=

metadata, citation and similar papers at core.ac.uk brought to you by C

provided by Elsevier - Publisher Col

Artificial
Intelligence

ELSEVIER Artificial Intelligence 112 (1999) 105-146
www.elsevier.com/locate/artint

Computing with default logie

Pawet Cholewiski?, Victor W. Marek?*, Artur Mikitiuk €,
Mirostaw Truszczpski®

@ Hynomics Corporation, 10632 NE 37th Circle, Bldg. 23, Kirkland, WA 98033-7921, USA
b Computer Science Department, University of Kentucky, Lexington, KY 40506-0046, USA
¢ Department of Computer Technology, Fort Valley State University, 1005 State University Drive,
Fort Valley, GA 31030-4313, USA

Received 2 August 1998

Abstract

Default logic was proposed by Reiter as a knowledge representation tool. In this paper, we
present our work on the Default Reasoning System, DeReS, the first comprehensive and optimized
implementation of default logic. While knowledge representation remains the main application area
for default logic, as a source of large-scale problems needed for experimentation and as a source of
intuitions needed for a systematic methodology of encoding problems as default theories we use here
the domain of combinatorial problems.

To experimentally study the performance of DeReS we developed a benchmarking system, the
TheoryBase. The TheoryBase is designed to support experimental investigations of nonmonotonic
reasoning systems based on the language of default logic or logic programming. It allows the
user to create parameterized collections of default theories having similar properties and growing
sizes and, consequently, to study the asymptotic performance of nonmonotonic systems under
investigation. Each theory generated by the TheoryBase has a unique identifier, which allows for
concise descriptions of test cases used in experiments and, thus, facilitates comparative studies. We
describe the TheoryBase in this paper and report on our experimental studies of DeReS performance
based on test cases generated by the TheoryBak899 Elsevier Science B.V. All rights reserved.

Keywords:Knowledge representation; Default logic; Nonmonotonic reasoning; Automated reasoning;
Constraint satisfaction; Experimental studies; Benchmarking

Y This paper is a full version of the material presented in two extended abstracts: [17] and [18].
* Corresponding author. Email: marek@cs.engr.uky.edu.

0004-3702/99/$ — see front mattér1999 Elsevier Science B.V. All rights reserved.
PIl: S0004-3702(99)00053-3

https://core.ac.uk/display/82645507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

106 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146
1. Introduction and motivation

In this paper we describe an automated reasoning system, DeReS, based on default logic.
We discuss the problem of testing and experimenting with nonmonotonic reasoning. We
describe a system, called the TheoryBase, that generates families of default theories for
use in experimental studies. We describe results of experiments with DeReS that used as
test cases default theories generated by the TheoryBase.

The area of nonmonotonic logics originated in the late 1970s [36,37,49,50] in an
effort to build effective knowledge representation formalisms. Since then, solid theoretical
foundations of nonmonotonic logics have been established. The efforts of the past
two decades culminated in several research monographs [5,11,23,40] describing major
nonmonotonic systems: default logic, logic programming with negation as failure,
autoepistemic logic and circumscription.

In this paper we focus on default logic—a knowledge representation formalism
introduced by Reiter [50] to capture reasoning based on incomplete information. The
original motivation of Reiter was to use defaults to derive new information under the
assumption of “normality” or “typicality” of a situation. Defaults are inference rules with
two types of premisegrerequisitesandjustifications Prerequisites are treated similarly
as premises of standard inference rules—they have to hawedd in order to allow
for the application of a default. Justifications specify the notion of a context-dependent
normality under which the default can be applied. To formally describe a semantics for
default theories, Reiter introduced the notion ofeatensionExtensions are theories that
model the agent’s possible belief sets.

Default logic of Reiter has been widely studied for its potential as a knowledge
representation mechanism. Reiter and his collaborators studied default logic as a way
to model and investigate the Closed World Assumption [49], inheritance networks with
exceptions [22], and situations with conflicting default assumptions [48]. Formalizations
of the frame problem and reasoning about action in default logic were extensively studied
in [24,27,30,50]. Applications of default logic to diagnosis are discussed in [47,51].
Default logic provides also a semantics for normal logic programs with negation. In [38]
we described an encoding of logic programs as default theories, under which there is
a straightforward one-to-one correspondence between stable models of a program and
extensions of its default interpretation (this application of default logic was independently
discovered in [6]).

It is important to notice that, although default logic is a declarative formalism, it is
quite different from Horn clause style logic programming. Specifically, extensions of
default theories are subsets of the set of formulas, not the elements of that set. For this
reason, extensions of default theories correspond to branches of a search tree, rather than
to individual nodes of an SLD-tree, which is the case for Horn programs. This “second
order” flavor of default logic makes it especially useful in representing problems in which
solutions aresubsetgrather than elements) of some domain. We illustrate the advantage
of this property of default logic later in the paper.

It was expected that default logic (and other nonmonotonic systems, too) would have
better computational properties than classical logics. Computational complexity results ob-
tained in recent years were discouraging. Decision problems associated with nonmonotonic

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 107

reasoning, even when restricted to the propositional case, are computationally complex.
For example, in the case of logic programming with the stable model semantics they are
NP-complete or co-NP-complete [39]. In the case of default logic, thewgreomplete

or Hg’-complete [29,57]. We will discuss these results in Section 2.

However, the complexity results do not disqualify nonmonotonic logics as a practi-
cal computational knowledge representation mechanism. The results of [14,25] show that
higher computational complexity of nonmonotonic logics may be offset by more concise
encodings of application problems than those possible with propositional logic. It seems
that the only way to establish whether defaultlogic can serve as a computationally practical
knowledge representation system is through implementations and systematic experimen-
tations. Recent dramatic improvements in performance of satisfiability algorithms [12,19,
53,54] demonstrate the value of experimental studies.

The progress in understanding default logic resulted in several algorithms for computing
extensions and led to first implementation projects [2,3,7,32,40,43]. In the last few
years, implementing nonmonotonic reasoning systems became one of the most actively
pursued directions in the area of honmonotonic logics. Several working systems were
presented recently at the Fourth Conference on Logic Programming and Nonmonotonic
Reasoning [20].

Our goal in this research was to study experimentally properties and performance
of default logic as an automated reasoning system. We describe here the Default
Reasoning System, DeReS, developed and studied over several years at the University
of Kentucky. DeReS supports basic automated reasoning tasks for default logic and
for logic programming with the stable model semantics [26]. Our current version of
DeReS userelaxed stratificatiorf15,16] as a primary search-space pruning mecharism.

A relaxed stratification of a default theory allows us to uskvéde-and-conqueapproach

when computing extensions. An original default theory is partitioned into several smaller
subtheories, calledtrata The extensions of the original theory are then reconstructed
from the extensions of its strata. The notion of a relaxed stratification considered here is a
generalization of the concept of a stratification of a logic program, as introduced in [1]. In
particular, a theory (logic program) stratified in our sense may possess no extension (stable
model) or, if it does, not necessarily a unique one. In the paper we show that applying
relaxed stratification leads to substantial speedups, especially when the strata are small.
Relaxed stratification is discussed in Section 3.2.

In the paper we also study the effects of different propositional theorem provers on the
efficiency of DeReS. We observe that full theorem provers, which check global consistency
when deciding whether a theory proves a formula, result in performing prohibitive amount
of redundant computations. A weaker notion dbaal prover, sound but not complete,
can also be used to correctly implement default reasoning and results in significant
improvements in time performance. For consistent theories a local prover is complete, and
we use this feature of a local prover to limit the size of theories that need to be consulted
for provability and satisfiability. Use of a local prover requires modifications in algorithms
processing default theories. The details are discussed in Section 3.3.

1A similar idea was proposed for logic programs, under the name of “splitting”, by Lifschitz and Turner,
see [35].

108 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Our results show that there are classes of theories that DeReS can handle very efficiently.
However, if relaxed stratification does not yield a partition of an input theory into small
strata, the efficiency of DeReS may be poor. In this context, it is interesting to relate our
work to that of Niemela and Simons [45]. Their systesamodelsis currently the best
implementation of the stable model semantics for logic programs. It is based on the ideas
first proposed in [55] that have some common features with the Davis—Putnam approach
to satisfiability testing. Namelhg-modelsnakes a decision about the membership of an
atom in a stable model, propagates the effects of this decision through the program, thus
decreasing its size and, then selects the next atom to deal with. As saemedels
establishes that there is no stable model consistent with the decisions made so far, it
backtracks. Thus, DeReS aswinodelsttack different aspects of the same problem. While
our research focused on techniques to exploit relaxed stratification to reduce the problem
to smaller ones (divide-and-conquer), Niemela and Simons developed techniques to deal
with individual strata $-modelsloes not exploit stratification at all). It seems that the next-
generation implementations of nonmonotonic systems, in order to be effective in a large
range of different applications, must combine techniques developed in both projects.

Systematic implementation and experimentation effort is necessary to provide us with
better insights into the computational properties of nonmonotonic logics. Despite impor-
tance of experimental studies to the area of nonmonotonic logics, there has been little work
reported in the literature. While several algorithms were published and some implemen-
tations described [4,8,9,20,42,45], the results are far from conclusive. This state of affairs
can be attributed to the lack of systematic experimentation with implemented systems. One
possible reason is the absence of commonly accepted benchmarking systems that could
generate rich classes of meaningful test data—Ilogic programs and default theories.

Resorting to randomly generated programs and theories, a solution often used in other
areas such as graph algorithms or satisfiability testing, is not a viable approach. First, it
is difficult to argue that randomly generated data have any correlation with cases that are
encountered in practical situations. Second, only a very careful selection of parameters
makes randomly generated instances difficult to solve and, hence, useful for benchmarking
purposes [12]. Third, no model of a random logic program or random default theory has
been proposed yet.

In this paper we describe our approach to the problem of generating logic programs and
default theories to test nonmonotonic reasoning systems. Namely, we develop encodings
of graph problems as logic programs and default theories. Our approach builds on the
work of Knuth [33] in which he presented a graph generating system called The Stanford
GraphBase. We apply our encodings of graph problems to graphs generated by The
Stanford GraphBase, thus producing a rich variety of programs and theories for testing.
We call the resulting system the TheoryBase.

The Stanford GraphBase allows the user to gengratameterizedamilies of graphs
of similar structure and properties, and of sizes controlled by a numeric parameter. This
feature is inherited by the TheoryBase. Thus, the TheoryBase can gefsamdlies of
default theories and logic programs of similar structure and properties, and of growing
sizes, which supports studies of scalability of reasoning algorithms.

Each graph generated by The Stanford GraphBase has a unique identifier. This feature
greatly facilitates the use of The Stanford GraphBase as a benchmarking system. We

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 109

extended the concept of the GraphBase identifier to the case of default theories and logic
programs generated by the TheoryBase.

In the paper we demonstrate the usefulness of the TheoryBase in experimental studies
of automated reasoning systems by using the TheoryBase generated default theories in our
studies of the performance of DeReS.

The paper is organized as follows. In the next section we provide the reader with
the formal definition of default logic and its simplified version, logic programming with
the stable semantics. We discuss the complexity results for default logic. In Section 3,
we describe DeReS, its main components and reasoning algorithms. Section 4 contains
descriptions of default encodings of graph problems that are used by the TheoryBase. The
TheoryBase itself is described in Section 5. Results of experimenting with DeReS are
presented in Section 6. The last section contains conclusions.

2. Default logic—technical introduction

The language of default logic is an extension of the language of first-order logic by new
structures calledefaults In this paper, we concentrate on the case when the underlying
first-order language is propositional. A more general case, of the predicate language
without quantifiers and function symbols follows immediately from our presentation.

Let £ be afixed propositional language over a set of atdam#\ defaultis an expression
d of the form

a: I’

p

wherex andg are formulas fron, andI" is afinite set of formulas fronC. The formula
«a is called theprerequisite formulas inI"—thejustifications and S—theconsequernf d.
The prerequisite, the set of justifications and the consequent of a défardtdenoted by
p(d), j(d) andc(d), respectively. Ifp(d) is a tautologyd is calledprerequisite-fred p(d)

is then usually omitted from the notation @f. This terminology is naturally extended to
a set of defaultd. WhenTI" = {y1, ..., ym}, we will write d as

o Y1, -5 Vm
B

By adefault theorywe mean a painr = (D, W), whereD is a set of defaults an® is a
set of formulas fron. The setW is called theobjective parof (D, W). A default theory
A= (D, W) is calledfinite if both D andW arefinite.

Let 7 be a set of formulas fromi. A default rule%, is T-applicableif every formula
y € I' is consistent withl". For a set of default®, by Dy we denote the set of defaults
from D that areT -applicable.

