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In this paper we shall show that the four-dimensional unimodular group
over the finite field of odd characteristic ¢ is characterized by the structure
of the centralizer of an element of order 2. Let H, denote the centralizer in
L,(q) of an involution contained in the center of an Sy-subgroup of L,(g). Our
characterization is given by the following:

'THEOREM. Let G be a finite group of even order with the following properties:

(a) G has no subgroup of index 2;
(b) G contains an involution t such that the centralizer Cg(t) = H of t
in G is isomorphic to H, .
Then G is isomorphic to Ly(q).

The method of our proof is the familiar one. Briefly we aim to construct a
subgroup of G which is a (B, N)-pair in the sense of T'ts and finally to show
that this subgroup is G itself. It turns out that the information needed for
the construction can be obtained by the study of the fusion of involutions.
Since these involutions fuse differently when ¢ = —1 (mod 4) and when
g == 1 (mod 4), it appears best to treat the two cases separately for the sake of
clarity but at the expense of some repetition.

As is often the case with this type of work, a detailed knowledge of the
structure of H, is essential. We shall freely use results on the structure of H,
without proof, which are essentially simple deductions from Dickson’s Iist
of all subgroups of L,(g). Our arguments are group theoretic but rely on
character theory implicitly via the work of Gorenstein—-Walter [4].

The notation is standard. See for example, Gorenstein’s book [3]. The
symbols N(X) and C(X) shall denote the normalizer and centralizer, respec-
tively, in the group G of the theorem of some subset X of G.

1. STRUCTURE OF THE GROUP H,

Let ¥ be a four-dimensional vector space over the finite field F, where g is
odd. We shall identify a linear transformation of ¥ with the corresponding
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matrix in terms of a fixed basis of 7. For every x € SL(2, ), let x,’, x,” denote

the matrices
x 1
1 1 ,
1 x

respectively. Let L, = {x,; | x € SL(2, ¢)> (i = 1, 2). The matrix

1

is an involution in SL(4, ¢). Let H,' denote the group of matrices («;;) in
SL(4, q) which commute projectively with ¢, i.e.,

(i)™ 8 (o5) £ € Z(SL(4, q)),

the center of SL(4, g). It is easy to see that H, is a splitting extension of
L," x L, by a dihedral group (&', "> of order 2(¢ — 1) where

1 0 1
W 0t o — A
1 0 ’
01 ATt
A a primitive element of F, .

Form the factor group H, = H, |Z(SL(4, q)) which clearly is the centralizer
in L,(g) of the involution t, = #/Z(SL(4, ¢)). In the natural homomorphism
of H, onto H,, let the images of L, x’ be L; , x, respectively, where x' € H,/.

Let ¢ =p/, g — 1 =24, ¢ + 1 = 2% where d and e are odd. When
g= —1(mod4), a =1 B=2, |Z(SL4,q) =2 and |H,| =
(g — 1P ¢%g+ 1% Wheng=1(mod 4), « =2,8 =1, | Z(SL4, ¢))| = 4
and | H,| = ¥(¢ — 1)® ¢¥(g + 1)°. Comparing the order of H, with that of
Ly(q), t, is indeed an involution contained in the center of an S,-subgroup

of L,(q).
We shall need the images «y, ¢;, and 0, in H, of the following matrices

in H;:
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Set a, = Uy, Cy = ucyl, 0, = ubyu, [ = (w0527, m = (aqogh)*"",
n = (qap)?" . The symbols introduced in this section shall keep their
meaning throughout the paper.

2. THE casg ¢ == —1 (mod 4).

Here we have o = 1, 8 == 2, and H, is a splitting extension of the central
product L,L, (i.e., [L, ,L;] = 1,L; "L, = t,) by the dihedral group <{u, ).
From now on we shall identify H, with H = C(t), the centralizer of  in G
in the theorem. Hence ¢, = .

(2.1.1) Sy-subgroup of H

It is well-known that GL(2, q), where ¢ = —1 (mod 4), contains elements
x, ¥y with O(x) = 2(g + 1), O(y) =2 and det(x) = det(y) = —1 such
that {x, v} satisfies the relation yxy == x¢. Therefore <{x°, 3> has order
28+2and is a S,-subgroup of GL(2, q). We check that y~lx?y = (x°)? = (Jce)zﬁ‘1
since g = 2% — 1 (mod 2%+1) and so <{x*, y> is a semidihedral group. We may
choose x such that

e (00w )

Let B, be the image in H , of the following matrix in H}:

C )

Set B, = uPyu, b, = B2, v = w' V2 d, = vB# (i = 1,2). We compute
that O(b;) = 28, O(d;) = 4 and that the following relations hold: Q, =
<b;,d) CL; is generalized quaternion; wbw = b"; wvdw = bd?;
uv = vu (i = 1, 2). Hence Q = (u, v) 010, is an S,-subgroup of H which
has order 226+3 and center Z(Q) = {t).

(2.1.2) Conjugate classes of involutions in H

Every involution ¢’ 2= ¢t in Q;Q, has the form t' = x; v, where x;, €0, ,
v2 €0, and x,2 = y,2 = 1. Since all elements of order 4 in SL(2, ¢) are
conjugate, it follows that ¢’ is conjugate to 1, = (blbz)zﬁ_2 == €16, in H.

By an easy computation all involutions in #Q,0Q, — 0,0, have the form
ux,x3” = u™ or utx;x;* = (ut)”* where x; €Q; and so are conjugate in H to
u and ut, respectively. It s easily verified that u is not conjugate to u# in H.
Similarly all involutions in #vQ,0, — 0,0, lie in two conjugate classes of H
with representatives wv and wvt. Lastly involutions in 0,0, — 0,0, have
the form vb,’b,’ for some integers 7 and j and are conjugate to v.
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Thus we have shown that there are seven classes of involutions in H with
representatives t, ty, u, ut, uv, uvt, and v.

(2.1.3) Centralizers of involutions in H.

The centralizer Cy(ty) of #; in H is A = (I, B3 B,?, t,){u, v> where
ty == dydy . An S,-subgroup of 4 is O = (b, , b, , t,>{u, v> and is of index 2
in Q. The center Z(Q) = {1, t,> is a four group. The commutator group 0’
is <b%, b,b,>. Every elementary Abelian group of order 16 in Q is conjugate to
one of the following:

El = {, I3, 4 U,

E, = {t, t;, b,dd, , uv),
and

E, =t ty,u,v).

The centralizer Cp(u) of u in H is {t, u, v)B where
B = {xyx, | e SL(2, q)> =~ Ly(q).
We have Cy(u) = Cy{ut). Similarly Cy(uv) = (¢, u, v)C where
C = {xx," | e SL(2, q)) =~ L,(q) and Cp(uv) = Cyluzt).

Finally,
Cl;(v) = <t) I3, u, 'I)><I, m, n> = E3<l) m, n>‘

We check that {I, m, n> is a normal 2-complement of Cy(2).

(2.1.4) S,-subgroups of H.
Let
T, =07 veln,vy; Ty=Ty
and
T = {(6,0,)" | x € <m, v)).

Clearly 4T, = T, x T, 1s an S,-subgroup of H and is elementary of order
¢* We have

Cu(T\T,) = <4, 1 T,
and

Ny(T\Ty) = &, oxld,myn> T T, .
By direct computation, (c,0,)% = 1.

(2.1.5) The maximal normal subgroup of H of odd order

It is easily seen that O(H) = <) of order (¢ — 1)/2 and that H does not
have a normal subgroup K such that | H/K | 5= 1 and is odd.
Let X C<I>. Then Cy(X) = <{v,I) L\L, and [H : Cy(l)] = 2.
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2.2 Fusion of Involutions

We shall show that G has two classes of involutions when g = —1 (mod 4).

