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Abstract

Linearly coasting cosmology is comfortably concordant with a host of cosmological observations. It is surprisingly an excel-
lent fit to SNe la observations and constraints arising from age of old quasars. In this Letter we highlight the overall viability of
an open linear coasting cosmological model. The model is consistent with the latest SNe la “gold” sample and accommodates
a very old high-redshift quasar, which the standard cold—dark model fails to do.

Published by Elsevier B.\Open access under CC BY license.

1. Introduction to make out a case for a universe in which accelerated
expansion is fueled by a self-interacting, unclustered
In the past there has been a spurt of activity to fluid, with high negative pressure, collectively known
explain the observed “accelerated expansion” of the as Dark Energy (for latest review sg&), the simplest
universe. Classes of CDM models as well as quin-  and the most favoured candidate being the cosmolog-
tescence models have been designed to accommodatgal constantA. Consequently, several models with
such an expansion deduced from observations on high-a relic cosmological constatACDM), have been
redshift Supernovae la (SNe IH). ~ used to best describe the observed universe. However,
The SNe la look fainter than they are expected in most of them suffer from severe fine tuning problems
the standard Einstein—de Sitter model, which was the [2 3]. The basic reason is the wide spread belief that
favoured model prior to these observations. In stan- the early universe evolved through a cascade of phase
dard cosmology, these results, when combined with transitions, thereby yielding a vacuum energy density
the latest CMB data and clustering estimates, are usedwhich is presently 120 orders of magnitude smaller
than its value at the Planck time. Such a discrepancy
E-mail addresses: getsethi@physics.du.ac (6. Sethi), between theoretical expectations and empirical obser-
deepak@physics.du.ac(b. Jain). vations constitute a fundamental problem at interface
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of astrophysics, cosmology and particle physics. In the
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It was reported by Dev et 8] that this model is

last few years, several attempts have been made toconsistent with gravitational lensing statistics (within

alleviate the cosmological constant problem. For ex-
ample, in the so-called dynamical(¢+) scenarios (or
deflationary cosmology), the cosmological term is a
function of time and its presently observed value is a
remnant of primordial inflationary/deflationary stage
[4]. Other examples are scenarios in which the evo-
lution of classical fields are coupled to the curvature
of the space—time background in such a way that their
contribution to the energy density self-adjusts to can-
cel the vacuum enerd$], as well as some recent ideas
of a SU(2) cosmological instanton dominated universe
[6]. At least in the two later examples, an interesting
feature is a power-law growth for the cosmological
scale factora(¢) ~ t“, wherea may be constrained
by observations.

In a series of earlier articles, we have explored the
viability of a model that hasi() ~ t* with « 2> 1
[7-11] The motivation for such an endeavor comes

from several considerations. Such models do not have

a horizon problem. Moreover, the scale factor in such

1o level) and the constraints from the ages of old
high redshift galaxies. It was also demonstrated that
this model is consistent with primordial nucleosynthe-
sis[9]. For £2 = 0.65 andy = 7.8 x 10~°, the model
with o = 1 yields H¢ = 0.23 and metallicity of the
range 107 [11]. Linear coasting surprising clears pre-
liminary constraints on structure formation and CMB
anisotropy[10].

In this article we explore the concordance of an
open linear coasting model with the latest SNe la
data and bounds from age estimates of old quasars. In
Section2, we give the basic equations for the model
adopted. In SectioB3.1, we constrain parameter by
using SNe la “Gold Sample”. The lower bound en
from the age estimates of an old high-redshift quasar
is discussed in Sectio®l2 We summarize the results
in Sectiord.

2. Linear coasting cosmology

theories does not constrain the density parameter and

therefore, they are free from flatness problem. There
are also observational motivations for considering
power-law cosmologies. Fer > 1, the predicted age
of the universe igg > Ho‘l, i.e., at least 50% greater
than the prediction of the standard flat model (with-
out cosmological constant). This makes the universe
comfortably in agreement with the recent age esti-
mates of globular clusters and highredshift galax-
ies.