For a set of default®, define

pd) .
Mon(D) = { @ de D}.
Thus, Mon(D) consists of standard inference rules obtained from default® iby
dropping the justification part. Bgn”-7 (W) (Reiter used the notatiofi(7)) we denote

110 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

the closure ofW under propositional consequence and under all the rulésoin(D7).
AtheoryT is called arextensiort of (D, W) if

cn?T(w)=T.

Let T be a theory. A defauld is generatingfor T if d is T-applicable angy(d) € T.
The set of all defaults inD generating forT is denoted byGD(D, T). The following
proposition gathers some well-known properties of default logic [40].

Proposition 2.1. Let (D, W) be a default theory.
(1) If T is an extension of D, W) thenT = Cn(W U ¢(GD(D, T))).
(2) If all defaults inD are prerequisite-free thef is an extension ofD, W) if and only
if 7=Cn(WUc(GD(D, T))).

Part (1) of this proposition is the basis for all algorithms that compute extensions.
A logic programming clauséor, simply, aclausg is an expression of the form

P <qi,...,qm,NOt>r1), ..., not(r,)

wherep, q1,...,qm,71, ...,y are atoms. Aogic programis a finite set of such clauses.
When n = 0, the clause is called Born clause. A programP consisting of Horn
clauses has kast modelthat is, a least se¥ C Ar such that for every claus€ € P,
C=p<qi,...,q9m, Wheneveys,...,qg, € M thenalsop € M.

Given a set of atom@/ C Ar and a logic programP, the reduct PM of P with
respect taV consists of Horn clauses < ¢1, .. ., g, such that for somey, ..., r, ¢ M,
P <q1,--.,qm,N0Ot(r1), ..., not(r,) € P. A stable modedf a logic progranP is a setM
of atoms such tha¥ coincides with the least model " . Stable models were introduced
by Gelfond and Lifschitz [26].

Logic programs can be represented by default theories. Specifically, a clause

C=p<qi,....qm,N0t>r1), ..., not(r,)
can be represented as the default
N ANqm: 71, ...,y

p
For this representation we have the following result [6,38].

diicy =&

Proposition 2.2. Let P be a logic program. The is a stable model of if and only if
Cn(M) is an extension of{dI(C): C € P}, ?).

Proposition 2.2 tells us that if we are able to compute extensions of default theories then,
in particular, we are able to compute stable models of logic programs.

There is an important difference between computing stable models and computing
default extensions. Namely, when computing stable models, procedures testing full
propositional provability are not needed. DeReS takes advantage of this fact.

2 Our definition is different from but equivalent to the original definition by Reiter [50].

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 111

Reasoning tasks associated with default logic are listed below. In the descriptions we
assume that a finite default theqi®, W) and a formulay form the input.

Existence—decide whethe¢D, W) has an extension.
In-Some—decide whethe¢D, W) has an extension containigg

In-All —decide whethep belongs to all extensions ¢D, W).

The following result due to Gottlob [29] and Stillman [57] determines the complexity of
these problems.

Proposition 2.3. The problemg£Existenceand In-Some are Eg-complete. The problem
In-All is T15-complete.

The same reasoning tasks can be formulated for the domain of logic programs and the
stable model semantics. In this setting the complexity of the reasoning problems goes
down. This is due to the fact that deciding whether an atom follows from a set of atoms
is easier (polynomial) than the task of deciding whether a formula follows from a set
of formulas (co-NP-complete). Specifically, for logic programs we have the following
result [39].

Proposition 2.4. In the case of logic programs and atoms, the problé&mstence and
In-Someare NP-complete. The problein-All is co-NRcomplete.

A default theory(D, W) is disjunction-freeif all formulas in W, and all prerequisites,
justifications and consequents of defaultslinare conjunctions of literals. One can
show that the same complexity bounds as those given in Proposition 2.4 hold for the
class of disjunction-free default theories [34]. Several default theories studied below are
disjunction-free.

3. Automated reasoning with default logic

In this section we describe the Default Reasoning System DeReS developed at the
University of Kentucky. We provide a general overview of DeReS, describe its main
components and the key reasoning algorithms.
3.1. Overview

DeReS is a software package implementing nonmonotonic reasoning and running under

all major versions of Unix, including Linux. The focus of DeReS is on automated reasoning
with default logic and with logic programming with the stable model semarttics.

3 A detailed information about DeReS and how to use it, as well as the system itself can be obtained from http:
Iww.cs.engr.uky.edu/deres/.

112 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

DeReS computes extensions for finite propositional default the8ri@szen a default
theory, DeReS can determine existence of extensions and can compute one of the
extensions or all of the extensions. There are no syntactic restrictions on input default
theories and formulas.

The user communicates with DeReS via its shell. The DeReS shell provides the user
with access to commands specific to DeReS, as well as to system commands. In particular,
it reads user queries, initiates appropriate reasoning procedures, and outputs results of the
reasoning process. It also outputs statistics such as the amount of the CPU time used to
solve a query, the number of calls to the propositional provability procedure and the number
of candidates for extensions that were tested. Three main modules of DeReS are:

Default Reasoning Module—a library of routines for reasoning with a given default
theory,

Prover Module—a collection of propositional theorem provers that can be called by the
Default Reasoning Module,

User Interface—a collection of shell commands for processing input theories and
programs, and displaying the progress of the computation and the results.

3.2. Default reasoning module

The key reasoning algorithm of DeReS is based on the observation that every extension
of a default theory D, W) is of the formCn(W U ¢(U)) for some set of defaults C D.
This representation may not be unique. That is, an extension may be generavedriu/
consequents of different subsets@f However, every extensiofi has a unique largest
subset of defaults that generates it. This is the set of its generating det(i3, T')
(see Proposition 2.1). This observation implies a method, cgkeetrate-and-checko
construct one (or all) extensions. The idea is to construct all subsé&tsaofd, for each of
them, test whether it is the set of generating defaults of an extension.

To accomplish this latter task, DeReS uses a procdduiextension D, W, U). Given
a finite default theory D, W) and a setU C D, it returns valudrue if U is the set of
generating defaults of an extension {@p, W), and returns valuéalse, otherwise. One
such procedure is described in [40]. It is presented here in Fig. 1.

To generate all subsets @f, DeReS generates and searches a full binary tree whose
nodes are labeled by subsets Bf This tree is constructed as follows. L& =
{d1,do, ...,d,}. The root of the tree is labeled by the empty subseboff a nodea, at
depthk in the tree, is labeled by sét C D, then the left child of: is labeled byU U {d}.+1}
and the right child ot is labeled byU, again. It is clear that every subset Bfappears
as a label on at least one node. In the case wher3, the corresponding binary tree is
shown in Fig. 2.

DeReS considers the nodes of the tree according to the depth-first search order. To avoid
considering the same subset several times (if it appears as the label on more than one node

4To be precise, for each extensi@h DeReS computes itsase that is, a finite set of formulag such that
T =Cn(B).

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 113

Is_Extension(D, W, U)

Input Finite sets of default® andU such thaty € D, and a finite set of formula®;

Output true—if U is the set of generating defaults for an extensiofn/@f W) and
false—otherwise;

R:={de D: WUc(U) ¥ -8, forBe j(d)};
if not (U C R) then return (false) else

B:=W,
X:=0;
repeat
AR:={d € R\ X: B+ pd)};
B:= BUc(AR);
X =XUAR
if not (X C U) then return (false)
until AR=¢;

if X =U then return (true) else return(false);

Fig. 1. Checking if a given set of defaults is the set of generating defaults for an extension.

<y
) o

VLN
2@ :zf

Fig. 2. Generating all subsets &f= {1, 2, 3}.

of the tree), a set of defaults is checked by heExtensionprocedure only when it is
encountered for the first time as the label on a node in the tree. In Fig. 2, the nodes where
Is_Extensionis actually invoked are shown in solid lines.

The sets of generating defaults of extensions form an antichain. This observation yields
a method to prune the search space. When the set of defaults represented by a node in the
search space is found to be generating for an extension, DeReS prunes all descendants of
this node in the search tree. The resulting algorithm to compute all extensions, referred to
asAll_Extensions is presented in Fig. 3. The varialbacktrackis set totrue whenever
the currently considered node in the search space is a leaf or represents the set of generating
defaults of an extension, causing the algorithm to backtrack.

The algorithmAll_Extensionsis capable of computing extensions for arbitrary finite
propositional default theories. However, due to the high computational complexity of
default reasoning, computation time can be very long. In many cases this problem can

114 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

All_Extensions(D, W)
Input A finite default theory(D, W) andD = {d1, d>, ..., dn};
Output The list of all extensions ofD, W);

U =0,
Build_Extensiong D, W, U, 0);

procedure Build_Extension§D, W, U, k);
backtrack= (k = |D|);
if k=0o0r d; € U then
if Is_Extension(D, W, U) then
write (W U ¢(U));
backtrack:= true;
if not backtrackthen
Build_Extensions(D, W, U U {dj 1}, k+ 1);
Build_Extensiong D, W, U, k + 1);

Fig. 3. Search for all extensions @b, W).

be avoided by splitting the input default theory into several strata (clusters) of defaults
and dealing with one stratum at a time. This technique, we will refer to eksxed
stratification was developed in [15,16]. It is the main search space pruning technique used
by DeReS.

Relaxed stratification applies to default theories that do not have justification-free
defaults and in which formulas i do not have common propositional variables with
the consequents of the defaults. In this method, we first find a finest possible relaxed
stratification ofD, that is, a partitiorD = {D;, ..., D,,} such that propositional variables
appearing in defaults frond; do not appear in the consequents of defaults fidpm for
i < j, and such that no sdb; can be further partitioned preserving the constraint on
variable occurrence. It can be shown that such a relaxed stratification exists. We search
for extensions for a single stratu(®;, W;) (W1 = W) using the same approach as in the
algorithmAll_Extensions However, when an extension, sen(W; U c(U)), is found we
reportit only if D; is the last stratum of the default theory (that is, whenm). Otherwise,
we add the formulas from(U) to W; to form W; 1 (W41 := W; U c(U)), and start the
search for extensions @, 1, W;;1). If the stratification is fine-grained, then in each
step we deal with small sets of defaults and computational savings can be expected. The
detailed description of this method can be found in [15,16].

We refer to the algorithm based on the idea described abo&# @&xtensions_ Strati-
fied. The pseudocode is given in Fig. 4.

3.3. Prover module

Prover Module of DeReS is used as an oracle by all reasoning procedures. Currently,
DeReS is equipped with a prover that implements the propositional tableaux method.
However, any other technique based, for instance, on the resolution inference rule or on
satisfiability testing procedures could be used in its place.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 115

All_Extensions_Stratified(D, n, W)

Input A consistent finite propositional theo#y and a relaxed stratificatid® = {D1, ..., D, } of
(Uj=1 D1, W);

Output The list of all extensions OGU?Zl Dy, W);

U =0
Stratified_Build_ExtensiongD, n, W, U, 1, 0);

procedure Stratified_Build_ExtensionsD, n, W, U, [, k);
(* we assume thab; = {dq, ..., dm} ™)
backtrack:= (k = | Dy|);
if k=0o0r d; € U then
if Is_Extension(D;, W, U) then
if (I =n) then (x last stratum extensicx)
write (W U c(U));
backtrack:= true;
else
W :=WUcU); U =0
Stratified_Build_ExtensiongD, n, W, U’, [+ 1, 0);
if not backtrackthen
Stratified_Build_ExtensionsD, n, W, U U {dyy1},1,k+ 1);
Stratified_Build_ExtensionsD,n, W, U, [, k + 1);

Fig. 4. Search for all extensions of a stratified the@njf'_; D;, W).

Using a sound and complete prover allows DeReS to handle arbitrary default theories.
However, it carries a heavy computational cost due to the inefficiency of such provers.
Analyzing the performance of sound and complete provers, one can see that substantial
amount of time spent to decide whether a theBrgroves a formula is actually spent to
decide consistency &f. Next, when searching for a proof gffrom T, even those parts
of T that are irrelevant tp may be considered by the prover.

Based on these observations, we designed and implemented a method referred to as a
local prover. This provability testing procedure does not perform consistency checks and,
consequently, is sound but not complete. Moreover, the local prover takes into account
only the part ofT that is relevant to proving. We then modified reasoning algorithms
in DeReS so that a full prover can be replaced with a local prover without affecting the
correctness of DeReS. As expected, we observed substantial computational gains. We will
now describe in detail the concept of a local prover.

Let £ be any propositional language. For a formula £, by Var(¢) we denote the set
of atoms occurring ip. Similarly, for a theoryl", we definevar(T) as the set of all atoms
occurring in the formulas frorf.

