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Abstract

We build up the anticommutator algebra for the fermionic coordinates of open superstrings attached to bran
antisymmetric tensor fields. We use both Dirac quantization and the symplectic Faddeev–Jackiw approach. In the s
case we find a way of generating the boundary conditions as zero modes of the symplectic matrix by taking a discret
of the action and adding terms that vanish in the continuous limit. This way boundary conditions can be handled as co
 2003 Elsevier B.V.

PACS: 11.25.-w

1. Introduction

Non-commutativity of spacetime and its consequences for quantum field theory have been one of t
objects of interest for theoretical particle physicists in the last years. A general discussion and an im
list of references can be found in [1]. An important source of non-commutativity of space in string
[2,3] is the presence of an antisymmetric constant tensor field along the D-brane [4] world volumes
the string endpoints are located). The quantization of strings attached to branes involves mixed (com
of Dirichlet and Neumann) boundary conditions. This makes the quantization procedure more subtle s
quantum commutators/anticommutators must be consistent with these boundary conditions. For the boso
coordinates, the non-commutativity at end points has already received much attention. Many important
have been discussed and the commutators have been explicitly calculated (see, for example, [5–11]).

In contrast, the complete canonical structure (anticommutators) for the fermionic coordinates when a
metric tensor fields are present has not yet been presented explicitly, although some important aspects ha
been discussed [5,12,13]. As we will see here, the requirement of consistency with boundary conditions a
structure of the anticommutation relations at the string endpoints even in the absence of any external field.
calculating the complete Dirac antibrackets for the fermionic coordinates consistent with the boundary co
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of strings attached to branes with antisymmetric tensor field. We will do this by introducing a discretization
the string spacelike coordinate. Such a construction make it transparent the behavior of the anticommu
the end points. The string boundary conditions will lead to a discontinuity in the anticommutator at the end
Also it will emerge that, in contrast to the standard canonical form, the anticommutator between the fe
componentsψµ(+),ψ

µ
− is not vanishing at the endpoints even in the absence of the antisymmetric field.

Then we consider the symplectic quantization scheme and develop a procedure of generating the f
string boundary conditions as constraints directly from the symplectic matrix. We will consider ag
discretization of the string world sheet spatial coordinate. In a previous article [11] we found the bo
conditions for the bosonic string from the corresponding symplectic matrix by means of some field redefi
Here we will improve such a procedure making use of the fact that a finite number of terms that vanish
continuous limit may be added to the discretized form of the action. By choosing appropriate terms we
the boundary conditions as zero modes of the fermionic symplectic matrix. Then the anticommutators
calculated in the standard way.

2. The model

Let us start with a superstring coupled to an antisymmetric tensor field living on a brane. Considering
coordinates along the brane, the action can be represented in superspace as

(1)S = −i
8πα′

∫
Σ

d2σ d2θ
(�DYµDYµ +Fµν �DYµρ5DYµ

)
,

where the superfield

Yµ
(
σa, θ

) =Xµ
(
σa

) + θ̄ψµ
(
σa

) + 1/2θ̄θBµ
(
σa

)
contains the bosonic and fermionic spacetime string coordinates. In components the action reads1

(3)S = 1

4πα′

∫
Σ

d2σ
(
ηµν∂aX

µ∂aXν + εabFij ∂aXi∂bXj −BµBµ − iψ̄µρa∂aψµ + iFµνψ̄µρbεab∂aψν
)
.

The bosonic and fermionic sectors decouple. We will consider just the fermionic sector once the boson
was already discussed [5–11]. The fermions are Majorana and can be represented as

(4)ψµ =
(
ψ
µ

(−)
ψ
µ
(+)

)
.

So that the fermionic sector reads

(5)S0 = −i
4πα′

∫
Σ

dτ dσ
(
ψ
µ
(−)∂+ψ(−)µ +ψ

µ
(+)∂−ψ(+)µ −Fµνψµ(−)∂+ψ

ν
(−) +Fµνψµ(+)∂−ψ

ν
(+)

)
.

The minimum action principleδS = 0 leads to a volume term that vanishes when the equations of motion
and also to a surface term:

(6)
(
ψ
µ

(−)(ηµν −Fµν)δψν(−) −ψ
µ

(+)(ηµν +Fµν)δψν(+)
)∣∣π

0 = 0.

