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Abstract

Linearly coasting cosmology is comfortably concordant with a host of cosmological observations. It is surprisingly a
lent fit to SNe Ia observations and constraints arising from age of old quasars. In this Letter we highlight the overall via
an open linear coasting cosmological model. The model is consistent with the latest SNe Ia “gold” sample and accom
a very old high-redshift quasar, which the standard cold–dark model fails to do.
Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

In the past there has been a spurt of activity
explain the observed “accelerated expansion” of
universe. Classes of�CDM models as well as quin
tescence models have been designed to accomm
such an expansion deduced from observations on h
redshift Supernovae Ia (SNe Ia)[1].

The SNe Ia look fainter than they are expected
the standard Einstein–de Sitter model, which was
favoured model prior to these observations. In st
dard cosmology, these results, when combined w
the latest CMB data and clustering estimates, are u
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to make out a case for a universe in which accelera
expansion is fueled by a self-interacting, uncluste
fluid, with high negative pressure, collectively know
as Dark Energy (for latest review see[2]), the simplest
and the most favoured candidate being the cosmo
ical constantΛ. Consequently, several models w
a relic cosmological constant(�CDM), have been
used to best describe the observed universe. How
most of them suffer from severe fine tuning proble
[2,3]. The basic reason is the wide spread belief
the early universe evolved through a cascade of ph
transitions, thereby yielding a vacuum energy den
which is presently 120 orders of magnitude sma
than its value at the Planck time. Such a discrepa
between theoretical expectations and empirical ob
vations constitute a fundamental problem at interf
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of astrophysics, cosmology and particle physics. In
last few years, several attempts have been mad
alleviate the cosmological constant problem. For
ample, in the so-called dynamicalΛ(t) scenarios (or
deflationary cosmology), the cosmological term is
function of time and its presently observed value i
remnant of primordial inflationary/deflationary sta
[4]. Other examples are scenarios in which the e
lution of classical fields are coupled to the curvat
of the space–time background in such a way that t
contribution to the energy density self-adjusts to c
cel the vacuum energy[5], as well as some recent ide
of a SU(2) cosmological instanton dominated unive
[6]. At least in the two later examples, an interest
feature is a power-law growth for the cosmologic
scale factora(t) ≈ tα , whereα may be constraine
by observations.

In a series of earlier articles, we have explored
viability of a model that hasa(t) ≈ tα with α � 1
[7–11]. The motivation for such an endeavor com
from several considerations. Such models do not h
a horizon problem. Moreover, the scale factor in su
theories does not constrain the density parameter
therefore, they are free from flatness problem. Th
are also observational motivations for consider
power-law cosmologies. Forα � 1, the predicted ag
of the universe ist0 � H−1

0 , i.e., at least 50% greate
than the prediction of the standard flat model (wi
out cosmological constant). This makes the unive
comfortably in agreement with the recent age e
mates of globular clusters and high-z redshift galax-
ies.

A linear evolution of the scale factor is support
in some alternative gravity theories[7], as well as in
standard model with a specially chosen equation
state[12]. As described in Refs.[5–11], a power law
coasting in a hyperbolic background, independen
the background equation of state emerges in a c
of non-minimally coupled theories[5,7] as well as
instanton dominated models[6]. Interestingly, there
have been serious misgivings in expecting Einste
equations to hold for an averaged distribution for
inhomogeneous universe[13–15]. In [13], an inho-
mogeneous fractal model with no dark energy w
considered to introduce a new solution to the aver
ing problem by identifying cosmic time as measur
by observers in voids. A linear coasting FRW (Miln
model emerges as a consequence!
It was reported by Dev et al.[8] that this model is
consistent with gravitational lensing statistics (with
1σ level) and the constraints from the ages of
high redshift galaxies. It was also demonstrated
this model is consistent with primordial nucleosynth
sis [9]. For Ω = 0.65 andη = 7.8 × 10−9, the model
with α = 1 yields He4 = 0.23 and metallicity of the
range 10−7 [11]. Linear coasting surprising clears pr
liminary constraints on structure formation and CM
anisotropy[10].

In this article we explore the concordance of
open linear coasting model with the latest SNe
data and bounds from age estimates of old quasar
Section2, we give the basic equations for the mod
adopted. In Section3.1, we constrain parameterα by
using SNe Ia “Gold Sample”. The lower bound onα

from the age estimates of an old high-redshift qua
is discussed in Section3.2. We summarize the resul
in Section4.