Consider a theory" € £ and a formulay € £. The p-pertinent fragmendf T, Ty, is
defined recursively as follows:

70 = {y € T: Var(y) NVar(p) # #},

Tp4 = {y e T: Var(y) N Var(T)) # 0},

116 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Next, we will introduce the concept of a local provability. The main idea is to capture the
expressionthe information inT, pertinent top, entailse”. Thus, ¢ should not béocally
provable just becausg contains some inconsistent data.

Definition 3.1. A theoryT locally provesa formulag (denotedl Fioc @) if Ty F ¢.
Local provability has the following useful properties.

Proposition 3.1. Let 7T C £ be a theory and lep € £ be a formula.
(1) If T Fioc @ thenT = ¢.
(2) If T Foc ¢ andT is consistent theff U {¢} is consistent.
(3) If T is consistent thef - ¢ if and only if T ¢ ¢.
(4) T+ ¢ if and only if eitherT is inconsistent of’ Fioc ¢.

All standard propositional routines can be easily modified so that they implement the
concept of a local provability. For instance, in order to decide whethét,c ¢, our
tableaux method is modified so that

(1) The root of the tableau is labeled witly, and

(2) A branch is never expanded by formulas that have no variables in common with

those already appearing on the branch.
In this way, the prover remains restricted to the thefiyyThis component is often much
smaller in size tharT'.

Replacing a full prover by a local prover may lead, in general, to incorrect results.

Example 3.1. Let (D, W) be a default theory wittW = {p, —=p} and D = {dp}, where

do = £4. This theory has a unique extensiof, that is generated by the empty set of
generating defaults. Sind® t#oc —¢, using a local prover instead of a sound and complete
prover will classifydg as applicable with respect to the cont®&t Consequently, the same
unigue extensiorC will be found but the set of generating defaults will be determined
incorrectly ¢o will be returned as generating).

Example 3.2. Let (D, W) be a default theory withV = {p} and D = {dp, d1, d2}, where

dozﬁ, dlzi, dzzi-
—-p X —X

Suppose that we search for extensions by examining subséls leér eachU € D we
have to check whetheZn(W U ¢(U)) is an extension of D, W). This theory has only
one extensiorCn(W U c({do})) = £ with U = {dp} returned by DeReS as the set of
generating defaults. Substitutifg by Fioc in the algorithmls_Extensionwill result in
the algorithmAll_Extensionsreturning two extensions generated, respectively, by the sets
of defaultsU1 = {dop, d1} andUz = {dp, d2}, as{p, —p} ioc x and{p, —p} Hoc —x. Both

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 117

sets generate the only extension(éf, W), £, but none is, in fact, its set of generating
defaults.

Example 3.3. Let (D, W) be a default theory withV = {p} and D = {dp, d1}, where

do= ._q’ di= ._p.
-p -q
The theory(D, W) has a single extensiddn({p, —¢}). However, substituting- by Fjoc
in the algorithmls_Extensionwill return two theories as extension8n({p, —¢}) and

Cn({p,—ph =L.

The algorithmAll_Extensions outputs sets of generating defaults of extensions of
the input default theory. Our examples show that when the local prover is used in
Is_Extension the algorithmAll_Extensions may return additional solutions (sets of
defaults). Each of these additional solutions generates the tikdhe entire language.

This is the only problem caused by the use of the local prover. Consistent extensions of a
default theory will be computed correctly and only once.

We will now describe modifications in the algorith&ll_Extensions to guarantee
correctness when the local prover is usetsirExtensioninstead of the full propositional
prover. These modifications exploit the observation that in the caseoofsastentheoryT,
there is no difference between provability and local provability ffBrgProposition 3.1).

First, we will decide whetheW is inconsistent. To this end, we will start with the empty
set of formulas. Then, we will add the formulas frd# one by one, each time checking
whether consistency is preserved. This can be accomplished by means of a local prover. If
W is inconsistent, thefD, W) has a unigue extension, which is inconsistent. In this case,
the set of generating defaults is the set of all justification-free defaulis in

If W is consistent, we next check whether an inconsistent extension can be generated out
of W and the justification-free defaults (defaults with justifications do not matter in the case
of inconsistent extensions). This is done by gradually building the closuiié wfider the
justification-free defaults. Again, each time before a rule is applied, it is checked whether
consistency will be preserved (by a single call to the local prover). If a contradiction is
detected(D, W) has an inconsistent extension.

Otherwise, all extensions @D, W), if they exist, are consistent (and soli§). Before
we complete the description of the algorithm, let us notice that the prockdlEetension
with the local prover correctly determines whetlbeC D is the set of generating defaults
of an extension iW U ¢(U) is consistent. Indeed, if in an iteration of thepeatloop the
consequents of the defaultshtogether withW lead to a contradiction, then the sétis
not included inU (asW U ¢(U) is consistent). Hence, the procedure will rettatse and
terminate. This is correct, as at this point in the algorithm, only consistent theories may
be extensions. Otherwise, all theories involved in provability checks are consistent and the
local prover works exactly as the full prover.

Notice that in the algorithmall_ExtensionsandAll_Extensions_Stratifiedthe space
of all subsetdJ of D is searched by starting withi = ¢ and then, in each step, a single
default is either deleted from or addedifo Assume that the current set of defaultgthe
current candidate for the set of defaults generating an extension) is suci thatU)

118 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

is consistent (this assumption holds at the beginning of the search as, let usWecall,
consistent). If the next set of defaults, &y, to be considered is obtained by deleting a
default then, clearly U c(U’) is consistent, too. Hence, the procedisreExtensionwith

the local prover can be used to determine wheties the set of generating defaults of an
extension.

If U’ is obtained by adding a default, sdythen we first check wheth&¥ U c(U) Fioc
—c(d). If the answer is positive, the s& U c(U’) is inconsistent and does not generate
an extension (recall that at this point we know that all extensions are consistent). Thus,
the recursive call (second line from the bottom in Fig. 3) is omitted (superséf$ db
not generate an extension, either). Otherwi®e, c¢(U’) is consistent. Hence, as before,
Is_Extensionwith the local prover can be used to decide whetlies the set of generating
defaults of an extension.

A description of the modified algorithiAll_Extensions, calledAll_Extensions_Log
is shown in Fig. 5.

Analogous modifications allow us to use the algoritBtnatified_Build_Extensions
with a local prover instead of a full propositional prover.

Using a local prover significantly improves the performance of DeReS (see Section 6
for a discussion of our experimental results) and requires no restrictions on the syntax
of input theories. Another way to improve the performance of DeReS is to impose
syntactic constraints on input theories and exploit these restrictions in the design of even
more efficient provers. In particular, DeReS uses special processing methods to deal with
disjunction-free theories.

Recall that a default theoryD, W) is disjunction-free if all formulas inW, all
prerequisites, justifications and consequents of defaulf3 are conjunctions of literals.

This condition yields a simple but still very useful class of default theories. In particular,
every logic program can be encoded by a disjunction-free default theory.

Recall that every extension of a default theéBy, W) is of the formCn(W U ¢(U)), for
someU C D. In the case whenD, W) is disjunction-free, each set of the foU ¢(U)
is a collection of conjunctions of literals and, consequently, can be represented as a set
of literals, sayL. In the algorithmls_Extensionthe first task is to compute the sgt
Consider a justificatiop of a defaultinD. The formulag is a conjunction of literals. The
negation ofg is logically equivalent to a disjunction of literals, sg$. Deciding whether
B’ is entailed by the set of literals can be accomplished as follows:

(1) If L is inconsistent (contains a pair of complementary literals), thentailsg’;

(2) If g’ is atautology (that is, contains a pair of complementary literals), thentails

B

(3) OtherwiseL entailsg’ if and only if L andB’ have at least one literal in common.
The only other time when a propositional prover is called by proceturextensionis
while computing the set of defaulésR If B is maintained as a set of literals, then deciding
whether a prerequisite is entailed byB can be accomplished as follows:

(1) If B isinconsistent (contains a pair of complementary literals), hemtailsc;

(2) If B is consistent and is inconsistent (that is, contains a pair of complementary

literals), thenB does not entaik;

(3) OtherwiseB entailsa if and only if every literal occurring ire belongs toB.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 119

All_Extensions_Lod D, W)
Input A finite default theory(D, W), whereW = {wq, ..., wy,} andD ={dq, ..., dy};
Output The list of all extensions ofD, W);

SetJF to be the set of justification-free defaultsin
for i :=1tom do
if {wq,..., w;_1} Floc —~w; then
write (W U c¢(JF));
return;
(* If the execution goes past this poiri¥] is consistent *)
B =W,
AD:={d € JF: BHFjgc p(d)};
JF :=JF\ AD;
while AD # ¢ do
d := any rule inAD;
if B Fjoc—c(d) then
write (W U ¢(JF));
return;
B:=BU{c(d)};
AD:= (AD\ {d}) U{r € JF': Bloc p(r)};
JF :=JF \ {r e JF\: BFiopc p()};
(* If the execution goes past this point, extensiongDf W), if exist, are consistent *)
U =0,
Build_Extensions_LodD, W, U, 0);

procedure Build_Extensions_Lo€D, W, U, k);
backtrack= (k = |D));
if k=0or d; € U then
if Is_Extension(D, W, U) then
write (W U c(U));
backtrack:= true;
if not backtrackthen
if WU c(U)oc —c(di+1) then Build_Extensions_Lo&D, W, U U {d4+1}, k + 1);
Build_Extensions_LodD, W, U, k + 1);

Fig. 5. Search for all extensions @b, W) using a local prover.

All the provability tests mentioned above can be accomplished by deciding membership
of a literal in a set of literals. This method is implemented in DeReS and referred to as
thetable lookup methadt decides each provability of a literal from a set of literals in a
constant time.

In Section 6 we present several examples of the performance of provers on concrete
default theories, generated using the TheoryBase.

3.4. Using DeReS

To work with DeReS the user invokes the DeReS shell. The shell allows the user to load
files with input default theories, display them, and compute, display and record extensions.

120 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Each default theory to be processed by DeReS is identified by fdilmmel.dtThis
file specifies the names of two other filddename2.thand filename3.dcby including
lines

filename?2
filename3

W =
d =
The file filename2.thcconsists of formulas (partv of the default theory). The file
filename3.dconsists of defaults (paf of the default theory).

The performance of DeReS is substantially improved if the input default theory, say
represented by the filelename.dtis stratified and if the strata are possibly small. To
take advantage of this feature, the user has to construct an additiondildil@me.str
(the same name as the file identifying the default theory, but different suffix). This file is
automatically created by the TheoryBase for all default theories that it produces and which
admit nontrivial relaxed stratification. The stratification file defines a partition of input
defaults into strata. If the stratification file is not found, DeReS assumes trivial stratification
into a single cluster.

The syntax of formulas and defaults is rather straightforward. Sym&&ls| , !,
=> and <=> serve as conjunction, disjunction, negation, implication and equivalence,
respectively. Defaults are specified by providing the prerequisite, the list of justifications
and the consequent. The prerequisite is separated from the justifications by a:cblon “
The list of justifications is then followed by and by the consequent.

Example 3.4. Let (D, W) be a default theory defined as:

D= ta b:c dva:e cAe:—a,dVa
- a? C 9 e 9 f 9
W={b,c=dvVva,anc= —e}.

This theory was described in Example 2.4 in [50]. In Fig. 6 we show the three input files
which represent the theo(p, W) in the DeReS format.

The user runs DeReS by invoking its shell. The shell provides the user with several

commands:

(1) load filename—loads a default theorgD, W) described in the filéilename.dt

(2) status —shows the name of the current default theory (the theory loaded by the
most recent use of thHead command) and system settings;

(3) setprover [-f | -l | -a] —selects a prover mode; option§ -I,

-a select full, local and table lookup provers, respectively; default settifg s

(4) quit —quits DeReS;

(5) list [numl1l [num2]] —displays default rules of the current input theory from
the default numbemum1 to the default numbarumz2; the default values fanum1
andnum?2 are the first and the last default of the current input;

(6) pds [numl [num2]] —displays strata of the current input theory from the
stratum numbenum1 to the stratum numberum?2; the default values fonum1l
andnum?2 are the first and the last stratum of the current input;

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 121

File re80.dt
Example 2.4 from R. Reiter "A logic for default reasoning"

%
%

[SYINS)

w = re80-2.4-formulas
= re80-2.4-defaults

% File re80-2.4-formulas.thc

b;
c=>d| &
a && c => le;

% File re80-2.4-defaults.dc

&& e : la, dlla -> f ;

Fig. 6. DeReS encoding of a default theory (Example 3.4).

(7) size —shows the size of the currentinput theory;
(8) ext [-c] [-f] [-h] [-s] [-X] [-timeN] [-lastS] [-llenK]
—computes extensions with terminal output; it has several options that specify
whether to halt after first extension is found, compute all extensions, count exten-
sions, store extensions in afile, etc.;
(9) x1lext —starts DeReS X11 interface; provides a graphical user interface to
DeReS.
Atypical session consists of invoking the DeReS shell, loading default theories and starting
ext orxllext .

