
t^{\nu}=u ; \quad u^{\nu}=u t ; \quad(u t)^{v}=t
$$

Let $z^{\prime}=\left(v a_{1}\right)^{\nu}$ and $\mu=\left[z^{\prime}, v\right]$. Then it is easily verified that μ has the same action on $\left\langle t, \alpha_{1} \alpha_{2}, t_{3}, u\right\rangle$ as in the case $q=1(8)$. Thus we have proved the following result.
(3.3.1) There exist elements ν, μ in G such that $t^{\nu}=u ; u^{\nu}=u t$; $(u t)^{\nu}=t ; v \in C(B) ; t^{\mu}=t s ; u^{u}=u s ;\left(\alpha_{1} \alpha_{2}\right)^{\mu}=\alpha_{1} \alpha_{2} ; t_{3}{ }^{\mu}=u s t t_{3}$ and $\mu^{2}=s$.
(3.3.2) Let $F=\left\langle w, \alpha_{1}, \alpha_{2}\right\rangle$ and $N=N\langle t, s\rangle$. Then N / F is isomorphic to the symmetric group on four letters. Moreover we have $\left(\mu c_{2}\right)^{3}=1=\left(c_{2} \mu u t\right)^{3}$.

Proof. From (3.3.1) we see that $\mu \in N\langle t, s\rangle$. Therefore μ normalizes $C(t, s), C(t, s)^{\prime}$ and

$$
C(t, s)^{\prime} \cap C(t, s)=F
$$

Since $|C\langle t, s\rangle| F \mid=4$ and from the fact $\mu \notin N_{H}\langle t, s\rangle$, it follows that $|B / F|=24$.

Let r_{1}, r_{2}, r_{3} denote the cosets $\mu F, c_{2} F$, and $c_{2} \mu u t F$, respectively. Clearly $r_{1}{ }^{2}=r_{2}{ }^{2}=r_{3}{ }^{2}=1$ and $r_{1} r_{3}=r_{3} r_{1}$. Both $\left(\mu c_{2}\right)^{3}$ and

$$
\left(c_{2} \mu t u\right)^{3} \in C\left\langle t, s, u, t_{3}\right\rangle=\left\langle t, s, u, t_{3}\right\rangle .
$$

Since μc_{2} and $c_{2} \mu u t$ act fixed-point-free on $\left\langle t, s, u, t_{3}\right\rangle$, it follows then,

$$
\left(\mu x_{2}\right)^{3}=1=\left(c_{2} \mu u t\right)^{3}
$$

Hence we have also shown that $\left\langle r_{1}, r_{2}, r_{3}\right\rangle$ satisfies Moore's relations and so $\left\langle r_{1}, r_{2}, r_{3}\right\rangle \cong S_{4}$ proving our lemma.
(3.3.3) Suppose $|\langle l\rangle| \neq 1$. Let Y be a nontrivial subgroup of $\langle l\rangle$. Then $C(Y) \subseteq C(t)=H$.

Proof. From the structure of $H, C_{H}(Y)=L_{1} L_{2}\langle w\rangle$, a subgroup of index 2 in H. Since $S=\left\langle a_{1}, c_{1}, a_{2}, c_{2}, v\right\rangle$ is an S_{2}-subgroup of $C_{H}(Y)$ and has cyclic center $\left\langle v^{2} a_{1} a_{2}^{-1}\right\rangle \supseteq\langle t\rangle$, it is clear that S is an S_{2}-subgroup of $C(Y)$. By (3.3.2), involutions in $S-\left\langle a_{1}, c_{1}, a_{2}, c_{2}\right\rangle$, if they exist, are not conjugate to t. By the structure of $S L(2, q)$ involutions in $\left\langle a_{1}, c_{1}, a_{2}, c_{2}\right\rangle$ lie in two conjugate classes of $C_{H}(Y)$ with representatives t and s. Suppose s is conjugate to t in $C(Y)$. Then there is a 2-group $T \subseteq C(s) \cap C(Y)$ and

$$
S \cap C(s)=\left\langle a_{1}, a_{2}, c_{1} c_{2}, v\right\rangle \subset T
$$

