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Abstract

Default logic was proposed by Reiter as a knowledge representation tool. In this paper, we
present our work on the Default Reasoning System, DeReS, the first comprehensive and optimized
implementation of default logic. While knowledge representation remains the main application area
for default logic, as a source of large-scale problems needed for experimentation and as a source of
intuitions needed for a systematic methodology of encoding problems as default theories we use here
the domain of combinatorial problems.

To experimentally study the performance of DeReS we developed a benchmarking system, the
TheoryBase. The TheoryBase is designed to support experimental investigations of nonmonotonic
reasoning systems based on the language of default logic or logic programming. It allows the
user to create parameterized collections of default theories having similar properties and growing
sizes and, consequently, to study the asymptotic performance of nonmonotonic systems under
investigation. Each theory generated by the TheoryBase has a unique identifier, which allows for
concise descriptions of test cases used in experiments and, thus, facilitates comparative studies. We
describe the TheoryBase in this paper and report on our experimental studies of DeReS performance
based on test cases generated by the TheoryBase. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction and motivation

In this paper we describe an automated reasoning system, DeReS, based on default logic.
We discuss the problem of testing and experimenting with nonmonotonic reasoning. We
describe a system, called the TheoryBase, that generates families of default theories for
use in experimental studies. We describe results of experiments with DeReS that used as
test cases default theories generated by the TheoryBase.

The area of nonmonotonic logics originated in the late 1970s [36,37,49,50] in an
effort to build effective knowledge representation formalisms. Since then, solid theoretical
foundations of nonmonotonic logics have been established. The efforts of the past
two decades culminated in several research monographs [5,11,23,40] describing major
nonmonotonic systems: default logic, logic programming with negation as failure,
autoepistemic logic and circumscription.

In this paper we focus on default logic—a knowledge representation formalism
introduced by Reiter [50] to capture reasoning based on incomplete information. The
original motivation of Reiter was to use defaults to derive new information under the
assumption of “normality” or “typicality” of a situation. Defaults are inference rules with
two types of premises:prerequisitesand justifications. Prerequisites are treated similarly
as premises of standard inference rules—they have to have aproof in order to allow
for the application of a default. Justifications specify the notion of a context-dependent
normality under which the default can be applied. To formally describe a semantics for
default theories, Reiter introduced the notion of anextension. Extensions are theories that
model the agent’s possible belief sets.

Default logic of Reiter has been widely studied for its potential as a knowledge
representation mechanism. Reiter and his collaborators studied default logic as a way
to model and investigate the Closed World Assumption [49], inheritance networks with
exceptions [22], and situations with conflicting default assumptions [48]. Formalizations
of the frame problem and reasoning about action in default logic were extensively studied
in [24,27,30,50]. Applications of default logic to diagnosis are discussed in [47,51].
Default logic provides also a semantics for normal logic programs with negation. In [38]
we described an encoding of logic programs as default theories, under which there is
a straightforward one-to-one correspondence between stable models of a program and
extensions of its default interpretation (this application of default logic was independently
discovered in [6]).

It is important to notice that, although default logic is a declarative formalism, it is
quite different from Horn clause style logic programming. Specifically, extensions of
default theories are subsets of the set of formulas, not the elements of that set. For this
reason, extensions of default theories correspond to branches of a search tree, rather than
to individual nodes of an SLD-tree, which is the case for Horn programs. This “second
order” flavor of default logic makes it especially useful in representing problems in which
solutions aresubsets(rather than elements) of some domain. We illustrate the advantage
of this property of default logic later in the paper.

It was expected that default logic (and other nonmonotonic systems, too) would have
better computational properties than classical logics. Computational complexity results ob-
tained in recent years were discouraging. Decision problems associated with nonmonotonic
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reasoning, even when restricted to the propositional case, are computationally complex.
For example, in the case of logic programming with the stable model semantics they are
NP-complete or co-NP-complete [39]. In the case of default logic, they are6P

2-complete
or5P

2-complete [29,57]. We will discuss these results in Section 2.
However, the complexity results do not disqualify nonmonotonic logics as a practi-

cal computational knowledge representation mechanism. The results of [14,25] show that
higher computational complexity of nonmonotonic logics may be offset by more concise
encodings of application problems than those possible with propositional logic. It seems
that the only way to establish whether default logic can serve as a computationally practical
knowledge representation system is through implementations and systematic experimen-
tations. Recent dramatic improvements in performance of satisfiability algorithms [12,19,
53,54] demonstrate the value of experimental studies.

The progress in understanding default logic resulted in several algorithms for computing
extensions and led to first implementation projects [2,3,7,32,40,43]. In the last few
years, implementing nonmonotonic reasoning systems became one of the most actively
pursued directions in the area of nonmonotonic logics. Several working systems were
presented recently at the Fourth Conference on Logic Programming and Nonmonotonic
Reasoning [20].

Our goal in this research was to study experimentally properties and performance
of default logic as an automated reasoning system. We describe here the Default
Reasoning System, DeReS, developed and studied over several years at the University
of Kentucky. DeReS supports basic automated reasoning tasks for default logic and
for logic programming with the stable model semantics [26]. Our current version of
DeReS usesrelaxed stratification[15,16] as a primary search-space pruning mechanism.1

A relaxed stratification of a default theory allows us to use adivide-and-conquerapproach
when computing extensions. An original default theory is partitioned into several smaller
subtheories, calledstrata. The extensions of the original theory are then reconstructed
from the extensions of its strata. The notion of a relaxed stratification considered here is a
generalization of the concept of a stratification of a logic program, as introduced in [1]. In
particular, a theory (logic program) stratified in our sense may possess no extension (stable
model) or, if it does, not necessarily a unique one. In the paper we show that applying
relaxed stratification leads to substantial speedups, especially when the strata are small.
Relaxed stratification is discussed in Section 3.2.

In the paper we also study the effects of different propositional theorem provers on the
efficiency of DeReS. We observe that full theorem provers, which check global consistency
when deciding whether a theory proves a formula, result in performing prohibitive amount
of redundant computations. A weaker notion of alocal prover, sound but not complete,
can also be used to correctly implement default reasoning and results in significant
improvements in time performance. For consistent theories a local prover is complete, and
we use this feature of a local prover to limit the size of theories that need to be consulted
for provability and satisfiability. Use of a local prover requires modifications in algorithms
processing default theories. The details are discussed in Section 3.3.

1 A similar idea was proposed for logic programs, under the name of “splitting”, by Lifschitz and Turner,
see [35].
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Our results show that there are classes of theories that DeReS can handle very efficiently.
However, if relaxed stratification does not yield a partition of an input theory into small
strata, the efficiency of DeReS may be poor. In this context, it is interesting to relate our
work to that of Niemelä and Simons [45]. Their system,s-models, is currently the best
implementation of the stable model semantics for logic programs. It is based on the ideas
first proposed in [55] that have some common features with the Davis–Putnam approach
to satisfiability testing. Namely,s-modelsmakes a decision about the membership of an
atom in a stable model, propagates the effects of this decision through the program, thus
decreasing its size and, then selects the next atom to deal with. As soon ass-models
establishes that there is no stable model consistent with the decisions made so far, it
backtracks. Thus, DeReS ands-modelsattack different aspects of the same problem. While
our research focused on techniques to exploit relaxed stratification to reduce the problem
to smaller ones (divide-and-conquer), Niemelä and Simons developed techniques to deal
with individual strata (s-modelsdoes not exploit stratification at all). It seems that the next-
generation implementations of nonmonotonic systems, in order to be effective in a large
range of different applications, must combine techniques developed in both projects.

Systematic implementation and experimentation effort is necessary to provide us with
better insights into the computational properties of nonmonotonic logics. Despite impor-
tance of experimental studies to the area of nonmonotonic logics, there has been little work
reported in the literature. While several algorithms were published and some implemen-
tations described [4,8,9,20,42,45], the results are far from conclusive. This state of affairs
can be attributed to the lack of systematic experimentation with implemented systems. One
possible reason is the absence of commonly accepted benchmarking systems that could
generate rich classes of meaningful test data—logic programs and default theories.

Resorting to randomly generated programs and theories, a solution often used in other
areas such as graph algorithms or satisfiability testing, is not a viable approach. First, it
is difficult to argue that randomly generated data have any correlation with cases that are
encountered in practical situations. Second, only a very careful selection of parameters
makes randomly generated instances difficult to solve and, hence, useful for benchmarking
purposes [12]. Third, no model of a random logic program or random default theory has
been proposed yet.

In this paper we describe our approach to the problem of generating logic programs and
default theories to test nonmonotonic reasoning systems. Namely, we develop encodings
of graph problems as logic programs and default theories. Our approach builds on the
work of Knuth [33] in which he presented a graph generating system called The Stanford
GraphBase. We apply our encodings of graph problems to graphs generated by The
Stanford GraphBase, thus producing a rich variety of programs and theories for testing.
We call the resulting system the TheoryBase.

The Stanford GraphBase allows the user to generateparameterizedfamilies of graphs
of similar structure and properties, and of sizes controlled by a numeric parameter. This
feature is inherited by the TheoryBase. Thus, the TheoryBase can generatefamilies of
default theories and logic programs of similar structure and properties, and of growing
sizes, which supports studies of scalability of reasoning algorithms.

Each graph generated by The Stanford GraphBase has a unique identifier. This feature
greatly facilitates the use of The Stanford GraphBase as a benchmarking system. We
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extended the concept of the GraphBase identifier to the case of default theories and logic
programs generated by the TheoryBase.

In the paper we demonstrate the usefulness of the TheoryBase in experimental studies
of automated reasoning systems by using the TheoryBase generated default theories in our
studies of the performance of DeReS.

The paper is organized as follows. In the next section we provide the reader with
the formal definition of default logic and its simplified version, logic programming with
the stable semantics. We discuss the complexity results for default logic. In Section 3,
we describe DeReS, its main components and reasoning algorithms. Section 4 contains
descriptions of default encodings of graph problems that are used by the TheoryBase. The
TheoryBase itself is described in Section 5. Results of experimenting with DeReS are
presented in Section 6. The last section contains conclusions.

2. Default logic—technical introduction

The language of default logic is an extension of the language of first-order logic by new
structures calleddefaults. In this paper, we concentrate on the case when the underlying
first-order language is propositional. A more general case, of the predicate language
without quantifiers and function symbols follows immediately from our presentation.

LetL be a fixed propositional language over a set of atomsAt . A defaultis an expression
d of the form

α : Γ
β

whereα andβ are formulas fromL, andΓ is afinite set of formulas fromL. The formula
α is called theprerequisite, formulas inΓ—thejustifications, andβ—theconsequentof d .
The prerequisite, the set of justifications and the consequent of a defaultd are denoted by
p(d), j (d) andc(d), respectively. Ifp(d) is a tautology,d is calledprerequisite-free(p(d)
is then usually omitted from the notation ofd). This terminology is naturally extended to
a set of defaultsD. WhenΓ = {γ1, . . . , γm}, we will write d as

α: γ1, . . . , γm

β
.

By adefault theorywe mean a pair∆= (D,W), whereD is a set of defaults andW is a
set of formulas fromL. The setW is called theobjective partof (D,W). A default theory
∆= (D,W) is calledfinite if bothD andW arefinite.

Let T be a set of formulas fromL. A default ruleα:Γ
β

, is T -applicableif every formula
γ ∈ Γ is consistent withT . For a set of defaultsD, byDT we denote the set of defaults
fromD that areT -applicable.

For a set of defaultsD, define

Mon(D)=
{
p(d)

c(d)
: d ∈D

}
.

Thus, Mon(D) consists of standard inference rules obtained from defaults inD by
dropping the justification part. ByCnD,T (W) (Reiter used the notationΓ (T )) we denote
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the closure ofW under propositional consequence and under all the rules inMon(DT ).
A theoryT is called anextension2 of (D,W) if

CnD,T (W)= T .
Let T be a theory. A defaultd is generatingfor T if d is T -applicable andp(d) ∈ T .

The set of all defaults inD generating forT is denoted byGD(D,T ). The following
proposition gathers some well-known properties of default logic [40].