4. Programming with default logic

Programming with default logic means reducing a given problem to reasoning tasks of
default logic such as deciding of the existence of extensions, finding an extension or finding
all extensions. Consider a problem whose solutions are subsets of some domain. Reducing
the problem to default logic meawsnstructinga default theory whose extensions allow
the user to determine all solutions to the original problem. Similarly, in the case of decision
problems, solving them by means of default logic meamsstructinga default theory that
has an extension if and only if the original problem has a solution. Constructing these
default encodings and reconstructing solutions from extensions should be algorithmically
easy—polynomial (linear, whenever possible) in the size of the original problem.

122 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

In this section, we discuss techniques to systematically encode problems as default
theories. Since extensions of default theories feulset®f the language, default theories
can be used to represent those problems whose solutiorsibsetsof some domain.
These solutions are usually defined as subsets of the domain satisfying certain constraints.
With these insights, we propose an approach to programming with default logic that has
two main components:

(1) Techniques to construct default theories representing collections of basic objects

such as sets and functions.

(2) Techniques for modifying these default theories to eliminate extensions representing
those objects that do not satisfy constraints implied by the original problem
specification.

Although the target of default logic is knowledge representation, large test cases are
needed for both experimentation and for studies of the methodology of representing prob-
lems as default theories. In our research, we chose the domain of combinatorics as the
source of large and meaningful examples. In this domain it is easy to generate parameter-
ized families of test cases needed for performance evaluation. Further, combinatorial prob-
lems are often specified in terms of constraints. Consequently, the domain of combinatorics
can provide useful insights into modelling constraints as defaults or sets of defaults.

In what follows, we will be introducing techniques to impose constraints (item (2)) on
default theories representing collections of sets and functions (item (1)). However, these
techniques can be used in any application domain where constraints can be specified by
means of default theories.

While in our discussion we focus on the propositional case, DATALOG-style encodings
of some of the problems discussed below have been considered in [21,41,44].

4.1. Subsets

In this section we will present default theories whose extensions encode all subsets of a
given set. For a propositional varialpdet us define defaults
sfpy =L and s (p)="L.
p -p
Consider the default theory
(ts*(p). s (p)}, 9).

It is clear that this default theory has exactly two extensi@r{p}) and Cn({—p}).
Consequently, it can be used to decide wheghirin or out
Consider now a seX. Define a set of default$; (X) as follows:

S1(X)={sT(p): peX}U{s™(p): peX]}.

Since, forp # p’, there are no interactions between defaults{sfi(p), s~ (p)} and
{sT(p"), s~ (p)}, we have the following observation.

Observation 4.1. Let X be a set and leY € X. A theoryT is an extension of the default
theory(S1(X), Y) if and only if

T=Cn({p: peU}U{-p: pEX\U}),

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 123
for some setV C X suchthatr C U.

It follows that there is a one-to-one correspondence between extensiosig &, Y)
and all subsets ok that containy. In other words, the default theof$1(X), Y) can be
used to represent all subsets¥tontainingy.

Observe that elements € X are treated in the definition of1(X) as propositional
variables. We will often use elements of combinatorial structures (for instance, vertices
and edges of graphs) as propositional variables to indicate their membership in sets.

Another straightforward form of encoding all subsetsXofis to introduce for every
elementp of X two propositional variablesn(p) andout(p). Consider the following two
defaults:

: —0ut(p) :=in(p)

np TP G

Consider the default theory

({t(p). 17 (P}, D).

This default theory has two extensio@n({in(p)}) andCn({out(p)}). Hence, as before,
this theory can be used to decide whethés in or out
Define a set of default§;(X) by:

S2X)={tt(p): peX}U{t~(p): peX}.

The same argument as before yields the following observation, establishing a one-to-one
correspondence between subsets of aXsatontaining a prespecified subget X, and
extensions of the default theo¢§2(X), {in(p): peY}).

tt(p)=

Observation 4.2. Let X be a set and leY C X. A theoryT is an extension of the default
theory(S2(X), {in(p): p € Y}) ifand only if

T =Cn({in(p): pe U} U{out(p): pe X \U}),
for some setV C X such thaty C U.
Let us observe that the theorig (X), Y) and(S2(X), {in(p): p € Y}) are disjunction-

free. Moreover, the theorgs>(X), {in(p): p € Y}) has a straightforward translation into a
logic program. Namely, the default (p) can be represented by the clause

in(p) < not(out(p)),

the default— (p) can be represented by the clause
out(p) < not(in(p)),

whereas the atoim(p) can be represented by the clause
in(p) <

(see Section 2).

124 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

4.2. Maximal conflict-free sets

Often solutions to problems are specified as maxicoalflict-freesubsets. LeX be a
set and leC be a function fromX to P(X). If

(1) foreveryx,ye X,x € C(y) ifandonlyify € C(x), and

(2) foreveryx € X, x ¢ C(x),
thenC is called aconflictfunction.

A subsetY of X is conflict-freeif for everyx € Y, C(x) N Y = @. For everyx € X,
define a defaulselectx) by

SEIGC(.X) — M

The intuition behind the defaudtlectx) is as follows: if none of the elements in conflict
with x is included in the solution, then include

Define now a set of defaulSELECT X, C) by

SELECTX, C) = {selectx): x € X}.

Observation 4.3. Let X be a set and leC be a conflict function fronX to P(X). Let
Y C X be conflict-free. Then a theofyis an extension ofSELECTX, C), Y) if and only
if T =Cn(U), for some maximalwith respect to inclusignconflict-free subset/ of X
such thatt C U.

Clearly, Observation 4.3 establishes a one-to-one correspondence between maximal
conflict-free subsets of and extensions faiISELECT X, C), ¥).

Observe that the theoBELECT X, C), Y) is disjunction-free. This theory can also be
represented as a logic program by means of the translation described in Section 2.

4.3. Maximal independent subsets

A common type of a combinatorial structure appearing in practical applications is an
independent se€Consider dinite collection?{ of finite subsets of a seX. A subsety C X
is calledindependenfor H if there is noH € ‘H such thatH C Y. We will construct
now a default theory that represents all maximal independent subsets for a family of sets
H S P(X).

For a finite setd C X, define a clause (H) by

o(H)=\/{~h: he H}.

(Observe that, as before, we treat element¥ af propositional variables.) Lete X and
let H1, ..., Hi be all the sets ifH{ containingx (recall thatH is finite). Define
tp(Hu\ {x}), ..., e(Hi \ {x})

. .
Consider a seX and a finite collectiori{ of finite subsets oK. Define a set of defaults as
follows:

MS(H, X) = {ind(x): x € X}.

ind(x) =

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 125

Observation 4.4. Let H be a finite collection of finite subsets of a sétlLetY C X
be an independent set fGf. Then, a theoryl' is an extension for the default theory
(MS(H, X),Y) if and only if T = Cn(U), for some maximal independent sub&ebf X
such thatt C U.

Observation 4.4 establishes a one-to-one correspondence between maximal independent
sets forH and extensions aMS(H, X),).

Default theoriesMS(H, X), Y) are not, in general, disjunction-free (unlégs = 2 for
all setsH € H). However, the existence of an extension problem for such theories is still
only NP-complete.

The concept of a maximal independent set is a very general one. In particular, it is
possible to represent maximal conflict-free sets as maximal independent sets in a suitably
defined familyH.

4.4. Functions

In this section we will use the results of Section 4.2 to construct a default theory whose
extensions correspond to all functions from a finite $db a finite sety. First, for every
x € X andy €Y, letus introduce a propositional variabfg , . This variable will represent
the fact thaty is assigned toc. The set of all these new variables will be denoted by
F(X,Y). For each new atony, ,, define its conflict setC(fy), by

C(fx,y)z{fx,z: zeY, z#y} (1)
Clearly, a subsef of { f; ,: x € X, y € Y'} is amaximal conflict-free set if and only if there

is a functiong : X — Y such thatF' = {f; ,(»): x € X}. Let us define the set of defaults
MAP(X, Y) as follows:

MAP(X,Y)=SELECTF(X,Y),C),
whereC is given by Eq. (1). Observation 4.3 implies the following corollary.

Corollary 4.1. Let X and Y be finite sets, leZ € X and leth:Z — Y. A theory
T is an extension for the default theotMAP(X, Y), {f..n): z € Z}) if and only if
T =Cn({ fx,g(x)- x € X}), for some functiorg : X — Y such thatg|Z = h.

Observe that the default theofMAP(X, Y), { f2 n(;): z € Z}) is disjunction-free.
4.5, Constraints

In this section, we will present a method to impose constraints that can be expressed
by propositional formulas. That is, we will show how to modify a default theory so that
the extensions of the resulting default theory are precisely those extensions of the original
theory that satisfy the constraints.

Let ¢ be a propositional formula and leiix, be a new atom. Define the following
defaults:

g, —aux,

d, =
¢ aux,

126 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

and
@ —aux,
Caux,

Theorem 4.2. Let (D, W) be a default theory in a propositional language let ¢ € £
and let auy be a new propositional variabl@got in £). Letd,, andd{p be defaults defined
as above. Then
(1) The theory(D, W) has an inconsistent extension if and only if the the@yu
{d,}, W) has an inconsistent extension. Similarly, the theoB, W) has an
inconsistent extension if and only if the the@gy U {d;}, W) has an inconsistent
extension.
(2) Every consistent extension@ U {d,,}, W) is a subset of. Moreover, a consistent
theoryE C L is an extension of the default theai® U {d,,}, W) if and only if E is
an extension ofD, W) andg € E.
(3) Every consistent extension@ U {d[p}, W) is a subset of. Moreover, a consistent
theory E is an extension of the default thear U {d(;}, W) if and only if E is an
extension of D, W) ande ¢ E.

’
d‘/’

Proof. The proof of (1) is straightforward. We leave it to the reader.
(2) DefineD’ = D U {d,,}, and assume thd is a consistent extension of the default
theory(D’, W). We have

E=Cn? - Ew).

Assume thatd, is E-applicable. Then, since, is prerequisite-freequx, € E. On the
other hand E-applicability of d, implies thatE t# —(—aux,). Since E is closed under
propositional consequence, we obtain a contradiction. Téuss not E-applicable. It
follows thatE € £ and that

cnP - E(w) = cnP-E(w).
Consequently,
E=cCcn”Ew).

Hence,E is an extension ofD, W). SinceE is consistentd, is not E-applicable, and
aux, occurs only ird,, it follows thatE - —(—¢). Thus,p € E.

Conversely, assume thatis a consistent extension @b, W) and thatp € E. The latter
factimplies thati,, is not E-applicable. So, as before,

cn?Ew) =cn? E(w)
and, consequently,
E=Cn? Ew).

The proof of (3) is similar and we omit it. O

Theorem 4.2 shows that defaulis andd,, can be used to enforce constraints expressed
by propositional formulas. Enforcing means selecting those extensions that entail the

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 127

constraints. Defaults that act as such selection filters (for instalycand d,) will be
referred to aselection default®Observe also that when constructing the selection defaults,
a formulag can be replaced by a logically equivalent one (cf. [40], Theorem 5.3) without
changing the selection properties of the default. We will often take advantage of this
observation.

In general, we can use the same atom in all selection defaults. However, to decrease
the number of dependencies between defaults and obtain finer stratification, it is better
to use different auxiliary atoms in different selection defaults. Thus, in this section and
throughout the paper we use a new auxiliary atarg, for each selection default.

There are other classes of defaults that act as selection defaults. For ins't*@@nce,

eliminates all extensions not containipgsimilarly tod,). However, the defauf2 may
interact with other defaults and introduce cyclic dependencies that lead to larger strata.

4.6. Kernels in directed graphs

In the remainder of this section, we will present several default theories that encode
problemsin graph theory. They are constructed by first using our results about representing
all subsets (or functions) and then by imposing constraints.

We will start by constructing default theories that represent the problem of existence
of kernels in directed graphs. Given a directed grépk (V, A) (V stands for the set of
vertices andA for the set of directed edges 6f), a setk C V is called akernelif:

(K1) The setK is an independent set, that is, for every edgev) €e A,u € V \ K or

veV\K.

(K2) For every vertexw € V \ K, there exists a vertexe K such thatw, v) € A.

The first, rathead-hocrepresentation of the kernel problem as a default theory appeared
in [39]. Let G = (V, A) be a directed graph. For every edge (x, y) € A, define

iy

r(e)=—-.
x

Denote byKER; (G) the default theory{r(e): e € A}, ¥). It was shown in [39] thak C V

is a kernel of a directed graghi = (V, A) if and only if Cn(M), whereM =V \ K, is an
extension oKER;(G). In other words, extensions of this default theory are precisely the
complementsf kernels. Note that the theoKER; (G) is disjunction-free.

