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A linear functional differential equation of neutral type with unbounded delay 

dpx = (d/ds) Dx + Bx = 0, 

where D and B are linear bounded retarded operators with exponentially fading 
memory, is considered. It is shown that if operator Y is interpreted as operator 
from the space C into the special space C -I of distributions, then its invertibility is 
equivalent to the presence of exponential dichotomy of the solutions of this 
equation. As applications, we prove the theorems on stability and instability in the 
first approximation for neutral functional differential equations of a general form. 
$4 1988 Academic Press, Inc. 

1, INTRODUCTION 

The theorems on dichotomy of solutions have their origin in a paper of 
Perron [47]. Subsequently, this problem was studied for ordinary differen- 
tial equations by many authors. As far as the problems of ODE theory are 
beyond the area of our concern in this paper, we restrict ourselves to the 
remark that one can find these results and the history of the problem in the 
books of Massera and Schaffer [41], Hartman [27], Daleckij and Krejn 
[ 193, Krasnosel’skij, Burd and Kolesov [32], and Coppel [ 143. 

The first results on dichotomy for differential equations with delayed 
argument are due to Burd and Kolesov [ 121 (for the proofs, see [30,31]), 
Pecelli [45,46], Coffman and Schlffer [13], Schgffer [48], and Cor- 
duneanu [15]. A special case of the theorem on dichotomy of solutions, 
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when a subspace of exponentially increasing solutions is trivial, was con- 
sidered in Halanay [20]. The analogue of this result is Theorem 3 below. 
Note that in the papers cited above only the case of bounded delay was 
discussed. 

The dichotomy problems for a special case of equations with constant 
coefficients were discussed by Hale and Meyer [26], Henry [28], Birkgan 
[9, 111, Naito [43,44], Kurbatov and Frolov [40], and Staffans [Sl], 
where the case of neutral type equations with bounded delay was 
investigated in [26,28, 9, 111, the case of retarded equations with unboun- 
ded delay was investigated in [43,44] and, finally, the case of neutral type 
equations with unbounded delay was investigated in [40, 51-J. 

The dichotomy problem for the neutral type equations with variable 
coeflicients was considered in Kurbatov [33, 341 and Birkgan [lo]. These 
papers are devoted to the equations with a bounded delay. In [33,34] a 
proof was given of equivalence of the exponential dichotomy of solutions 
for the neutral type equation with “internal” differentiation 

D $ .Y + Bx= 0, 

where D and B are retarded operators, in the phase space C ‘[ -h, 0) and 
invertibility of the operator Y = D(d/ds) + B as an operator from C1 into 
C (where C is the space of continuous bounded functions on R, and C ’ 
consists of functions that lie in C along with the first derivative). In [lo] 
the equation with “external” differentiation 

was considered, but only half of the classical theorem on dichotomy has 
been proved: namely it is proved that if D has smooth coefficients and the 
operator A?= (d/ds)D+ B: C' + C is invertible, then this equation 
possesses an exponential dichotomy in the phase space C[ -h, 01. Note 
that the notion of neutral type equations with external differentiation is due 
to Hale and Meyer [26] (see also Cruz and Hale [18], Hale [21]). 

In this paper, the same problem is discussed for well-posed (see 
Definition 3 below) neutral functional differential equations with external 
differentiation and unbounded delay. The main result (Theorem 2) differs 
from the above results in the following points. First, we consider neutral 
type equations. Second, we only assume that the coefficients of the 
equations are continuous and bounded. Third, we admit unbounded 
delays; it should be noted that we consider only an exponentially fading 
memory. In contrast to [33,34], we consider the equation with external 
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rather than internal differentiation, and, which is most important, we con- 
sider the equation in a different phase space, in C and not in C’. Finally, in 
comparison with [lo], we also prove the inverse assertion, i.e., the 
implication “exponential dichotomy” Z- “invertibility.” 

The main idea of the present paper consists in the examination of the 
operator P’ that corresponds to the equation as an operator from the space 
C into a special space C -’ of distributions. The invertibility of 2 just in 
this pair of spaces turns out to be equivalent to the presence of exponential 
dichotomy. The space C-i was earlier used for the investigation of the 
neutral type equations in Kurbatov [38, 393. In Section 2 the space C ~ ’ 
and its properties are described. 