Hence there is $x \in T-S \cap C(s)$ and $x \in N(S \cap C(s))$. Since

$$
\Omega_{1}\left((S \cap C(s))^{\prime}\right)=\left\langle t, s^{\prime}, \quad x \in N\langle t, s\rangle,\right.
$$

it follows that $t^{x}=t s ;(t s)^{x}=t$. Thus $\mu x^{-1} \in C\langle t, s\rangle$ [See (3.3.1)]. But $C(t, s) \subseteq N(Y)$. Hence $Y^{\mu}=Y^{x}=Y$. Since $t_{3} \in C(Y), u s t t_{3}=t_{3}{ }^{\mu} \in C\left(Y^{\mu}\right)=$ $C(Y)$, a contradiction. Therefore we have shown that t is not conjugate to other involutions of S in $C(Y)$.

By the result of Glaubermann [2],

$$
C(Y)=(C(Y) \cap C(t)) O(C(Y))
$$

Set $M=O(C(Y))$. The four-group $\langle t, s$ acts on M. By the result of BrauerWielandt [4], $M=C_{M}(t) C_{M}(t s) C_{M}(s)$. By (3.3.1),

$$
C_{M}(t s)=\left(C(t) \cap O\left(C_{G}\left(Y^{\mu}\right)\right)^{\mu^{-1}}\right.
$$

Since

$$
l, m, n\rangle=O(C(t, s))
$$

and $\mu \in N\langle t, s\rangle$, we have $\mu \in N\langle l, m, n$. Since

$$
\left.\langle l\rangle=C\left(t_{3}\right) \cap\langle l, m, n\rangle, \quad\langle l\rangle\right\rangle=C\left(u s t t_{3}\right) \cap\langle l, m, n\rangle=\langle m\rangle .
$$

In particular, $X=Y^{k} \subseteq\langle m\rangle$. Thus

$$
C(t) \cap C(X)=\left\langle\alpha_{1}, \alpha_{2}, w, u t_{3}\right\rangle
$$

which has the normal 2 -complement $\langle l, m, n\rangle$. So

$$
C(t) \cap O(C(X)) \subseteq\langle l, m, n\rangle
$$

and

$$
C_{M}(t s) \subseteq\langle l, m, n\rangle^{\mu^{-1}}-\langle l, m, n\rangle .
$$

Also

$$
C_{M}(s)=\left(C_{M}(t s)\right)^{C_{2}} \subseteq\langle l, m, n\rangle
$$

Lastly

$$
C(t) \cap O(C(Y)) \subseteq\langle l\rangle
$$

since $\langle l\rangle$ is the maximal normal subgroup of odd order in $C(l) \cap C(Y)$. It follows then

$$
M \subseteq\langle l, m, n\rangle \subseteq C(t)
$$

proving the result $C(Y) \subseteq C(t)$.
(3.3.4) The centralizer $C(B)$ of B in G is isomorphic to $L_{2}(q)$.

Proof. We have $C(B) \cap C(t)=\left\langle w^{2} \alpha_{1} \alpha_{2}^{-1}, u\right\rangle$, a dihedral group of order ($q-1$). If $q \equiv 5(8),\langle t, u\rangle$ is an S_{2}-subgroup of $C_{H}(B)$. By (3.3.1), we have $\nu \in C(B)$ acting fixed-point-free on $\langle t, u\rangle$. This implies, in particular, that $\langle t, u\rangle$ is an S_{2}-subgroup of $C(B)$. If $q=1(8)$, an S_{2}-subgroup of $C_{H}(B)$ is $\left\langle u, v^{\prime}\right\rangle$ where $v^{\prime}=\left\langle v^{2} a_{1} a_{2}^{-1}\right\rangle$ and has the center $\langle t\rangle$. Hence $\left\langle u, v^{\prime}\right\rangle$ is an S_{2}-subgroup of $C(B)$. Again by (3.3.1), u is conjugate to t in $C(B)$. Since

$$
v a_{1} \in N(B), \quad \nu^{\prime}=\nu^{v \alpha_{1}}
$$

centralizes $B^{v a_{1}}=B$. We compute $t^{v^{\prime}}=u v^{\prime}$. Thus in this case too, $C(B)$ has only one class of involutions.