We will now construct another encoding of the kernel problem, systematically utilizing
the results from the preceding sections. Consider the default thgay), ?). Its
extensions represent the collection of all subsetg .ofMore precisely, they are all of the
form{x: x € K} U {—x: x € V \ K}, for someK C V. We will denote a set of this form,
determined byk € V, by K.

To represent kernels, we need to enforce kernel conditions (K1) and (K2) on such sets.
To enforce (K1), for every directed edge= (x, y) define

pe)=—(x AYy).

Clearly, K satisfies condition (K1) if and only ik entailsp(e), for everye € A.
To enforce condition (K2), for every vertaxdefine a formula

YW)=—vDvLV- -V,

128 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

whereuvy, ..., v are all the vertices connectedidy an edge starting in. Observe that
a set of verticeX satisfies condition (K2) if and only iK entailsy (v), for everyv e V.
Formulasp(e) andyr (v) give rise to selection defaults

TXAY, malXy(e)
alXy(e)
foree A, e=(x,y),and
DU A SV A e A S0k, —AUXy (1)

auxy (v
for v € V (wherev, ..., v are all the vertices connected toby an edge starting in
v). Notice that when definingy (), we replaced-y (v) by an equivalent formula (using
Theorem 5.3 from [40]).
Let G = (V, A) be a directed graph. Let us denote KER>(G) the default theory
obtained by adding all defaultg,.), e € A, anddy (), v € V, to the set of defaults; (V)
and setting¥ = @. Observe that the theoKER>(G) is disjunction-free.

doe) =

dyw) =

Observation 4.5. Let G = (V, A) be a directed graph. A set C V is a kernel ofG if
and only if CrK) is an extension of KERG). Moreover, every extension of KE®) is
of the form CiiK), for some kernek of G.

Yet another approach is to encode complements of kernels, as it is easy to decode a set
from its complement (this approach was used in [39]).

4.7. Maximal independent sets in graphs, matchings and perfect matchings

Let G = (V, E) be an undirected graph. A set of vertices V is independenif for
every edge € E, at least one of its endvertices is notl/inLet us recall that an edge in an
undirected graph can be identified with #etof its endvertices. Hence, it is clear thais
an independent set i& if and only if it is independent foE in the sense of Section 4.3.
Let us denotMIS(G) = (MS(E, V), 0).

Observation 4.6. Let G = (V, E) be an undirected graph. A sé C V is a maximal
independent subset 6f if and only if C(Y) is an extension of MI&;). Moreover, every
extension of MI&5) is of the form CKY), for some maximal independent $ein G.

Itis also easy to see thatlif C V is independent, then the default the@WS(E, V), U)
describes all maximal independent sets in an undirected graphiV, E) that containy.
Since all sets irE have only two elements, the theatMS(E, V), U) is disjunction-free.

An alternative encoding is implied by an observation that undirected graphs can be
regarded as directed graphs (each undirected £dge is treated as a pair of two directed
edges(x, y) and (y, x)). It is easy to see that a set of verticksis a kernel of an
undirected graplG (regarded as a directed graph in the sense described above) if and
only if K is a maximal independent set. Thus, extensions of the theBRy(G), where
A={(x,y), (y,x): {x,y} € E} correspond precisely to maximal independent sets of the
(undirected) graplés = (V, E).

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 129

Next, we will construct default theories representing all maximal matchings and perfect
matchings in an undirected graph. l@t= (V, E) be an undirected graph. A set of edges
M is called amatchingf no two different edges fromM share an endvertex. A matching
is calledmaximalif there is no matching it that wouldproperlycontainM. A matching
M is calledperfectif it covers all vertices of the graph.

Let G = (V, E) be an undirected graph. Observe thatC E is a matching if and only
if M is independent fo€(G) = {{e, f}: e, f € E,e # f,e and f share an endvertgx
Consequently, the default theotMIS(E(G), E), ¥) represents (through its extensions) all
maximal matchings irG.

We will now add to(MS(E(G), E), ¥) selection defaults to weed out those maximal
matchings that are not perfect. To this end, for every varteX/ define the formula

coMv) =e1 V- - Ve,

wherees, ..., e, are all the edges with endvertex Clearly, a matching is perfect

if and only if M entailscovv), for every vertexv € V. Each formulacouWv) gives
rise to the selection defaulicoy,y. Adding all these defaults to the set of defaults in
(MS(E(G), E), V) yields a default theory, calle®M(G), whose extensions are those
extensions ofiMS(E(G), E), ¥) that entail all formulagovv), that is, those extensions
of (MS(E(G), E), V) that represent perfect matchings.

Observation 4.7. Let G = (V, E) be an undirected graph. A set of edgesC E is a
perfect matching o5 if and only if Cn(M) is an extension of PKG). Moreover, every
extension of PNIG) is of the form CiM), for some perfect matching of G.

Since all sets ir£ (G) contain two elements and, since while constructing the selection
defaultdcoy,) We can use-eg A - - - A —ey instead of=(e Vv - - - V ¢), the default theories
(MS(E(G), E), ¥) andPM(G) are disjunction-free.

If M’ is a matching in a grapty, then extensions of the default thedS(£(G), E),

M) represent all maximal matchingséhthat containi/’. TheoryPM(G) can be modified
in the same way. This yields a default theory representing all perfect matchings in the graph
G containingM’.

4.8. Graph coloring

LetG = (V, E) be an undirected graph. Let us denotdpthe sef1, ..., k}. Afunction
f:V — I is ak-coloring of G if for every edge{u, v} € E, f(u) # f(v). A graphG is
k-colorableif there is ak-coloring of G. Since a coloring is a function from to I; which
satisfies certain conditions, we can encodekatblorings of a graph as a default theory
using the results given in Sections 4.5 and 4.4. By Corollary 4.1, extensions of the default
theory(MAP(V, It), ¥) encode all functions fronv to I.

We will now define propositional formulas that describe a violation of the condition
that the endvertices of the same edge are assigned different colors. For every edge
e ={x,y} € E and everyi € I, define

clle,i)= fri N fyi

130 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

(recall thatf, , is a new atom used in the construction of the default th&bhP(X, Y) to
represent the fact thate X is assigneg € Y). Hencegcl(e, i) states that the endvertices
of e are assigned colar

Itis easyto see thatafunctionV — I is a coloring if for every € E and every € I,
{fr.cx): x € V}does noentailcl(e, i). Weeding out extensions that entail formutdg, i)
can be accomplished by addingNtAP(V, I;) the selection default%(e,i), ecE,iel.
Let us denote the resulting default theory®®L; (G, k).

Observation 4.8. Let G = (V, E) be an undirected graph. A functian V — I is a k-
coloring of G if and only if Cr({ fx c(x): x € V}) is an extension of COKG, k). Moreover,
every extension of CQLG, k) is of the form Ciy{ f, .x): x € V}), for some coloring
of G.

Note that the theor€OL; (G, k) is disjunction-free.

Another approach to encoding of the coloring problem was given in [45]. This encoding,
COLy(G, k), can be constructed, using our approach, as follows. For every and
i € Iy, define the conflict sef (f.;) by:

C(fe,))=A{fxj: jelr,j#i}U{fyi: y e Visaneighbor ok}. (2)

It is clear that maximal conflict-free subsets{gf. ;: x € V,i € I} are maximal partial
k-colorings of the graplt; (a partial coloring is an assignment of colors to some of the
vertices of the graph so that no edge has the same color assigned to its endvertices). Thus,
maximal partialk-colorings of G are encoded (in a one-to-one fashion) by extensions of
the default theorfSELECT(F, C), ¥), whereF ={f;;: x € V,i € It} andC is defined
by (2).

Next, for each vertex, define a formula(v):

S(U):fv,l\/"'va,k-

Clearly, a subset of entailss(v) if and only if it contains at least one element of the
form f, ;. Thus, by Theorem 4.2, addingt8ELECT F, C), ¥) the selection defaulig(,,
leaves as extensions only those that en@maepletek-colorings ofG (colorings assigning

a color to every vertex of the graph). Let us define

COL2(G, k) = (SELECTF, C) U {ds): v € V1, 9).

Observation 4.9. Let G = (V, E) be an undirected graph. A functian V — I is a k-
coloring of G if and only if Cr({ fx c(x): x € V}) is an extension of COl(G, k). Moreover,
every extension of CQLG, k) is of the form Ciy{ f, .x): x € V}), for some coloring:
of G.

By using—fy 1 A --- A= fyk instead of=(f, 1V -+ V fy) when constructings),
we can ensure that the thed®DLo(G, k) is disjunction-free.

As in the previous cases, by modifying the objective part of the the@t®ks (G, k)
andCOLy(G, k) one can encode the collection of those colorings that assign prespecified
colors to prespecified vertices.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 131
4.9. Cycles and hamiltonian cycles

Let G = (V, A) be a directed graph such th&t| > 3. For an edge = (x, y) € A let us
define the conflict set

Cle)={(x.2) € A: z# y}U{(z,y) € A: z#x}.

Let us observe thatl C A is a maximal conflict-free subset df if and only if H is a
maximal subset of edges @& with the following two properties:

(C1) no vertex is the tail of two different edges#h,

(C2) no vertex is the head of two different edgegin
Consequently, the default theof@ELECTA, C), ¥) has as its extensions precisely the
sets of the fornCn(H), where H C A is a maximal set satisfying conditions (C1) and
(C2).

For every edge = (x, y) € A, let us define a defauthovee) by

X Ne:

movée) =

The defaultmovee) is justification-free. It is used like a standard inference rule. If
e = (x,y) andx are in an extension of a default theory that contains defaolde),
theny is in this extension as well. Let us define the default thet¢g) by:

AG) = (SELEC'I(A, C)U{movee): e € A}, {vs}),

wherev; € V is a fixed vertex. One can show that extensiong\of;) are precisely the
theories of the forn€n(X U H), whereH C A is a maximal subset of edges@fsatisfying
conditions (C1) and (C2) and is the set of vertices reachable fram by means of the
edges inH.

To leave only those extensions that correspond to hamiltonian cycles, it is enough to
enforce two constraints:

(1) An extension must entail formulas for everyv € V (in other words, all vertices

must be reachable from by means of edges in the extension),

(2) an extension must contain an edge with the head
To enforce the first constraint, the selection defadltsv € V are added taA(G). To
enforce the second constraint, the selection default

H{=f feA, f=(x,vy)}, maux
aux
must be added. Let us denote the resulting theordAi1 (G).

Observation 4.10.Let G = (V, A) be a directed graph. A sell of edges spans a
hamiltonian cycle inG if and only if Cn(V U H) is an extension of HAMG). Moreover,
every extension of HAMG) is of the form CQV U H), for some sefH C A spanning a
hamiltonian cycle inG.

Clearly, the theorfHAM1(G) is disjunction-free.

132 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

We will now describe an alternative encoding. Let, as bef6re; (V, A) be a directed
graph. For an edge= (x, y) define the default

xi{=f: f=,2) €A, z#y)

yAe

move'(e) =

The intuitive meaning ofzove’(e) is: if x has been reached and it is possible to select an
outgoing edge = (x, y) (none of the other outgoing edges franis known to have been
selected), then seleetand visity. DefineA’(G) by:

A'(G) = ({move/ (e): e € A}, {vy}),

wherewv; € V is a fixed vertex. One can show that extensiong\aiG) are precisely the
theories of the fornCn(X U H), whereH is a sequence of edges startingjnwith each

next edge starting where the previous one endedkaisthe set of vertices of the edges in
H. The sequenc# ends when for the first time the head of an edge coincides with one of
the vertices visited earlier.

Note that the sequendé need not to end img and it is not guaranteed that all vertices
are visited (that isX may be a proper subset &f). To construct a default theory such
that its extensions represent hamiltonian cycles, let us observe that to guarantee that
all vertices are visited, we must require that the extensions entail the formulass
treated here as a propositional variable), forwaét V. Similarly, to guarantee that the
sequenceHd ends up back iy we must ensure that the extensions entail the formula
a =\/{e € A: e ends inv,}. Both objectives can be accomplished by adding the selection
defaultsd,, v € V, andd,, to A’(G). Let us denote the resulting theory B\ AM>(G).

Observation 4.11.Let G = (V, A) be a directed graph. A sell of edges spans a
hamiltonian cycle inG if and only if CV U H) is an extension of HAMG). Moreover,
every extension of HAMG) is of the form CQV U H), for some sefH C A spanning a
hamiltonian cycle inG.

Note thatHAM2(G) is disjunction-free.