Proposition 2.1. Let (D,W) be a default theory.
(1) If T is an extension of(D,W) thenT =Cn(W ∪ c(GD(D,T ))).
(2) If all defaults inD are prerequisite-free thenT is an extension of(D,W) if and only

if T =Cn(W ∪ c(GD(D,T ))).

Part (1) of this proposition is the basis for all algorithms that compute extensions.
A logic programming clause(or, simply, aclause) is an expression of the form

p← q1, . . . , qm,not(r1), . . . ,not(rn)

wherep,q1, . . . , qm, r1, . . . , rn are atoms. Alogic programis a finite set of such clauses.
When n = 0, the clause is called aHorn clause. A programP consisting of Horn
clauses has aleast model, that is, a least setM ⊆ At such that for every clauseC ∈ P ,
C = p← q1, . . . , qm, wheneverq1, . . . , qm ∈M then alsop ∈M.

Given a set of atomsM ⊆ At and a logic programP , the reduct PM of P with
respect toM consists of Horn clausesp← q1, . . . , qm such that for somer1, . . . , rn /∈M,
p← q1, . . . , qm,not(r1), . . . ,not(rn) ∈ P . A stable modelof a logic programP is a setM
of atoms such thatM coincides with the least model ofPM . Stable models were introduced
by Gelfond and Lifschitz [26].

Logic programs can be represented by default theories. Specifically, a clause

C = p← q1, . . . , qm,not(r1), . . . ,not(rn)

can be represented as the default

dl(C)= q1∧ · · · ∧ qm : ¬r1, . . . ,¬rn
p

.

For this representation we have the following result [6,38].

Proposition 2.2. LetP be a logic program. ThenM is a stable model ofP if and only if
Cn(M) is an extension of({dl(C): C ∈ P },∅).

Proposition 2.2 tells us that if we are able to compute extensions of default theories then,
in particular, we are able to compute stable models of logic programs.

There is an important difference between computing stable models and computing
default extensions. Namely, when computing stable models, procedures testing full
propositional provability are not needed. DeReS takes advantage of this fact.

2 Our definition is different from but equivalent to the original definition by Reiter [50].
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Reasoning tasks associated with default logic are listed below. In the descriptions we
assume that a finite default theory(D,W) and a formulaϕ form the input.

Existence—decide whether(D,W) has an extension.

In-Some—decide whether(D,W) has an extension containingϕ.

In-All —decide whetherϕ belongs to all extensions of(D,W).

The following result due to Gottlob [29] and Stillman [57] determines the complexity of
these problems.

Proposition 2.3. The problemsExistenceand In-Some are 6P
2 -complete. The problem

In-All is5P
2-complete.

The same reasoning tasks can be formulated for the domain of logic programs and the
stable model semantics. In this setting the complexity of the reasoning problems goes
down. This is due to the fact that deciding whether an atom follows from a set of atoms
is easier (polynomial) than the task of deciding whether a formula follows from a set
of formulas (co-NP-complete). Specifically, for logic programs we have the following
result [39].

Proposition 2.4. In the case of logic programs and atoms, the problemsExistence, and
In-SomeareNP-complete. The problemIn-All is co-NP-complete.

A default theory(D,W) is disjunction-freeif all formulas inW , and all prerequisites,
justifications and consequents of defaults inD are conjunctions of literals. One can
show that the same complexity bounds as those given in Proposition 2.4 hold for the
class of disjunction-free default theories [34]. Several default theories studied below are
disjunction-free.

3. Automated reasoning with default logic

In this section we describe the Default Reasoning System DeReS developed at the
University of Kentucky. We provide a general overview of DeReS, describe its main
components and the key reasoning algorithms.

3.1. Overview

DeReS is a software package implementing nonmonotonic reasoning and running under
all major versions of Unix, including Linux. The focus of DeReS is on automated reasoning
with default logic and with logic programming with the stable model semantics.3

3 A detailed information about DeReS and how to use it, as well as the system itself can be obtained from http:
//www.cs.engr.uky.edu/deres/.
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DeReS computes extensions for finite propositional default theories.4 Given a default
theory, DeReS can determine existence of extensions and can compute one of the
extensions or all of the extensions. There are no syntactic restrictions on input default
theories and formulas.

The user communicates with DeReS via its shell. The DeReS shell provides the user
with access to commands specific to DeReS, as well as to system commands. In particular,
it reads user queries, initiates appropriate reasoning procedures, and outputs results of the
reasoning process. It also outputs statistics such as the amount of the CPU time used to
solve a query, the number of calls to the propositional provability procedure and the number
of candidates for extensions that were tested. Three main modules of DeReS are:

Default Reasoning Module—a library of routines for reasoning with a given default
theory,

Prover Module—a collection of propositional theorem provers that can be called by the
Default Reasoning Module,

User Interface—a collection of shell commands for processing input theories and
programs, and displaying the progress of the computation and the results.

3.2. Default reasoning module

The key reasoning algorithm of DeReS is based on the observation that every extension
of a default theory(D,W) is of the formCn(W ∪ c(U)) for some set of defaultsU ⊆D.
This representation may not be unique. That is, an extension may be generated byW and
consequents of different subsets ofD. However, every extensionT has a unique largest
subset of defaults that generates it. This is the set of its generating defaultsGD(D,T )
(see Proposition 2.1). This observation implies a method, calledgenerate-and-check, to
construct one (or all) extensions. The idea is to construct all subsets ofD and, for each of
them, test whether it is the set of generating defaults of an extension.

To accomplish this latter task, DeReS uses a procedureIs_Extension(D,W,U). Given
a finite default theory(D,W) and a setU ⊆ D, it returns valuetrue if U is the set of
generating defaults of an extension for(D,W), and returns valuefalse, otherwise. One
such procedure is described in [40]. It is presented here in Fig. 1.

To generate all subsets ofD, DeReS generates and searches a full binary tree whose
nodes are labeled by subsets ofD. This tree is constructed as follows. LetD =
{d1, d2, . . . , dn}. The root of the tree is labeled by the empty subset ofD. If a nodea, at
depthk in the tree, is labeled by setU ⊆D, then the left child ofa is labeled byU ∪{dk+1}
and the right child ofa is labeled byU , again. It is clear that every subset ofD appears
as a label on at least one node. In the case whenn = 3, the corresponding binary tree is
shown in Fig. 2.

DeReS considers the nodes of the tree according to the depth-first search order. To avoid
considering the same subset several times (if it appears as the label on more than one node

4 To be precise, for each extensionT , DeReS computes itsbase, that is, a finite set of formulasB such that
T =Cn(B).
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Is_Extension(D,W,U)
Input: Finite sets of defaultsD andU such thatU ⊆D, and a finite set of formulasW ;
Output: true—if U is the set of generating defaults for an extension of(D,W) and

false—otherwise;

R := {d ∈D: W ∪ c(U) 6` ¬β, for β ∈ j (d)};
if not (U ⊆ R) then return (false) else

B :=W ;
X := ∅;
repeat

AR:= {d ∈ R \X: B ` p(d)};
B := B ∪ c(AR);
X :=X ∪ AR;
if not (X⊆U) then return (false)

until AR= ∅;
if X=U then return (true) else return(false);

Fig. 1. Checking if a given set of defaults is the set of generating defaults for an extension.

Fig. 2. Generating all subsets ofX= {1,2,3}.

of the tree), a set of defaults is checked by theIs_Extensionprocedure only when it is
encountered for the first time as the label on a node in the tree. In Fig. 2, the nodes where
Is_Extensionis actually invoked are shown in solid lines.

The sets of generating defaults of extensions form an antichain. This observation yields
a method to prune the search space. When the set of defaults represented by a node in the
search space is found to be generating for an extension, DeReS prunes all descendants of
this node in the search tree. The resulting algorithm to compute all extensions, referred to
asAll_Extensions, is presented in Fig. 3. The variablebacktrackis set totrue whenever
the currently considered node in the search space is a leaf or represents the set of generating
defaults of an extension, causing the algorithm to backtrack.

The algorithmAll_Extensions is capable of computing extensions for arbitrary finite
propositional default theories. However, due to the high computational complexity of
default reasoning, computation time can be very long. In many cases this problem can
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All_Extensions(D,W)
Input: A finite default theory(D,W) andD = {d1, d2, . . . , dn};
Output: The list of all extensions of(D,W);

U := ∅;
Build_Extensions(D,W,U,0);

procedure Build_Extensions(D,W,U,k);
backtrack:= (k = |D|);
if k = 0 or dk ∈ U then

if Is_Extension(D,W,U) then
write (W ∪ c(U));
backtrack:= true;

if not backtrackthen
Build_Extensions(D,W,U ∪ {dk+1}, k+ 1);
Build_Extensions(D,W,U,k+ 1);

Fig. 3. Search for all extensions of(D,W).

be avoided by splitting the input default theory into several strata (clusters) of defaults
and dealing with one stratum at a time. This technique, we will refer to it asrelaxed
stratification, was developed in [15,16]. It is the main search space pruning technique used
by DeReS.

Relaxed stratification applies to default theories that do not have justification-free
defaults and in which formulas inW do not have common propositional variables with
the consequents of the defaults. In this method, we first find a finest possible relaxed
stratification ofD, that is, a partitionD = {D1, . . . ,Dm} such that propositional variables
appearing in defaults fromDi do not appear in the consequents of defaults fromDj , for
i < j , and such that no setDi can be further partitioned preserving the constraint on
variable occurrence. It can be shown that such a relaxed stratification exists. We search
for extensions for a single stratum(Di,Wi) (W1 =W ) using the same approach as in the
algorithmAll_Extensions. However, when an extension, sayCn(Wi ∪ c(U)), is found we
report it only ifDi is the last stratum of the default theory (that is, wheni =m). Otherwise,
we add the formulas fromc(U) to Wi to formWi+1 (Wi+1 :=Wi ∪ c(U)), and start the
search for extensions of(Di+1,Wi+1). If the stratification is fine-grained, then in each
step we deal with small sets of defaults and computational savings can be expected. The
detailed description of this method can be found in [15,16].

We refer to the algorithm based on the idea described above asAll_Extensions_Strati-
fied. The pseudocode is given in Fig. 4.

3.3. Prover module

Prover Module of DeReS is used as an oracle by all reasoning procedures. Currently,
DeReS is equipped with a prover that implements the propositional tableaux method.
However, any other technique based, for instance, on the resolution inference rule or on
satisfiability testing procedures could be used in its place.



P. Cholewiński et al. / Artificial Intelligence 112 (1999) 105–146 115

All_Extensions_Stratified(D, n,W)
Input: A consistent finite propositional theoryW and a relaxed stratificationD = {D1, . . . ,Dn} of
(
⋃n
l=1Dl,W);

Output: The list of all extensions of(
⋃n
l=1Dl,W);

U := ∅;
Stratified_Build_Extensions(D, n,W,U,1,0);
procedure Stratified_Build_Extensions(D, n,W,U, l, k);
(* we assume thatDl = {d1, . . . , dm} *)
backtrack:= (k = |Dl |);
if k = 0 or dk ∈ U then

if Is_Extension(Dl,W,U) then
if (l = n) then (∗ last stratum extension∗)

write (W ∪ c(U));
backtrack:= true;

else
W ′ :=W ∪ c(U); U ′ := ∅;
Stratified_Build_Extensions(D, n,W ′,U ′, l + 1,0);

if not backtrackthen
Stratified_Build_Extensions(D, n,W,U ∪ {dk+1}, l, k+ 1);
Stratified_Build_Extensions(D, n,W,U, l, k+ 1);

Fig. 4. Search for all extensions of a stratified theory(
⋃n
l=1Dl,W).

Using a sound and complete prover allows DeReS to handle arbitrary default theories.
However, it carries a heavy computational cost due to the inefficiency of such provers.
Analyzing the performance of sound and complete provers, one can see that substantial
amount of time spent to decide whether a theoryT proves a formulaϕ is actually spent to
decide consistency ofT . Next, when searching for a proof ofϕ from T , even those parts
of T that are irrelevant toϕ may be considered by the prover.