In Section 3 we introduce the spaces C-, of functions increasing on f cc 
as O(eeY’). The basic advantage of the space C-, in comparison with C in 
the capacity of the phase space can be reduced to the following: the trans- 
lation operator along the trajectories of the equation is contractive if the 
equation is stable. As a consequence, we have to consider the differential 
operator Y = (d@)D + B not only as an operator from C into C -’ but 
also as an operator from C-, into C 1: for y > 0. Due to this, we have to 
discuss the dependence of the properties of the operator 2: C-, -+ C:; 
with respect to y. We do this in Section 3. The main result of this section 
(Theorem 1) asserts that the invertibility of P’ does not depend on y for 
sufficiently small y. 

The main result of the paper is Theorem 2 on the dichotomy of solutions. 
It is discussed and proved in Section 4. A significant special case of this 
theorem (Theorem 3) is devoted to the situation in which the dichotomy 
decomposition consists of the whole space and the zero-subspace. An essen- 
tially analogous result was considered in Kurbatov [38]. 

As an application of the theorem on dichotomy we prove generalizations 
of Lyapunov theorems on stability and isntability in the first 
approximation for neutral functional differential equations with external 
differentiation and unbounded delay 

f [Dx+d(x)]+Bx+b(x)=O, 

where D and B are linear retarded operators, and d and b are nonlinear 
retarded operators with zero derivative at zero. The theorem on the 
exponential dichotomy allows us to extract stable and unstable invariant 
manifolds for the translation operator along the trajectories of the linear 
part of this equation and to exploit the abstract theorems (see Theorems 4 
and 5 in Section 5) on stability and instability in the first approximation 
for nonautonomous dynamical systems from Akhmerov and Kamenskij 
[3] (for the proofs, see [4]). The analogous of these theorems for the case 
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of the autonomous linear part can be found in the books of Daleckij and 
Krejn [19] and Henry [29]. 

Theorems on stability in the first approximation for neutral type 
equations with internal differentiation were proved by Bellman and Cooke 
[S], Misnik [42], and (under weaker conditions) Akhmerov and 
Kamenskij [3,4] (in the latter papers the theorem on instability also has 
been proved). Similar results in a simpler case of equations with periodic 
coefficients are due to Akhmerov and Kamenskij [ 1,2] (see also [S, 6,7]). 

Theorems on stability in the first approximation for the neutral type 
equations with external differentiation were first obtained by Cruz and 
Hale [17] (see also Hale and Ize [23], Hale and Martinez-Amores [25], 
and the book of Hale [22]). In comparison with these results, we, first, 
consider the equations with unbounded delay. Second, we prove not only 
the theorem on stability but also the theorem on instability in the first 
approximation. Third, the scheme of the proof suggested below allows us 
to avoid the employment of the variation of constants formula and, 
therefore, to extend the scope of our theorems. Finally, we do not assume 
the time independence of the linear part of the equation. 

2. THE SPACE C ~ ’ 

Suppose I&! = ( - cc, +cc ), E is an arbitrary real or complex Banach 
space with norm 1. I, C is the space of all continuous bounded functions 
X: R + E with the norm 11x11 = sup(lx(s)l: SE W}. The spaces C( - co, a] 
and C[a, b] are defined similarly. 

Let 9 be the space of infinitely differentiable functions I,$: IR + R with 
compact support, and 3’ the space of R-linear continuous vector- 
functionals f: 9 + E. For more details, see [SO]. The elements of the space 
9’ are called distributions. Evidently, one can imbed C into 9,‘. 

Let us denote the space of distributions f E 9’ representable as f = u' + L' 
with U, u E C by C -‘. The representation f = u’ + v is, of course, not uni- 
que. Designate the norm of an element f in C - ’ by 11 f 11 = inf( Ilull c + Iloll ,=: 
u, v E C, f = u’ + v}. We note that the space C ~ ’ is isomorphic to the factor- 
space (CO C)/R, where R is the subspace of C@ C consisting of pairs 
(u, v) such that U’ + v = 0. By virtue of the theorem on completeness of 
factor-space, this implies the completeness of C-l. 

The space C -’ in connection with functional differential equations was 
discussed in [38, 391. 