(2.2.1) A S,-subgroup of H is an S,y-subgroup of G.

Proof. 'This is obvious since O, an .S,-subgroup of H, has cyclic center

@ (2.1.1).

(2.2.2) The involution t; is not conjugate to ¢ in G.

Proof. By way of contradiction, suppose that f; is conjugate to ¢ in G.
Then there exists an S,-subgroup S of C5(2,) containing O = (b, , by, t,>Cu, v -
and [S: 0] = 2. Hence 0 <1 S. Let x& S — Q. By (2.1.3), we may assume
E#CQ is E,, E, or E,. If E == E,, then N(E;) ¢ H. Suppose that
E* = E, . It follows that (E;(')* = E,('. Both E,Q’ and E,{’ are normal
subgroups of an S,-subgroup Q of G and so by Burnside’s result [3, Ch. 7, 1.1]
are conjugate in G if and only if they are conjugate in N(Q)C N(Z(Q)) =:
N{t, = H, a contradiction to the structure of /. If £,* = E, , then E,¥ = E,
for a suitable y € S — @. Thus either E,* — E, or E,* = E, for some
xyeS —0.

(i) Suppose E® = E, and ¢ = 3 (mod 8). Then {Q | = 27 and £, <1 Q.
From the structure of H, we have C(E,) = E, and so 4 = N(E)/E, 1s
isomorphic to a subgroup of GL(4, 2) ~ A, . Clearly Q/E,, dihedral of
order 8, is a S,-subgroup of A",

Let .# = O(A"). Suppose that .# == 1. Consider the action of the
four-group

F o= b E i EC A on A

There exists an element oy0, in B C C{¢, u; of order 3 acting fixed-point-free
on {t3,1, and so g,0,F; € 4. Moreover ¢,0,F; also acts fixed-point-free
on #. Hence using Brauer—Wilandt’s result [7] and the fact that the centrali-
zer of any involution in Ay has order 2%-3 or 25-3 [8], it follows that
| A | = 3% or 3. Since | Ag| = 2%-3%2-5 -7 - the first case is not possible.
Hence | # | = 3 and so #F = .# < F. We shall now look at N (F) =
NCE by, dyy 0 N(E)JE, . Since Z{E,, b, d)> = {(t>, it follows that
N{E;,b,,d> C Hand so

NCE, by, dyy N N(EYE, >~ A,

a contradiction to HF ~ .# x #. Thus .# = 1.

Next we consider C (b, E;) 2 Q/E; where {b,E\> = Z(Q/E;). Suppose that
Z(S|E,) C Q/E, is (vE;> or {bwE>. Then (E,, b,> is conjugate to {E; , v
or (E,,bw>. This is a contradiction since Z(E,,v) = (¢, t;, u> and
Z{E;, byvy =, 1y, utyy whereas Z{E,, b, = {t,t;>. Thus Z(S/E,) =
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{b,E,> showing that | C ,(b,E,)| > 8 and also A" has two classes of involutions
since we already know all involutions in (§,E, , d,E,> are conjugate in 4",
By our earlier remark about 4y, it follows that | C ,(b,F;)] = 2% - 3 and we
may apply Gorenstein-Walter’s result [4] to get A" =~ PGL(2,r) where
r + 1 = 4(24). But then | A" | does not divide | 45 |. Hence E, cannot be
normal in S.

(it) E®* = E; and ¢ =7 (mod 8). Again we have C(¥,) = E, and
A" = N(E,)/E, is isomorphic to a subgroup of 4. By an easy computation,
Ny(ED/E, =~ Syand F = {(¢,FE, , d,E,> where ¢; = biﬁ—z is an S,-subgroup
of Ny(E))/E, . Since

Zicy, dy, B =, {oEy, dED

is an S,-subgroup of A", In particular A" has only one class of involutions.
By a similar argument as in (1), O(A") = 1.

Since E\® = E;, {x,¢,E>CSNN(E,). Hence {x,¢> EJE, is an
Sy-subgroup of A" distinct from #. Therefore | C ,(c,E,)| > 22 and thus
[ C ey y)| = 22 - 3. By the result of Gorenstein—Waltor [4], it follows that
AN =~ Ly(r) where r + 1 = 12, a contradiction as before. So we have shown
that E| is not normal in S.

By repeating the same argument to the case when E,Y = E,, this again
leads to a contradiction showing the falsity for our assumption that #; is
conjugate to £.

(2.2.3) If 2°%1 divides the ovder of C(ut) or C(u) then u and ut lie in
different conjugate classes of G. Furthermore if 26+% | C(ut)| and u is conjugate
to tin G, then there exists an element z, in C(B) such that 1> — u; usr = 1,
A = v, or uvt.

Proof. Suppose 25+% divides | C(ut)]. There exists a group SC C(ut) of
order 28+4 containing
U= {,u,v,bb,, dd,>

of order 2843, It follows that /' <1 S. Let 2, €S — U. We have Z(U) =
oty uyand U = (byb,). Hence Z(U) N U’ == {t;» char U and so 31 == t, .
Now Z(U) being characteristic in U is normalized by z;. Thus
tre{t, tty, u, uty}. Clearly 151 == t or #ty since 2z, ¢ H and #ty; ~p, 2. It
follows that t*1 = u or uty and correspondingly (#£,)*1 = ut; or u. By (2.2.2)
and the fact that ut; ~, ut we have proved the first part of the lemma.
1£ 28+4|| C(u)l, we prove in the same way that » and ut lie in different conjugate
classes of G.

Suppose 28+4|| C(ut)| and u ~ ¢, it follows that 21 =y and u® = ¢
since z,2e€ UL C{t,u>. Thus z € N{t,u> and therefore =z, normalizes
C{t,uy. Since B = (C{t,w>), 2, € N(B). Because ¢ = p/ = —1 (mod 4),
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fis odd. The outer automorphism group of B ~ L,(q) has order 2f. Hence
replacing 2, by 2%, where x € (v)B if necessary, we get that 2, € C(B) without
affecting our earlier conclusions. Finally we must have v®1 = vy for some
y e {t,u>B. Since v27 vz, centralizes B, it follows that y € (t, u>. If y =1,
then v%”° = wot, a contradiction since z,2€ H and v is not conjugate to
uvt in H. Similarly y £ u, and we are done.

(2.2.4) If 2°+* divides the order of C(uwt) or C(uv), then uv and uvt lie
in different classes of G. Furthermore if 254 | |C(uv)| and uv is conjugate to t
in G, then there exists an element z, in C(C), such that t* = uv, (uv)™ = i,
0% == v, orF ul.

Proof. As in (2.2.3).

(2.2.5) The tnvolution t is conjugate to an element in {u, v, uv}.

Proof. By way of contradiction suppose that G is 2-normal. Since {t) is
the center of an S,-subgroup Q of G, it follows from Hall-Griin’s theorem
[3, Ch. 7, 5.2], that the greatest 2-factor group of G is isomorphic to that of
N(Z(Q)) = H, ie., to HL. LI, a four-group. This is a contradiction to
condition (a) of the theorem.

Because G is not 2-normal, it implies that there exists x in G such that
teQ N Q" but {t> is not the center of Q. So t* 5= t. On the other hand t € Q”
and hence f and #” commute, i.c., t* € H. Without loss of generality we may
assume that ¢ € {u, ut, v, uv, wvt} by (2.1.2) and (2.2.2). Interchanging # by
ut andfor © by ot, if necessary, we get that t* € {u, v, uov}. This completes the
proof.

Our next lemma is crucial to the whole paper.

(2.2.6) The group G has precisely two classes of involutions 4| and
Ay with the representatives t and ut, respectively: Ky N H is the union of four
conjugate classes of H with representatives t, u, uv, v; A, N H is the union of
three conjugate classes with representatives t, , ut, uvt.