Based on these observations, we designed and implemented a method referred to as a
local prover. This provability testing procedure does not perform consistency checks and,
consequently, is sound but not complete. Moreover, the local prover takes into account
only the part ofT that is relevant to provingϕ. We then modified reasoning algorithms
in DeReS so that a full prover can be replaced with a local prover without affecting the
correctness of DeReS. As expected, we observed substantial computational gains. We will
now describe in detail the concept of a local prover.

LetL be any propositional language. For a formulaϕ ∈ L, by Var(ϕ) we denote the set
of atoms occurring inϕ. Similarly, for a theoryT , we defineVar(T ) as the set of all atoms
occurring in the formulas fromT .

Consider a theoryT ⊆ L and a formulaϕ ∈ L. Theϕ-pertinent fragmentof T , Tϕ , is
defined recursively as follows:

T 0
ϕ =

{
ψ ∈ T : Var(ψ) ∩Var(ϕ) 6= ∅},

T n+1
ϕ = {ψ ∈ T : Var(ψ) ∩Var(T nϕ ) 6= ∅

}
,
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for n> 0, and

Tϕ =
⋃
n>0

T nϕ .

Next, we will introduce the concept of a local provability. The main idea is to capture the
expression “the information inT , pertinent toϕ, entailsϕ”. Thus,ϕ should not belocally
provable just becauseT contains some inconsistent data.

Definition 3.1. A theoryT locally provesa formulaϕ (denotedT `loc ϕ) if Tϕ ` ϕ.

Local provability has the following useful properties.

Proposition 3.1. LetT ⊆ L be a theory and letϕ ∈ L be a formula.
(1) If T `loc ϕ thenT ` ϕ.
(2) If T `loc ϕ andT is consistent thenT ∪ {ϕ} is consistent.
(3) If T is consistent thenT ` ϕ if and only ifT `loc ϕ.
(4) T ` ϕ if and only if eitherT is inconsistent orT `loc ϕ.

All standard propositional routines can be easily modified so that they implement the
concept of a local provability. For instance, in order to decide whetherT `loc ϕ, our
tableaux method is modified so that

(1) The root of the tableau is labeled with¬ϕ, and
(2) A branch is never expanded by formulas that have no variables in common with

those already appearing on the branch.
In this way, the prover remains restricted to the theoryTϕ . This component is often much
smaller in size thanT .

Replacing a full prover by a local prover may lead, in general, to incorrect results.

Example 3.1. Let (D,W) be a default theory withW = {p,¬p} andD = {d0}, where
d0 = p:q

q
. This theory has a unique extension,L, that is generated by the empty set of

generating defaults. SinceW 6`loc¬q , using a local prover instead of a sound and complete
prover will classifyd0 as applicable with respect to the contextW . Consequently, the same
unique extensionL will be found but the set of generating defaults will be determined
incorrectly (d0 will be returned as generating).

Example 3.2. Let (D,W) be a default theory withW = {p} andD = {d0, d1, d2}, where

d0= p :
¬p , d1= : x

x
, d2= : ¬x¬x .

Suppose that we search for extensions by examining subsets ofD. For eachU ⊆ D we
have to check whetherCn(W ∪ c(U)) is an extension of(D,W). This theory has only
one extensionCn(W ∪ c({d0})) = L with U = {d0} returned by DeReS as the set of
generating defaults. Substituting̀by `loc in the algorithmIs_Extensionwill result in
the algorithmAll_Extensionsreturning two extensions generated, respectively, by the sets
of defaultsU1= {d0, d1} andU2= {d0, d2}, as{p,¬p} 6`loc x and{p,¬p} 6`loc¬x. Both
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sets generate the only extension of(D,W), L, but none is, in fact, its set of generating
defaults.

Example 3.3. Let (D,W) be a default theory withW = {p} andD = {d0, d1}, where

d0= : q¬p , d1= : p¬q .

The theory(D,W) has a single extensionCn({p,¬q}). However, substituting̀ by `loc

in the algorithmIs_Extension will return two theories as extensions:Cn({p,¬q}) and
Cn({p,¬p})= L.

The algorithmAll_Extensions outputs sets of generating defaults of extensions of
the input default theory. Our examples show that when the local prover is used in
Is_Extension, the algorithmAll_Extensions may return additional solutions (sets of
defaults). Each of these additional solutions generates the theoryL, the entire language.
This is the only problem caused by the use of the local prover. Consistent extensions of a
default theory will be computed correctly and only once.

We will now describe modifications in the algorithmAll_Extensions to guarantee
correctness when the local prover is used inIs_Extensioninstead of the full propositional
prover. These modifications exploit the observation that in the case of aconsistenttheoryT ,
there is no difference between provability and local provability fromT (Proposition 3.1).

First, we will decide whetherW is inconsistent. To this end, we will start with the empty
set of formulas. Then, we will add the formulas fromW one by one, each time checking
whether consistency is preserved. This can be accomplished by means of a local prover. If
W is inconsistent, then(D,W) has a unique extension, which is inconsistent. In this case,
the set of generating defaults is the set of all justification-free defaults inD.

If W is consistent, we next check whether an inconsistent extension can be generated out
ofW and the justification-free defaults (defaults with justifications do not matter in the case
of inconsistent extensions). This is done by gradually building the closure ofW under the
justification-free defaults. Again, each time before a rule is applied, it is checked whether
consistency will be preserved (by a single call to the local prover). If a contradiction is
detected,(D,W) has an inconsistent extension.

Otherwise, all extensions of(D,W), if they exist, are consistent (and so isW ). Before
we complete the description of the algorithm, let us notice that the procedureIs_Extension
with the local prover correctly determines whetherU ⊆D is the set of generating defaults
of an extension ifW ∪ c(U) is consistent. Indeed, if in an iteration of therepeat loop the
consequents of the defaults inX together withW lead to a contradiction, then the setX is
not included inU (asW ∪ c(U) is consistent). Hence, the procedure will returnfalseand
terminate. This is correct, as at this point in the algorithm, only consistent theories may
be extensions. Otherwise, all theories involved in provability checks are consistent and the
local prover works exactly as the full prover.

Notice that in the algorithmsAll_ExtensionsandAll_Extensions_Stratifiedthe space
of all subsetsU of D is searched by starting withU = ∅ and then, in each step, a single
default is either deleted from or added toU . Assume that the current set of defaultsU (the
current candidate for the set of defaults generating an extension) is such thatW ∪ c(U)
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is consistent (this assumption holds at the beginning of the search as, let us recall,W is
consistent). If the next set of defaults, sayU ′, to be considered is obtained by deleting a
default then, clearly,W ∪c(U ′) is consistent, too. Hence, the procedureIs_Extensionwith
the local prover can be used to determine whetherU ′ is the set of generating defaults of an
extension.

If U ′ is obtained by adding a default, sayd , then we first check whetherW ∪ c(U) `loc

¬c(d). If the answer is positive, the setW ∪ c(U ′) is inconsistent and does not generate
an extension (recall that at this point we know that all extensions are consistent). Thus,
the recursive call (second line from the bottom in Fig. 3) is omitted (supersets ofU ′ do
not generate an extension, either). Otherwise,W ∪ c(U ′) is consistent. Hence, as before,
Is_Extensionwith the local prover can be used to decide whetherU ′ is the set of generating
defaults of an extension.

A description of the modified algorithmAll_Extensions, calledAll_Extensions_Loc,
is shown in Fig. 5.

Analogous modifications allow us to use the algorithmStratified_Build_Extensions
with a local prover instead of a full propositional prover.

Using a local prover significantly improves the performance of DeReS (see Section 6
for a discussion of our experimental results) and requires no restrictions on the syntax
of input theories. Another way to improve the performance of DeReS is to impose
syntactic constraints on input theories and exploit these restrictions in the design of even
more efficient provers. In particular, DeReS uses special processing methods to deal with
disjunction-free theories.

Recall that a default theory(D,W) is disjunction-free if all formulas inW , all
prerequisites, justifications and consequents of defaults inD are conjunctions of literals.
This condition yields a simple but still very useful class of default theories. In particular,
every logic program can be encoded by a disjunction-free default theory.

Recall that every extension of a default theory(D,W) is of the formCn(W ∪ c(U)), for
someU ⊆D. In the case when(D,W) is disjunction-free, each set of the formW ∪ c(U)
is a collection of conjunctions of literals and, consequently, can be represented as a set
of literals, sayL. In the algorithmIs_Extension the first task is to compute the setR.
Consider a justificationβ of a default inD. The formulaβ is a conjunction of literals. The
negation ofβ is logically equivalent to a disjunction of literals, sayβ ′. Deciding whether
β ′ is entailed by the set of literalsL can be accomplished as follows:

(1) If L is inconsistent (contains a pair of complementary literals), thenL entailsβ ′;
(2) If β ′ is a tautology (that is, contains a pair of complementary literals), thenL entails

β ′;
(3) Otherwise,L entailsβ ′ if and only ifL andβ ′ have at least one literal in common.

The only other time when a propositional prover is called by procedureIs_Extension is
while computing the set of defaultsAR. If B is maintained as a set of literals, then deciding
whether a prerequisiteα is entailed byB can be accomplished as follows:

(1) If B is inconsistent (contains a pair of complementary literals), thenB entailsα;
(2) If B is consistent andα is inconsistent (that is, contains a pair of complementary

literals), thenB does not entailα;
(3) Otherwise,B entailsα if and only if every literal occurring inα belongs toB.



P. Cholewiński et al. / Artificial Intelligence 112 (1999) 105–146 119

All_Extensions_Loc(D,W)
Input: A finite default theory(D,W), whereW = {w1, . . . ,wm} andD = {d1, . . . , dn};
Output: The list of all extensions of(D,W);

SetJF to be the set of justification-free defaults inD;
for i := 1 to m do

if {w1, . . . ,wi−1} `loc¬wi then
write (W ∪ c(JF));
return ;

(* If the execution goes past this point,W is consistent *)
B :=W ;
AD := {d ∈ JF: B `loc p(d)};
JF′ := JF \AD;
while AD 6= ∅ do

d := any rule inAD;
if B `loc¬c(d) then

write (W ∪ c(JF));
return ;

B :=B ∪ {c(d)};
AD := (AD\ {d})∪ {r ∈ JF′: B `loc p(r)};
JF′ := JF′ \ {r ∈ JF′: B `loc p(r)};

(* If the execution goes past this point, extensions of(D,W), if exist, are consistent *)
U := ∅;
Build_Extensions_Loc(D,W,U,0);

procedure Build_Extensions_Loc(D,W,U,k);
backtrack:= (k = |D|);
if k = 0 or dk ∈U then

if Is_Extension(D,W,U) then
write (W ∪ c(U));
backtrack:= true;

if not backtrackthen
if W ∪ c(U) 6`loc¬c(dk+1) then Build_Extensions_Loc(D,W,U ∪ {dk+1}, k+ 1);
Build_Extensions_Loc(D,W,U,k+ 1);

Fig. 5. Search for all extensions of(D,W) using a local prover.

All the provability tests mentioned above can be accomplished by deciding membership
of a literal in a set of literals. This method is implemented in DeReS and referred to as
the table lookup method. It decides each provability of a literal from a set of literals in a
constant time.

In Section 6 we present several examples of the performance of provers on concrete
default theories, generated using the TheoryBase.

3.4. Using DeReS

To work with DeReS the user invokes the DeReS shell. The shell allows the user to load
files with input default theories, display them, and compute, display and record extensions.
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Each default theory to be processed by DeReS is identified by a filefilename1.dt. This
file specifies the names of two other files,filename2.thcandfilename3.dc, by including
lines

w = filename2
d = filename3

The file filename2.thcconsists of formulas (partW of the default theory). The file
filename3.dcconsists of defaults (partD of the default theory).

The performance of DeReS is substantially improved if the input default theory, say
represented by the filefilename.dt, is stratified and if the strata are possibly small. To
take advantage of this feature, the user has to construct an additional file,filename.str
(the same name as the file identifying the default theory, but different suffix). This file is
automatically created by the TheoryBase for all default theories that it produces and which
admit nontrivial relaxed stratification. The stratification file defines a partition of input
defaults into strata. If the stratification file is not found, DeReS assumes trivial stratification
into a single cluster.