Any function f E C-i has a primitive F in 9’ (it is defined by the 
relation F’ = f ). Clearly, the primitive F is a continuous but, generally 
speaking, unbounded function. It is defined to within a constant. 
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PROPOSITION 1 [39]. The continuous function F is a primitive for some 
function f E C ~’ if and only if F is bounded with respect to the semi-norm 

p(F)=sup{lF(t)-F(s)l: It-s1 < 1). 

PROPOSITION 2 [38]. The map U.u = x’ +x represents isomorphism 
between C and C - ‘. 

For any pair of functions f, g E 9,’ the notion of equality on the interval 
(a, b) is defined. In the case off, g E C -’ this notion can be understood in 
the following way: f and g concide on (a, b) if their primitives (they are 
continuous functions) differ on (a, 6) by a constant. 

PROPOSITION 3 [38]. Let a < b < c and functions f; g E C ~ ’ coincide 
both on (a, b) and on (b, c). Then f and g coincide on (a, c). 

We define the projector P(a, 6) in C -’ for arbitrary -cc <a c b < +ocl 
in the following way. Suppose f E C - ’ and F is the primitive of J Let 

and 

J’(a) for s < a, 

Ma, b)f lb) = F(s) for a<s<b, 

F(b) for b,<s 

P(a, b)f = Ma, b)f 1’. 

It is clear that P(a, b)f coincides with f on (a, b) and is equal to zero on 
( - co, a) and (6, + co). These properties, by virtue of Proposition 3, define 
the function Z’(a, b)f uniquely. It is also evident that the projectors 
P( - lx), t) and P(t, +co) are mutually complementary. 

3. OPERATORS WITH EXPONENTIALLY FADING MEMORY 

For any y E 02 we denote the space of continuous functions x: R + E 
bounded with respect to the norm 

11x11 --7 = sup{ leysx(s)I: SE W} 

by C.-,. We define the spaces C-,(-co, t] analogously, but let the norm 
in C-.,(-co, t] be set by the formula 

II-4 + = supile y(s-“x(s)I: s< t}. (1) 
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This norm is more convenient because for r < ; 

DEFINITION 1. An operator D is said to be a linear operator with 
exponentially fading memory of order y > 0 if it is a linear bounded operator 
acting in C,. 

Such operators were discussed in [35, 36, 371 in somewhat different 
terms. 

DEFINITION 2. An operator D: C-, + C, is said to be retarded if 

V(tElR)V(x,yEC_,)[(x(.r)=y(s)fors<t) 

+- ((Dx)(s) = (Dy)(s) for s < t)]. (3) 

In this section the symbol D designates an arbitrary linear retarded 
operator with exponentially fading memory of order y > 0. 

Condition (3) allows us to apply such an operator D not only to 
functions I E C-, but also to functions x E C,( - co, t]. Indeed, let 
x E C-,( - co, t] and y be some continuation of x to a function in C-,. Let 
for sbt 

(D-x)(s) = (DyMs). 

By the same token Dx is defined as an element of C-,(-co, t]. Condition 
(3) implies that Dx does not depend on the choice of continuation y. 

Similarly, if x: R + E is such a function that its restriction on (-co, t] 
for any t E R lies in C-,( - 03, t], then Dx makes sense. In particular, Dx 
makes sense if x E C ~ y for v < y. 

PROWSITION 4. For any x E C-,( - cq t] 

I( G IPII --y . llxll py,tr 

where lIDI --y is the norm of D in C_,. 

Proof: Suppose a continuous function y: R + E coincides with x on 
(-co, t] and satisfies the condition 

sup{ le -‘)J)(S)I: SE R} = llxll -p,l’ 

Condition (3) for D implies the equality 

(Dy)(t) = (DxNt). 
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But IIDyll -? < llDll--y. IIyl) --)” Notice that 

Ml --y = llxll -y.r .e --)‘I 

and 

Hence 

IIDyll --y = sup{ lers(Dy)(s)l: SE R} 2 ey’ I(Dy)(t)l. 

l(Dx)(t)l = I( G llal --I’. Il-ull --y,l’ I 

COROLLARY 1. For any ~E(W 

IIDII -y,, g IIUI -7’ 

where llD[l mmy,I is the norm oj‘D in C,( - CO, t]. 

COROLLARY 2. Let v < y and t E R. Then D acts in C-,(-CO, r] and 
C _ y, Moreover, 

IIDII mm,,rd IIDII --y.t, IIDII - v G IIDII -i” 

Let now 

(TX)(S) = W), SER. 