Since $C(t) \cap C(B)$ has Abelian 2-complement, by the result of GorensteinWalter [4],

$$
C(B) / O(C(B)) \cong L_{2}(r)
$$

for some odd r or A_{7}.
We show next that $M=O(C(B))=1$. By the Brauer-Wielandt's formula [7], and the fact $C(B)$ has only one class of involutions, $|M|=\mid C_{M}(t){ }^{3}$. Suppose that $1 \not \subset C_{M}(t) \subseteq\langle l\rangle$. Let h be an element of prime order in $C_{M}(t)$. Then we have $C_{M}(t) \subset C_{M}(h) \nsubseteq H$, a contradiction to (3.3.3). Hence $M=1$.

By the structure of $L_{2}(r)$,

$$
|C(t) \cap C(B)|=q-1=r \pm 1
$$

The cases $C(B) \cong L_{2}(q \div 2)$ or A_{7} are not possible as this would imply that $C\left\langle s, t_{3}\right\rangle$ contains a subgroup isomorphic to $L_{2}(q+2)$ or A_{7} contrary to (3.1.3) and (3.2.6). This completes the proof that $C(B) \cong L_{2}(q)$.
(3.4) $\quad S_{p}$-subgroups of G.

We shall now construct a p-subgroup of G which will turn out to be an S_{p}-subgroup of G.
(3.4.1) The group $\left\langle T_{1}, T_{2}, T_{1}{ }^{u}, T_{2^{\prime}}\right\rangle$ is elementary Abelian of order q^{4}.

Proof. Let

$$
T=\left\langle x u x u \mid x \in T_{1}\right\rangle \quad \text { and } \quad T=\left\langle x^{-1} u x u \mid x \in T_{1}\right\rangle
$$

Then we have

$$
C_{H}(T)=\left\langle w^{2} \alpha_{1} \alpha_{2}^{-1}, u\right\rangle T_{1} T_{2}
$$

For the same reason as in the proof of (3.3.4), $\left\langle v^{2} a_{1} a_{2}^{-1}, u\right\rangle$ is an S_{2}-subgroup $C(T)$. Since

$$
\left\langle w^{2} \alpha_{1} \alpha_{2}^{-1}, u\right\rangle \subseteq C(B) \simeq L_{2}(q)
$$

by (3.3.4), $C(T)$ has only one class of involutions. Further $C(t) \cap C(T)$ has Abelian 2-complement. Therefore by the result of Gorenstein-Walter [4], $C(T) / M$ is isomorphic to A_{7} or $L_{2}(r)$ where $M=O(C(T))$. When $q \neq 5$, $C(T) / M$ cannot be isomorphic to A_{7} since $C(T) / M$ contains a subgroup $C(B) M / M$ isomorphic to $L_{2}(r)$. If $q=5, C(T) / M$ has an S_{2}-subgroup of order 4 whereas an S_{2}-subgroup of A_{7} has order 8 . Thus we have shown that $C(T) / M$ is isomorphic to $L_{2}(r)$ for some odd r.

Suppose $q \neq 5$. Since $C(T) / M$ contains a subgroup isomorphic to $L_{2}(q)$, this implies that $r=q^{k}$ for some integer k. But, on the other hand, $(C(t) \cap C(T)) M / M$ has order at most $q^{2}-q$ since $T \subseteq M$. It follows that $r=q$.