5. TheoryBase

We believe that the lack of significant experimental studies of the performance of
nonmonotonic reasoning systems can be, in large part, attributed to the absence, in the
past, of large sets of test cases of varying difficulty and structure. This problem is not
unique to automated theorem proving. It appears in all areas of experimental research [31].

To test and experiment with software systems we need easily generated, realistic and
meaningful test instances. A possible approach is to produce a collection of real-life
problems. Such benchmarks are now used in several areas of experimental research
in computer science. The benefits of this approach are evident. The problemealare
and, thusmeaningful In addition, they can easily be disseminated. But, there are also
drawbacks. The data often does not provide enough flexibility to allow full-fledged testing.

In particular, a comprehensive study of performance scalability cannot be easily conducted,

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 133

as databases of benchmarks rarely confamilies of test cases of similar structure and
growing sizes that would allow good extrapolation of the running time.

The other approach frequently used in experimental research is to generate data
randomly. This method offers an unlimited number of test cases and often the user has
control over at least some parameters of data generated. For example, when generating
random graphs, we can request a specific number of vertices and edges. However, the
data generated randomly often has properties that rarely occur in real-life examples. It is
well known that (under appropriate technical assumptions) almost every connected random
graph is hamiltonian [10]. Similarly, it is now believed that random 3-SAT problems do not
provide an adequate model for problems likely to occur in real-life applications [13,28].

None of these two approaches has been fully developed for experimenting with logic
programming and nonmonotonic reasoning. In logic programming, the set of benchmark
programs is very small. Two programs most commonly used in testing are the “naive
reverse” program [56], and the “win” program [46,52]. The situation is even worse with
generating logic programs and default theories randomly. In fact, up to now, no random
model of a logic program or a default theory has been proposed.

In this section, we will describe a system that generates logic programs and default
theories. Our approach is based on the work by Knuth on methods to generate graphs [33],
and on the results from the previous section providing encodings of graph problems in
terms of default theories and logic programs.

Knuth argues that random graphs do not constitute an adequate tool for testing graph
algorithms. Instead, Knuth develops a graph generation system, The Stanford GraphBase.
This system is publicly available (see [33] for details) and, thus, can be used as a
“‘common denominator” for work requiring experimenting with graphs. The Stanford
GraphBase is a collection of datasets and graph generating procedures. It allows the
user to generat@amiliesof directed, undirected, weighted, unweighted, bipartite, planar,
regular and random graphs. An important feature of The Stanford GraphBase is that every
graph generated gets a unique label (or identifier). It is essential for storing and easy
reconstruction of test cases generated.

The core of The Stanford GraphBase is formed by several procedures to gdresiate
graphs (other graphs can be obtained by applying graph operations implemented in The
Stanford GraphBase). These procedures root the graphs they generate in objects such as
maps and dictionaries in an effort to ensure some correlation of the graphs generated to
real-life problems. For instance, an interesting family of graphs in The Stanford GraphBase
is generated from a table of highway distances between 128 North American cities.

In our work, we extended The Stanford GraphBase to a system, called the TheofyBase,
that generates logic programs and default theories. It was developed to facilitate
experimenting with DeReS. Our idea is to apply the encodings presented in Section 4
to graphs which are the outputs of The Stanford GraphBase.

The TheoryBase shell provides the user with two main classes of commands: to generate
graphs, and to generate default theories encoding graph problems. The graph generating

5A detailed description of the TheoryBase commands and features, as well as the executable code can be
obtained from ftp://ftp.cs.engr.uky.edu/cs/software/logic/TheoryBase.tar.gz.

134 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

commands rely on The Stanford GraphBase procedures. They allow the user to generate
familiesof graphs of similar structure but increasing sizes.

The graph generating commands must be followed by invoking encoding generating
commands. The encoding commands allow the user to specify a graph (or a range of
graphs) generated before, a graph problem and a version of an encoding to use (they are
minor modifications of the encodings presented in Section 4). Currently, the TheoryBase
supports the following commands (together with available options, these commands allow
the user to generate nine different encodings):

(1) kernel —this command produces the thedfER(G) (to be precise, its slight
modification) encoding the existence of a kernel €or by selecting appropriate
options two other encodings can also be generated,

(2) color —this command, invoked with the parameter generates the theory
COL1(G, k) to encode the existence okecoloring problem forG,

(3) hamilton —produces the theorldAM1(G) to encode the existence of a hamil-
tonian cycle problem fo6,

(4) maxind —generates the default theoiIS(G), whose extensions identify all
maximal independent sets @,

(5) maxmatch —generates the default theoMS(E(G), E), ?) (see Section 4.3),
whose extensions identify all maximal matching<in

Each of these commands generates: the header file (sdifjxthe file of propositional
formulas (suffix.thc), the file of defaults (suffixdc), the stratification file (suffixstr).

The TheoryBase provides a unique identifier for each theory it allows the user to
construct. The concept is an extension of a unique identifier of a graph in The Stanford
GraphBase. Combining the name of the encoding generating command (possibly appended
by strings representing a selection of options) with The Stanford GraphBase identifier of a
graph for which the encoding is applied yields the identifier of the resulting default theory.
For instance, ilkernel command is applied to a graph with The Stanford GraphBase
identifier board(5, 5,0, 0, 5, 3, 1) (see Fig. 7) the resulting default theory is denoted by
kernelboard 5,5,0,0,5,3,1_.8 Similarly, applying the commandolor to the same
graph, to produce a default theory encoding the existence of 3-colorings, yields the default
theory with the identifiecolor3.board 5,5, 0,0,5,3,1 .

The TheoryBase encoding generating commands also generate two additional files: the
graph description filand thedisplay actions fileThese two additional files play no role in
the reasoning but they support graphical presentation of the results by the TheoryBase and
DeReS X11 graphical user interfaces. For instance, the graphical user interface for DeReS,
x1lext , allows the user to display the underlying graph, identifies the graph problem to
be solved, provides the user with several command buttons and displays the results of the
computation. Fig. 7 presents the state of the interface after the first extension was computed
for the theory encoding the existence of a kernel problem for the graph with The Stanford
GraphBase identifidsoard(5, 5, 0, 0, 5, 3, 1).

Although the present focus in the TheoryBase is on test theories for experimentation
with nonmonotonic reasoning, our method has wider implications. By encoding graph
problems by means of propositional theories or 3-SAT data instances, one can obtain a

6 For technical reasons, the parentheses in The Stanford GraphBase identifier are replaced by _ symbols.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 135

7
é’{\« .
X

R\
X

a0,
YAy,
@
&Q

8

{7
1,
.
7
N\
A
‘::'4)
[\ (‘v/
L

7
>

4

7
5
[\7
KA
%
..\
Ry
?é\

AN AT IS

© v
1¢V
TS
1‘\. (7
oy
R

-

¥,
e

‘,;x
)

S
X
Qv
Y
2

A

g

X

,,
o
>

I
<
5
G

2
o5
B
&
<[P

7Y
‘ & &t
X)

Fig. 7. A kernel in graplioard(5, 5,0, 0, 5, 3, 1).

benchmarking system for testing propositional theorem proving techniques. There is an
obvious need for such a system (see [28] for additional discussion of the subject), especially
in view of recent work on new satisfiability testing methods: GSAT [54], TABLEAU [12],
WSAT [53], CSAT [19] and other.

6. Using TheoryBase, experimenting with DeReS

In this section we present the results of our experiments with DeReS and demonstrate
usefulness of the TheoryBase in experimental studies of nonmonotonic reasoning systems.
When studying DeReS, we were interested in the following three main questions:

(1) How does the performance of DeReS scale up with the growth of the size of input

default theories?

(2) How the selection of a prover (recall that DeReS offers three choices) influences the

performance of DeReS?

(3) What is the effect of stratification on the performance of DeReS?

136 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Fig. 8. A 3x 4-grid wrapped around a torus.

In order to obtain meaningful and reliable results, testing must be extensive and the test
cases must cover a wide spectrum of default theories with diverse properties.

The TheoryBase was designed to support this type of studies. Let us recall that the
TheoryBase allows the user to prodyaeameterizedamilies of default theories. The size
of default theories in such a parameterized family grows as a function of the parameters
and all the default theories in the family share similar properties. Several such families
were constructed for our experiments.

We will first discuss those families of default theories that are constructed by means
of the TheoryBase&ernel andkernel -b commands. These commands produce
encodings of the existence of a kernel problem (through encodiid® and KER,
respectively). We applied these commands to several families of directed graphs, called
n x m-tori, whose vertices form am x m-grid wrapped on a torus, edges connect vertices
at distance one in the grid, with the direction determined by the lexicographic ordering of
the endpoints (see Fig. 8 for the<34-torus):

(1) 3x (3m — 1)-tori, m > 1; The Stanford GraphBase labélsard(3, 3m — 1,0, 0, 1,

3.1,

(2) 4 x 2m-tori, m > 1; The Stanford GraphBase labélsard4, 2m, 0,0, 1, 3,1).

We also applied these commands to the graphs with the vertex set representing squares on
an 8x m chessboard, in which two vertices are connected if one can be reached from the
other by a knight's move (with wraparound allowed along both dimensions). These graphs
have The Stanford GraphBase labetard(8, m, 0,0, 5, 3, 1).

As a result, we obtained several families of default theories with |&eefeel.board p,
q,0,0,5,3,1 andkernel.b.boardp, ¢, 0,0, s, 3, 1_, for appropriate values gf, ¢ ands.

All these theories are disjunction-free. Consequently, all three provers can be used by
DeReS when processing them. The theories in the families with the pkefiel

have a relaxed stratification into small strata. The theories in the families with the
prefix kernel.b have no nontrivial relaxed stratification. The theories obtained from
graphsboard4, 2m, 0,0, 1, 3, 1) have exactly two extensions (it is easy to see that the
corresponding graphs have exactly two kernels) and the theories obtained from graphs
board(3,3m — 1,0, 0, 1, 3, 1) have no extensions. Finally, the number of extensions for
the theoriekernel.board8, m, 0, 0,5, 3, 1_is a slowly growing function of.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 137

(@) (b)

Fig. 9. (a) A ladder graph; (b) A simplex graph.

We obtained especially encouraging results on DeReS performance for theories
encoding the existence df-colorings of graphs. We applied the TheoryBasdor
command, that implements the translat@®@L;, to the following families of graphs:

(1) ladder graphs (see Fig. 9(a) for an example of a ladder graph), with The Stanford

GraphBase labeloard(n, 2,0, 0, 1, 0, 0),
(2) simplex graphs with theideof sizen (see Fig. 9(b)), with The Stanford GraphBase
labelssimplexn, n, —2,0, 0, 0, 0).

For graphs in these families, we generated theories encoding the existence of a 3-
coloring. As a result, we obtained the following families of default theories:

(1) color3.boardn,2,0,0,1,0,0 ,n > 2,

(2) color3.simplexn,n, —2,0,0,0,0 ,n > 2.

All these default theories are disjunction-free and have a good relaxed stratification. The
theoriescolor3.board n, 2,0, 0, 1, 0, 0_ have a large number of extensions (ladder graphs
have exponentially many 3-colorings). The theomesor3.simplexn, n, —2,0,0,0,0_

have exactly six extensions (each grapmplexn,n, —2,0,0,0,0) has exactly six 3-
colorings).

The effects of a fine relaxed stratification are perhaps best illustrated by the theories
encoding the existence of a hamiltonian cycle problem. So far, no encoding with good
stratification is known. It is easy to see that ladder grapberd(n, 2,0, 0, 1, 0, 0) have
a hamiltonian cycle. We applied the commahdmilton to the ladder graphs to
produce the familyhamilton.boardr, 2,0, 0, 1, 0, 0_. Default theories in this family are
disjunction-free and do not have a nontrivial relaxed stratification. Moreover, each has
exactly two extensions (there are two directed hamiltonian cycles in the directed symmetric
representation of a ladder graph).

This collection of test families demonstrates that the TheoryBase allows the user to
generate a wide range of examples that can be used to test nonmonotonic reasoning
systems. Some of the families we generated and used consist of theories which have a
relaxed stratification into small clusters and others had only a trivial, one-cluster, relaxed
stratification. Some families had no extensions, some other had very few extensions, and
yet other had large numbers of extensions. Additional diversification was ensured by the
fact that the families generated encode several graph problems and by the diversity of the
underlying families of graphs.

138 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

In the remainder of this section we present experimental results on the performance
of DeReS on the default theories described above. In all the tables we give, we use the
following notation:

(1) time; denotes the CPU time for queries processed with the full propositional

tableaux prover;

(2) timg denotes the CPU time for queries processed with the local propositional

tableaux prover;

(3) time, denotes the CPU time for queries processed with the table lookup prover;

(4) NCPP stands for the number of calls to a prover;

(5) EXT stands for the total number of extensions for the input theory.

All times are measured in seconds.