Proof. Suppose that u ~ t. Then by the proof of (2.2.3) ut ~ ;. Hence
the subgroup {u, b, , b,,d, , d,>, a maximal subgroup of Q, has two classes of
involutions in G with representatives # and 75 . Since G has no subgroup of
index 2, by Thompson’s lemma {3, Ch. 7, Ex. 3], v, v, uvt are conjugate to
t or t; . By (2.2.4), interchanging @ by ¢t, if necessary, it follows that uy ~ t
and wvt ~ t, . To decide whether v is conjugate to t or #; . we use (2.2.3) and
(2.2.4) to get the following possibilities:

(i) vt = v, v® = ut. Then (vt)*t == uv. This is a contradiction since
v ~g vl whereas ut and uw lie in different conjugate classes of G.
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(ii) 2% = wot, v = v. Then (vt)** = u, again a contradiction as before.

(iit) v*t = wot, v*2 = ut. Then (C{t, v))2 = C{u, uvt) and so, by (2.1.3)
has an S,-subgroup of order 2%. We compute from (2.2.4) that 2, € C{u, uvt)
and 2, € N{u, v, t, t;>. Hence

{3y, 4,9, 1, ) © Clu, uvt)

has order at least 25, a contradiction.

Thus we must be in case (iv).

(iv) ©*t = 9, v*2 = o. Then it follows (vt) = uv ~ t, proving all the
assertions of the lemma.

If uv ~ ¢, then using exactly the same argument as before, the lemma
follows.

Ife ~t,then M = {v, b, , by, d,;, dy is a maximal subgroup of Q and has
two classes of involutions in G by our assumption and (2.2.2). By Thompson’s
lemma [3] u, ut, uv, uvt are conjugate to t or 3. Using (2.2.3) and (2.2.4),
interchanging u by ut and/or by vt if necessary, the lemma follows.

Since one of the three cases must happen by (2.2.5), the proof is complete.

As a consequence of the above lemma, v = v and v*2 = ©.

(2.3) Centralizer of an involution in ¢, .

We begin this section with a closer look at the structure of an .S,-subgroup
O = <u, v, by, by, ddy)> of Cylt,). Obviously O is an S,-subgroup of C(t).
We note that zd,d, is an element of order 2% and (fudIdZ)Z‘&1 = ty . The central-
izer Cgylvdid,) is (vdyd,> x (vbdd,,ut) of order 22+l 'The group
Cobydid, , uty is dihedral of order 2641 and all its involutions lie in J¢; . The
clement vd,d, is inverted by elements in O — C5{vdd,>.

Let

K = N{vdyd,, vbidd, , ut> 0\ Cglts).
Since
by = QZ{vdd, , vbidid, , ut)),
it follows that

K C N, t N C(ty).

By (2.2.2), KC C{t, t,) and so K = Q x (D).

Now let S be an S,-subgroup of C(uf) containing U = {t,u, v, bb, , d,d,>.
By (2.2.6), S = 0. Hence there is an element s € .S conjugate to zd,d, and
we have U N (s> = (ut). Clearly t ¢ C(s) and so by the structure of O,
t inverts 5. Since Cg(s) is of index 2 in S, either v¢ or v belongs to Cg(s).
Suppose that vt € Cg(s). Then (526‘2)”1 ot t(s2ﬂ_2) = yut, a contradiction to
(2.2.6). Hence v € Cy(s). Similarly we show that d,d, € C(s). Hence

Cy(s) = (s> X uvt dydy , uvt).
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We note that (uvt d,d, , uvt ) is dihedral of order 28+1 and all its involutions
lie in ;.

We shall next show a series of minor results in preparation for the deter-
mination of the structure of C(ut).

(1) The involution t is not conjugate to involutions of {ut, t,> in C(ut).

It is only necessary to show that ¢ 1s not conjugate to utt, in C(ut) since ut
1s a central involution and 7, € % .
We have Z(S) = (ut, t,> and so it is conjugate to Z(Q) == {1ty , t,>. Hence

| Cluty b | = 1 Clttg, 1" = g — 1)(q + 1)

On the other hand,
Oy uty) = 2% - g(g* — 1)

Hence ¢ is not conjugate to utt, in C(ut).
(1) The group C(ut) has a subgroup M of index 2 such that

(80 X luvt diydy , uet> C M.
Let S be the focal group of S in C(ut). By definition,
S* =yt ix, ye S, xoan ¥

Since B C C(ut); there exists an element & € B such that d,d, = t;* - £, and
so dyd, € S*. By (2.2.4) and (2.2.6), 2, € C(ut). Since tt;e C and z, € C(C)
we compute that (uott,)?: == t,. Hence urt e S*. Also s*e€ S* since ¢
inverts 5. Thus

S = (2> X {dydy , uvt> C S*.

An element sx in 5§ is either a root of uf or utt; and O(sx) > 2. But elements
in ¢S are either involutions or roots of t, . Since t, , ut, utt, are not conjugate
to one another in C(ut), no element in 5§ can be conjugate to an element in £.5.
Similarly no element in sS can be conjugate to an element in 258 in C(ut). It
follows, then, either S* = § or S* = <5 < <dd,,uvt)>. In either case,
there exists a subgroup M of index 2 in C(ut) and (s> X {(dyd, , uvt) C M.

(1) Let K be 2-commutator group of M. Then K]O(K) s isomorphic to Ly(q?).

By the first theorem of Griin [3, Ch. 7, 4.2], M/K is isomorphic to S/S*
where S* = (S Ny (S), SN (S |xe M>. The remarks at the
beginning show that N,,(S) = S x <I') and so

Sn NM(S)’ =& = {(uvt dydy) ;= <bybs, .



UNIMODULAR GROUPS 261

Since B C M, there is an element b € B such that (d,d,> C § N (§')’. Either
2, Or 12, 1s in M. In any case

(t) = 3% = uott, .

Hence (uvt, d\d,> C S*.

Suppose there is an xe€M such that x7Y(bb,)'x = s’y for some
v € {uet, didy>, and §7 £ 1. If O(s') = O(y), then s’y is a root of ut or utt; .
Hence s’y cannot be conjugate to (b,6,)? which is a root of ¢, . If O(s?) < O(y),
then O(y) > 2. Therefore y = (b;b,)*. Both {(b;0,)"> and {s(b,b,)*; are
normal subgroups of S. By Burnside’s theorem [3, Ch. 7, 4.3], they are
conjugate in Np(S), a contradiction. Thus we have shown that
S* = (d,d, , uvt). Hence an S,-subgroup S* of K is dihedral of order 26+,

Next we shall show that K has only one class of involutions. Since B ~ L,(q)
does not have a 2-factor group, B C K and so d,d, is conjugate to ¢; in K. For
a suitable 7, s'z, € K and then #{* = uwtt, . Hence K has only one class of
involutions. Since

C(t;) N K C C(t;) N Clut) o< C(2, ty).

C(t;) N K has Abelian 2-complement. By the result of Gorenstein-Walter
[4] KJO(K) == A, or Ly(r). The case K/O(K) o A, is possible only if g ==
since K/O(K) contains

Bluvts O(K)|O(K) >~ PGL(2, q).

If ¢ = 3, then | Clut, t;| = 25 But the centralizer of an involution in 4,
has order 23 - 3, a contradiction. Since K/O(K) contains a subgroup isomor-
phic to PGL(2, q), it follows that ¢2 divides r, [5, Ka. I1, 8.27]. On the other
hand

(C(ty) N K)s, £ = C(ty) 0 Clut) = Cglt, ty
and so

| Clt) N K| = (g2 — D)e.

Hence r = ¢% proving our result.

(iv) The group K is a direct product of a cyclic group O(K) of order ¢ and
a group D isomorphic to Ly(q*). Moreover, Bluvty O D, (s> O(K) is cyclic
of order q -+ 1 and t inverts {s> O(K).