This operator acts, for example, from C-,.(-w, t] into C-,-,(-w, t] for 
all VER and E>O. 

PROPOSITION 5. For any v < y the operator DT- TD acts in Cey and is 
bounded. 

Proof: Let x E C-, and I/XII --y < 1, i.e., jx(s)l <e- “I, and let t E R. Then 

((DT- TDb)(t)= W)(f), 

where 

y(s) = sx(s) - tx(s) = (s - t) x(s). 

Further, 

IIYII .-p.t =sup(ley(s-“(s-t)x(s)l:s<t} 

Gsup(le Y(S-‘)(~-t)e-‘“I:s~t} =Me.-“, 
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where M depends on v only. Proposition 4 implies the needed inequality 

I((DT- TD)x)(t)l <hf. lIDI1 -I epV’. 1 

Suppose provisionally that the space E is complex and for any I E @ let 

( Y,x)(s) = ei5x(s). 

If I= v + ice, then it is evident that Y* isomorphically maps C onto C,,. 
Let us consider the operator 

D, = Y’,’ Dvl,. 

By operator D on the right-hand side of this formula is meant the operator 
acting in C,,, where v = Re II. Thus, the operator-function 

is defined for Re A 2 -1’. 

PROPOSITION 6. The operator-function I H DA is analytic for Re 1> -y. 
Its derivative at the point 1 is equal to Yu, ‘( DT - TD) Y,. 

Proof: Let XE C and llxll c< 1, i.e., Ix(s)1 < 1, and let t E IR. A few simple 
calculations yield 

C((yL+!,,Dul,+,,- Y;’ DY’,)/Al- (DT- TD))x](t) 

= WY)(~), 

where 

Y(S) = C(e 
(A+ zfi)(S - rJ _ e”(‘- “)/Al _ e”‘” ~ f)(s _ t)] ,y(s). 

Further, we have 

Ilyll _r~,~sup{le(Y+““S-“(ed”(‘-‘)- 1 - A;l(s-t))/All: s< t}. 

If Re J > -7, then, evidently, the right-hand side of this inequality tends to 
zero as Al + 0 uniformly in t. Using Proposition 4, the end of the proof is 
now supplied in the obvious way. 1 

PROPOSITION 7. Zf D: C + C is invertible, then there exists v E (0, y ) such 
that for any 1 E [ - v, v] the operator D is invertible as an operator from CA 
into C,. Moreover, the inverse operator does not depend on 1 on the space 
C,n c-,. 

Remark 1. Some variants of this proposition were given in [35, 36, 371. 
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ProoJ: Without loss of generality one can assume that E is complex. 
The operator-function il H D, is analytic for Re ;I > -y and invertible at 
the point 1 =O. Hence, the operators DA are invertible for all 1 in some 
neighborhood of zero. Choose v E (0, y) in such a way that the operators D, 
are invertible for all 1 E [ -v, v]. In this case it is evident that the operators 

D=!?‘,D,!P;‘:C2+CA (LE[-v,v]) 

are invertible and the first part of the proposition is proved. 
We prove now that D; ’ : C, + CA does not depend on 1 E [ - v, v] on 

the space C,,nC-,,. Let fEC,nC-,,. The function 1wY;lf (with 
values in C) is analytic on (-v, v) and continuous on C-v, v] in the 
topology of uniform convergence on each compact subset of R. Therefore, 
the function g(A)= Dh’Y;‘f will be the same as AH Y;‘J: 

Note that for A = io 

D,‘= Y,‘D-‘Y 1 

(here D - ’ : C + C) and hence for such A 

g(A)= Yu,Wtf: (4) 

We prove that (4) holds for A E [ -\I, v]. In fact, let [a, b] be a bounded 
segment, and Q[a, 6): C + C[a, b] the canonical restriction. Then the 
operator-function 2 H Q[a, 61 Y; * : C + C[a, b] is analytic and hence the 
identity 

Q[u, b] g(i)= Q[u, b] Y;‘D-!f 

holds for 1 E ( -v, v) because it holds for A= io and by virtue of the 
uniqueness of analytic continuation. From continuity reasons, it follows 
that it also holds for 1= fv. Thus, (4) holds for all 1 E C-v, v]. 