When $q=5, C(T) / M$ is isomorphic to $I_{2}(5)$ or $I_{~_{2}}(19)$. If the latter is the case, we obtain $M=T$. Since $C(T) \supset C(B) T ; C(B) T$ is a split extension of T, by the result of [5, Ka. II, 17.4],

$$
C(T)=K \times T, \quad K \cong L_{2}(19)
$$

Now $a_{1} a_{2} \in N(T)$ and so normalizes

$$
C(T)^{\prime}=K \supseteq C(B)^{\prime}=C(B)
$$

Since $\left\langle v^{2} a_{1} a_{2}^{-1}, u, a_{1} a_{2}\right\rangle$ is not dihedral, $K\left\langle a_{1} a_{2}\right\rangle$ is not isomorphic to $P G L(2,19)$. In other words, $a_{1} a_{2} x$ centralizes K for a suitable $x \in K$. Both $a_{1} a_{2} x$ and $a_{1} a_{2}$ centralize $C(B)$. Therefore x centralizes $C(B) \subseteq K$. It follows $x=1$ since no nontrivial element of K can centralize a subgroup isomorphic to $L_{2}(5)$. Thus $a_{1} a_{2} \in C(K)$, a contradiction to the structure of H.

Thus $C(T) / M \cong L_{2}(q)$ for all q. In particular

$$
C(t) \cap M=T_{1} T_{2}=\langle T, \check{T}\rangle
$$

In the proof of (3.3.1), we have an element $z^{\prime} \in N(T)$ such that $t^{z^{\prime}}=u$. Since M char $C(T), z^{\prime} \in N(M)$. Therefore $C_{M}(u)=\left\langle T, \tilde{T}^{z^{\prime}}\right\rangle$ and $C_{M}(u t)=$ $\left\langle T, \widetilde{T}^{2}\right\rangle$. Hence $M=\left\langle T, \tilde{T}, \widetilde{T}^{z^{1}}, \widetilde{T}^{2}\right\rangle$ of order q^{4}.

Using information in (3.3.1), we get $v^{2} t s=u s v^{2}$ and $z^{\prime} t s=u s z^{\prime}$. Since $u s \in C(\tilde{T})$, it follows that

$$
\left\langle\widetilde{T}^{z^{\prime}}, \widetilde{T}^{2}\right\rangle \subseteq C_{M}(t s)
$$

The order of

$$
\left\langle\tilde{T}^{z^{\prime}}, \tilde{T}^{v^{2}}\right\rangle \subseteq M
$$

is at least q^{2}. But an S_{p}-subgroup of $C(t s)$ has order q^{2}. It follows

$$
\left\langle\widetilde{T}^{z}, \widetilde{T}^{2}\right\rangle=C_{M}(t s) .
$$

Applying Brauer-Wielandt's formula on M using the four-group $\langle t, s\rangle$, we get $C_{M}(s)=1$. Hence by the result of Zassenhaus, M is Abelian and so elementary Abelian of order q^{4}.

To complete the proof, we shall show that $C_{M}(t s)^{\mu}=\left\langle T_{1}, T_{2}\right\rangle$. Since

$$
(t s)^{\mu}=t, \quad C_{M}(t s)^{\mu} \subseteq C(t)
$$

We have

$$
z^{\prime} \mu=z^{\prime}\left[z^{\prime}, \mathfrak{v}^{2^{\alpha-2}}\right]=\left(\mathfrak{z}^{2^{2 x-2}}\right)^{-1} z^{\prime} \mathfrak{v}^{2 x^{2-2}} .
$$