2. Linear coasting cosmology

We consider a general power law cosmology w
the scale factor given in terms of an arbitrary dime
sionless parameterα

(1)a(t) = c

H0

(
t

t0

)α

for an open FRW metric

ds2 = c2 dt2

(2)−a2(t)

[
dr2

1+ r2
+ r2(dθ2 + sin2 θ dφ2)].

Heret is cosmic proper time andr, θ,φ are comoving
spherical coordinates.

The expansion rate of the universe is described
a Hubble parameter,H(t) = ȧ/a = α/t . Thepresent
expansion rate of the universe is defined by a Hub
constant, equal in our model toH0 = α/t0 (here and
subsequently the subscript 0 on a parameter refe
its present value). The scale factor and the redshift
related to their present values bya/a0 = (t/t0)

α . As
usual, the ratio of the scale factor at the emission
absorption of a null ray determines the cosmolog
redshiftz by

(3)
a0 = 1+ z,
a(z)
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(4)tz = α

H0(1+ z)1/α
.

Using (3), we define the dimensionless Hubble pa
meter

(5)h(z) ≡ H(z)

H0
= (1+ z)1/α.

The present ‘radius’ of the universe is defined as (
Eq.(1))

(6)a0 = c

H0
.

In terms of the parameterα, the luminosity distance
between two redshiftsz1 andz2 is

dL(z1, z2)

= c(1+ z2)

H0

(7)

× sinh

[
α

α − 1

{
(1+ z2)

α−1
α − (1+ z1)

α−1
α

}]
.

In a limiting case,α → 1, we obtain

(8)dL(z1, z2) = c

2H0

(1+ z2)
2 − (1+ z1)

2

(1+ z1)
.

The look-back time, the difference between the a
of the universe when a particular light ray was emit
and the age of the universe now, is

(9)
c dt

dzL
= c

H0(1+ zL)
α+1
α

.

3. The observational tests

3.1. Constraints from SNe Ia data

Of late, properties of type Ia supernovae (SNe Ia
excellent cosmological standard candles has elev
the status of the Hubble flow to that of a precisi
measurement. The magnitude of a “standard can
is related to its luminosity distancedL through

(10)m(z) = M + 5 log10

[
dL

Mpc

]
+ 25,
whereM is the absolute magnitude and is assum
to be constant for a standard candle like SNe Ia.
apparent magnitude can also be expressed in term
dimensionless luminosity distanceDL(z) as

(11)m(z) = M+ 5 log10DL(z),

with

(12)DL(z) = H0

c
dL

and

M = M + 5 log10

(
c/H0

1 Mpc

)
+ 25

(13)= M − 5 log10h + 42.38.

For our analysis we use “gold” sample compil
by Reiss et al.[16]. The sample consists of 157 da
points which are in the terms of distance modulus

µobs= m(z) − M

(14)= 5 log10DL(z) − 5 log10h + 42.38.

The best fit model to the observations is obtain
by usingχ2 statistics, i.e.,

(15)χ2 =
157∑
i=1

[
µi

th − µi
obs

σi

]2

,

whereµth is the predicted distance modulus for a s
pernova at redshiftz and σi is the dispersion of the
measured distance modulus due to intrinsic and
servational uncertainties in SNe Ia peak luminosity
order to integrate over the Hubble constant, we use
modifiedχ2 statistics as defined in the Ref.[17]

(16)χ̄2 = χ2∗ − C1

C2

(
C1 + 2

5
ln 10

)
− 2 lnh∗.

Hereh∗ is the fiducial value of the dimensionless Hu
ble constant, and

(17)χ2∗ ≡
∑

i

[
µ

∗(i)
th − µi

obs

σi

]2

,

(18)C1 ≡
∑

i

µ
∗(i)
th − µi

obs

σi
2

,

(19)C2 ≡
∑

i

1

σi
2
,
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(20)= 5 log10DL(z) − 5 log10h + 42.38.

For our calculations, we useh∗ = 0.72. We work
with the following range of the parameterα: 0.0 �
α � 3.0. We perform a grid search in the paramet
space to find the best fit model. For a one paramete
the 68% confidence level (CL) (90% CL) correspon
to 
χ̄2 = 1.0 (2.71).
Fig. 1 shows variation ofχ̄2 with α. We find that
the minimum ofχ̄2, i.e, χ̄2

minoccurs forα = 1.04, with
χ̄2

ν = 1.23 (χ̄2
ν = χ̄2

min/degree of freedom). The SN
Ia data thus provides the following constraints: 0.98�
α � 1.11 at 68% CL and 0.95� α � 1.15 at 90% CL.