But g(v), g( -v) E C. Consequently, by the representation (4), 
x=D-‘fEC’,,nCp,. It remains to note that by the definition of the 
operators D: C, + C, they map a function x E C, n C-, into one and the 
same function. i 

For y E I&! we denote by C 1: the space of distributions f E 9’ such that 
the function g(s) = e”f(s) belongs to C-‘, equipped with the norm 
Ilf II = Ml c-1. 

PROPOSITION 8. A function f E 23, belongs to C 1; if and only if f is 
representable in the form f = u’ + v with u, v E C-,. 

ProoJ 
cr,t. I 

This is a direct application of the definitions of C-l, C-,, and 
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PROPOSITION 9. The map U.u = x’ + yx (7 > 0) is an isomorphism 
between C --\, and C I ,t for all v < y. The map U ~ ’ is given b-y the formula 

(U-‘f)(t)=u(t)+jotl e-i’s[v(t-s)+yu(t-s)]ds 

for f = 24’ + v. 

Just in the same way as in C ~ ’ (see Section 2), one can define in the 
spaces C 1: the projectors P(a, b). 

Suppose now that D and B are linear retarded operators in C, for some 
y > 0. Consider the operator 

2’~ = f Dx + B.u. 

It is clear that 6p maps C, into C 1;. But according to the above, 9 
maps C,, into C 1 t for all v < 7. It is also obvious that 6p is a retarded 
operator. 

THEOREM 1. Suppose 5? : C 7 C - ’ is invertible. Then there exists 
v E (0, y ) such that the operators 2’: Cl + CT ’ are invertible for any 
1 E [ -v, v] and, moreover, the inverse operators do not depend on A on the 
space C,:’ n C 1:. 

Proof Consider the operator 

R= U-‘Y, 

where Ux = x’ + 2yx. The operator R acts in C,, it is a retarded operator 
invertible as an operator in C. Proposition 7 implies that for some v E (0, y) 
the operator R is invertible on CA if A E C-v, v]. In addition, the inverse 
operator does not depend on A on C, n C,. Hence, the operators 
dp = UR: CA + C; l are invertible for the same A. Moreover, the inverse 
operators 6p-‘=R-‘U-’ coincide on C;‘nC:i into C,nC_, where 
R- ’ does not depend on 1. 1 

4. THEOREM ON DICHOTOMY 

In this section we consider the linear neutral functional differential 
equation 

LZF$ Dx+Bx=O, (5) 
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where D and B are linear retarded operators with exponentially fading 
memory of order y > 0. 

DEFINITION 3. We say that Eq. (5) (or the operator 9) is well-posed if 
for any PER, r~(t,+co), ~EC..,,(-a,f], and ~-EC-’ the initial value 
problem 

(Y-x)(s) =f(s) for t<s<r, (6) 

4s) = 400) for s,<t (7) 

has a unique solution XE C_,( - a, r], and, moreover, 

II-4 --y,r G WIlfIl,-1 + lldl -J’ 

where A4 depends on r - t only. It is easy to see that in this definition the 
number 7 can be replaced by arbitrary v <y. 

The initial value problem (6)-(7) was considered in detail in [38] (see 
also [ 18,22,26)). We note only that (6) means the equality between two 
distributions and therefore it is meaningful only on the open interval (t, r). 

In what follows we shall assume that Eq. (5) is well-posed. 

DEFINITION 4. Equation (5) is said to possess a dichotomy in C-, if for 
every t E R the following four conditions are fulfilled. 

1 D. The space C- ,( - ZS, t] is decomposable into a direct sum 

C-,*(-cc, t-J = c ‘,( - co, t] 0 c I,,( - co, t]. 

For rp E C- ,( - co, t] we subsequently denote the projections of ~0 into 
subspaces C t,,( - co, t] and C I,( -co, t] by cp+ and cp- and the solutions 
of the initial value problems 

(TX)(S) = 0 for s > t, 

x(s)=cpf(s) for .s<t 
(8) 

by X+ and x-. Here and below by a solution of Eq. (8) on R is meant a 
function x: R + E such that the restriction of x onto (- co, r] with r > t is 
the solution of problem (8). 