Since Cyyox) (t:0(K)) = Cg{ty) O(K)/O(K) and the fact that the centralizer
of an involution in L,(¢%) has order ¢2 — 1, we have | Cg(t;) O(K)/O(K)| =
¢ — 1. Since | Ci(t)| = (@ — e, | Cogu(ty)] = e.

Because Ly(¢g?) is simple, clearly K is the smallest normal subgroup of M
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with a 2-factor group. So O(K) char K char M. It follows that O(K) < C(ut).
Hence <%, t) acts on O(K). Since

Ct)n Clut) = {t,u,v)B

does not have normal subgroup of odd order, Cp(x)(t) = I. By (2.2.3) and
(2.2.4), 21, 2, are in C(ut) and t2% = ot. So Cy()(vt) = 1. By the theorem
of Brauer-Wielandt [7],

LO(K)| = | Coy(@)l = | Count)] = | Cop(ts)l = e.

Hence

O(K) C C(ty) N Clut) ~ Ct, 15>

and so O(K) is cyclic.

When e = 1, the assertions of the lemma are now clear. Suppose e #~ 1.
Since B does not have a normal subgroup of odd order, BN O(K) = 1.
Therefore BO(K) is a splitting extension of O(K) by B. We have
[K : BO(K)] = g(¢* + 1) which is prime to e. By a result of Gaschiitz
[5, Ka.l, 17.4], K splits over O(K). This means there exists a subgroup
D ~ Ly(¢*) such that K = DO(K) and D N O(K) == 1. Since centralizers of
all involutions of D contains O(K), and D is generated by involutions,
DO(K) == D x O(K). Clearly B{uvt) C D.

From the fact that C(vd,d,) N C(t,) is a subgroup of index 2 in Ct, £, it
follows that C(s) N C(t;) is a subgroup of index 2 in C(ut) N C(;) and
O(K) C C(s), i.e., O(K)(s» is cyclic of order ¢ -~ 1. By the structure of
C(t) N C(ty) 1t follows that 7 invests O(K){s .

Using all the results obtained so far, we are able to prove the following
important lemma.

(2.3.1) The centralizer C(ut) of ut in G has the following structure:
Clut) = (G x DXty

where <x > is cyclic of order g - 1; D ~ L,(g?), {t) D is isomorphic to the exten-
sion of Ly(q?) by the field automorphisms of order 2, and t inverts {x>.

Proof. From (iv), we have D <q C(ut). The factor group
F = Clut))(C(D) N C(ut))D is a 2-group since O(K)C C(D) N Clut).
Because ¢ = p* = —1 (mod 4), f is odd. It follows that an S,-subgroup of
the outer automorphism group of Ly(¢?) is a four-group. The group C(ut)
cannot involve PGL(2, ¢%) because an S,-subgroup of PGL(2, 4?) is dihedral
of order 2842 and has an element of order 28! whereas C(ut) does not have
such an element. Thus | # | = | or 2.

Suppose that t € (C(D) N C(ut))D. Then t = xy where x € C(D) N C(ut),
y € D. Both ¢ and x centralize B{uvt) and so y centralizes B{uvt). By the
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structure of L,(¢%), this implies ¥ == 1. Then ¢ € C(D), a contradiction. Hence
t¢ (C(DyN Cut))D. So | F | = 2.

Since (C(D) N C(ut))D/D is a subgroup of index 2 in C(ut)/D =~ {t, s, O(K))
and (C(D) N C(ut))D|D =~ C(D) N C(ut), we get that C(D)n C(ut) is
either cyclic or dihedral of order ¢ -+ 1. Suppose that it is dihedral. Let
¥ # ut be an involution of C(D) N C(ut). Clearly z € £, and D is the unique
subgroup of C(z) isomorphic to Ly(¢?). Let K == (C(D) N C())D be a
subgroup of index 2 in C(z). We shall look at the centralizer of the four-group
.2, ). Since
TCRINK =22 —1), [C@NCE)I =2 (¢ —1) or 2-(¢* - 1).
But this is a contradiction since C{x, t> has order 2(¢ — 1){g - 1)? or
229(¢> — 1) for all x € A, N H. Hence we have shown that C(D) N C(ut) ==
(x> 1s cyclic of order ¢ -~ 1. Since {(«x) = Z({x> x D) char {«) x D, t
normalizes {x). Because C(ut)/D is dihedral, # must invert «. We have
D = ({«; X D) and so is normalized by ? inducing outer automorphism
on D.

Let .o/ be the extension of PGL(2, ¢) by the field automorphism o of order 2.
Let £ be a primitive element of the finite field F 2. Set

O B I VR R O

where ¢ — 1 = 26+ de. We verify that

2

w2 == ] == a2t

= 9% wyw =y 6718 =yl
82 = ytarl2,
§wd = yB (mod Z(GL(2, ¢*))).
We check that (w, y, 8> is an S,-subgroup of {L,(¢%), 8>. We compute that

(Bw)? = 821w Sw == =11 2yt (a2,

Since (¢ — 1)/2 is odd 8w has order 28+1. By our earlier remark, C(ut) does
not have an element of order 2841, It follows that D{¢> ~ {Ly(¢?), o> and the
lemma is proved.

(2.4)  Some subgroups of G.
(2.4.1) There exists an element 1 satisfying the following relations:
pE =, =l 1" = uvtlty; wt — uv,

D= (my; (mpt == D and n = n.

481/15/2-8
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Proof. Let X' be an element of order (¢ — 1)/2 in D C C(ut) such that
uvt € (N>, Set . — kDAY @18 Then p? == g and ## == ot. Since p € C(ut),
w* = wuv. Because 1; € D and t, € Cp(uvt) which is dihedral, by the structure
of L,(¢%), we have t# == uott, .

Suppose that (I 1. From the above relations we see that pe N, v -
and so u normalizes {/, m, n>, which is the normal 2-complement of C{#, v .
Since (I centralizes £, , {/*> centralizes t,* == uwtt, . On the other hand

Cluett,y N < myme = m
Hence

D= dmdy and Smom = D -

Since ne BC D and {n> C Cp(uwt), both x and X’ centralize n and so n# — n.
The proof is now complete.

(2.4.2) Let F = (t,v>{,m,n.. The normalizer N = N<{t,v) of
(t, vy in G is the group <u, ¢, , ut, t, , F . and N[F is isomorphic to the symmetric
group on four letters. Moreover, (uc,)® == 1 == (cyuut)?.

Proof. By (2.4.1), p e N{(t,v> and from the action of u on {t,v;,
w g {cy, Ct, vy, Since Clv, t> = Ju, t,-F and because the automorphism
group of a four-group has order 6, it follows that N/F has order 24.

Let r,, ry, 73 be the cosets uf, ¢, F, and putF, respectively. We check that

2

A R S e F e poy
¥y 1ot =gt == 1, Pty == Fgafy .

By an easy computation, we verify that (uc,)® and (cuut)? is in Z(C<t, v)) =

{w, ty and since both pe, and cput act fixed-point-free on (v, t>, it follows
(peo)® = 1 = (cyput)® proving our lemma.

(2.5) S -subgroups of G.

With Lemmas (2.4.1) and (2.4.2), we are now able to determine the
structure of a p-subgroup of G, which turns out eventually to be an
S,-subgroup of G.

Let W be the unique S,-subgroup of D containing

T = {(6,0,)"  xe{v,n)x.
We have C(ut) N C(W) = k)W and
Clut) " N(W) == {t, ke, N> W.