The syntax of formulas and defaults is rather straightforward. Symbols&&, || , ! ,
=> and <=> serve as conjunction, disjunction, negation, implication and equivalence,
respectively. Defaults are specified by providing the prerequisite, the list of justifications
and the consequent. The prerequisite is separated from the justifications by a colon “: ”.
The list of justifications is then followed by-> and by the consequent.

Example 3.4. Let (D,W) be a default theory defined as:

D =
{ : a
a
,
b : c
c
,
d ∨ a : e

e
,
c ∧ e : ¬a, d ∨ a

f

}
,

W = {b, c⇒ d ∨ a, a ∧ c⇒¬e}.
This theory was described in Example 2.4 in [50]. In Fig. 6 we show the three input files
which represent the theory(D,W) in the DeReS format.

The user runs DeReS by invoking its shell. The shell provides the user with several
commands:

(1) load filename—loads a default theory(D,W) described in the filefilename.dt;
(2) status —shows the name of the current default theory (the theory loaded by the

most recent use of theload command) and system settings;
(3) setprover [-f | -l | -a] —selects a prover mode; options-f, -l,

-a select full, local and table lookup provers, respectively; default setting is-l ;
(4) quit —quits DeReS;
(5) list [num1 [num2]] —displays default rules of the current input theory from

the default numbernum1 to the default numbernum2; the default values fornum1
andnum2 are the first and the last default of the current input;

(6) pds [num1 [num2]] —displays strata of the current input theory from the
stratum numbernum1 to the stratum numbernum2; the default values fornum1
andnum2 are the first and the last stratum of the current input;
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% File re80.dt
% Example 2.4 from R. Reiter "A logic for default reasoning"

w = re80-2.4-formulas
d = re80-2.4-defaults

% File re80-2.4-formulas.thc

b;
c => d || a;
a && c => !e;

% File re80-2.4-defaults.dc

: a -> a;
b : c -> c;
d || a : e -> e;
c && e : !a, d||a -> f ;

Fig. 6. DeReS encoding of a default theory (Example 3.4).

(7) size —shows the size of the current input theory;
(8) ext [-c] [-f] [-h] [-s] [-x] [-timeN] [-lastS] [-llenK]

—computes extensions with terminal output; it has several options that specify
whether to halt after first extension is found, compute all extensions, count exten-
sions, store extensions in a file, etc.;

(9) x11ext —starts DeReS X11 interface; provides a graphical user interface to
DeReS.

A typical session consists of invoking the DeReS shell, loading default theories and starting
ext or x11ext .

4. Programming with default logic

Programming with default logic means reducing a given problem to reasoning tasks of
default logic such as deciding of the existence of extensions, finding an extension or finding
all extensions. Consider a problem whose solutions are subsets of some domain. Reducing
the problem to default logic meansconstructinga default theory whose extensions allow
the user to determine all solutions to the original problem. Similarly, in the case of decision
problems, solving them by means of default logic meansconstructinga default theory that
has an extension if and only if the original problem has a solution. Constructing these
default encodings and reconstructing solutions from extensions should be algorithmically
easy—polynomial (linear, whenever possible) in the size of the original problem.
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In this section, we discuss techniques to systematically encode problems as default
theories. Since extensions of default theories formsubsetsof the language, default theories
can be used to represent those problems whose solutions aresubsetsof some domain.
These solutions are usually defined as subsets of the domain satisfying certain constraints.
With these insights, we propose an approach to programming with default logic that has
two main components:

(1) Techniques to construct default theories representing collections of basic objects
such as sets and functions.

(2) Techniques for modifying these default theories to eliminate extensions representing
those objects that do not satisfy constraints implied by the original problem
specification.

Although the target of default logic is knowledge representation, large test cases are
needed for both experimentation and for studies of the methodology of representing prob-
lems as default theories. In our research, we chose the domain of combinatorics as the
source of large and meaningful examples. In this domain it is easy to generate parameter-
ized families of test cases needed for performance evaluation. Further, combinatorial prob-
lems are often specified in terms of constraints. Consequently, the domain of combinatorics
can provide useful insights into modelling constraints as defaults or sets of defaults.

In what follows, we will be introducing techniques to impose constraints (item (2)) on
default theories representing collections of sets and functions (item (1)). However, these
techniques can be used in any application domain where constraints can be specified by
means of default theories.

While in our discussion we focus on the propositional case, DATALOG-style encodings
of some of the problems discussed below have been considered in [21,41,44].

4.1. Subsets

In this section we will present default theories whose extensions encode all subsets of a
given set. For a propositional variablep let us define defaults

s+(p)= : p
p

and s−(p)= : ¬p¬p .
Consider the default theory({s+(p), s−(p)},∅).
It is clear that this default theory has exactly two extensions,Cn({p}) and Cn({¬p}).
Consequently, it can be used to decide whetherp is in or out.

Consider now a setX. Define a set of defaultsS1(X) as follows:

S1(X)=
{
s+(p): p ∈X} ∪ {s−(p): p ∈X}.

Since, forp 6= p′, there are no interactions between defaults in{s+(p), s−(p)} and
{s+(p′), s−(p′)}, we have the following observation.

Observation 4.1. LetX be a set and letY ⊆X. A theoryT is an extension of the default
theory(S1(X),Y ) if and only if

T =Cn
({p: p ∈U} ∪ {¬p: p ∈X \U}),
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for some setU ⊆X such thatY ⊆U .

It follows that there is a one-to-one correspondence between extensions of(S1(X),Y )

and all subsets ofX that containY . In other words, the default theory(S1(X),Y ) can be
used to represent all subsets ofX containingY .

Observe that elementsp ∈ X are treated in the definition ofS1(X) as propositional
variables. We will often use elements of combinatorial structures (for instance, vertices
and edges of graphs) as propositional variables to indicate their membership in sets.

Another straightforward form of encoding all subsets ofX is to introduce for every
elementp of X two propositional variables:in(p) andout(p). Consider the following two
defaults:

t+(p)= : ¬out(p)

in(p)
and t−(p)= : ¬in(p)

out(p)
.

Consider the default theory({t+(p), t−(p)},∅).
This default theory has two extensions:Cn({in(p)}) andCn({out(p)}). Hence, as before,
this theory can be used to decide whetherp is in or out.

Define a set of defaultsS2(X) by:

S2(X)=
{
t+(p): p ∈X} ∪ {t−(p): p ∈X}.

The same argument as before yields the following observation, establishing a one-to-one
correspondence between subsets of a setX, containing a prespecified subsetY ⊆ X, and
extensions of the default theory(S2(X), {in(p): p ∈ Y }).

Observation 4.2. LetX be a set and letY ⊆X. A theoryT is an extension of the default
theory(S2(X), {in(p): p ∈ Y }) if and only if

T =Cn
({in(p): p ∈ U} ∪ {out(p): p ∈X \U}),

for some setU ⊆X such thatY ⊆U .

Let us observe that the theories(S1(X),Y ) and(S2(X), {in(p): p ∈ Y }) are disjunction-
free. Moreover, the theory(S2(X), {in(p): p ∈ Y }) has a straightforward translation into a
logic program. Namely, the defaultt+(p) can be represented by the clause

in(p)← not(out(p)),

the defaultt−(p) can be represented by the clause

out(p)← not(in(p)),

whereas the atomin(p) can be represented by the clause

in(p)←
(see Section 2).
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4.2. Maximal conflict-free sets

Often solutions to problems are specified as maximalconflict-freesubsets. LetX be a
set and letC be a function fromX toP(X). If

(1) for everyx, y ∈X, x ∈ C(y) if and only if y ∈C(x), and
(2) for everyx ∈X, x /∈C(x),

thenC is called aconflictfunction.
A subsetY of X is conflict-freeif for every x ∈ Y , C(x) ∩ Y = ∅. For everyx ∈ X,

define a defaultselect(x) by

select(x)= : {¬y: y ∈C(x)}
x

.

The intuition behind the defaultselect(x) is as follows: if none of the elements in conflict
with x is included in the solution, then includex.

Define now a set of defaultsSELECT(X,C) by

SELECT(X,C)= {select(x): x ∈X}.

Observation 4.3. Let X be a set and letC be a conflict function fromX to P(X). Let
Y ⊆X be conflict-free. Then a theoryT is an extension of(SELECT(X,C),Y ) if and only
if T = Cn(U), for some maximal(with respect to inclusion) conflict-free subsetU of X
such thatY ⊆U .

Clearly, Observation 4.3 establishes a one-to-one correspondence between maximal
conflict-free subsets ofX and extensions for(SELECT(X,C),∅).

Observe that the theory(SELECT(X,C),Y ) is disjunction-free. This theory can also be
represented as a logic program by means of the translation described in Section 2.

4.3. Maximal independent subsets

A common type of a combinatorial structure appearing in practical applications is an
independent set. Consider afinitecollectionH of finitesubsets of a setX. A subsetY ⊆X
is called independentfor H if there is noH ∈ H such thatH ⊆ Y . We will construct
now a default theory that represents all maximal independent subsets for a family of sets
H⊆P(X).

For a finite setH ⊆X, define a clauseϕ(H) by

ϕ(H)=
∨
{¬h: h ∈H }.

(Observe that, as before, we treat elements ofX as propositional variables.) Letx ∈X and
letH1, . . . ,Hk be all the sets inH containingx (recall thatH is finite). Define

ind(x)= : ϕ(H1 \ {x}), . . . , ϕ(Hk \ {x})
x

.

Consider a setX and a finite collectionH of finite subsets ofX. Define a set of defaults as
follows:

MS(H,X)= {ind(x): x ∈X}.



P. Cholewiński et al. / Artificial Intelligence 112 (1999) 105–146 125

Observation 4.4. Let H be a finite collection of finite subsets of a setX. Let Y ⊆ X
be an independent set forH. Then, a theoryT is an extension for the default theory
(MS(H,X),Y ) if and only ifT = Cn(U), for some maximal independent subsetU of X
such thatY ⊆U .

Observation 4.4 establishes a one-to-one correspondence between maximal independent
sets forH and extensions of(MS(H,X),∅).

Default theories(MS(H,X),Y ) are not, in general, disjunction-free (unless|H | = 2 for
all setsH ∈H). However, the existence of an extension problem for such theories is still
only NP-complete.

The concept of a maximal independent set is a very general one. In particular, it is
possible to represent maximal conflict-free sets as maximal independent sets in a suitably
defined familyH.

4.4. Functions

In this section we will use the results of Section 4.2 to construct a default theory whose
extensions correspond to all functions from a finite setX to a finite setY . First, for every
x ∈X andy ∈ Y , let us introduce a propositional variablefx,y . This variable will represent
the fact thaty is assigned tox. The set of all these new variables will be denoted by
F(X,Y ). For each new atomfx,y , define its conflict set,C(fx,y), by

C(fx,y)= {fx,z: z ∈ Y, z 6= y}. (1)

Clearly, a subsetF of {fx,y : x ∈X,y ∈ Y } is a maximal conflict-free set if and only if there
is a functiong :X→ Y such thatF = {fx,g(x): x ∈ X}. Let us define the set of defaults
MAP(X,Y ) as follows:

MAP(X,Y )= SELECT(F (X,Y ),C),

whereC is given by Eq. (1). Observation 4.3 implies the following corollary.

Corollary 4.1. Let X and Y be finite sets, letZ ⊆ X and let h :Z → Y . A theory
T is an extension for the default theory(MAP(X,Y ), {fz,h(z): z ∈ Z}) if and only if
T =Cn({fx,g(x): x ∈X}), for some functiong :X→ Y such thatg|Z = h.

Observe that the default theory(MAP(X,Y ), {fz,h(z): z ∈Z}) is disjunction-free.

4.5. Constraints

In this section, we will present a method to impose constraints that can be expressed
by propositional formulas. That is, we will show how to modify a default theory so that
the extensions of the resulting default theory are precisely those extensions of the original
theory that satisfy the constraints.