2D. For r > t the restrictions of the solutions x * onto ( - CO, T] lie in 
C Z,( - a3, t J, respectively 

3D. Function cp - satisfies the equation 

(9x)(s) = 0 for s<t 

andfor ~<r the restriction ofq- (-(xj,~] lies in CPV(-oo,~]. 
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4D. There exists N-C cxz such that 

Is+(s)l <Ned”“-” Ilcpll -“., for s 3 t, 

Icpp(s)l 6 Ne”“- ” IIqlI -,,,[ .for s < t, 

and, moreover, N does not depend on t. 

The dichotomy is said to be exponential if 4D is replaced by the stronger 
condition: 

5D. There exist E > 0 and N < ccj such that 

Ix’(s)l < Nemm”““““-” I(rp(l --Y.f for s 2 t, 

Icp-(.s)l < Ne’sc”‘sp” IJcp!j ~.I‘ I for s,<t 

(E and N do not depend on t). 

Remark 2. By virtue of inequality (2) the dichotomy in C y implies the 
exponential dichotomy in c-A for 1< v. 

Remark 3. The exponential dichotomy is actually interesting only for 
v = 0. The need for dichotomy in C-,. for v > 0 becomes apparent in 
applications to nonlinear equations (see the proofs of Theorems 6 and 7). 

Remark 4. Let us define for - co < t < r < +co the operator V(t, t): 
C-,,( - XI, t] -+ C -“( - XI, r] of translation along the trajectories of Eq. (5) 
by the formula V( t, r)q = X, where x is the solution of the initial value 
problem 

(25)(s) = 0 for t < s < r, 
(9) 

-y(s) = ds) for s ,< t. 

Condition 2D in terms of V(t, r) means that V( t, r) maps the subspaces 
C Z’,( - co, t] into C S,,( - cc, t], respectively. And condition 3D implies 
that the operator V(T, t) for r < t is invertible on the subspace 
C I,( - a, t]. Indeed, let cp - E C :,( - 00, t] and denote the restriction of 
cp- onto (- CCI, r] by cp;. Then V(q t) cp; = cp- as far as cp- satisfies the 
homogeneous equation. Thus, [ V(r, t)] ~~’ on C-,( - cc, t] is the operator 
of restriction onto (-so, r]. 

Remark 5. The bound for cpP in 4D can be rewritten in the following 
form 

II~-Il”.,~~II(PII-,‘,~~ 

that together with (2) implies 

II cp - II -~ Y. r G N II cp II - v. I’ 
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The latter inequality means that the projectors onto the subspaces 
C $ ,.( - co, t] are bounded uniformly with respect to t. 

THEOREM 2. Suppose D and B are linear retarded operators with 
exponentialI-v fading memory of order y > 0 and the operator LZ= 
(d/ds) D + B is well-posed. Then the following statements are equivalent: 

(i) Operator 9: C + C - ’ is invertible. 

(ii) Equation (5) possesses a dichotomy in C-,, for sufficiently small 
v > 0. 

(iii) Equation (5) possesses an exponential dichotomy in C- ,, for 
sufficiently small \I 2 0. 

Proof: (ii) * (iii) is obvious. 

(i) =z- (ii). By virtue of Theorem 1 we choose VE (0, y) so that the 
operators 2: C, + CT’ are invertible for all 1 E C-v, v]. 

Let cp E C-J - co, t] and II/ be an arbitrary continuation of p to a 
function in C,. Let 

f=Y*, f +=P(-Qt)f, f --=P(t,+ocl)f, 

Xf ,y-‘f +, J’F =9-y-, (10) 

cp+ =x+ I,-co.r,’ 40- =)!- I,-m,,,. 

Since x+ +y- = rc/, and $I and p coincide on (-co, t], we have 

q=(p++(p-. (11) 

We show that the decomposition (11) does not depend on the choice of 
continuation $. Suppose $I and ez are two distinct continuations. Then 
the functions fi = Ytil and fi=Vtiz coincide on (-co, t] since Y is a 
retarded operator. Hence f : = f :, XT = XT and q: = cp$. 

Thus we have constructed the decomposition into a direct sum as in 1D. 
We note that the function x+ is a solution of (8) since Yx+ = f + and 

f +(s) = 0 on (t, +co). At the same time, y-- is not at all a solution 
through cp -. 