1 Our conventions are

(2)ρ1 =
(

0 i

i 0

)
, ρ0 =

(
0 −i
i 0

)
, ρ5 ≡ ρ0ρ1, ∂± = ∂0 ± ∂1.
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It is not possible to find non-trivial boundary conditions involvingψµ
(−) andψµ

(+) that makes this surface ter
vanish. However, the solution to this problem shows up when we take into account a result from Ref. [12] (
[14]). There it was shown that in order to keep supersymmetry unbroken at the string endpoints it is nece
include a boundary term to the action. Actually, considering the boundary term (6), we realize that it is imp
even to solve the boundary condition unless some extra term is added to the action. The interesting thing i
same kind of term proposed in [12] in order to restore SUSY at the end points

(7)SBound= i

2πα′

∫
Σ

dτ dσ
(
Fµνψµ(+)∂−ψ

ν
(+)

)

will make it possible to find a solution to the boundary condition. Adding this term toS0 the total action reads

(8)S = −i
4πα′

∫
Σ

dτ dσ
(
ψ
µ
(−)E

νµ∂+ψ(−)ν +ψ
µ
(+)E

νµ∂−ψ(+)ν
)
,

whereEµν = ηµν +Fµν . The corresponding boundary term coming fromδS = 0 is now

(9)
(
ψ
µ
(−)Eνµδψ

ν
(−) −ψ

µ
(+)Eνµδψ

ν
(+)

)∣∣π
0 = 0.

This condition is satisfied imposing the constraint that preserve supersymmetry [5]

(10)Eνµψν(+)(0, τ )= Eµνψν(−)(0, τ ),
(11)Eνµψν(+)(π, τ )= λEµνψν(−)(π, τ ),

at the endpointsσ = 0 and σ= π , whereλ= ±1 with the plus sign corresponding to Ramond boundary cond
and the minus corresponding to the Neveu–Schwarz case. We will only consider the endpointσ = 0 in our
calculations. The results forσ = π have the same form.

Now considering the total fermionic actionS we want to incorporate the boundary conditions (10) in a quan
formulation of the theory. That means: we want to calculate anticommutators that are consistent wit
boundary conditions. Following the approach successfully applied to the bosonic sector (see, for example
we will consider a discrete version of the string in which we replace the continuous coordinateσ with range(0,π)
by a discrete set corresponding to intervals of lengthε. Representing the fermionic coordinates at the endpoin
theN intervals as:ψν0(−),ψ

ν
1(−), . . . ,ψ

ν
N(−);ψν0(+),ψν1(+), . . . ,ψνN(+), the discretized form of the Lagrangian rea

(12)

L= −i
4πα′

(
εψ

µ

0(−)Eνµ∂0ψ
ν
0(−) + εψ

µ

1(−)Eνµ∂0ψ
ν
1(−) + · · · + εψ

µ

0(−)Eνµ
ψν1(−) −ψν0(−)

ε

+ εψ
µ
1(−)Eνµ

ψν2(−) −ψν1(−)
ε

+ · · · + εψ
µ
0+Eνµ∂0ψ

ν
0+ + εψ

µ
1+Eνµ∂0ψ

ν
1+ + · · ·

− εψ
µ
0+Eνµ

ψν1+ −ψν0+
ε

− εψ
µ
1+Eνµ

ψν2+ −ψν1+
ε

+ · · ·
)
.

The original theory is recovered by taking the limitε → 0.

3. Dirac quantization

The equal time canonical antibrackets for the original continuous fermionic fields are:{
ψ
µ
(+)(σ ),ψ

ν
(+)(σ

′)
} = {

ψ
µ
(−)(σ ),ψ

ν
(−)(σ

′)
} = −2πiα′ηµνδ(σ − σ ′),

(13)
{
ψ
µ

(+)(σ ),ψ
ν
(−)(σ

′)
} = 0.
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So that the canonical antibrackets for the corresponding discrete fermionic variables become

{
ψ
µ

i(+),ψ
ν
j (+)

} = {
ψ
µ

i(−),ψ
ν
j (−)

} = −2πiα′δij ηµν

ε
,

(14)
{
ψ
µ
i(+),ψ

ν
j (−)

} = 0.

The discrete version of the boundary condition (10), that we will impose as a constraint in the Dirac forma

Ωµ ≡ Eνµψν0(+) − Eµνψν0(−).
So, the matrix of constraints is

(15)Mµν ≡ {Ωµ,Ων} = −4πiα′

ε

(
ηµρ −Fν

µFνρ
) = −4πiα′

ε

(
1 −F2)

µρ
,

and the Dirac (anti-) brackets are calculated in the standard way:

(16){A,B}D = {A,B} − {A,Ωµ}M−1
µν {Ων,B}.