N

Here we have used the fact Wis a T/ group in D; ¢, x, <A D (m, uvt;
normalize a subgroup T of W. Clearly <« is an .S,-subgroup of C(I¥) and
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is cyclic. By the transfer theorem of Burnside [3, Ch. 7, 4.3], C(W) has a
normal 2-complement M and C(IW) = {(x*)M. Since M is a characteristic
subgroup of C(W), M <| N(W). Furthermore, by the Frattini argument

N(W) = (Nk®> N N(W)) C(W) = (Cut) 0\ N(WY) C(W) = {t, ik, V> M.

We note that an .S,-subgroup of C(W) is also an S,-subgroup of N(W¥).
The four group {u, t) acts on M. Consider

Coi(t) C C(T) N C(t) = <L, t> T, T, .

Suppose that a nontrivial subgroup X of (x> is in Cy(#). Then X+ C (m) is
in M since p € N(W). (See 2.4.1). This is a contradiction since no subgroup of
{m)> can centralize T. If (T\T, — T)N M = @, it implies that there is
1 = xe T, n M. But then

T, =V yveluvt,n)> C M

since (uvt,ny C{A> and so Cy(t) = T,T,. Therefore, either Cy(t) = T
or T T, . By the theorem of Brauer-Wielandt [7],

[ M| Cylt, upf? == | Cpg(ut)] | Cp(2)] | Cpplw),
re., | M i = g% or ¢% since
Conlu) = (<45D/)L Cy (1) w001

Hence an S,-subgroup of N(W) has order ¢* or ¢*.
Suppose | M | = g%. This means that I 1s an .S ~subgroup of G and so
1s T\ T, . However,

C(T,Ty) N C(t) = <t, 1> T, T,

and clearly {(¢) is an S,-subgroup of C(7,7,). This is a contradiction since
C(W) has an S,-subgroup (x> of order 28 and 8 > 1. Thus | M | = ¢%.
Hence we have Cy,(t) = T,T, . Since p e N(I¥),

Cu(vt) = (Cp(t) = T Ty = T,T,

where Ty = T*, T, = Ty,* By the result of Brauer-Wielandt [7],
| Cp(v)| = e. Again {ut, uvt) C N(W) acts on M and, by the result of
Brauer—Wielandt [7], | Cy,(uot)| = g%. Since uwt is conjugate to ut in G,
a group of order ¢? is normal in any subgroup of odd order containing it. In
other words we have shown that A contains a normal S ,-subgroup R. It
follows that {7y, T,, Ty, T,> = R and is elementary Abelian of order ¢*
since R is a direct product of W with the normal elementary Abelian group
of order ¢2 in Cy(uvt). Thus we have proved the following:

481/15/2-8*
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(2.5.1) The group R = {Ty, T,, Ty, T,*) is elementary Abelian of
order ¢*.

We are interested next in the structure of C(7}) and prove the following
result:

(25.2) Let
Oy = 0y 0y == 04 05 = 033 05 = 605

Ty= Ty Ty= Ty Ts= T3 T = T?
Then
P = N/T,T;T,T:T,

is a p-subgroup of G of order ¢° and B == PF is a subgroup of order §(q — 1)3 ¢°
with F C N(P).

Proof. We have C(Ty) N C(t) = LI>T; where L,== SL(2,q). An
S,-subgroup of L, is a generalized quaternion group of order 28+1. Obviously
it is also an S,-subgroup of C(T;). By the theorem of Brauer—Suzuki
[3, Ch. 12, 1.1], C(Ty) = (C(t) n C(T))U where U = O(C(Ty)). Clearly
T, C U and since {I> = Z(Ly,I)) has odd order, ¢(I> C U. It follows that
C(T,) = L,U and Ly, N U = 1 since L, has no nontrivial normal subgroup
of odd order.

By (2.5.1), we see that C(vt) N U2 (I>T3T, . From the isomorphism of
C(vt) with C(#), the largest odd order subgroup containing 7,7, in C() is
I, m,ny T\T, . It follows that

Clatyn UC (,m,n> T1To) = {,myn)y T,T,

and so
ClatyN U = ) T,T,.
Also
ClyN U = (Clatyn UY2 = ) TsT,
where

Ty = T Ty TS

By the theorem of Brauer-Wielandt | U | = ¢5 - (¢ — 1)/2.

Suppose that (I> 5= 1. Then <{I) = {m)* normalizes (1, T,)* = T,T, and
similarly {I>° = ¢I> normalizes (T,7,)** = T;T¢ . By Gorenstein-Walter’s
lemma [4], every element of U has the unique expression l’xyz where x € T},
yeTyT,, z€ TyTg . Let r) = X C (1) and g1, € Ny(X) where g, € Ty T,
82€ T5Ty . Then (g18) 7 7818, = 77, 1e.,, 7818, = rj(_gf)(gz)rj- By the unique
expression for elements of U and the fact that g} € T3T,, g5 € T5T,, it

j

follows that » = 7/, g, = g7, g, = g5 In other words Ny(X) = Cy(X).
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This in turn implies that U has a normal p-complement for every prime $
dividing (¢ — 1)/2 by the transfer theorem of Burnside [3, Ch. 7, 4.3]. It
follows that U has a normal p-subgroup V. Obviously

(Ty, Ty, Ty, Ts, T CV  andthus V= TyT,T,T,T, .

Since V' char U, V is normal in N(T).
It is clear now that P = T,V is a p-group of order g8 Since F & N(T,)
and F C N(T,), B = PF is a group of order $(¢ — 1) ¢% and F C N(P).

3. THE casE ¢ = 1 (MoD 4).

Here « = 2, 8 = 1, and H is a nonsplitting extension of the central product
L,L, by the dihedral group {u, %> with

(y wy N LyLy = (w4072 = {(oy0) @1/
(See Section 1 for notation).

(3.1.1)  Sy-subgroup of H.
Set

ay = o  ay = ua; €, = ucu; v = wl

It 1s easily seen that

[
Q = (U, ‘U><\d1 » €1, 82, C2>

is an S,-subgroup of H and Z{Q> = {t). The group Q; = {a;,¢;) is a
generalized quaternion group. Further we have the following relations:

P . L -1
[a;,7] = 1, ,* = ay¢y; €0 = az €, .

(3.1.2) Conjugate classes of involutions in H

Exactly as in the previous case, involutions in Q,0, — {t» lie in one
conjugate class of I with representative #; = ¢,c, .

Suppose that uv?x;y, is an involution where x,€L;, y,€L,. Then
Vg = (v~%x519%)h where h = 1 ort. Hence all involutions in uv?Q,Q, — 0,0,
have the forms (#)?'#1 or (ut)*"1. It follows that they all lie in one conjugate
class with representative u since ut = (2,9) 2" u(a;v)* . Similarly all
involutions in #2%+Q;0, — O, 0, are conjugate to uv in H.

If ¢ = 5(8), « = 2. Then (vQ,0, U v10,0,) — 0,0, does not have involu-
tions. If ¢ = 1(8), by a straight-forward but tedious computation, all involu-~

tions in 2/Q,Q, — 0,0, are conjugate to z = 12" (aya,)** .
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Hence we have shown that A has four conjugate classes of involutions
with representatives £, g, u, and uv when ¢ = 5(8). When g = 1(8), H has
five conjugate classes of involutions with representatives ¢, t,, u, uv, and z.

(3.1.3) Centralizers of involutions in I/
Let s = (0 = (qop)? . Then
Cy(s) = u, wray , o9, By
where t; = ¢;¢, of order (¢ — 1)3. Set

[ = (Wl )7 R (N n o= (o0, )7

We may write
CH(S) = <u7 ‘ZJ><a1 b a:} ’ t3><l! mv ">

where {/, m, # is the normal 2-complement of C{s) of order d°.
The centralizer Cy(u) of u in H is {t, u>B where

B = {xxy | xe SL(2, q)) =~ Ly(q).
Similarly Cg(uv) >~ <t, uv)C where
C = (vl | v e SL(2, q)) = Lyg).