A linear evolution of the scale factor is supported
in some alternative gravity theori¢g], as well as in
standard model with a specially chosen equation of
state[12]. As described in Ref§d5-11], a power law
coasting in a hyperbolic background, independent of

We consider a general power law cosmology with
the scale factor given in terms of an arbitrary dimen-
sionless parameter

0 c (t\*
a(t)=—| —

Ho\ 1o
for an open FRW metric

1)

ds® = c?dr®
—a?(1) [d—rz +r2(d6? + sir? 6 d¢2)]. )
1472
Herer is cosmic proper time and 6, ¢ are comoving

spherical coordinates.
The expansion rate of the universe is described by

the background equation of state emerges in a classa Hubble paramete# (t) = a/a = «/t. The present

of non-minimally coupled theoriefs,7] as well as
instanton dominated mode[§]. Interestingly, there

expansion rate of the universe is defined by a Hubble
constant, equal in our model tdHy = «/tp (here and

have been serious misgivings in expecting Einstein’s subsequently the subscript 0 on a parameter refers to
equations to hold for an averaged distribution for an its present value). The scale factor and the redshift are
inhomogeneous univerdd3-15] In [13], an inho- related to their present values byag = (¢/10)*. As
mogeneous fractal model with no dark energy was usual, the ratio of the scale factor at the emission and
considered to introduce a new solution to the averag- absorption of a null ray determines the cosmological
ing problem by identifying cosmic time as measured redshiftz by

by observers in voids. A linear coasting FRW (Milne)
model emerges as a consequence!

ao

— =147z,
a(z)

®3)



G. Sethi et al. / Physics Letters B 624 (2005) 135-140

and the age of the universe is

o
f,=———. 4
z Ho(1+ Z)l/a “)
Using (3), we define the dimensionless Hubble para-
meter

H(2)

h@) === L+ )Y (5)

The present ‘radius’ of the universe is defined as (see
Eq.(1))

c
= o
In terms of the parameter, the luminosity distance
between two redshifts; andz; is

ao

(6)

dy (21, 22)
. c(1+2z2)
=~

x Sinh[aO{fl{(l-l-zz)a";:L - (1+11)QT_1}]

)

In a limiting caseqx — 1, we obtain

¢ 1+29° -1+ ®)
2Ho (1+z1) '
The look-back time, the difference between the age

of the universe when a particular light ray was emitted
and the age of the universe now, is

di(z1,22) =

cdt c

- ©)
Az Ho(l4z)

3. The observational tests

3.1. Constraints from SNe la data

Of late, properties of type la supernovae (SNe la) as ,2 — Z
excellent cosmological standard candles has elevated

the status of the Hubble flow to that of a precision
measurement. The magnitude of a “standard candle”
is related to its luminosity distanek through

d
m(z)=M+5 |og10[M—;C} + 25, (10)

137

where M is the absolute magnitude and is assumed
to be constant for a standard candle like SNe la. The
apparent magnitude can also be expressed in terms of
dimensionless luminosity distané® (z) as

m(z) = M +5l0g;,Dy(2), (11)
with
H,
DL(z) = TOdL (12)
and
¢/ Hp

M=M + 5|0910<—1 Mpc) + 25

— M —5logygh + 4238 (13)

For our analysis we use “gold” sample compiled
by Reiss et al[16]. The sample consists of 157 data
points which are in the terms of distance modulus

Mobs=m(z) — M

= 5100y DL (z) — 5log;gh + 42.38. (14)

The best fit model to the observations is obtained
by using? statistics, i.e.,

|

wherepuy, is the predicted distance modulus for a su-
pernova at redshift ando; is the dispersion of the
measured distance modulus due to intrinsic and ob-
servational uncertainties in SNe la peak luminosity. In
order to integrate over the Hubble constant, we use the
modified x 2 statistics as defined in the R§E7]

2 C1

X*_C_Z

Hereh* is the fiducial value of the dimensionless Hub-
ble constant, and

157

2=y

i=1

. . 2

Oi

2
%= (Cl+§|n10) —2Inh*. (16)

1

(@) i 2
|:M:<hl B 'ulobsi| (17)
- oi ’
l
M = R
— ons
C1= Z T, (18)
1
1
1
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with Fig. 1 shows variation of? with «. We find that
' the minimum of2, i.e, x2,,occurs fore = 1.04, with
1w (i h = h*) $2=123 (32 = _X%in/degree of freedom). The SNe
— 510030 Dy (2) — 510gy0h + 42.38 (20) la data thus provides the following constraint@&<

a<111at68% CLand ®5< «o < 1.15 at 90% CL.
For our calculations, we use* = 0.72. We work

with the following range of the parameter 0.0 < 3.2. Constraints from age estimates of an old, high-z

a < 3.0. We perform a grid search in the parametric quasar

space to find the best fit model. For a one parameter fit,

the 68% confidence level (CL) (90% CL) corresponds The age estimates of old high redshift objects play

to Ax2=1.0 (271). a very important role in constraining cosmological pa-
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Fig. 2. Variation of dimensionless age paramet#ji, as a function ofx for z = 3.91. The dotted line corresponds to the dimensionless age
parameterHotq, of the old quasar at this redshift. It is clear that the lower bound on valug@accommodate the quasar is 0.85.
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rameterg[18]. The recently discovered quasar APM Table 1