For the coordinatesψµi± with i �= 0, corresponding to points inside the string they will be equal to the Po
brackets but for the boundary coordinates we get:

(17)
{
ψ
µ
0(+),ψ

ν
0(+)

} = {
ψ
µ
0(−),ψ

ν
0(−)

} = −πiα
′ηµν

ε
,

(18)
{
ψ
µ
0(+),ψ

ν
0(−)

} = −πiα
′

ε

(
ηµγ +Fµγ

)([
1−F2]−1)

γρ

(
ηρν +Fρν

)
.

The anticommutators (17) agree with the results found previously in Ref. [5]. Now we can obtain the con
version of our results. Once the anticommutators ofψ

µ

i(±) for i �= 0 are not changed by the Dirac quantizati
inside the string (0� σ � π ) the anticommutators keep their canonical form. Then, for the boundary point
use the fact that the mapping between continuous and discrete expressions involve the mapping of Krone
Dirac deltas in the following way:δij /ε ⇔ δ(σi − σj ) (note that expressions (17), (18) involve a factorδ00 = 1).
The anticommutators of the points inside the string and on the boundary may be accommodated in on
expression if we introduce a parameterβ such thatβ = 1/2 for σ = σ ′ = 0 or β = 1 elsewhere. The continuou
limit of the Dirac antibrackets is then

(19)
{
ψ
µ

(+)(σ ),ψ
ν
(+)(σ

′)
} = {

ψ
µ

(−)(σ ),ψ
ν
(−)(σ

′)
} = −2βπiα′ηµνδ(σ − σ ′),

(20)
{
ψ
µ
(+)(σ ),ψ

ν
(−)(σ

′)
} = −πiα′(ηµγ +Fµγ

)([
1−F2]−1)

γρ

(
ηρν +Fρν

)
δ(σ − σ ′)

for σ = σ ′ = 0 and zero elsewhere except for the other endpointσ = σ ′ = π where the same kind of relation hold
but with a sign depending on choosing Ramond or Neveu–Schwarz boundary conditions. It is important
that the anticommutator (20) does not vanish even in the absence of the antisymmetric tensor field. This
consistent with the boundary condition (10) that relatesψ

µ

(+) andψν(−) at the string endpoints.

4. Symplectic quantization

Let us now see how the fermionic anticommutators can be calculated using the symplectic Faddeev
quantization [15]. We need particularly the analysis of constraints and gauge symmetries in the sym
quantization developed in [16–18].

We consider a Lagrangian that is first order in time derivatives (if the original Lagrangian is not in this for
can introduce auxiliary fields and change it to first order).

(21)L0 = a0
k (q)∂τqk − V (q),
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whereqk are the generalized coordinates of the system. For bosonic variables the symplectic matrix is defi

(22)f 0
kl =

∂a0
l

∂qk
− ∂a0

k

∂ql
.

If it is non-singular we define the commutators of the quantum theory (if there is no ordering problem
corresponding quantum operators) as

(23)
[
A(q),B(q)

] = ∂A

∂qk

(
f 0)−1

kl

∂B

∂ql
.

If the matrix (22) is singular we find the zero modes that satisfyf 0
klv

α
l = 0 and the corresponding constraints:

(24)Ωα = vαl
∂V

∂ql
≈ 0.

Then we introduce new variablesλα and add a new term to the kinetic part of Lagrangian

(25)L1 = a0
k (q)q̇k + λ̇αΩα − V (q)≡ a1

r (q̃)
˙̃qr − V (q),

where we introduced the new notation for the extended variables:q̃r = (qk, λα). We find now the new matrixf 1
rs

(26)f 1
rs = ∂a1

s

∂q̃r
− ∂a1

r

∂q̃s
.

If f 1 is not singular we define the quantum commutators as

(27)
[
A(q̃),B(q̃)

] = ∂A

∂q̃r

(
f 1)−1

rs

∂B

∂q̃s
.

This process of incorporating the constraints in the Lagrangian is repeated until a non-singular matrix is fo
In the present case we are dealing with fermionic string coordinates. For fermionic variablesΨi we define

(28)aΨi =
∂L

∂(∂τ )Ψi
,

as in the bosonic case, but the symplectic matrix takes the form

(29)fΨiΨj = ∂aΨj

∂Ψi
+ ∂aΨi

∂Ψj
.