In the case ¢ = I(8), the centralizer Cy(z) of 5 in H is Li{w, oy> and
(T, a4y, 4y, ¢y 1s an Sy-subgroup of Cy(z), whose commutator group is
{ay>. It 1s easily checked that Cp(z) does not contain elementary Abelian
groups of order 16.

(3.14) S,-subgroups of H

Let Ty =<6 |xele,n)y and Ty, = Ty Clearly 70T, =T, x T, 1s
an S,-subgroup of H and is elementary Abeiian. We have

Cu(1415) = (whong ') T,
and
Ny(T,Ty) ~= e, 1, 00, 000 T1T5 .

(3.2) Fusion of involutions

We shall show that G has only one class of involutions when ¢ == 5(8) and
two classes of involutions when ¢ = 1(8).

(3.2.1) An S,-subgroup of H is an Sy-subgroup of G.

Proof. Obvious, since an S,-subgroup Q of # has cyclic center {t>.
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(3.2.2) When q = 1(8), the conjugate class in H containing = does not
Juse with other conjugate classes of H.

Proof. By (3.1.3) an S,-subgroup of Cy(z) 1s
T = (v,ay,0,,¢)

of order 2%*~1. Suppose that g is conjugate to ¢ in G. Then there exists a
2-group S containing T such that [S: T] = 2. Since 7" = {q,) char 7" and
T <1 S, {ay) <1 S. But then it follows that there is an x € S — H centralizing
t == (ay)* ! a contradiction. Hence 2z is not conjugate to ¢ in G and
incidentally, we have also shown that 7" is an S,-subgroup of Cg(z).

This implies that 2 is not conjugate to u, uv, or s since C(u), C{uv), and C(s)
all have elementary Abelian groups of order 16 but C(2) does not. This
completes the proof.

(3.2.3) If uis conjugate to t in G, then s is conjugate to t in G.

Proof. By (3.1.3), T = {t, 1, X <{aja,, ¢1¢,> 1 an Sy-subgroup of C,(u).
By our assumption there exists an element x in a 2-group S of C(#) containing
T such that x ¢ § — H, and » normalizes 7.

If ¢ = 5(8), T is elementary Abelian. Let

Sy = {8, 85, 1y, My, sty , tsts)
all of whose involutions are conjugate in H. Similarly
Sy == {u, ut, us, uts, uty , utty , usty , utst,}
consisting of involutions conjugate in H. We have S;U S, U {t, 1} — T.
Since a ¢ H, t* £ t. If t*= S; or s* £ S5, , then we are finished. Hence we

may assume % € S, and s* € S] . Then (#5)® € S, . The result follows because
s is conjugate to s in H and from the assumption that u is conjugate to ¢.

If ¢g=1(8), T is non-Abelian and Z(T) = {t,u,5). We have
T = {(a,a,)*>. Thus x normalizes both Z(7) and Z(T) N T’" = {s). Hence
s# = s. If 7 = s, then we are finished; otherwise t* ¢ Z(T) — <t s>. The
result follows as before.

(3.2.4) If uv is conjugate to t in G, then s is conjugate to t in G.
Proof. Asin (3.2.3).
(3.2.5) Ifsisconjugatetotin G, then G has only one class of involutions
when ¢ = 5(8) and two classes of involutions when ¢ = 1(8).

Proof. Let M =<{ay,c,,a5,c». It is a maximal subgroup of an
Sy-subgroup Q of G. Since G does not have a subgroup of index 2,
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by Thompson’s lemma, {3, Ch. 7, Ex. 3], 4 and uv are conjugate to some
involutions in M. The result follows from (3.1.2) and (3.2.2).

(3.2.6) When q = 5(8), G has onlv one class of involutions. When
q = 1(8), G has precisely two classes of involutions.

Proof. Using exactly the same arguments as in (2.2.5), we can show that ¢
is conjugate to an element in {u, uz, s}. The result then follows from (3.2.3),
(3.2.4), and (3.2.5).

(3.3) Some subgroups of G)

The results of this section are needed for the construction of a subgroup
G, , which is a (B, N) pair.

Let 7 be an involution in H conjugate to ¢ in G. We observe that
Nyli, t)/CE, ty has order 2. Consider the four-group A = {t,u>. Let
xe N(4) N Clu) — C(A4) which exists because of (3.2.6) and the above
observation. Then #* = ut, ut” = t. Since x € N(4), » normalizes C(4) and
hence normalizes C(4)" = B, i.e.,, B* = B.

When ¢ = 1(8), we have (2%a;a;%)* " € N(4) and centralizes B. Put
2 = x~Y(v?aa51)2 "x. Hence 3’ centralizes B* = B. Lety — 2’ - (v?a,a50)2""
and p = [2’, 2" "]. We compute that the following relations hold:

roe=u;, w =ut; ut -=t; vezC(B)
o= 1s; u" = us; oo = oy 1 o ulsty .
Because
e Ct, s, u, ty = <t s,u,ty

and since p does not fix any element in ¢, s, u, t, — (ut, sy, p?elut,s .
If u2 =1, ut or uts, replacing p by pw, uty or put,, respectively, we may
assume that p? = s without affecting the previous relations.

When g = 5(8), va, acts as an outer automorphism of order 2 on B. Hence
(va,)® acts as an outer automorphism of order 2 on B* = B. Because
g = p’ = 5(8), f is odd. The outer automorphism group of B == Ly(q) is
Abelian of order 2f. Hence (va,)(va,)* is inner on B. Therefore v == va,(va, )b
centralizes B for a suitable 5 € B. We check that

t=u; wo=ut; (ut) =t

Let 3' = (vay)’ and p = [2', v]. Then it is easily verified that p has the same
action on {f, a0 , #5 ,%> as in the case ¢ == 1(8). Thus we have proved the
following result.
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(3.3.1) There exist elements v, p in G such that t* = u; w = ul;
(ut) = t; ve C(B); t* = t5; u* = us; ()" = oqoy ; t,* = ustty and p® = .

(3.3.2) LetF = (w, oy, 0 and N = N<t,s>. Then N|F is isomorphic
to the symmetric group on four letters. Moreover we have (uc.)® = 1 = (cyuut)®.

Proof. From (3.3.1) we see that pue N(t, s>. Therefore 1 normalizes
C(t, 5), C(t, s)' and

C(t, sy N C(t,s) =F.
Since | C<{t, sH/F | = 4 and from the fact p ¢ Ny{t, s, it follows that
| B/F | = 24.
Let ry, 75, 75 denote the cosets pF, c,F, and c,uutF, respectively. Clearly
72 =r? =r? =1 and rjr; == rgr, . Both (uc,)? and
(coptu)® € <2y s, u, ty = (8,8, 4, t5).

Since pes and coput act fixed-point-free on {2, s, u, 3>, it follows then,

(px)> = 1 = (cpput)*.

Hence we have also shown that (r , 7, , r,> satisfies Moore’s relations and so
{ry, 7y, 13> o¢ S, proving our lemma.

(3.3.3) Suppose |{I>| % 1. Let 'Y be a nontrivial subgroup of {I)>.
Then C(Y)C C(t) = H.