The results were obtained on a 166 MHz Pentium PC under Linux 2.0.18 operating
system. The time was measured usingttime routine and is presented as the sum of the
CPU time used while executing instructions in the user space of the calling process and the
CPU time used by the system on behalf of the calling process. To capture the reasoning
time we measure the CPU time from the point when an input default theory is already
stored together with its stratification in DeReS data structures to the point when the answer
is returned.

6.1. Provers, efficiency of DeReS processing and scalability

DeReS offers a choice of three propositional provers. Recall that these are: a full
tableaux prover, a local tableaux prover (sound, but not complete), and a table lookup
prover (applicable to disjunction-free theories only). All our experiments, perhaps not
surprisingly, demonstrate that the local prover significantly andormly outperforms
the full prover and that the lookup prover, whenever applicable, performs better than
tableaux provers. In particular, this is illustrated in Table 1, which summarizes DeReS
performance for the family of theorié®rnel.board8,m,0,0,5, 3,1 in the case when
only one solution was needed, and in Table 2 that reports time needed to compute all
extensions for these default theories.

In both cases time grows exponentially with the size of the underlying default theory.
Nevertheless, both experiments show that DeReS can deal, in the matter of seconds, with
default theories containing hundreds of defaults and encoding nontrivial problems.

The results from the tables can be used to extrapolate the behavior of the performance
of DeReS for theoriekernel.board 8, m, 0,0, 5, 3,1 _and obtain quantitative insights on
the savings possible due to the choice of a prover. For instance, th&rieém) (in ws)
to compute all extensions using the table lookup prover satisfies the inequalities

C1 3" < timg,(m) < C2 3",

for some small constants; and C»2. Hence, the time grows exponentially and has order
©(3IP1/56) (where, recall D stands for the set of defaults of the theory). That is, the time
grows at a much smaller rate than the theoretical boufi®@® x 2/°1) [40].

When tableaux provers are used times are larger because more time is needed for each
call to the propositional provability procedure. For instance, the local prover needs to scan
the input theory to find all formulas which have common propositional variables with the

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 139

Table 1
Searching for a kernel iboard(8, m, 0,0, 5, 3, 1)

kernel.board 8,m,0,0,5,3,1_, one solution

|D| NCPP timey timg time,
224 14804 14.32 1.04 0.06
280 34377 52.91 3.04 0.14

336 121249 291.27 12.28 0.49
392 105548 302.70 11.97 0.42
448 308910 1389.91 39.65 1.24
504 557398 292417 78.11 221
10 560 1982796 14327.56 316.29 7.86

© o ~N o o A|S

Table 2
Computing all kernels itoard(8, m, 0,0, 5, 3, 1)

kernel.board 8,m,0,0,5, 3,1_, all solutions

|D]| NCPP timey time time, EXT

224 65704 72.89 4.65 0.26 6
280 114709 208.79 10.23 0.48 15
336 421082 1039.76 42.77 1.65 5

392 1255383 4214.01 146.72 5.02 147
448 4130579 > 2hrs 541.35 16.29 134
504 10760494 =>2hrs 1603.21 42.53 120
10 560 31630658 =>2hrs 5204.96 124.24 267

© o ~N o o ~|3

guery formula and then decide provability. From our results, it can be estimated that the
timetime (m) (in ws) for computing all extensions by means of the local prover satisfies

C1 m3" < timg(m) < C, m3™,

that is, it is of the orde®(|D| x 3P!/56), Finally, similar considerations for the full
prover show that, in this case, the time needed to find all extensions is of the order
O(|D|? x 3/P1/56) Thus, for the default theorideernel.board8,m, 0,0, 5,3, 1_, using

the local prover saves a factor|d@| over the full prover, and using the table lookup prover
saves an additional factor ab|.

The results were similar for several other families of default theories. In some cases,
savings due to the choice of the prover were even more dramatic and led to excellent
scalability. Table 3 summarizes running times of DeReS for all three provers for the family
of default theoriegolor3.boardn, 2,0,0,1,0,0_.

In this case, due to a large number of solutions, we only computed the first extension
(computing all would clearly take exponential time). As before, full and local provers are
not practical while the table lookup prover performs very well. Even for very large default
theories from this family, with tens of thousands of defaults, the table lookup version of
DeReS computes an extension in less than a second. This excellent performance is due
to two factors: relaxed stratification and a large number of extensions these theories have,

140 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Table 3
Finding a 3-coloring foboard(n, 2,0, 0, 1, 0, 0)

color3.board , 2,0,0, 1,0, 0_, one solution

n |[D| NCPP timey timg time,
300 4494 11988 1343.57 10.75 0.08
400 5994 15988 3385.35 19.20 0.09
500 7494 19988 > 2hrs 30.27 0.11
600 8994 23988 >2hrs 45.68 0.13
700 10494 27988 >2hrs 62.74 0.14
800 11994 31988 > 2hrs 82.77 0.16
900 13494 35988 >2hrs 108.05 0.18

1000 14994 39988 >2hrs 137.02 0.20

Table 4
Finding a 3-coloring fosimplexn, n, —2,0, 0, 0, 0)

color3.simplexn, n, —2,0,0,0,0_, one solution

|D| NCPP timey timg time,

270 806 0.26 0.05 0.01
360 1020 0.53 0.08 0.01
459 1845 1.10 0.19 0.01
570 1649 1.35 0.18 0.01
10 693 1950 2.18 0.27 0.01
11 828 3294 4.61 0.52 0.02
12 975 2789 5.44 0.50 0.02
13 1134 3177 8.16 0.67 0.02
14 1305 5160 16.21 1.29 0.03
15 1488 4226 17.74 1.19 0.03

© 00 N o=

which makes it easy to stumble upon them. Table 4 presents the performance results of
DeReS for theoriesolor3.simplexn,n, —2,0,0,0,0_ (they encode 3-colorings of the
simplex graphs). Each such theory has exactly six extensions corresponding to six 3-
colorings of the grapBimplexn, n, —2, 0, 0, 0, 0).

Finally, DeReS exhibits similar scalability and prover performance results for theories
with no extensions. Table 5 summarizes our experiments with the family of theories
kernel.board3,3m —1,0,0, 1, 3, 1_. Since these theories have no extensions, DeReS can
terminate execution only after it scans through a portion of the search space that is large
enough to allow it to conclude that indeed no extensions exist. Consequently, in this case,
the performance of DeReS is worse than in the previous two cases.

All these results demonstrate the magnitude of savings possible with the appropriate
choice of the propositional prover in DeReS. Significant savings were observed for theories
encoding both existence of kernels and 3-colorings, and for theories with very many,
moderately many, few and no extensions. They also show that the performance of DeReS,
even in the current implementation, scales up very well for several nontrivial families of

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 141

Table 5
Searching for a kernel ihoard(3, 3m — 1,0,0, 1, 3, 1)

kernel.board3,3m —1,0,0,1,3,1

m |D| NCPP timey timg timg, EXT
2 75 2,170 0.58 0.09 0.01 0
3 120 12,626 8.77 0.68 0.06 0
4 165 66,740 79.14 4.39 0.27 0
5 210 339,032 667.74 26.81 1.36 0
6 255 1,673,382 4890.73 154.85 6.79 0
7 300 8,093,622 32620.66 819.07 31.82 0
Table 6
Searching for a kernel irboard(4, 2m, 0,0, 1, 3, 1), nonstratified
encoding
kernelb.board 4,2m,0,0,1,3,1 , one solution
m |D] NCPP timer timg time,
1 16 30,284 1.04 0.40 0.08
2 32 36,371,891 589.13 78.76
3 48 36,743,185,961 — 76,191.31

default theories. Our results point to the importance of encoding problems as disjunction-
free theories as this allows the user to select the table lookup prover in DeReS.

6.2. Effects of relaxed stratification

Currently, the main pruning mechanism of DeReS is relaxed stratification. We will now
discuss how it influences the performance of DeReS. In particular, we report experiments
with theories that are equivalent (in the sense that they possess precisely the same
extensions) but differ in the quality of relaxed stratification.

The times took by DeReS to find a single extension for the the&gagel.b.board4,
2m,0,0,1,3,1 are shown in Table 6. Each of these theories has exactly two extensions.
None of them has a good relaxed stratification. In general, in the encédRy(G),
the strata correspond to the strong components of the underlying graphe size of
each stratum is equal to the number of edgeg& istarting in the corresponding strong
component ofG. In particular, for strongly connected graphs, there is a single stratum of
size|D| = |E(G)|. The graph®oard4, 2m, 0, 0, 1, 3, 1) are strongly connected and have
two edges originating in each ofiBvertices. Hence, the encodikdER; (G) has a single
stratum of size 14 .

Significantly better performance of DeReS is obtained if the thededesel.board4,
2m,0,0,1,3,1 areused. They encode the same problem, the existence of kernels, and for
the same family of graphbpard(4, 2m, 0,0, 1, 3, 1), as theorie&ernel.b.board4, 2m, O,

0,1, 3,1 . However, as opposedkernel.b.board4, 2m, 0,0, 1, 3, 1 , they have a relaxed
stratification into small strata. The results are summarized in Table 7.

142 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Table 7
Searching for a kernel itoard(4,2m, 0,0, 1, 3, 1), stratified
encoding

kernel.board4, 2m,0,0, 1, 3,1 , all solutions

m |D| NCPP timef time time,

1 36 484 0.05 0.02 0.01

2 80 989 0.45 0.08 0.01

3 120 6,674 3.51 0.34 0.04
Table 8

Searching for a kernel iboard(4, 2m + 1,0,0,1, 3, 1), non-
stratified encoding

kernel.b.board4, 2m +1,0,0,1,3,1_

m |D| NCPP timer timg time,
24 914,523 4195 13.70 2.01
2 40 1,153,615,536 — — 2,438.99
Table 9

Searching for a kernel iboard(4,2m +1,0,0, 1, 3, 1), strati-
fied encoding

kernel.board4,2m +1,0,0,1,3,1_

m |D| NCPP timey time time,
1 60 671 0.13 0.03 0.01
2 100 3,157 1.35 0.15 0.02

Tables 6 and 7 show that the same problem can be represented in DeReS in an efficient
way and in an inefficient manner. The difference is dramatic (7 orders of magnitude) and it
points to the importance of good programming in DeReS. Whenever possible, one should
encode problems by means of theories that have a good relaxed stratification.

Similarly significant speedups were observed for theories which have no extensions.
Table 8 shows the timing results for the task of computing extensions for the theories
kernel.b.board4, 2m + 1,0,0, 1, 3,1 (they do not have extensions).

Again, once a stratified encoding was used, DeReS performance improved dramatically,
as reported in Table 9.

Finally, the same poor performance of DeReS on theories without good relaxed
stratification is observed for the default theorlesmilton.boardn, 2, 0,0, 1,0,0_ that
encode the existence of hamiltonian cycles in ladder grdghesd(n, 2,0,0, 1,0, 0)

(Tables 10 and 11). It is worth noting that, to the best of our knowledge, these theories
do not possess equivalent theories with small strata.

The results in this section demonstrate, on one hand, the importance of good search
space pruning technigues and, on the other, the need for the programmer to understand
them and to take full advantage of them. In particular, when solving problems by means of
default logic, an effort should be made to always encode the problems by means of theories
which admit relaxed stratification into strata of small sizes.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 143

Table 10
Finding a hamiltonian cycle iboard(n, 2,0, 0, 1, 0, 0)

hamiltonboard n, 2,0, 0, 1, 0,0_, one solution

n |D| NCPP timeg timeg time,

2 13 260 0.02 0.01 0.01

3 21 5248 0.55 0.11 0.01
4 29 121371 16.92 2.56 0.30
5 37 2598270 488.29 65.32 5.67
6 45 52139039 >2hrs 1365.10 111.67

Table 11

Finding all hamiltonian cycles iboard(n, 2,0, 0, 1, 0, 0) (There are two solutions for each of
these theories.)

hamiltonboard n,2,0,0,1,0,0_, all solutions

n |V| |E| |D| K NCPP CAND timey timeg time,

2 4 4 13 8 1027 129 0.06 0.02 0.01
3 6 7 21 14 33239 1719 3.74 0.66 0.08
4 10 29 20 809973 26278 129.29 17.17 1.93
5 10 13 37 26 17478917 417441 4030.99 413.73 39.88
6 12 16 45 32 352170869 6672528 >2hrs >2hrs 789.35

7. Conclusions and future work

We described a comprehensive environment for computation with default logic of Reiter.
The implementation, the Default Reasoning System (DeReS) is capable of handling large
default theories, often with thousands of defaults. Our paper reports the results of the past
five years when DeReS has been implemented and experimented with.