Since $z^{\prime} \in N(T), \quad z^{\prime} \mu \in N(T)^{x^{2 \alpha-2}}=N(\tilde{T})$. Therefore $C_{M}(t s)^{\mu}$ contains $\tilde{T}^{z^{\prime} \mu}=\tilde{T}$. But $\left\langle T_{1}, T_{2}\right\rangle$ is the unique S_{p}-subgroup of $C(t)$ containing \tilde{T}. It follows that $C_{M}(t s)^{\mu}=\left\langle T_{1}, T_{2}\right\rangle$ and so

$$
C_{M}(l s)^{\mu^{2}}=C_{M}(l s)=\left\langle T_{1}^{\mu}, T_{2}^{\mu}\right\rangle
$$

because $\mu^{2}=s \in N(T)$ and $\mu^{2} \in N(M)$.
(3.4.2) Let $\theta_{3}=\theta_{1}{ }^{\mu} ; \quad \theta_{4}=\theta_{2}{ }^{\mu} ; \quad \theta_{5}=\theta_{3}^{c_{2}} ; \quad \theta_{6}=\theta_{4}^{c_{2}} ; \quad T_{3}=T_{1}{ }^{\mu}$; $T_{4}=T_{2}{ }^{\mu} ; T_{5}=T_{3}^{c_{2}} ; T_{6}=T_{4}^{c_{2}}$. Then $P=T_{1} T_{2} T_{3} T_{4} T_{5} T_{6}$ is a p-subgroup of order q^{6} and $B=P F$ is a subgroup of order $\frac{1}{4}(q-1)^{3} q^{6}$ with $F \subseteq N(P)$.

Proof. Almost identical to that of (2.5.2).

$$
\text { 4. The sibgroup } G_{0}
$$

From now on, we shall assume that q is any odd prime power. We shall show that $B N B$ is a subgroup and a (B, N) pair.

$$
\begin{aligned}
& \quad \text { (4.1) Let } V_{1}=\left\langle T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right\rangle \\
& V_{2}=\left\langle T_{1}, T_{3}, T_{4}, T_{5}, T_{6}\right\rangle \quad \text { and } \quad V_{3}=\left\langle T_{1}, T_{2}, T_{3}, T_{4}, T_{6}\right\rangle .
\end{aligned}
$$

Then $\mu \in N\left(V_{1}\right), c_{2} \in N\left(V_{2}\right)$, and $\mu u t \in N\left(V_{3}\right)$.
Proof. From (2.4.1) and (3.3.1), it is immediate that

$$
T_{1}{ }^{u}=T_{3}, \quad T_{2}{ }^{u}=T_{4}, \quad T_{3}{ }^{u}=T_{1}, \quad T_{4}{ }^{\mu}=T_{2}
$$

By (2.4.2) and (3.3.2), we have $\left(\mu c_{2}\right)^{3}=1$. Hence

$$
\mu^{-1} \theta_{5} \mu=\left(\mu^{-1} c_{2}^{-1} \mu^{-1}\right) \theta\left(\mu c_{2} \mu\right)=c_{2} \mu\left(c_{2} \theta_{1} c_{2}^{-1}\right) \mu^{-1} c_{2}^{-1}=\theta_{5}
$$

Since w acts fixed-point-free on $T_{1}, w^{u c_{2}}$ acts fixed-point-free on T_{5}. Let $x \in T_{5}$. Then $x=h^{-1} \theta_{5} h$ for some $h \in\left\langle w^{u c_{2}}\right\rangle \subseteq F$ and

$$
\mu^{-1} x \mu=\left(h^{\mu}\right)^{-1}\left(\mu^{-1} \theta_{5} \mu\right) h^{\mu} \in T_{5}
$$

because $h^{u} \in F$ and $F \subseteq N\left(T_{i}\right)$ for all i. Thus $\mu \in N\left(V_{1}\right)$. The other assertions may be proved similarly.