Let ϕ be a propositional formula and letauxϕ be a new atom. Define the following
defaults:

dϕ = : ¬ϕ,¬auxϕ
auxϕ
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and

d ′ϕ =
ϕ: ¬auxϕ

auxϕ
.

Theorem 4.2. Let (D,W) be a default theory in a propositional languageL, let ϕ ∈ L
and let auxϕ be a new propositional variable(not inL). Letdϕ andd ′ϕ be defaults defined
as above. Then:

(1) The theory(D,W) has an inconsistent extension if and only if the theory(D ∪
{dϕ},W) has an inconsistent extension. Similarly, the theory(D,W) has an
inconsistent extension if and only if the theory(D ∪ {d ′ϕ},W) has an inconsistent
extension.

(2) Every consistent extension of(D∪{dϕ},W) is a subset ofL. Moreover, a consistent
theoryE ⊆ L is an extension of the default theory(D ∪ {dϕ},W) if and only ifE is
an extension of(D,W) andϕ ∈E.

(3) Every consistent extension of(D∪{d ′ϕ},W) is a subset ofL. Moreover, a consistent
theoryE is an extension of the default theory(D ∪ {d ′ϕ},W) if and only ifE is an
extension of(D,W) andϕ /∈E.

Proof. The proof of (1) is straightforward. We leave it to the reader.
(2) DefineD′ = D ∪ {dϕ}, and assume thatE is a consistent extension of the default

theory(D′,W). We have

E =CnD
′,E(W).

Assume thatdϕ is E-applicable. Then, sincedϕ is prerequisite-free,auxϕ ∈ E. On the
other hand,E-applicability of dϕ implies thatE 6` ¬(¬auxϕ). SinceE is closed under
propositional consequence, we obtain a contradiction. Thus,dϕ is not E-applicable. It
follows thatE ⊆ L and that

CnD
′,E(W)=CnD,E(W).

Consequently,

E =CnD,E(W).

Hence,E is an extension of(D,W). SinceE is consistent,dϕ is notE-applicable, and
auxϕ occurs only indϕ , it follows thatE `¬(¬ϕ). Thus,ϕ ∈E.

Conversely, assume thatE is a consistent extension of(D,W) and thatϕ ∈E. The latter
fact implies thatdϕ is notE-applicable. So, as before,

CnD,E(W)= CnD
′,E(W)

and, consequently,

E =CnD
′,E(W).

The proof of (3) is similar and we omit it.2
Theorem 4.2 shows that defaultsdϕ andd ′ϕ can be used to enforce constraints expressed

by propositional formulas. Enforcing means selecting those extensions that entail the
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constraints. Defaults that act as such selection filters (for instance,dϕ and d ′ϕ) will be
referred to asselection defaults. Observe also that when constructing the selection defaults,
a formulaϕ can be replaced by a logically equivalent one (cf. [40], Theorem 5.3) without
changing the selection properties of the default. We will often take advantage of this
observation.

In general, we can use the same atomaux in all selection defaults. However, to decrease
the number of dependencies between defaults and obtain finer stratification, it is better
to use different auxiliary atoms in different selection defaults. Thus, in this section and
throughout the paper we use a new auxiliary atomauxϕ for each selection default.

There are other classes of defaults that act as selection defaults. For instance,:¬ϕ
ϕ

eliminates all extensions not containingϕ (similarly todϕ). However, the default:¬ϕ
ϕ

may
interact with other defaults and introduce cyclic dependencies that lead to larger strata.

4.6. Kernels in directed graphs

In the remainder of this section, we will present several default theories that encode
problems in graph theory. They are constructed by first using our results about representing
all subsets (or functions) and then by imposing constraints.

We will start by constructing default theories that represent the problem of existence
of kernels in directed graphs. Given a directed graphG= (V ,A) (V stands for the set of
vertices andA for the set of directed edges ofG), a setK ⊆ V is called akernelif:

(K1) The setK is an independent set, that is, for every edge(u, v) ∈ A, u ∈ V \K or
v ∈ V \K.

(K2) For every vertexw ∈ V \K, there exists a vertexv ∈K such that(w,v) ∈A.
The first, ratherad-hocrepresentation of the kernel problem as a default theory appeared

in [39]. LetG= (V ,A) be a directed graph. For every edgee= (x, y) ∈A, define

r(e)= : ¬y
x
.

Denote byKER1(G) the default theory({r(e): e ∈A},∅). It was shown in [39] thatK ⊆ V
is a kernel of a directed graphG= (V ,A) if and only if Cn(M), whereM = V \K, is an
extension ofKER1(G). In other words, extensions of this default theory are precisely the
complementsof kernels. Note that the theoryKER1(G) is disjunction-free.

We will now construct another encoding of the kernel problem, systematically utilizing
the results from the preceding sections. Consider the default theory(S1(V ),∅). Its
extensions represent the collection of all subsets ofV . More precisely, they are all of the
form {x: x ∈K} ∪ {¬x: x ∈ V \K}, for someK ⊆ V . We will denote a set of this form,
determined byK ⊆ V , byK .

To represent kernels, we need to enforce kernel conditions (K1) and (K2) on such sets.
To enforce (K1), for every directed edgee= (x, y) define

ϕ(e)=¬(x ∧ y).
Clearly,K satisfies condition (K1) if and only ifK entailsϕ(e), for everye ∈A.

To enforce condition (K2), for every vertexv define a formula

ψ(v)=¬v ⊃ v1∨ · · · ∨ vk,
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wherev1, . . . , vk are all the vertices connected tov by an edge starting inv. Observe that
a set of verticesK satisfies condition (K2) if and only ifK entailsψ(v), for everyv ∈ V .

Formulasϕ(e) andψ(v) give rise to selection defaults

dϕ(e) = : x ∧ y,¬auxϕ(e)
auxϕ(e)

,

for e ∈A, e= (x, y), and

dψ(v) = : ¬v ∧¬v1 ∧ · · · ∧ ¬vk,¬auxψ(v)
auxψ(v)

,

for v ∈ V (wherev1, . . . , vk are all the vertices connected tov by an edge starting in
v). Notice that when definingdψ(v), we replaced¬ψ(v) by an equivalent formula (using
Theorem 5.3 from [40]).

Let G = (V ,A) be a directed graph. Let us denote byKER2(G) the default theory
obtained by adding all defaultsdϕ(e), e ∈A, anddψ(v), v ∈ V , to the set of defaultsS1(V )

and settingW = ∅. Observe that the theoryKER2(G) is disjunction-free.

Observation 4.5. LetG = (V ,A) be a directed graph. A setK ⊆ V is a kernel ofG if
and only if Cn(K) is an extension of KER2(G). Moreover, every extension of KER2(G) is
of the form Cn(K), for some kernelK ofG.

Yet another approach is to encode complements of kernels, as it is easy to decode a set
from its complement (this approach was used in [39]).

4.7. Maximal independent sets in graphs, matchings and perfect matchings

Let G = (V ,E) be an undirected graph. A set of verticesI ⊆ V is independentif for
every edgee ∈E, at least one of its endvertices is not inI . Let us recall that an edge in an
undirected graph can be identified with thesetof its endvertices. Hence, it is clear thatI is
an independent set inG if and only if it is independent forE in the sense of Section 4.3.
Let us denoteMIS(G)= (MS(E,V ),∅).

Observation 4.6. Let G = (V ,E) be an undirected graph. A setY ⊆ V is a maximal
independent subset ofG if and only if Cn(Y ) is an extension of MIS(G). Moreover, every
extension of MIS(G) is of the form Cn(Y ), for some maximal independent setY in G.

It is also easy to see that ifU ⊆ V is independent, then the default theory(MS(E,V ),U)
describes all maximal independent sets in an undirected graphG= (V ,E) that containU .
Since all sets inE have only two elements, the theory(MS(E,V ),U) is disjunction-free.

An alternative encoding is implied by an observation that undirected graphs can be
regarded as directed graphs (each undirected edge{x, y} is treated as a pair of two directed
edges(x, y) and (y, x)). It is easy to see that a set of verticesK is a kernel of an
undirected graphG (regarded as a directed graph in the sense described above) if and
only if K is a maximal independent set. Thus, extensions of the theoryKER2(G), where
A= {(x, y), (y, x): {x, y} ∈ E} correspond precisely to maximal independent sets of the
(undirected) graphG= (V ,E).
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Next, we will construct default theories representing all maximal matchings and perfect
matchings in an undirected graph. LetG= (V ,E) be an undirected graph. A set of edges
M is called amatchingif no two different edges fromM share an endvertex. A matchingM
is calledmaximalif there is no matching inG that wouldproperlycontainM. A matching
M is calledperfectif it covers all vertices of the graph.

LetG= (V ,E) be an undirected graph. Observe thatM ⊆ E is a matching if and only
if M is independent forE(G) = {{e, f }: e, f ∈ E,e 6= f, e andf share an endvertex}.
Consequently, the default theory(MS(E(G),E),∅) represents (through its extensions) all
maximal matchings inG.

We will now add to(MS(E(G),E),∅) selection defaults to weed out those maximal
matchings that are not perfect. To this end, for every vertexv ∈ V define the formula

cov(v)= e1∨ · · · ∨ ek,
wheree1, . . . , ek are all the edges with endvertexv. Clearly, a matchingM is perfect
if and only if M entails cov(v), for every vertexv ∈ V . Each formulacov(v) gives
rise to the selection defaultdcov(v). Adding all these defaults to the set of defaults in
(MS(E(G),E),∅) yields a default theory, calledPM(G), whose extensions are those
extensions of(MS(E(G),E),∅) that entail all formulascov(v), that is, those extensions
of (MS(E(G),E),∅) that represent perfect matchings.

Observation 4.7. Let G = (V ,E) be an undirected graph. A set of edgesM ⊆ E is a
perfect matching ofG if and only if Cn(M) is an extension of PM(G). Moreover, every
extension of PM(G) is of the form Cn(M), for some perfect matchingM ofG.

Since all sets inE(G) contain two elements and, since while constructing the selection
defaultdcov(v) we can use¬e1∧ · · · ∧ ¬ek instead of¬(e1∨ · · · ∨ ek), the default theories
(MS(E(G),E),∅) andPM(G) are disjunction-free.

If M ′ is a matching in a graphG, then extensions of the default theory(MS(E(G),E),
M ′) represent all maximal matchings inG that containM ′. TheoryPM(G) can be modified
in the same way. This yields a default theory representing all perfect matchings in the graph
G containingM ′.

4.8. Graph coloring

LetG= (V ,E) be an undirected graph. Let us denote byIk the set{1, . . . , k}. A function
f :V → Ik is ak-coloring of G if for every edge{u,v} ∈ E, f (u) 6= f (v). A graphG is
k-colorableif there is ak-coloring ofG. Since a coloring is a function fromV to Ik which
satisfies certain conditions, we can encode allk-colorings of a graph as a default theory
using the results given in Sections 4.5 and 4.4. By Corollary 4.1, extensions of the default
theory(MAP(V , Ik),∅) encode all functions fromV to Ik .

We will now define propositional formulas that describe a violation of the condition
that the endvertices of the same edge are assigned different colors. For every edge
e= {x, y} ∈E and everyi ∈ Ik , define

cl(e, i)= fx,i ∧ fy,i
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(recall thatfv,p is a new atom used in the construction of the default theoryMAP(X,Y ) to
represent the fact thatv ∈X is assignedp ∈ Y ). Hence,cl(e, i) states that the endvertices
of e are assigned colori.

It is easy to see that a functionc :V → Ik is a coloring if for everye ∈E and everyi ∈ Ik ,
{fx,c(x): x ∈ V } does notentailcl(e, i). Weeding out extensions that entail formulascl(e, i)
can be accomplished by adding toMAP(V , Ik) the selection defaultsd ′cl(e,i), e ∈E, i ∈ Ik .
Let us denote the resulting default theory byCOL1(G, k).

Observation 4.8. LetG = (V ,E) be an undirected graph. A functionc :V → Ik is a k-
coloring ofG if and only if Cn({fx,c(x): x ∈ V }) is an extension of COL1(G, k). Moreover,
every extension of COL1(G, k) is of the form Cn({fx,c(x): x ∈ V }), for some coloringc
ofG.