3.2. Constraints from age estimates of an old, high-z
quasar

The age estimates of old high redshift objects p
a very important role in constraining cosmological p
age
Fig. 1. Variation ofχ̄2 with α. The arrow corresponds to the minimum value ofχ̄2 which occurs forα = 1.04.

Fig. 2. Variation of dimensionless age parameter,H0tz, as a function ofα for z = 3.91. The dotted line corresponds to the dimensionless
parameter,H0tq, of the old quasar at this redshift. It is clear that the lower bound on value ofα to accommodate the quasar is 0.85.
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rameters[18]. The recently discovered quasar AP
08279+5255 at a redshift ofz = 3.91 is very impor-
tant object in this regard[19]. Conservative estimate
of its age have been made from iron enrichmen
detailed chemodynamical modelling and give a st
gering value of at least 2 Gyr for this object. Stand
flat FRW models with cosmological constant fail
accommodate this old, high-redshift quasar[20]. In
this Letter we use this quasar to put limits on theα

in power law cosmologies.
The age-redshift relationship in power-law cosm

ogy is given as

tz = α

H0(1+ z)1/α
.

In order to constrainα from the age estimate of th
above mentioned quasar we follow Ref.[18]. The age
of the universe at a given redshift has to be gre
than or at least equal to the age of its oldest objec
that redshift. In a power law cosmology the age of
universe increases with increasingα. Hence, this tes
provides lower bound onα. This can be checked if w
define the dimensionless ratio:

(21)
tz

tq
= f (α, z)

H0tq
� 1,

wheretq is the age of an old object (here the quas
at a given redshift andf (α, z) = α/(1 + z)1/α , is a
dimensionless factor. For every high-redshift obje
Tq = H0tq is a dimensionless age parameter. The
ror bar onH0 determines the extreme value ofTq. The
lower limit on H0 is updated to nearly 10% of acc
racy by Freedman[21]: H0 = 72± 8 km s−1 Mpc−1.
So the 2 Gyr old quasar atz = 3.91 givesTq = 2.0H0
Gyr and hence 0.131� Tq � 0.163. We use minima
value of the Hubble constant,H0 = 64 km s−1 Mpc−1,
to get strong conservative limit. It thus follows th
Tq � 0.131. Only those values ofα are allowed for
which the age of the universe atz = 3.91 equals to or
is greater than the age of the quasar at that reds
i.e.,H0tz(z = 3.91) � H0tq.

Fig. 2shows the variation of dimensionless age
rameterH0tz(z = 3.91) as a function ofα. The hori-
zontal line in the figure corresponds to the age of
quasar which isTq = 0.131. It is clear from the fig-
ure thatα should be at least 0.85 in order to allow th
quasar to exist in power law cosmology.
Table 1
Constraints onα from various cosmological tests

Method Reference α

Lensing statistics
(Optical sample)
(i) nL Dev et al.[8] 1.09± 0.3
(ii) Likelihood analysis Dev et al.[8] 1.13+0.4

−0.3
OHRG Dev et al.[8] � 0.8

SNe Ia This Letter 1.04+0.07
−0.06

(Gold sample)

Old quasar This Letter � 0.85

4. Discussions

Recent observations of Type Ia supernovae lea
the discovery of an accelerating universe. This ac
erated expansion has been attributed to a dark en
component with high negative pressure. The simp
model for dark energy is the cosmological const
that comes with its theoretical and fine tuning pro
lems. We have been exploring alternative models
universe which have the potential of explaining the
observations.

The main results of this Letter along with the co
straints obtained from the gravitational lensing sta
tics of the optical sample and age estimates of
high-redshift galaxies[8] are summarized inTable 1.
The motivation for our work was to establish the v
bility of a linear coasting cosmologya(t) = t . Using
SNe Ia data, we find that such a model is well acco
modated within 1σ : 0.98 � α � 1.15. The age esti
mates of the old, high-redshift quasar atz = 3.91 give
the lower boundα � 0.85 for a power law cosmology
We thus find thatα = 1.0 is in concordance with th
observational tests listed inTable 1. It is interesting to
observe that the SNe Ia data and the age estimat
the old, high-redshift quasar rule out an Einstein–
Sitter universe (α = 2/3). We conclude that the coas
ing cosmology with strictly linear evolution of sca
factor, a(t) = t , is in excellent agreement with the
observations.
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