We now verify condition 2D, i.e., we show that the solutions x* of 
problem (8) remain in the subspaces C Z,( - 00, r] for all t > t. Define the 
function cc/ E C-,, on (-m, T] as the solution of initial value problem (9) 
and to the right of r in an arbitrary way. Denote the restriction of I/I onto 
(-co, 21 by cp,( E C-,( -30, t]). We show that the restrictions of the 
solutions x* of (8) to (-co, r] coincide with (plf. Indeed, without loss of 
generality, it can be assumed that $ = +, where $, is a continuation of cp I. 
Since (g$)(s)=OforsE(t,~), the functions f +, f -, x+, and y-, and f :, 
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f’, . s;, and ~1,~~ (constructed for the function ‘pi and initial moment r 
according to the scheme (10)) coincide, respectively. And, also, y; is a 
solution of the homogeneous equation on (I, r), i.e., it coincides with x- on 
[r, r]. It remains to note that 9* and 9: are the restrictions of the 
functions x + , .V ~~ and s ,+ , y ,- to the corresponding half-line. 

We now prove that condition 3D is satisfied. The definition of 9 - 
implies that 9 - satisfies the homogeneous equation. To prove the second 
part of 3D, suppose 9 E C 1: ,,( - ‘x, f] and r < t. Let 9 I be the restriction of 
9 to (-co, r]. Using (10) we construct the function 9 and 9; for 9, t 
and 9,) r. It is clear that 9 - = 9. Further, one can consider that I+G = $ i. 
Note that the function f’= dp$ is equal to zero on (-a, t). Otherwise we 
would have f’ + # 0 and x + # 0. But .Y+ is the solution of problem (8) and, 
hence, 9 + # 0. This contradicts the equality 9 ~~ = 9. It is clear now that 
.f- = f;- and, hence, y - = y ; . And then 9; coincides with the restriction 
of 9 ~ to ( -co, r]. Therefore, this restriction lies in C:,,( - co, r]. 

To prove condition 4D we choose a continuation $ of 9 E C,,( - co, t] 
in such a way that 

sup(le ~~s-r~~(S)(: SE Rj = ((cpI( -,,.[. 

In this case $ E C -,,, f~ C I:, f + E C I!,, and x+ E C,,. The latter relation 
is precisely the first inequality in 4D. Further, f - E C ; i n C 1 t and, hence, 
J - satisfies the second inequality, The independence of the constant N can 
be verified directly. 

(iii) Z. (i). Suppose Eq. (5) possesses an exponential dichotomy in C. 
Let at first the support of a function SE C -’ be contained in a bounded 
segment [t, t]. Our objective is to construct aP-'f E C. 

We define the function 9 E C( - co, t] as the solution of the initial value 
problem 

(~x)(s)=f(s) for t<s<r, 

x(s)=0 for s Q t. 

According to 1D let 9=9+ +9-, wherecp’EC$,,(-co,r]andletx+ be 
the solution of the initial value problem 

(Yx)(s)=O for s > z, 

x(s)=cp’(s) for s G r. 

Recall that x+ is exponentially decreasing at + 00. Further, by virtue of 
equality 

x’(s)=(P(s)-9-(s) for S<T 
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the function x+ is also exponentially decreasing at -co. Thus, 

Ix+(s)1 <Ke-“‘“+” Ilfll, 

where K< co depends only on t - t. It remains to note that 

(12) 

Indeed, for s > r the left-hand and right-hand sides of this equality are 
equal to zero, and for s < r 

(TX’ MS) = (Zv)b) - (TV MS) =f(s) -0 =f(s). 

So, for any’f E C -’ with compact support we construct a pre-image x+ 
which satisfies the bound (12). 

Let now f E C -’ be an arbitary function. We represent it as the sum of 
the series of functions fk = P(k, k + 1) f and take the pre-images xk term by 
term. The exponential bound (12) guarantees the uniform convergence of 
the series x7= --oo xk on each compact subset of R to some function XE C. 
Evidently, Yx = J 

Thus, the image of 9 coincides with C -‘. We prove now that the kernel 
of dp consists only of zero. Let Pf=O and TV R be arbitrary. We denote 
the restriction of x to (- co, t] by cp. The projections of cp into C * ( - co, t] 
are denoted by cp*. And, finally, we denote the solutions of problem (8) 
by x+. 