Note that the theoryCOL1(G, k) is disjunction-free.
Another approach to encoding of the coloring problem was given in [45]. This encoding,

COL2(G, k), can be constructed, using our approach, as follows. For everyx ∈ V and
i ∈ Ik , define the conflict setC(fx,i ) by:

C(fx,i)= {fx,j : j ∈ Ik, j 6= i} ∪ {fy,i : y ∈ V is a neighbor ofx}. (2)

It is clear that maximal conflict-free subsets of{fx,i : x ∈ V, i ∈ Ik} are maximal partial
k-colorings of the graphG (a partial coloring is an assignment of colors to some of the
vertices of the graph so that no edge has the same color assigned to its endvertices). Thus,
maximal partialk-colorings ofG are encoded (in a one-to-one fashion) by extensions of
the default theory(SELECT(F,C),∅), whereF = {fx,i : x ∈ V, i ∈ Ik} andC is defined
by (2).

Next, for each vertexv, define a formulas(v):

s(v)= fv,1∨ · · · ∨ fv,k.
Clearly, a subset ofF entailss(v) if and only if it contains at least one element of the
formfv,i . Thus, by Theorem 4.2, adding to(SELECT(F,C),∅) the selection defaultsds(v)
leaves as extensions only those that encodecompletek-colorings ofG (colorings assigning
a color to every vertex of the graph). Let us define

COL2(G, k)=
(
SELECT(F,C) ∪ {ds(v): v ∈ V },∅

)
.

Observation 4.9. LetG = (V ,E) be an undirected graph. A functionc :V → Ik is a k-
coloring ofG if and only if Cn({fx,c(x): x ∈ V }) is an extension of COL2(G, k). Moreover,
every extension of COL2(G, k) is of the form Cn({fx,c(x): x ∈ V }), for some coloringc
ofG.

By using¬fv,1 ∧ · · · ∧ ¬fv,k instead of¬(fv,1 ∨ · · · ∨ fv,k) when constructingds(v),
we can ensure that the theoryCOL2(G, k) is disjunction-free.

As in the previous cases, by modifying the objective part of the theoriesCOL1(G, k)

andCOL2(G, k) one can encode the collection of those colorings that assign prespecified
colors to prespecified vertices.
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4.9. Cycles and hamiltonian cycles

LetG= (V ,A) be a directed graph such that|V |> 3. For an edgee= (x, y) ∈A let us
define the conflict set

C(e)= {(x, z) ∈A: z 6= y}∪ {(z, y) ∈A: z 6= x}.
Let us observe thatH ⊆ A is a maximal conflict-free subset ofA if and only if H is a
maximal subset of edges inG with the following two properties:

(C1) no vertex is the tail of two different edges inH ,
(C2) no vertex is the head of two different edges inH .

Consequently, the default theory(SELECT(A,C),∅) has as its extensions precisely the
sets of the formCn(H), whereH ⊆ A is a maximal set satisfying conditions (C1) and
(C2).

For every edgee= (x, y) ∈A, let us define a defaultmove(e) by

move(e)= x ∧ e:
y

.

The defaultmove(e) is justification-free. It is used like a standard inference rule. If
e = (x, y) and x are in an extension of a default theory that contains defaultmove(e),
theny is in this extension as well. Let us define the default theory∆(G) by:

∆(G)= (SELECT(A,C) ∪ {move(e): e ∈A}, {vs}
)
,

wherevs ∈ V is a fixed vertex. One can show that extensions of∆(G) are precisely the
theories of the formCn(X∪H), whereH ⊆A is a maximal subset of edges ofG satisfying
conditions (C1) and (C2) andX is the set of vertices reachable fromvs by means of the
edges inH .

To leave only those extensions that correspond to hamiltonian cycles, it is enough to
enforce two constraints:

(1) An extension must entail formulasv, for everyv ∈ V (in other words, all vertices
must be reachable fromvs by means of edges in the extension),

(2) an extension must contain an edge with the headvs .
To enforce the first constraint, the selection defaultsdv , v ∈ V are added to∆(G). To
enforce the second constraint, the selection default

: {¬f : f ∈A,f = (x, vs)},¬aux

aux

must be added. Let us denote the resulting theory byHAM1(G).

Observation 4.10.Let G = (V ,A) be a directed graph. A setH of edges spans a
hamiltonian cycle inG if and only if Cn(V ∪H) is an extension of HAM1(G). Moreover,
every extension of HAM1(G) is of the form Cn(V ∪H), for some setH ⊆ A spanning a
hamiltonian cycle inG.

Clearly, the theoryHAM1(G) is disjunction-free.
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We will now describe an alternative encoding. Let, as before,G= (V ,A) be a directed
graph. For an edgee= (x, y) define the default

move′(e)= x: {¬f : f = (x, z) ∈A,z 6= y}
y ∧ e .

The intuitive meaning ofmove′(e) is: if x has been reached and it is possible to select an
outgoing edgee= (x, y) (none of the other outgoing edges fromx is known to have been
selected), then selecte and visity. Define∆′(G) by:

∆′(G)= ({move′(e): e ∈A}, {vs}),
wherevs ∈ V is a fixed vertex. One can show that extensions of∆′(G) are precisely the
theories of the formCn(X ∪H), whereH is a sequence of edges starting invs with each
next edge starting where the previous one ended andX is the set of vertices of the edges in
H . The sequenceH ends when for the first time the head of an edge coincides with one of
the vertices visited earlier.

Note that the sequenceH need not to end invs and it is not guaranteed that all vertices
are visited (that is,X may be a proper subset ofV ). To construct a default theory such
that its extensions represent hamiltonian cycles, let us observe that to guarantee that
all vertices are visited, we must require that the extensions entail the formulasv (v is
treated here as a propositional variable), for allv ∈ V . Similarly, to guarantee that the
sequenceH ends up back invs we must ensure that the extensions entail the formula
α =∨{e ∈A: e ends invs }. Both objectives can be accomplished by adding the selection
defaultsdv , v ∈ V , anddα to∆′(G). Let us denote the resulting theory byHAM2(G).

Observation 4.11.Let G = (V ,A) be a directed graph. A setH of edges spans a
hamiltonian cycle inG if and only if Cn(V ∪H) is an extension of HAM2(G). Moreover,
every extension of HAM2(G) is of the form Cn(V ∪H), for some setH ⊆ A spanning a
hamiltonian cycle inG.

Note thatHAM2(G) is disjunction-free.

5. TheoryBase

We believe that the lack of significant experimental studies of the performance of
nonmonotonic reasoning systems can be, in large part, attributed to the absence, in the
past, of large sets of test cases of varying difficulty and structure. This problem is not
unique to automated theorem proving. It appears in all areas of experimental research [31].

To test and experiment with software systems we need easily generated, realistic and
meaningful test instances. A possible approach is to produce a collection of real-life
problems. Such benchmarks are now used in several areas of experimental research
in computer science. The benefits of this approach are evident. The problems arereal
and, thus,meaningful. In addition, they can easily be disseminated. But, there are also
drawbacks. The data often does not provide enough flexibility to allow full-fledged testing.
In particular, a comprehensive study of performance scalability cannot be easily conducted,
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as databases of benchmarks rarely containfamiliesof test cases of similar structure and
growing sizes that would allow good extrapolation of the running time.

The other approach frequently used in experimental research is to generate data
randomly. This method offers an unlimited number of test cases and often the user has
control over at least some parameters of data generated. For example, when generating
random graphs, we can request a specific number of vertices and edges. However, the
data generated randomly often has properties that rarely occur in real-life examples. It is
well known that (under appropriate technical assumptions) almost every connected random
graph is hamiltonian [10]. Similarly, it is now believed that random 3-SAT problems do not
provide an adequate model for problems likely to occur in real-life applications [13,28].

None of these two approaches has been fully developed for experimenting with logic
programming and nonmonotonic reasoning. In logic programming, the set of benchmark
programs is very small. Two programs most commonly used in testing are the “naive
reverse” program [56], and the “win” program [46,52]. The situation is even worse with
generating logic programs and default theories randomly. In fact, up to now, no random
model of a logic program or a default theory has been proposed.

In this section, we will describe a system that generates logic programs and default
theories. Our approach is based on the work by Knuth on methods to generate graphs [33],
and on the results from the previous section providing encodings of graph problems in
terms of default theories and logic programs.

Knuth argues that random graphs do not constitute an adequate tool for testing graph
algorithms. Instead, Knuth develops a graph generation system, The Stanford GraphBase.
This system is publicly available (see [33] for details) and, thus, can be used as a
“common denominator” for work requiring experimenting with graphs. The Stanford
GraphBase is a collection of datasets and graph generating procedures. It allows the
user to generatefamiliesof directed, undirected, weighted, unweighted, bipartite, planar,
regular and random graphs. An important feature of The Stanford GraphBase is that every
graph generated gets a unique label (or identifier). It is essential for storing and easy
reconstruction of test cases generated.

The core of The Stanford GraphBase is formed by several procedures to generatebasic
graphs (other graphs can be obtained by applying graph operations implemented in The
Stanford GraphBase). These procedures root the graphs they generate in objects such as
maps and dictionaries in an effort to ensure some correlation of the graphs generated to
real-life problems. For instance, an interesting family of graphs in The Stanford GraphBase
is generated from a table of highway distances between 128 North American cities.

In our work, we extended The Stanford GraphBase to a system, called the TheoryBase,5

that generates logic programs and default theories. It was developed to facilitate
experimenting with DeReS. Our idea is to apply the encodings presented in Section 4
to graphs which are the outputs of The Stanford GraphBase.

The TheoryBase shell provides the user with two main classes of commands: to generate
graphs, and to generate default theories encoding graph problems. The graph generating

5 A detailed description of the TheoryBase commands and features, as well as the executable code can be
obtained from ftp://ftp.cs.engr.uky.edu/cs/software/logic/TheoryBase.tar.gz.
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commands rely on The Stanford GraphBase procedures. They allow the user to generate
familiesof graphs of similar structure but increasing sizes.

The graph generating commands must be followed by invoking encoding generating
commands. The encoding commands allow the user to specify a graph (or a range of
graphs) generated before, a graph problem and a version of an encoding to use (they are
minor modifications of the encodings presented in Section 4). Currently, the TheoryBase
supports the following commands (together with available options, these commands allow
the user to generate nine different encodings):

(1) kernel —this command produces the theoryKER2(G) (to be precise, its slight
modification) encoding the existence of a kernel forG; by selecting appropriate
options two other encodings can also be generated,

(2) color —this command, invoked with the parameterk, generates the theory
COL1(G, k) to encode the existence of ak-coloring problem forG,

(3) hamilton —produces the theoryHAM1(G) to encode the existence of a hamil-
tonian cycle problem forG,

(4) maxind —generates the default theoryMIS(G), whose extensions identify all
maximal independent sets inG,

(5) maxmatch —generates the default theory(MS(E(G),E),∅) (see Section 4.3),
whose extensions identify all maximal matchings inG.

Each of these commands generates: the header file (suffix.dt), the file of propositional
formulas (suffix.thc), the file of defaults (suffix.dc), the stratification file (suffix.str).

The TheoryBase provides a unique identifier for each theory it allows the user to
construct. The concept is an extension of a unique identifier of a graph in The Stanford
GraphBase. Combining the name of the encoding generating command (possibly appended
by strings representing a selection of options) with The Stanford GraphBase identifier of a
graph for which the encoding is applied yields the identifier of the resulting default theory.
For instance, ifkernel command is applied to a graph with The Stanford GraphBase
identifier board(5,5,0,0,5,3,1) (see Fig. 7) the resulting default theory is denoted by
kernel.board_5,5,0,0,5,3,1_.6 Similarly, applying the commandcolor to the same
graph, to produce a default theory encoding the existence of 3-colorings, yields the default
theory with the identifiercolor3.board_5,5,0,0,5,3,1_.