Proof. From the structure of H, Cy(Y) = L,L,{(w), a subgroup of index 2
in H. Since S =<a;,¢, a5, ¢, v) is an Sy-subgroup of Cyx(Y) and has
cyclic center (v2a,a,71> D (¢, it is clear that S is an S,-subgroup of C(Y).
By (3.3.2), involutions in § — {a, , ¢, a5, ¢y, if they exist, are not conjugate
to #. By the structure of SL(2, ¢) involutions in {a, ¢;, a5, ¢,> lie in two
conjugate classes of Cz(Y) with representatives ¢ and s. Suppose s is conjugate
to t in C(Y). Then there is a 2-group T'C C(s) N C(Y) and

SN CE)=<a,,a, e,y CT.
Hence there is x € T — § N C(s) and x € N(S N C(s)). Since
QSN CE)) =<5, xeNCG ),

it follows that = = #s; (£5)* = ¢. Thus pxte C{, s> [See (3.3.1)]. But
C(t, s) C N(Y). Hence Y*» = Y* =Y. Since t; € C(Y), ustty = t;» € C(Y*) =
C(Y), a contradiction. Therefore we have shown that ¢ is not conjugate to
other involutions of S in C(Y).

By the result of Glaubermann [2],

C(Y) = (C(Y) N C(@)) O(C(Y))-
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Set M = O(C(Y)). The four-group <#, s> acts on M. By the result of Brauer—
Wielandt [4], M = C\(t) Cp(t5) Cps(s). By (3.3.1),

Colts) = (C(1) O O(CoY ).
Since

dymyny = O(C(1, 5)),
and p e N{¢, s>, we have p e NI, m, n>. Since
= Clt) Ny my >, A = Clustty) N ymyny — <.

In particular, X = Y+ C (m>. Thus

CtYN C(X) = oy, ay, w, uty)
which has the normal 2-complement </, m, n>. So

C(t) N O(C(X)) C <L, m, m>

and
Cru(t) C Ay, oo™ = L m, n).
Also
Cag(s) = (Cpg(ts)™* C <L, m, 1),
Lastly

CHNOWCYNC L
since (/> is the maximal normal subgroup of odd order in C(t) N C(Y). It
follows then

ML, myn, CC(),

proving the result C(Y) C C(2).

(3.3.4) The centralizer C(B) of B in G is isomorphic 1o Ly(q).

Proof. We have C(B) N C(t) = {(wPaj05", 1>, a dihedral group of order
(g — 1). If g == 5(8), <t, u) is an S,-subgroup of Cy(B). By (3.3.1), we have
v e C(B) acting fixed-point-free on (¢, u>. This implies, in particular, that
{t,u) is an S,-subgroup of C(B). If ¢ == 1(8), an S,-subgroup of Cy(B) is
{u, vy where v = {v2a;a;"> and has the center <{t>. Hence {u, v'> is an
Sy-subgroup of C(B). Again by (3.3.1), u is conjugate to ¢ in C(B). Since

va, € N(B), v

centralizes B*® = B. We compute " == uo'. Thus in this case too, C(B) has
only one class of involutions.
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Since C(t) N C(B) has Abelian 2-complement, by the result of Gorenstein—
Walter [4],

C(B)|O(C(B)) == Lyr)

for some odd 7 or 4, .

We show next that M = O(C(B)) = 1. By the Brauer-Wielandt’s formula
{7], and the fact C(B) has only one class of involutions, | M | == | Cy(#){3.
Suppose that 1 £ Cp(t) C {I>. Let & be an element of prime order in Cy,(2).
Then we have Cy(#) C Cyy(h) € H, a contradiction to (3.3.3). Hence M = 1.

By the structure of Lo(r),

|CO)NCB) —q—1 =7 1.

The cases C(B) = Ly(g -+ 2) or A, are not possible as this would imply that
(s, t,> contains a subgroup isomorphic to Ly(g -+ 2) or 4, contrary to (3.1.3)
and (3.2.6). This completes the proof that C(B) = Ly(g).

(3.4) S -subgroups of G.

We shall now construct a p-subgroup of G which will turn out to be an

S,-subgroup of G.
(3.4.1) The group {T,,T,,Ty\, T,»> is elementary Abelian of
order g*.
Proof. Let
T = (xuxu | xe Ty and T = o luvu | xe T).

Then we have
Cy(T) = (waay’, uy Ty, .

For the same reason as in the proof of (3.3.4), {z?a;a;", «) is an S,-subgroup

C(T). Since
(@'mog, uy C C(B) 22 Ly(g)

by (3.3.4), C(T) has only one class of involutions. Further C(¢) N C(T') has
Abelian 2-complement. Therefore by the result of Gorenstein—Walter [4],
C(T)/M 1s isomorphic to A, or Ly(r) where M = O(C(T)). When g # 5,
C(T)/M cannot be isomorphic to A, since C(T)/M contains a subgroup
C(BYM|M isomorphic to Ly(r). If ¢ = 5, C(T)/M has an S,-subgroup of
order 4 whereas an S,-subgroup of 4, has order 8. Thus we have shown that
C(T)/M is isomorphic to Ly(r) for some odd r.



274 PHAN

Suppose ¢ 5= 5. Since C(T')/M contains a subgroup isomorphic to Ly(g),
this implies that 7 = ¢* for some integer k. But, on the other hand,
(C() N C(T))M/M has order at most ¢* — ¢ since 7'C M. It follows that
r=q.

When ¢ = 5, C(T)/M is isomorphic to Ly(5) or Ly(19). If the latter is the
case, we obtain M = T. Since C(T) D C(B)T'; C(B)T is a split extension of T,
by the result of {5, Ka. II, 17.4],

C(T)=K x T, K =~ Ly(19).
Now aya, € N(T') and so normalizes
C(TY = K2 C(B) == C(B).
Since <{v%aya;", u, @;a,> is not dihedral, K{aya,  is not isomorphic to
PGL(2,19). In other words, a,a,x centralizes K for a suitable x € K. Both
a@ayx and a,a, centralize C(B). Therefore ~ centralizes C(B) C K. It follows
x = | since no nontrivial element of K can centralize a subgroup isomorphic
to Ly(5). Thus a4, € C(K), a contradiction to the structure of H.
Thus C(T)/M == Lyq) for all ¢. In particular
CH)NM =TT, = (T, T).
In the proof of (3.3.1), we have an element 5’ € N(T') such that #* = .
Since M char C(T), 2’ € N(M). Therefore Cyp(u) = (T, T*"> and C,y(ut) =
(T, T, Hence M = (T, T, T, T+"> of order q¢*.
Using information in (3.3.1), we get v®s = usv® and 2'fs == usz’. Since
us € C(T), it follows that
(T, T © Cplts).
The order of

(T, T CM
is at least g% But an S,-subgroup of C(ts) has order ¢ It follows
(T, T = Cpy(ts).

Applying Brauer—-Wielandt’s formula on M using the four-group {z, s>, we
get Cyp(s) = 1. Hence by the result of Zassenhaus, M is Abelian and so
elementary Abelian of order ¢*.

To complete the proof, we shall show that C,(ts)* = (T, T,>. Since

(ts)+ = t, Chr(ts)* C C(2).
We have

2 = 22, o7 = (@) 1P
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Since 2 € N(T), #'me N(T)* " = N(T). Therefore Cyfts)* contains
T#» = T. But (T, , T, is the unique S,-subgroup of C(t) containing 7. It
follows that C,(ts)* = (T, T5> and so

Carltsy® = Cag(ts) = KTy, Ty
because p? = s € N(T') and p2e N(M).

(3.4.2) Let 0, = 6,%; 0, ==0,4; 0, = 0p; 0, =103 T3="1T"
T, = Ty T, = Ty Ty = Tg2. Then P = T\ T, T;T, T, T is a p-subgroup

2

of order ¢% and B = PF is a subgroup of order Y(q — 1)® ¢° with F C N(P).

Proof. Almost identical to that of (2.5.2).

4. THE suBGRoUP G,

From now on, we shall assume that ¢ is any odd prime power. We shall

show that BNB is a subgroup and a (B, N) pair.
41) Let V., =<T,,T,,T;, Ty, Tp>;
Vo ==<T,,T5,T,, Ty, Ts> and Vy=<{,T,,T,, Ty, T¢>.
Then e N(V3), ¢, € N(V,), and put € N(V ).
Proof. From (2.4.1) and (3.3.1), it is immediate that
T =Ty, Tyo=T,, T+=1T,, Ty =T,.