For later use, we exhibit the action of $\mu, c_{2}, \mu u t$ on V_{1}, V_{2}, V_{3} by the following table:

TABLE I

	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}	T_{6}
μ	T_{3}	T_{4}	T_{1}	T_{2}	T_{5}	
c_{2}	T_{1}		T_{5}	T_{6}	T_{3}	T_{4}
$\mu u t$	T_{4}	T_{3}	T_{2}	T_{1}		T_{6}

(4.2) The following relations hold in the group G :

$$
\left(c_{2} \theta_{2}\right)^{3}=\left(\mu \theta_{6}\right)^{3}=\left(\mu u t \theta_{5}\right)^{3}=1 .
$$

Proof. From the structure of $H,\left(c_{2} \theta_{2}\right)^{3}=1$. We have

$$
\left(c_{2} \theta_{2}\right)^{\mu c_{2}}=\left(c_{2}^{-1} \mu^{-1} c_{2} \mu c_{2}\right) \theta_{6}=\mu \theta_{6}
$$

and

$$
\left(c_{2} \theta_{2}\right)^{u \mu c_{2}}=\left(c_{1} c_{2} c_{2}^{-1} \theta_{1}\right)^{\mu c_{2}} \mu u t \theta_{5}
$$

by (2.4.1), (3.3.1), (2.4.2), and (3.3.2) proving the lemma.
Put

$$
W=N / F, \quad r_{1}=\mu F, \quad r_{2}=c_{2} F, \quad r_{3}=\mu u t F .
$$

By (2.4.2) and (3.3.2), $W \cong S_{4}$, the symmetric group on four letters. For any $x \subset W$, let $l(x)=l$ denote the smallest positive integer such that $x=r_{i_{1}} \cdots r_{i_{1}}$ where $r_{i}, \in\left\{r_{1}, r_{2}, r_{3}\right\}$. Let

$$
\omega\left(r_{1}\right)=\mu ; \quad \omega\left(r_{2}\right)=c_{2} ; \quad \omega\left(r_{3}\right)=\mu u t .
$$

For any $x \in W$ where $x=r_{i_{1}} \cdots r_{i_{i}}$, let $\omega(x)=\omega\left(r_{i_{1}}\right) \cdots \omega\left(r_{i_{i}}\right)$. As usual $B x B$ shall denote $B \omega(x) B$.

By (2.4.2), (2.5.2), (3.3.2), and (3.4.2), we have $B \cap N=F$ and $F \triangleleft N$. We shall now show the following result.
(4.3) The set of elements $B N B$ is a (B, N) pair of type A_{3}.

Proof. First we show that $G_{i}=B \cup B r_{i} B$ are subgroups of G. Consider $G_{1}=B \cup B \mu B$. The group B may be written in the form $B-\left(F V_{1}\right) T_{6}$. Since $\mu \in N\left(F V_{1}\right)$ and $\mu^{2}=v^{2^{\alpha-1}} \in B$, it is sufficient to show that

$$
\mu x \mu \in B \cup B \mu B \quad \text { for } \quad x \in T_{6}-1 .
$$

As $w^{\mu c_{2}}$ acts fixed-point-free on $T_{6}, x=h^{-1} \theta_{6} h$ for some $h \in\left\langle w^{\left.\mu c_{2}\right\rangle}\right.$. Then

$$
\mu x_{\mu}=k^{-1} \mu \theta_{\mathbf{6}} \mu k
$$

where $k=h^{\mu^{-1}} \in F \subseteq B$. Since $\left(\mu \theta_{6}\right)^{3}=1$, by (4.2), it follows that

$$
\mu x \mu=k^{-1} \theta_{6}^{-1} \mu^{-1} \theta_{6}^{-1} k \in B \mu B .
$$

Hence G_{1} is a group. Similarly G_{2}, G_{3} are subgroups of $B N B$.
We shall show next that for any i and $x \in W$, if $l\left(r_{i} k\right) \geqslant l(x)$, then $r_{i} B x \subseteq B r_{i} x B$. Put