The TheoryBase encoding generating commands also generate two additional files: the
graph description fileand thedisplay actions file. These two additional files play no role in
the reasoning but they support graphical presentation of the results by the TheoryBase and
DeReS X11 graphical user interfaces. For instance, the graphical user interface for DeReS,
x11ext , allows the user to display the underlying graph, identifies the graph problem to
be solved, provides the user with several command buttons and displays the results of the
computation. Fig. 7 presents the state of the interface after the first extension was computed
for the theory encoding the existence of a kernel problem for the graph with The Stanford
GraphBase identifierboard(5,5,0,0,5,3,1).

Although the present focus in the TheoryBase is on test theories for experimentation
with nonmonotonic reasoning, our method has wider implications. By encoding graph
problems by means of propositional theories or 3-SAT data instances, one can obtain a

6 For technical reasons, the parentheses in The Stanford GraphBase identifier are replaced by _ symbols.
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Fig. 7. A kernel in graphboard(5,5,0,0,5,3,1).

benchmarking system for testing propositional theorem proving techniques. There is an
obvious need for such a system (see [28] for additional discussion of the subject), especially
in view of recent work on new satisfiability testing methods: GSAT [54], TABLEAU [12],
WSAT [53], CSAT [19] and other.

6. Using TheoryBase, experimenting with DeReS

In this section we present the results of our experiments with DeReS and demonstrate
usefulness of the TheoryBase in experimental studies of nonmonotonic reasoning systems.
When studying DeReS, we were interested in the following three main questions:

(1) How does the performance of DeReS scale up with the growth of the size of input
default theories?

(2) How the selection of a prover (recall that DeReS offers three choices) influences the
performance of DeReS?

(3) What is the effect of stratification on the performance of DeReS?
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Fig. 8. A 3× 4-grid wrapped around a torus.

In order to obtain meaningful and reliable results, testing must be extensive and the test
cases must cover a wide spectrum of default theories with diverse properties.

The TheoryBase was designed to support this type of studies. Let us recall that the
TheoryBase allows the user to produceparameterizedfamilies of default theories. The size
of default theories in such a parameterized family grows as a function of the parameters
and all the default theories in the family share similar properties. Several such families
were constructed for our experiments.

We will first discuss those families of default theories that are constructed by means
of the TheoryBasekernel and kernel -b commands. These commands produce
encodings of the existence of a kernel problem (through encodingsKER2 and KER1,
respectively). We applied these commands to several families of directed graphs, called
n×m-tori, whose vertices form ann×m-grid wrapped on a torus, edges connect vertices
at distance one in the grid, with the direction determined by the lexicographic ordering of
the endpoints (see Fig. 8 for the 3× 4-torus):

(1) 3× (3m− 1)-tori,m> 1; The Stanford GraphBase labelsboard(3,3m− 1,0,0,1,
3,1),

(2) 4× 2m-tori,m> 1; The Stanford GraphBase labelsboard(4,2m,0,0,1,3,1).
We also applied these commands to the graphs with the vertex set representing squares on
an 8×m chessboard, in which two vertices are connected if one can be reached from the
other by a knight’s move (with wraparound allowed along both dimensions). These graphs
have The Stanford GraphBase labelsboard(8,m,0,0,5,3,1).

As a result, we obtained several families of default theories with labelskernel.board_p,
q,0,0, s,3,1_ andkernel.b.board_p,q,0,0, s,3,1_, for appropriate values ofp, q ands.
All these theories are disjunction-free. Consequently, all three provers can be used by
DeReS when processing them. The theories in the families with the prefixkernel
have a relaxed stratification into small strata. The theories in the families with the
prefix kernel.b have no nontrivial relaxed stratification. The theories obtained from
graphsboard(4,2m,0,0,1,3,1) have exactly two extensions (it is easy to see that the
corresponding graphs have exactly two kernels) and the theories obtained from graphs
board(3,3m− 1,0,0,1,3,1) have no extensions. Finally, the number of extensions for
the theorieskernel.board_8,m,0,0,5,3,1_ is a slowly growing function ofm.
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(a) (b)

Fig. 9. (a) A ladder graph; (b) A simplex graph.

We obtained especially encouraging results on DeReS performance for theories
encoding the existence ofk-colorings of graphs. We applied the TheoryBasecolor
command, that implements the translationCOL1, to the following families of graphs:

(1) ladder graphs (see Fig. 9(a) for an example of a ladder graph), with The Stanford
GraphBase labelsboard(n,2,0,0,1,0,0),

(2) simplex graphs with thesideof sizen (see Fig. 9(b)), with The Stanford GraphBase
labelssimplex(n,n,−2,0,0,0,0).

For graphs in these families, we generated theories encoding the existence of a 3-
coloring. As a result, we obtained the following families of default theories:

(1) color3.board_n,2,0,0,1,0,0_, n> 2,
(2) color3.simplex_n,n,−2,0,0,0,0_, n> 2.

All these default theories are disjunction-free and have a good relaxed stratification. The
theoriescolor3.board_n,2,0,0,1,0,0_ have a large number of extensions (ladder graphs
have exponentially many 3-colorings). The theoriescolor3.simplex_n,n,−2,0,0,0,0_
have exactly six extensions (each graphsimplex(n,n,−2,0,0,0,0) has exactly six 3-
colorings).

The effects of a fine relaxed stratification are perhaps best illustrated by the theories
encoding the existence of a hamiltonian cycle problem. So far, no encoding with good
stratification is known. It is easy to see that ladder graphsboard(n,2,0,0,1,0,0) have
a hamiltonian cycle. We applied the commandhamilton to the ladder graphs to
produce the familyhamilton.board_n,2,0,0,1,0,0_. Default theories in this family are
disjunction-free and do not have a nontrivial relaxed stratification. Moreover, each has
exactly two extensions (there are two directed hamiltonian cycles in the directed symmetric
representation of a ladder graph).

This collection of test families demonstrates that the TheoryBase allows the user to
generate a wide range of examples that can be used to test nonmonotonic reasoning
systems. Some of the families we generated and used consist of theories which have a
relaxed stratification into small clusters and others had only a trivial, one-cluster, relaxed
stratification. Some families had no extensions, some other had very few extensions, and
yet other had large numbers of extensions. Additional diversification was ensured by the
fact that the families generated encode several graph problems and by the diversity of the
underlying families of graphs.
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In the remainder of this section we present experimental results on the performance
of DeReS on the default theories described above. In all the tables we give, we use the
following notation:

(1) timef denotes the CPU time for queries processed with the full propositional
tableaux prover;

(2) timel denotes the CPU time for queries processed with the local propositional
tableaux prover;

(3) timea denotes the CPU time for queries processed with the table lookup prover;
(4) NCPP stands for the number of calls to a prover;
(5) EXT stands for the total number of extensions for the input theory.

All times are measured in seconds.
The results were obtained on a 166 MHz Pentium PC under Linux 2.0.18 operating

system. The time was measured using thetime routine and is presented as the sum of the
CPU time used while executing instructions in the user space of the calling process and the
CPU time used by the system on behalf of the calling process. To capture the reasoning
time we measure the CPU time from the point when an input default theory is already
stored together with its stratification in DeReS data structures to the point when the answer
is returned.

6.1. Provers, efficiency of DeReS processing and scalability

DeReS offers a choice of three propositional provers. Recall that these are: a full
tableaux prover, a local tableaux prover (sound, but not complete), and a table lookup
prover (applicable to disjunction-free theories only). All our experiments, perhaps not
surprisingly, demonstrate that the local prover significantly anduniformly outperforms
the full prover and that the lookup prover, whenever applicable, performs better than
tableaux provers. In particular, this is illustrated in Table 1, which summarizes DeReS
performance for the family of theorieskernel.board_8,m,0,0,5,3,1_ in the case when
only one solution was needed, and in Table 2 that reports time needed to compute all
extensions for these default theories.

In both cases time grows exponentially with the size of the underlying default theory.
Nevertheless, both experiments show that DeReS can deal, in the matter of seconds, with
default theories containing hundreds of defaults and encoding nontrivial problems.

The results from the tables can be used to extrapolate the behavior of the performance
of DeReS for theorieskernel.board_8,m,0,0,5,3,1_ and obtain quantitative insights on
the savings possible due to the choice of a prover. For instance, the timetimea(m) (in µs)
to compute all extensions using the table lookup prover satisfies the inequalities

C1 3m 6 timea(m)6 C2 3m,

for some small constantsC1 andC2. Hence, the time grows exponentially and has order
2(3|D|/56) (where, recall,D stands for the set of defaults of the theory). That is, the time
grows at a much smaller rate than the theoretical bound O(|D|2× 2|D|) [40].

When tableaux provers are used times are larger because more time is needed for each
call to the propositional provability procedure. For instance, the local prover needs to scan
the input theory to find all formulas which have common propositional variables with the
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Table 1
Searching for a kernel inboard(8,m,0,0,5,3,1)

kernel.board_8,m,0,0,5,3,1_, one solution

m |D| NCPP timef timel timea

4 224 14804 14.32 1.04 0.06

5 280 34377 52.91 3.04 0.14

6 336 121249 291.27 12.28 0.49

7 392 105548 302.70 11.97 0.42

8 448 308910 1389.91 39.65 1.24

9 504 557398 2924.17 78.11 2.21

10 560 1982796 14327.56 316.29 7.86

Table 2
Computing all kernels inboard(8,m,0,0,5,3,1)

kernel.board_8,m,0,0,5,3,1_, all solutions

m |D| NCPP timef timel timea EXT

4 224 65704 72.89 4.65 0.26 6

5 280 114709 208.79 10.23 0.48 15

6 336 421082 1039.76 42.77 1.65 5

7 392 1255383 4214.01 146.72 5.02 147

8 448 4130579 > 2 hrs 541.35 16.29 134

9 504 10760494 > 2 hrs 1603.21 42.53 120

10 560 31630658 > 2 hrs 5204.96 124.24 267

query formula and then decide provability. From our results, it can be estimated that the
time timel (m) (in µs) for computing all extensions by means of the local prover satisfies

C′1 m3m 6 timel (m)6 C′2 m3m,

that is, it is of the order2(|D| × 3|D|/56). Finally, similar considerations for the full
prover show that, in this case, the time needed to find all extensions is of the order
2(|D|2 × 3|D|/56). Thus, for the default theorieskernel.board_8,m,0,0,5,3,1_, using
the local prover saves a factor of|D| over the full prover, and using the table lookup prover
saves an additional factor of|D|.

The results were similar for several other families of default theories. In some cases,
savings due to the choice of the prover were even more dramatic and led to excellent
scalability. Table 3 summarizes running times of DeReS for all three provers for the family
of default theoriescolor3.board_n,2,0,0,1,0,0_.

In this case, due to a large number of solutions, we only computed the first extension
(computing all would clearly take exponential time). As before, full and local provers are
not practical while the table lookup prover performs very well. Even for very large default
theories from this family, with tens of thousands of defaults, the table lookup version of
DeReS computes an extension in less than a second. This excellent performance is due
to two factors: relaxed stratification and a large number of extensions these theories have,
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Table 3
Finding a 3-coloring forboard(n,2,0,0,1,0,0)

color3.board_n,2,0,0,1,0,0_, one solution

n |D| NCPP timef timel timea

300 4494 11988 1343.57 10.75 0.08

400 5994 15988 3385.35 19.20 0.09

500 7494 19988 > 2 hrs 30.27 0.11

600 8994 23988 > 2 hrs 45.68 0.13

700 10494 27988 > 2 hrs 62.74 0.14

800 11994 31988 > 2 hrs 82.77 0.16

900 13494 35988 > 2 hrs 108.05 0.18

1000 14994 39988 > 2 hrs 137.02 0.20

Table 4
Finding a 3-coloring forsimplex(n,n,−2,0,0,0,0)

color3.simplex_n,n,−2,0,0,0,0_, one solution

n |D| NCPP timef timel timea

6 270 806 0.26 0.05 0.01

7 360 1020 0.53 0.08 0.01

8 459 1845 1.10 0.19 0.01

9 570 1649 1.35 0.18 0.01

10 693 1950 2.18 0.27 0.01

11 828 3294 4.61 0.52 0.02

12 975 2789 5.44 0.50 0.02

13 1134 3177 8.16 0.67 0.02

14 1305 5160 16.21 1.29 0.03

15 1488 4226 17.74 1.19 0.03

which makes it easy to stumble upon them. Table 4 presents the performance results of
DeReS for theoriescolor3.simplex_n,n,−2,0,0,0,0_ (they encode 3-colorings of the
simplex graphs). Each such theory has exactly six extensions corresponding to six 3-
colorings of the graphsimplex(n,n,−2,0,0,0,0).