By (2.4.2) and (3.3.2), we have (uc,)® = 1. Hence

pT 05 = (p7ler 0T O(peap) = coplebhey) eyt = b5

Since = acts fixed-point-free on T, , w*‘z acts fixed-point-free on 7. Let
xe Ty. Then x = h10.h for some h e {w+2) CF and

pton = () (gl e T

because A* € F and F C N(T,) for all . Thus p € N(V,). The other assertions
may be proved similarly.

For later use, we exhibit the action of u, ¢,, put on V,, V,, V', by the
following table:
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TABLE 1
T, 7 7 T, T Te
“ T, T, Ty T, T
Ca T, T T, Ty T,
uut T, T, 1 T, Te

(4.2) The following velations hold in the group G:

(csbo)P = (B = (uutby — 1.
Proof. From the structure of H, (¢,8,)* = 1. We have

(N (e u eopey) 0 = uby
and

(€)= (6152527101)“82 pty

by (2.4.1), (3.3.1), (2.4.2), and (3.3.2) proving the lemma.
Put
W = N[F, v, =uF, ry = ,F, ry == putF.

By (2.4.2) and (3.3.2), W =~ S, , the symmetric group on four letters. For any
x € W, let(x) == I denote the smallest positive integer such that x = 7; 7,
where r; €{ry,7,, rsp. Let

!

afr) = 15 ofry) = 65 ofrg) = put.
For any xe W where & = #, =7, , let w(x) = w(r, )~ ofr; ). As usual
BxB shall denote Buw(x)B.
By (2.4.2), (2.5.2), (3.3.2), and (3.4.2), we have BN N == F and F <] \.
We shall now show the following result.

(4.3) The set of elements BNB is a (B, N) pair of type A, .

Proof. First we show that G; = B BrB are subgroups of G. Consider
G, = BU BuB. The group B may be written in the form B == (FV,) Ty .
Since u e N(FI’)) and p? = ¢2* € B, it is sufficient to show that

puxp € BU BuB for xeTy— 1.
As w2 acts fixed-point-free on T, x = A0k for some h € (w*2>. Then

pap = kpluk
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where k = h*"" € F C B. Since (u6,)® = 1, by (4.2), it follows that
pap = k70,0 R € BuB.

Hence G, is a group. Similarly G, , G, are subgroups of BNB.
We shall show next that for any ¢ and x e W, if I(r;k) = I(x), then
r,Bx C Br,xB. Put

X, =Ty, Xy=T1,, X,=T;.

Since W~ S, and 7, , 7, , r, satisfy the Moore’s relations we may identify
¥y, Iy, vy with the transpositions (12), (23), (34), respectively. Let

Co = {1}, Cy={ry, 75,73},
Let C, be the set of words of length #. Then
C'n - C;n - U Ci

0=Siin—1
is clearly the set of elements x in W with /(x) = n. To prove our result, it is
only necessary to show that, for those xe N such that I(rix) > I(x),
r.\;x C BryeB. By an easy computation using the table, we see that this is

the case.
Now by the theorem of Tits [6], BNB is a (B, N) pair of type 4, .

(4.4) The group G contains a subgroup G, isomorphic to L,(q).

Proof. By a result of Abe [1], BNB contains subgroups K and G, such
that Gy/K =~ L,(g). Now K is necessarily odd and G, contains a four-group
<t’y¢", all of whose involutions are conjugate in G;. Comparing | C(t')]
with | Cg (#)K/K |, it follows that Cg(#') N K = | and Cg(t') € G, . By the
theorem of Brauer-Wielandt, | K| == 1. Thus we have G, = L,(g).

Before proving the identity, we show that G is simple.

5. IbenTITY G = G,

(5.1) The group G is simple.

Proof. Suppose M = O(G) == 1. Act on M by the four-group {t, ¢*
We note the involutions in (¢, 22" all lie in a conjugate class of G by (2.2. )
and (3.2.6). Since O(C(t)) = <I>, it follows that Cy(¢) C <{I>. If Cyp(t ) =
then by Brauer~Wielandt’s result, M = 1, a contradiction. If C,,(t) = l
again by Brauer-Wielandt, M == C,(#). Lonmder C(M). It is normal in G
and has an .S,-subgroup of index 2 in an S,-subgroup of G. In other words

'1—1‘
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G/C(M) has cyclic S,-subgroup of order 2. By Burnside’s transfer result
[3, Ch. 7, 4.3], G/C(M) has a normal 2-complement in contradiction to
condition (a) of the theorem. Hence O(G) = 1.

Suppose next that G' has a proper normal subgroup K with odd factor
group G/K. Since C(#) does not have a proper normal subgroup with odd
index in C(¢), C(?) C K. The I'rattini argument shows that G = KNQ).
But N(Q) C C(t) and hence G == N, a contradiction.

Suppose G has a normal subgroup M such that both | M | and | G/M | are
even. Now QO N M is an S,-subgroup of M and is normal in Q. Hence it
contains Z(Q) = (t> and also » which is conjugate to t and ut. Thus M
contains all involutions conjugate to ¢ and . This implies that Q C M since,
by direct computation, M contains subgroups generated by involutions
conjugate to ¢ or ut and M contains conjugates of these subgroups. It follows
that | G/M | is odd, a contradiction. This completes the proof.

To complete the proof of the theorem, we prove the following:

(5.2) G, =G.

Suppose by way on contradiction that G — G, % @ . We have three cases
to consider.

(1) ¢ = —1 (mod 4).
By (2.3.1), (4.4), and (5.1) G, is a strongly embedded subgroup of G, and

hence by the result of Suzuki-Thompson [3, Ch. 9, 2.2], G has only one class
of involutions, a contradiction. Hence G = G,,.

Let ¢ be an involution in G — G, conjugate to 2 (See 2.2.2). Then (i, t> is
dihedral and its order is divisible by 8. Let j be a central involution of {7, £>.
Suppose j is conjugate to £ in G. First we have j e C(#) C G, . By our assump-
tion C(j) C G, since G, contains the centralizers of its involutions conjugate
to t. Thus 7 € G, a contradiction. Hence j is conjugate to z in G. The four-
group {#, 7, contains two involutions conjugate to ¢ and one conjugate to z.
But {t, j> is conjugate to (¢, 2> in H and (¢, 2> contains two involutions
conjugate to z, a contradiction. Thus G = G, .

(1i1) ¢ = 5 (mod 8).

In this case G has only one class of involutions and G, is a strongly
embedded subgroup of G. Hence by Suzuki~-Thompson [3, Ch. 9, 2.2],
G, == C(t)K, where K has odd order. Since G, = L,(q),

Kl=4@+ DU +q+¢) | CONK|.

Let p* be the maximal power of p dividing | K |. Since K is solvable a Hall
subgroup of M of order }{g® 1+ 1)(¢% + g + 1) p® exists. By [5, Ka. II, 7.3],
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G, contains a cyclic Hall subgroup T* of order }(¢* + 1). By a result of
Wielandt, [35, Ka.IIl, 5.8] we may assume 7% C M. Suppose 1 == (x) =
T* N T* for some ge M, by [5 Ka. II, 7.3], Npy<x) = T* and so
T* = T*9, Also Np(T*) = T*. Thus M is a Frobenious group with the
Froberious kernel of order (¢% -~ ¢ -+ 1) p® which is nilpotent by a result of
Thompson [5, Ka. V, 8.13]. This gives a contradiction since the centralizer
of an element of order p in L,(g) is not divisible by ¢* 4 ¢ -~ 1.

e

Thus we have shown that G = G for all odd q.
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