08279+5255 at a redshift of= 3.91 is very impor- Constraints o from various cosmological tests
tant object in this regarfll9]. Conservative estimates  Method Reference a
of its age have been made from iron enrichment in | ensing statistics

detailed chemodynamical modelling and give a stag- (Optical sample)

gering value of at least 2 Gyr for this object. Standard () nL Dev et al.[8] 1.09+0.3
flat FRW models with cosmological constant fail to (i) Likelihood analysis Dev eta[g] 113703
accommodate this old, high-redshift quag2@]. In OHRG Dev et al[g] >08
this Letter we use this quasar to put limits on the ~ SNela This Letter 04°59¢
in power law cosmologies. (Gold sample)

The age-redshift relationship in power-law cosmol- ©ld quasar This Letter > 085

ogy is given as

o 4. Discussions
~ Ho(1+4 )Y’

tZ
Recent observations of Type la supernovae lead to

the discovery of an accelerating universe. This accel-

erated expansion has been attributed to a dark energy

of the universe at a given redshift_ has to be greater component with high negative pressure. The simplest
than or at least equal to the age of its oldest objects at ,o4e| for dark energy is the cosmological constant

that redshift. In a power law cosmology the age of the )5t comes with its theoretical and fine tuning prob-

universe increases with increasiagHence, this test lems. We have been exploring alternative models of

provides lower bound oa. This can be checked ifwe hiverse which have the potential of explaining these

define the dimensionless ratio: observations.

L f(a2) T_he main_results of this Lett_er Qlong With_ the con-

== >1, (21) straints obtained from the gravitational lensing statis-
tics of the optical sample and age estimates of old

wherer is the age of an old object (here the quasar) high-redshift galaxiegs] are summarized iffable 1
at a given redshift andf («, z) = a/(1 + 2)Y/¢, is a The motivation for our work was to establish the via-

dimensionless factor. For every high-redshift object, Pility of a linear coasting cosmology(z) = 1. Using

Tq = Hotq is a dimensionless age parameter. The er- SNe la data, we find that such a model is well accom-
ror bar onHo determines the extreme value®f. The modated within &: 0.98 < « < 1.15. The age esti-
lower limit on Ho is updated to nearly 10% of accu- Mates of the old, high-redshift quasarat 3.91 give
racy by Freedmaf2l]: Ho = 72+ 8 kms 1 Mpc—1. the lower boundx > 0.85 for a power law cosmology.
So the 2 Gyr old quasar at= 3.91 givesTy = 2.0Hp We thus find thatr = 1.0 is in concordance with the

Gyr and hence A31< Ty < 0.163. We use minimal observational tests listed able 1 It is interesting to
value of the Hubble constantiy = 64 kms*Mpc—1, observe that the SNe la data and the age estimates of
to get strong conservative limit. It thus follows that the old, high-redshift quasar rule out an Einstein—de
Ty > 0.131. Only those values af are allowed for Sltter universeq = 2/3): We (_:onclude tha}t the coast-
which the age of the universe at= 3.91 equals to or ~ iNg cosmology with strictly linear evolution of scale
is greater than the age of the quasar at that redshift, factor,a(r) =z, is in excellent agreement with these
i.e., Hot, (z = 3.91) > Hotg. observations.

Fig. 2shows the variation of dimensionless age pa-
rameterHot, (z = 3.91) as a function ofx. The hori-
zontal line in the figure corresponds to the age of the Acknowledgements
quasar which isfq = 0.131. It is clear from the fig-
ure thate should be at least 0.85 in order to allow this The authors are grateful to Daksh Lohiya for useful
guasar to exist in power law cosmology. discussions during the course of this work. The authors

In order to constrairx from the age estimate of the
above mentioned quasar we follow REf8]. The age
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