$$
X_{1}=T_{6}, \quad X_{2}=T_{2}, \quad X_{3}=T_{5}
$$

Since $W \cong S_{4}$ and r_{1}, r_{2}, r_{3} satisfy the Moore's relations we may identify r_{1}, r_{2}, r_{3} with the transpositions (12), (23), (34), respectively. Let

$$
C_{0}=\{1\}, \quad C_{1}=\left\{r_{1}, r_{2}, r_{3}\right\} .
$$

Let \bar{C}_{n} be the set of words of length n. Then

$$
C_{n}=\tilde{C}_{n}-\bigcup_{n \leq i \leq i \leq n-1} C_{i}
$$

is clearly the set of elements x in W with $l(x)=n$. To prove our result, it is only necessary to show that, for those $x \in N$ such that $l\left(r_{i} x\right) \geqslant l(x)$, $r_{i} X_{i} x \subseteq B r_{i} x B$. By an easy computation using the table, we see that this is the case.

Now by the theorem of Tits [6], BNB is a (B, N) pair of type A_{3}.
(4.4) The group G contains a subgroup G_{0} isomorphic to $L_{4}(q)$.

Proof. By a result of Abe [1], $B N B$ contains subgroups K and G_{0} such that $G_{0} / K \simeq L_{4}(q)$. Now K is necessarily odd and G_{0} contains a four-group $\left\langle t^{\prime}, v^{\prime}\right\rangle$, all of whose involutions are conjugate in G_{0}. Comparing $\left|C_{G}\left(t^{\prime}\right)\right|$ with $\left|C_{G_{0}}\left(t^{\prime}\right) K / K\right|$, it follows that $C_{G}\left(t^{\prime}\right) \cap K=1$ and $C_{G}\left(t^{\prime}\right) \subseteq G_{0}$. By the theorem of Brauer-Wielandt, $|K|=1$. Thus we have $G_{0} \cong L_{4}(q)$.

Before proving the identity, we show that G is simple.

$$
\text { 5. Identity } G=G_{0}
$$

(5.1) The group G is simple.

Proof. Suppose $M=O(G) \neq 1$. Act on M by the four-group $\left\langle t, \varepsilon^{\left.2^{2^{-1}}\right\rangle}\right.$. We note the involutions in $\left\langle t, v^{2^{\alpha-1}}\right\rangle$ all lie in a conjugate class of G by (2.2.6) and (3.2.6). Since $O(C(t))=\langle l\rangle$, it follows that $C_{M}(t) \subseteq\langle l\rangle$. If $C_{M}(t)=1$ then by Brauer-Wielandt's result, $M=1$, a contradiction. If $C_{M}(t) \neq 1$, again by Brauer-Wielandt, $M=C_{M}(t)$. Consider $C(M)$. It is normal in G and has an S_{2}-subgroup of index 2 in an S_{2}-subgroup of G. In other words
$G / C(M)$ has cyclic S_{2}-subgroup of order 2 . By Burnside's transfer result [3, Ch. 7, 4.3], $G / C(M)$ has a normal 2-complement in contradiction to condition (a) of the theorem. Hence $O(G)=1$.

Suppose next that G has a proper normal subgroup K with odd factor group G / K. Since $C(t)$ does not have a proper normal subgroup with odd index in $C(t), C(t) \subseteq K$. The Frattini argument shows that $G=K N_{G}(Q)$. But $N_{G}(Q) \subseteq C(t)$ and hence $G=N$, a contradiction.

Suppose G has a normal subgroup M such that both $|M|$ and $|C / M|$ arc even. Now $Q \cap M$ is an S_{2}-subgroup of M and is normal in Q. Hence it contains $Z(Q)=\langle t\rangle$ and also u which is conjugate to t and $u t$. Thus M contains all involutions conjugate to t and $u t$. This implies that $Q \subseteq M$ since, by direct computation, M contains subgroups generated by involutions conjugate to t or $u t$ and M contains conjugates of these subgroups. It follows that $G / M \mid$ is odd, a contradiction. This completes the proof.