DeReS performs significantly better if the programmer writes a program (a default
theory) that is disjunction-free and possesses a fine relaxed stratification. This implies that
good programming practices in DeReS require that the programmer submits (if possible) a
theory with these desirable properties. From this perspective, DeReS is not much different
from other declarative languages such as Prolog or LDL [58]. That is, the programmer
writes a declarative program, but the ease with which DeReS is able to solve the problem
depends on the syntactic form of the theory (i.e., of DeReS program).

In order to demonstrate that DeReS can handle large and diverse examples, we
implemented a benchmarking environment for nonmonotonic reasoning, the TheoryBase.
Building on the work of Knuth (The Stanford GraphBase) and the systematic technique for
implementing constraints as defaults (outlined in Section 4.5) we were able to construct
large examples of default theories. These examples can be used as benchmark problems
for DeReS. Moreover, by using families of similar graphs as underlying structures, we
were able to construct parameterized families of default theories, thus creating families
of benchmarks. Those families allow us to extrapolate the behavior of the algorithms
underlying DeReS.

144 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

Although our benchmarking system was implemented expressly to facilitate experimen-
tation with DeReS, the TheoryBase can be used alone—without DeReS. All nonmonotonic
reasoning systems can now use the TheoryBase as a tool for benchmarking.

Currently we are working on several improvements to DeReS that, we expect, will lead
to a better performance. Those improvements can, roughly, be categorized in three main
thrusts. First, we need better cluster-handling techniques. Those are necessary especially
in the situation when the program does not admit a fine relaxed stratification. Second, the
natural parallelism implied by the structure of the search tree associated with the default
theory makes it possible to apply tools such as PVM (Parallel Virtual Machine) or DIB
(Distributed Implementation of Backtracking) for speeding up DeReS performance. Third,
a natural structure of the acyclic graph of clusters associated with the relaxed stratification,
allows for a better control of backtracking (in effect, backjumping). We expect that the
cumulative effect of all these techniques will result in significant improvements over the
current performance of DeReS.

Acknowledgement

This work was partially supported by the NSF grants IRI-9400568, CDA-9502645 and
IRI-9619233.

References

[1] K. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge, in: J. Minker (Ed.), Foundations
of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 89-142.

[2] G. Antoniou, E. Langetepe, V. Sperschneider, New proofs in default logic theory, Ann. Math. Atrtificial
Intelligence 12 (1994) 215-230.

[3] R. Ben-Eliyahu, R. Dechter, Default logic, propositional logic and constraints, in: Proc. AAAI-91, Anaheim,
CA, Morgan Kaufmann, Los Altos, CA, 1991.

[4] R. Ben-Eliyahu, L. Palopoli, Reasoning with minimal models: Efficient algorithms and applications, in:
Proc. 4th Internat. Conference on the Principles of Knowledge Representation and Reasoning (KR-94),
Bonn, Germany, Morgan Kaufmann, San Francisco, CA, 1994.

[5] P. Besnard, An Introduction to Default Logic, Springer, Berlin, 1989.

[6] N. Bidoit, C. Froidevaux, Negation by default and unstratifiable logic programs, Theoret. Comput. Sci. 78
(1991) 85-112.

[7] S. Brass, U.W. Lipeck, Bottom-up query evaluation with partially ordered defaults, in: Proc. 3rd Internat.
Conference on Deductive and Object-Oriented Databases (DOOD-93), Lecture Notes in Computer Science,
Vol. 760, Springer, Berlin, 1993, pp. 253-266.

[8] C. Bell, A. Nerode, R. Ng, V.S. Subrahmanian, Implementing stable semantics by linear programming, in:
A. Nerode, L. Pereira (Eds.), Logic Programming and Non-Monotonic Reasoning, MIT Press, Cambridge,
MA, 1993.

[9] C. Bell, A. Nerode, R. Ng, V.S. Subrahmanian, Implementing deductive databases by mixed integer
programming, ACM Trans. Database Systems 21 (1996) 238-269.

[10] B. Bollobas, Random Graphs, Academic Press, New York, 1985.

[11] G. Brewka, Nonmonotonic Reasoning: Logical Foundations of Commonsense, Cambridge University Press,
Cambridge, UK, 1991.

[12] J.M. Crawford, L.D. Auton, Experimental results on the crossover point in random 3-SAT, Artificial
Intelligence 81 (1996) 31-57.

P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146 145

[13] J.M. Crawford, A.B. Baker, Experimental results on the application of satisfiability algorithms to scheduling
problems, in: Proc. AAAI-94, Seattle, WA, 1994.

[14] M. Cadoli, F.M. Donini, M. Schaerf, Is intractability of nonmonotonic reasoning a real drawback?, in: Proc.
AAAI-94, Seattle, WA, 1994, pp. 946-951.

[15] P. Cholewnski, Reasoning with stratified default theories, in: Proc. LPNMR-95, Lecture Notes in Computer
Science, Vol. 928, Springer, Berlin, 1995, pp. 273-286.

[16] P. Cholewnski, Stratified default theories, in: Proc. CSL-94, Lecture Notes in Computer Science, Vol. 933,
Springer, Berlin, 1995, pp. 456-470.

[17] P. Cholewnski, W. Marek, A. Mikitiuk, M. Truszczfiski, Experimenting with nonmonotonic reasoning, in:
Proc. 12th International Conference on Logic Programming, MIT Press, Cambridge, MA, 1995, pp. 267—
281.

[18] P. Cholewnski, W. Marek, M. Truszczyski, Default reasoning system deres, in: Proc. 5th Internat.
Conference on the Principles of Knowledge Representation and Reasoning (KR-96), Cambridge, MA, 1996,
pp. 518-528.

[19] O. Dubois, P. Andre, Y. Boufkhad, J. Carlier, Sat versus unsat, in: Cliques, Coloring and Satisfiability,
Second DIMACS Implementation Challenge, American Mathematical Society, Providence, RI, 1996,
pp. 415-436.

[20] J. Dix, U. Furbach, A. Nerode (Eds.), Proc. 4th Internat. Conference on Logic Programming and Non-
Monotonic Reasoning, Springer, Berlin, 1997.

[21] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, F. Scarcello, The KR System dlv: Progress Report, Comparisons,
and Benchmarks, in: A.G. Cohn, L. Schubert, S.C. Shapiro (Eds.), Proc. 6th Internat. Conference on
Principles of Knowledge Representation and Reasoning (KR-98), Trento, Italy, 1998, pp. 406-417.

[22] D.W. Etherington, R. Reiter, On inheritance hierarchies with exceptions, in: Proc. AAAI-83, Washington,
DC, 1983, pp. 104-108.

[23] D.W. Etherington, Reasoning with Incomplete Information, Pitman, London, 1988.

[24] M.L. Ginsberg, Counterfactuals, Artificial Intelligence 30 (1986) 35-79.

[25] G. Gogic, H. Kautz, Ch. Papadimitriou, B. Selman, Compactness of knowledge representation: A compar-
ative analysis, in: Proc. IJCAI-95, Montreal, Quebec, 1995, pp. 862—-869.

[26] M. Gelfond, V. Lifschitz, The stable semantics for logic programs, in: R. Kowalski, K. Bowen (Eds.), Proc.
5th International Symposium on Logic Programming, MIT Press, Cambridge, MA, 1988, pp. 1070-1080.

[27] M. Gelfond, V. Lifschitz, Representing actions in extended logic programming, in: Proc. Internat. Joint
Conference and Symposium on Logic Programming, MIT Press, Cambridge, MA, 1992, pp. 559-573.

[28] M.L. Ginsberg, D.A. McAllester, Gsat and dynamic backtracking, in: J. Doyle, E. Sandewall, P. Torasso
(Eds.), Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, Morgan
Kaufmann, San Francisco, CA, 1994, pp. 226-237.

[29] G. Gottlob, Complexity results for nonmonotonic logics, J. Logic Comput. 2 (1992) 397-425.

[30] S. Hanks, D. McDermott, Default reasoning, nonmonotonic logics and frame problem, in: Proc. AAAI-86,
Philadelphia, PA, 1986, pp. 328-333.

[31] R.W. Hockney, The Science of Computer Benchmarking, SIAM, Philadelphia, PA, 1996.

[32] U. Junker, K. Konolige, Computing the extensions of autoepistemic and default logics with a truth
maintenance system, in: Proc. AAAI-90, Boston, MA, 1990.

[33] D.E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing, Addison-Wesley, Reading,
MA, 1993.

[34] H.A. Kautz, B. Selman, Hard problems for simple default logics, in: Proc. 1st Internat. Conference on
Principles of Knowledge Representation and Reasoning (KR-89), Toronto, Ontario, Morgan Kaufmann, San
Francisco, CA, 1989, pp. 189-197.

[35] V. Lifschitz, H. Turner, Splitting a logic program, in: P. Van Hentenryck (Ed.), Proc. 11th Internat.
Conference on Logic Programming, 1994, pp. 23-37.

[36] J. McCarthy, Circumscription—A form of nonmonotonic reasoning, Artificial Intelligence 13 (1980) 27-39.

[37] D. McDermott, J. Doyle, Nonmonotonic logic I, Artificial Intelligence 13 (1980) 41-72.

[38] W. Marek, M. Truszcziiski, Stable semantics for logic programs and default theories, in: E. Lusk,
R. Overbeek (Eds.), Proc. North American Conference on Logic Programming, MIT Press, Cambridge,
MA, 1989, pp. 243-256.

[39] W. Marek, M. Truszczgiski, Autoepistemic logic, J. ACM 38 (1991) 588-619.

146 P. Cholewiski et al. / Artificial Intelligence 112 (1999) 105-146

[40] W. Marek, M. Truszcziski, Nonmonotonic Logics; Context-Dependent Reasoning, Springer, Berlin, 1993.

[41] W. Marek, M. Truszczgiski, Stable models and an alternative logic programming paradigm, in: K.R. Apt,
W. Marek, M. Truszcziiski, D.S. Warren (Eds.), The Logic Programming Paradigm: A 25-Year Perspective,
Springer, Berlin, 1999, pp. 375-398.

[42] D. Maier, D.S. Warren, Computing with Logic. Logic Programming with Prolog, Benjamin/Cummings,
Menlo Park, CA, 1988.

[43] 1. Niemeld, On the decidability and complexity of autoepistemic reasoning, Fundamenta Informaticae 17
(1992) 117-155.

[44] 1. Niemela, Logic programs with stable model semantics as a constraint programming paradigm, in:
I. Niemel&, T. Schaub (Eds.), Proc. Workshop on Computational Aspects of Nonmonotonic Reasoning,
1998, pp. 72-79.

[45] 1. Niemeld, P. Simons, Evaluating an algorithm for default reasoning, in: Proc. IJCAI-95, Montreal, Quebec,
1995.

[46] 1. Niemela, P. Simons, Efficient implementation of the well-founded and stable model semantics, in: Proc.
JICSLP-96, MIT Press, Cambridge, MA, 1996.

[47] D. Poole, Normality and faults in logic-based diagnosis, in: Proc. IJCAI-89, Detroit, MI, Morgan Kaufmann,
San Mateo, CA, 1989, pp. 1206-1212.

[48] R. Reiter, G. Criscuolo, On interacting defaults, in: Proc. IJCAI-81, Vancouver, BC, 1981, pp. 270-276.

[49] R. Reiter, On closed world data bases, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases, Plenum Press,
New York, 1978, pp. 55-76.

[50] R. Reiter, A logic for default reasoning, Atrtificial Intelligence 13 (1980) 81-132.

[51] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57-95.

[52] P. Rao, I.V. Ramskrishnan, K. Sagonas, T. Swift, D.S. Warren, J. Freire, XSB: A system for efficiently
computing well-founded semantics, in: Proc. LPNMR-97, Lecture Notes in Computer Science, Vol. 1265,
Springer, Berlin, 1997, pp. 430-440.

[53] B. Selman, H.A. Kautz, B. Cohen, Local search strategies for satisfiability testing, in: Cliques, Coloring and
Satisfiability, Second DIMACS Implementation Challenge, American Mathematical Society, Providence,
RI, 1996, pp. 521-531.

[54] B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems, in: Proc.
AAAI-92, San Jose, CA, Morgan Kaufmann, Los Altos, CA, 1992, pp. 440-446.

[55] V.S. Subrahmanian, D. Nau, C. Vago, Wfsranch boung= stable models, IEEE Trans. Knowledge and
Data Engineering 7 (1995) 362—-377.

[56] L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.

[57] J. Stillman, The complexity of propositional default logics, in: Proc. AAAI-92, San Jose, CA, Morgan
Kaufmann, Menlo Park, CA, 1992, pp. 794-799.

[58] C. Zaniolo, Design and implementation of logic based language for data intensive applications, in: Proc.
International Conference on Logic Programming, MIT Press, Cambridge, MA, 1988.