The procedure of incorporating constraints then is the same as in the bosonic case.
In the previous section, the boundary conditions did not show up directly from the Dirac procedure. That

the method of quantization itself did not generate the boundary conditions. We had to impose them as a
constraints. In the symplectic approach, in contrast, we will find the boundary conditions from the zero m
the symplectic matrix. We do not get this result if we use directly action (12) as our starting point. Howev
note that the individual terms in this discrete form of the action tend to zero in the limitε → 0. So if we remove or
add a finite number of them we do not change the continuous limitε → 0 corresponding to the original action
Eq. (8). However the symplectic matrix in the discrete variables changes and this will make it possible to
boundary conditions as zero modes of the symplectic matrix. A possible way to do this is to include in the
the extra term

(30)
i

4πα′ψ
µ

0(+)Eµν
(
ψν1(−) −ψν0(−)

)
,

that vanishes in the limitε → 0 and then redefine the variables as

ψ
µ
(±)i ≡

ψ̃
µ
(±)i√
ε

(i �= 0), ψ
µ
(0)+ ≡ ψ̃

µ
(0)+√
ε
, ψ

µ
(0)(−) ≡ ψ̃

µ
(0)(−)
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that mixes the(+) and(−) components.

The symplectic matrix takes the form

(31)




ψ̃ν0(+) ψ̃ν0(−) ψ̃ν1(+) ψ̃ν1(−) ψ̃ν2(+) ψ̃ν2(−) · · ·
ψ̃
µ
0(+) −2gµν 0 0 0 0 0 · · ·

ψ̃
µ
0(−) 0 −2εgµν 0 0 0 0 · · ·

ψ̃
µ

1(+) 0 0 −2gµν 0 0 0 · · ·
ψ̃
µ

1(−) 0 0 0 −2gµν 0 0 · · ·
ψ̃
µ
2(+) 0 0 0 0 −2gµν 0 · · ·

ψ̃
µ

2(−) 0 0 0 0 0 −2gµν · · ·
. . . . . . . . . . . . . . . . . . . . . . . .




(times a factor 1/i4πα′). In the limit ε → 0 this symplectic matrix becomes singular. The zero mode corresp
to the vector

(32)




0
1
0
...


 ,

and the corresponding constraints come from

(33)
∂V

∂ψ̃
µ
0(−)

= 0.

Considering the inclusion of the extra crossed term of Eq. (30) in the potentialV , we find that in theε → 0 limit
the constraints, returning to the original variables, are

(34)Ωµ = Eµνψν0(−) − ETrµνψν0(+) = 0.

Then we introduce a Lagrange multiplierλµ and include the terṁλµΩµ in the Lagrangian. Returning to th
original fermionic variables, the symplectic matrix becomes

(35)




ψν0(+) ψν0(−) ψν1(+) ψν1(−) ψν2(+) ψν2(−) · · · λν

ψ
µ
0(+) −2εgµν 0 0 0 0 0 · · · −Eµν

ψ
µ

0(−) 0 −2εgµν 0 0 0 0 · · · Eνµ

ψ
µ

1(+) 0 0 −2εgµν 0 0 0 · · · 0

ψ
µ

1(−) 0 0 0 −2εgµν 0 0 · · · 0

ψ
µ

2(+) 0 0 0 0 −2εgµν 0 · · · 0

ψν2(+) 0 0 0 0 0 −2εgµν · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . 0

λµ −Eνµ +Eµν 0 0 0 0 · · · 0




(again times a factor 1/i4πα′). Inverting this matrix we find the anticommutators

(36)
{
ψ
µ

0(+),ψ
ν
0(+)

} = {
ψ
µ

0(−),ψ
ν
0(−)

} = −πiα′

ε
gµν,

(37)
{
ψ
µ

0(+),ψ
ν
0(−)

} = −πiα
′ (
ηµγ +Fµγ

)([
1−F2]−1)

γρ

(
ηρν +Fρν

)
.

ε



N.R.F. Braga, C.F.L. Godinho / Physics Letters B 570 (2003) 111–117 117

e Dirac

tization.
ity in the
f getting
The anticommutators (36) agree with the previous result from [5] and reproduce the result obtained in th
quantization.

5. Conclusion

We have calculated the fermionic anticommutators at a string endpoint by Dirac and symplectic quan
In both cases, the discretization of the string spatial coordinate made it more easy to handle the discontinu
antibrackets associated to the effect of the boundary conditions. In the symplectic case we found a way o
the boundary conditions from the symplectic matrix by adding terms that vanish in the continuous limit.
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