To complete the proof of the theorem, we prove the following:
(5.2) $\quad G_{0}=G$.

Suppose by way on contradiction that $G-G_{0} \neq \varnothing$. We have three cases to consider.
(i) $q=-1(\bmod 4)$.

By (2.3.1), (4.4), and (5.1) G_{0} is a strongly embedded subgroup of G, and hence by the result of Suzuki-Thompson [3, Ch. 9, 2.2], G has only one class of involutions, a contradiction. Hence $G=G_{0}$.
(ii) $q=1(\bmod 8)$.

Let i be an involution in $G-G_{0}$ conjugate to z (See 2.2.2). Then $\langle i, t\rangle$ is dihedral and its order is divisible by 8 . Let j be a central involution of $\langle i, t\rangle$. Suppose j is conjugate to t in G. First we have $j \in C(t) \subseteq G_{0}$. By our assumption $C(j) \subseteq G_{0}$ since G_{0} contains the centralizers of its involutions conjugate to t. Thus $i \in G_{0}$, a contradiction. Hence j is conjugate to z in G. The fourgroup $\langle t, j\rangle$ contains two involutions conjugate to t and one conjugate to z. But $\langle t, j\rangle$ is conjugate to $\langle t, z\rangle$ in H and $\langle\boldsymbol{t}, \boldsymbol{z}\rangle$ contains two involutions conjugate to z, a contradiction. Thus $G-G_{0}$.
(iii) $q \equiv 5(\bmod 8)$.

In this case G has only one class of involutions and G_{0} is a strongly embedded subgroup of G. Hence by Suzuki-Thompson [3, Ch. 9, 2.2], $G_{0}=C(t) K$, where K has odd order. Since $G_{o} \cong L_{4}(q)$,

$$
\left.K\left|=\frac{1}{2}\left(q^{2}+1\right)\left(1+q+q^{2}\right) q^{4}\right| C(t) \cap K \right\rvert\,
$$

Let p^{x} be the maximal power of p dividing $|K|$. Since K is solvable a Hall subgroup of M of order $\frac{1}{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right) p^{x}$ exists. By [5, Ka. II, 7.3],
G_{0} contains a cyclic Hall subgroup T^{*} of order $\frac{1}{2}\left(q^{2}+1\right)$. By a result of Wielandt, [5, Ka. III, 5.8] we may assume $T^{*} \subseteq M$. Suppose $1 \neq\langle x\rangle=$ $T^{*} \cap T^{* g}$ for some $g \in M$, by [5, Ka. II, 7.3], $N_{M}\langle x\rangle=T^{*}$ and so $T^{*}=T^{* g}$. Also $N_{M}\left(T^{*}\right)=T^{*}$. Thus M is a Frobenious group with the Froberious kernel of order $\left(q^{2}+q+1\right) p^{x}$ which is nilpotent by a result of Thompson [5, Ka. V, 8.13]. This gives a contradiction since the centralizer of an element of order p in $L_{4}(q)$ is not divisible by $q^{2}+q+1$.

Thus we have shown that $C=G_{0}$ for all odd q.

Refrrences

1. E. Abe, Finite groups admitting Bruhat decompositions of type (A_{n}), Tôhoku Math. J. 16 (1964), 130-141.
2. G. Glaubermann, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
3. D. Gorenstein, "Finite Groups," Harper \& Row, New York, 1968.
4. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2subgroups, Illinois J. Math. 6(1962), 553-593.
5. B. Huppert, "Endliche Gruppen," Springer Pub., New York, 1967.
6. J. Tirs, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. Sci. Paris 254 (1962), 2910-2912.
7. H. Wielandt, Beziehungen zwischen den Fixpunktzahler von Automorphismengruppen ciner endlichen Gruppe, Math. $Z .73$ (1960), 146-158.
8. W. J. Wong, A characterization of the alternating group of degree 8, Proc. London Math. Soc. 50 (1963), 359-383.