Finally, DeReS exhibits similar scalability and prover performance results for theories
with no extensions. Table 5 summarizes our experiments with the family of theories
kernel.board_3,3m− 1,0,0,1,3,1_. Since these theories have no extensions, DeReS can
terminate execution only after it scans through a portion of the search space that is large
enough to allow it to conclude that indeed no extensions exist. Consequently, in this case,
the performance of DeReS is worse than in the previous two cases.

All these results demonstrate the magnitude of savings possible with the appropriate
choice of the propositional prover in DeReS. Significant savings were observed for theories
encoding both existence of kernels and 3-colorings, and for theories with very many,
moderately many, few and no extensions. They also show that the performance of DeReS,
even in the current implementation, scales up very well for several nontrivial families of
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Table 5
Searching for a kernel inboard(3,3m− 1,0,0,1,3,1)

kernel.board_3,3m− 1,0,0,1,3,1_

m |D| NCPP timef timel timea EXT

2 75 2,170 0.58 0.09 0.01 0

3 120 12,626 8.77 0.68 0.06 0

4 165 66,740 79.14 4.39 0.27 0

5 210 339,032 667.74 26.81 1.36 0

6 255 1,673,382 4890.73 154.85 6.79 0

7 300 8,093,622 32620.66 819.07 31.82 0

Table 6
Searching for a kernel inboard(4,2m,0,0,1,3,1), nonstratified
encoding

kernel.b.board_4,2m,0,0,1,3,1_, one solution

m |D| NCPP timef timel timea

1 16 30,284 1.04 0.40 0.08

2 32 36,371,891 − 589.13 78.76

3 48 36,743,185,961 − − 76,191.31

default theories. Our results point to the importance of encoding problems as disjunction-
free theories as this allows the user to select the table lookup prover in DeReS.

6.2. Effects of relaxed stratification

Currently, the main pruning mechanism of DeReS is relaxed stratification. We will now
discuss how it influences the performance of DeReS. In particular, we report experiments
with theories that are equivalent (in the sense that they possess precisely the same
extensions) but differ in the quality of relaxed stratification.

The times took by DeReS to find a single extension for the theorieskernel.b.board_4,
2m,0,0,1,3,1_ are shown in Table 6. Each of these theories has exactly two extensions.
None of them has a good relaxed stratification. In general, in the encodingKER1(G),
the strata correspond to the strong components of the underlying graphG. The size of
each stratum is equal to the number of edges inG starting in the corresponding strong
component ofG. In particular, for strongly connected graphs, there is a single stratum of
size|D| = |E(G)|. The graphsboard(4,2m,0,0,1,3,1) are strongly connected and have
two edges originating in each of 8m vertices. Hence, the encodingKER1(G) has a single
stratum of size 16m.

Significantly better performance of DeReS is obtained if the theorieskernel.board_4,
2m,0,0,1,3,1_are used. They encode the same problem, the existence of kernels, and for
the same family of graphs,board(4,2m,0,0,1,3,1), as theorieskernel.b.board_4,2m,0,
0,1,3,1_. However, as opposed tokernel.b.board_4,2m,0,0,1,3,1_, they have a relaxed
stratification into small strata. The results are summarized in Table 7.
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Table 7
Searching for a kernel inboard(4,2m,0,0,1,3,1), stratified
encoding

kernel.board_4,2m,0,0,1,3,1_, all solutions

m |D| NCPP timef timel timea

1 36 484 0.05 0.02 0.01

2 80 989 0.45 0.08 0.01

3 120 6,674 3.51 0.34 0.04

Table 8
Searching for a kernel inboard(4,2m + 1,0,0,1,3,1), non-
stratified encoding

kernel.b.board_4,2m+ 1,0,0,1,3,1_

m |D| NCPP timef timel timea

1 24 914,523 41.95 13.70 2.01

2 40 1,153,615,536 − − 2,438.99

Table 9
Searching for a kernel inboard(4,2m + 1,0,0,1,3,1), strati-
fied encoding

kernel.board_4,2m+ 1,0,0,1,3,1_

m |D| NCPP timef timel timea

1 60 671 0.13 0.03 0.01

2 100 3,157 1.35 0.15 0.02

Tables 6 and 7 show that the same problem can be represented in DeReS in an efficient
way and in an inefficient manner. The difference is dramatic (7 orders of magnitude) and it
points to the importance of good programming in DeReS. Whenever possible, one should
encode problems by means of theories that have a good relaxed stratification.

Similarly significant speedups were observed for theories which have no extensions.
Table 8 shows the timing results for the task of computing extensions for the theories
kernel.b.board_4,2m+ 1,0,0,1,3,1_ (they do not have extensions).

Again, once a stratified encoding was used, DeReS performance improved dramatically,
as reported in Table 9.

Finally, the same poor performance of DeReS on theories without good relaxed
stratification is observed for the default theorieshamilton.board_n,2,0,0,1,0,0_ that
encode the existence of hamiltonian cycles in ladder graphsboard(n,2,0,0,1,0,0)
(Tables 10 and 11). It is worth noting that, to the best of our knowledge, these theories
do not possess equivalent theories with small strata.

The results in this section demonstrate, on one hand, the importance of good search
space pruning techniques and, on the other, the need for the programmer to understand
them and to take full advantage of them. In particular, when solving problems by means of
default logic, an effort should be made to always encode the problems by means of theories
which admit relaxed stratification into strata of small sizes.
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Table 10
Finding a hamiltonian cycle inboard(n,2,0,0,1,0,0)

hamilton.board_n,2,0,0,1,0,0_, one solution

n |D| NCPP timef timel timea

2 13 260 0.02 0.01 0.01

3 21 5248 0.55 0.11 0.01

4 29 121371 16.92 2.56 0.30

5 37 2598270 488.29 65.32 5.67

6 45 52139039 > 2 hrs 1365.10 111.67

Table 11
Finding all hamiltonian cycles inboard(n,2,0,0,1,0,0) (There are two solutions for each of
these theories.)

hamilton.board_n,2,0,0,1,0,0_, all solutions

n |V | |E| |D| K NCPP CAND timef timel timea

2 4 4 13 8 1027 129 0.06 0.02 0.01

3 6 7 21 14 33239 1719 3.74 0.66 0.08

4 8 10 29 20 809973 26278 129.29 17.17 1.93

5 10 13 37 26 17478917 417441 4030.99 413.73 39.88

6 12 16 45 32 352170869 6672528 > 2 hrs > 2 hrs 789.35

7. Conclusions and future work

We described a comprehensive environment for computation with default logic of Reiter.
The implementation, the Default Reasoning System (DeReS) is capable of handling large
default theories, often with thousands of defaults. Our paper reports the results of the past
five years when DeReS has been implemented and experimented with.

DeReS performs significantly better if the programmer writes a program (a default
theory) that is disjunction-free and possesses a fine relaxed stratification. This implies that
good programming practices in DeReS require that the programmer submits (if possible) a
theory with these desirable properties. From this perspective, DeReS is not much different
from other declarative languages such as Prolog or LDL [58]. That is, the programmer
writes a declarative program, but the ease with which DeReS is able to solve the problem
depends on the syntactic form of the theory (i.e., of DeReS program).

In order to demonstrate that DeReS can handle large and diverse examples, we
implemented a benchmarking environment for nonmonotonic reasoning, the TheoryBase.
Building on the work of Knuth (The Stanford GraphBase) and the systematic technique for
implementing constraints as defaults (outlined in Section 4.5) we were able to construct
large examples of default theories. These examples can be used as benchmark problems
for DeReS. Moreover, by using families of similar graphs as underlying structures, we
were able to construct parameterized families of default theories, thus creating families
of benchmarks. Those families allow us to extrapolate the behavior of the algorithms
underlying DeReS.
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Although our benchmarking system was implemented expressly to facilitate experimen-
tation with DeReS, the TheoryBase can be used alone—without DeReS. All nonmonotonic
reasoning systems can now use the TheoryBase as a tool for benchmarking.

Currently we are working on several improvements to DeReS that, we expect, will lead
to a better performance. Those improvements can, roughly, be categorized in three main
thrusts. First, we need better cluster-handling techniques. Those are necessary especially
in the situation when the program does not admit a fine relaxed stratification. Second, the
natural parallelism implied by the structure of the search tree associated with the default
theory makes it possible to apply tools such as PVM (Parallel Virtual Machine) or DIB
(Distributed Implementation of Backtracking) for speeding up DeReS performance. Third,
a natural structure of the acyclic graph of clusters associated with the relaxed stratification,
allows for a better control of backtracking (in effect, backjumping). We expect that the
cumulative effect of all these techniques will result in significant improvements over the
current performance of DeReS.
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W. Marek, M. Truszczýnski, D.S. Warren (Eds.), The Logic Programming Paradigm: A 25-Year Perspective,
Springer, Berlin, 1999, pp. 375–398.

[42] D. Maier, D.S. Warren, Computing with Logic. Logic Programming with Prolog, Benjamin/Cummings,
Menlo Park, CA, 1988.

[43] I. Niemelä, On the decidability and complexity of autoepistemic reasoning, Fundamenta Informaticae 17
(1992) 117–155.

[44] I. Niemelä, Logic programs with stable model semantics as a constraint programming paradigm, in:
I. Niemelä, T. Schaub (Eds.), Proc. Workshop on Computational Aspects of Nonmonotonic Reasoning,
1998, pp. 72–79.

[45] I. Niemelä, P. Simons, Evaluating an algorithm for default reasoning, in: Proc. IJCAI-95, Montreal, Quebec,
1995.

[46] I. Niemelä, P. Simons, Efficient implementation of the well-founded and stable model semantics, in: Proc.
JICSLP-96, MIT Press, Cambridge, MA, 1996.

[47] D. Poole, Normality and faults in logic-based diagnosis, in: Proc. IJCAI-89, Detroit, MI, Morgan Kaufmann,
San Mateo, CA, 1989, pp. 1206–1212.

[48] R. Reiter, G. Criscuolo, On interacting defaults, in: Proc. IJCAI-81, Vancouver, BC, 1981, pp. 270–276.
[49] R. Reiter, On closed world data bases, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases, Plenum Press,

New York, 1978, pp. 55–76.
[50] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.
[51] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57–95.
[52] P. Rao, I.V. Ramskrishnan, K. Sagonas, T. Swift, D.S. Warren, J. Freire, XSB: A system for efficiently

computing well-founded semantics, in: Proc. LPNMR-97, Lecture Notes in Computer Science, Vol. 1265,
Springer, Berlin, 1997, pp. 430–440.

[53] B. Selman, H.A. Kautz, B. Cohen, Local search strategies for satisfiability testing, in: Cliques, Coloring and
Satisfiability, Second DIMACS Implementation Challenge, American Mathematical Society, Providence,
RI, 1996, pp. 521–531.

[54] B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems, in: Proc.
AAAI-92, San Jose, CA, Morgan Kaufmann, Los Altos, CA, 1992, pp. 440–446.

[55] V.S. Subrahmanian, D. Nau, C. Vago, Wfs+ branch bound= stable models, IEEE Trans. Knowledge and
Data Engineering 7 (1995) 362–377.

[56] L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.
[57] J. Stillman, The complexity of propositional default logics, in: Proc. AAAI-92, San Jose, CA, Morgan

Kaufmann, Menlo Park, CA, 1992, pp. 794–799.
[58] C. Zaniolo, Design and implementation of logic based language for data intensive applications, in: Proc.

International Conference on Logic Programming, MIT Press, Cambridge, MA, 1988.