Suppose r > t and Ic/ * are the restrictions of x* to ( - co, r]. By virtue of 
condition 2D the functions $* lie in C ‘( - co, z]. But then the function 
$ = II/ + + @ is the solution of (9) since dpx = 0 and, hence, + coincides 
with the restriction of x to (- co, t]. These arguments show that x* do 
not depend on the choice of t. 

We rewrite the bounds in 5D in the form 

sup{ le e(S-‘)X+(S)I:S>t} <N IIxllc, 

SuPi le- E(S-f)~-(~)I:~<f}<N IIxllc. 

They imply that X+ = 0 and x- = 0 since t is arbitrary. But x + + x- = x 
and, hence, x = 0. Thus, the kernel of 2 consists only of zero. This com- 
pletes the proof. 1 

DEFINITION 5. Equation (5) is said to be stable in C-, if there exists 
N c a such that for any t E R and cp E C-,( - co, t] the solution of the 
problem 

(9x)(s) = 0 for s > t, 

4s) = rpb) for s<t 
(13) 

505/76/t -2 
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satisfies the estimate 

Is( < Ne “‘>- I’ IId -,,.I for s 3 f. 

This equation is said to be exponentially stable in C ~ if for some E > 0 

Ix(s)/ < Ne-‘“+“)‘“-” llqll ,, I I for s 2 t. 

By virtue of (2) stability in C,, implies exponential stability in C-, for 
1 < v. 

THEOREM 3. Suppose the conditions of Theorem 2 are satisfied. Then 
exponential stability of Eq. (5 ) in C (i.e., in C,) implies exponential stability 
in Cpy for sufficiently small v. 

Proof: Obviously, exponential stability in Co is dichotomy in CP,, for 
v = 0 with C I,,( - “o, t] = (0). Therefore, exponential stability implies 
invertibility of the operator Y: C + C -l, which in turn implies dichotomy 
in C, for some v > 0. But if in this dichotomy the subspace C 1, ( - cc, r] 
is not zero, then the homogeneous equation has by virtue of the second 
estimate of 4D and condition 3D, an exponentially increasing solution. 
This is a contradiction. 1 

5. NONAUTONOMOUS DYNAMICAL SYSTEMS 

In this section we formulate the theorems on stability and instability in 
the first approximation for operator equations in a Banach space. These 
theorems are elementary corollaries of Theorems 3 and 4 from [4]. 

So, suppose { Ei}Tz, is an arbitrary sequence of Banach spaces and 
A.: Ei -+ Ei+ , is an arbitrary mapping for each i= 1, 2, . . . . Let 
Fk = fk 0 fk ~ ,c . . a f ,  . It is clear that Fk acts from E, into Ek + , . We shall 
call the sequence {Fk) the nonautonomous dynamical system (NDS) 
generated by the sequence of operators (A.}. Further, assume that f,(O) = 0 
for every i. Then also Fk(0) = 0 for every k. 

DEFINITION 6. Zero is said to be exponentially stable with respect to the 
NDS { Fk} if there exist q < 1 and r0 > 0 such that 

IIF&Nl G qk II-d 

for all k, provided Ilxll dr,. 

DEFINITION 7. Zero is said to be unstable with respect to the NDS {Fk} 
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if there exist a constant L > 0, a sequence {x,} c E,, and a sequence of 
natural numbers {k,} such that 

lim x,=0 and IIF/&,)II 2 L. m-zc 

We formulate tests for exponential stability and instability expressed in 
terms of Frechet derivatives f;(O) of the operators fi at zero. Therefore, it 
is assumed that the operators f, are Frechet differentiable at zero in the 
following uniform sence: for all natural numbers i and for all x E Ei with 
II-4 6 ro 

VI(x) -fl(O)xll 6PWll) IIXII, 

where p(r) + 0 as r + 0. Evidently, one can assume without loss of 
generality that the function p is nondecreasing. 

THEOREM 4. If (If I(O)11 < q. < 1 for all natural i, then zero is exponen- 
tially stable with respect to the NDS {Fk} and, moreover, the numbers q and 
r. from Definition 6 depend on q. and the function p only. 

THEOREM 5. Suppose that, for each i, the space Ei is decomposable into a 
direct sum of subspaces E+ and E,: such that the following conditions are 
satisfied: 

( 1) E,: # { 0 } and the corresponding projectors are uniformly bounded 
with respect to i. 

(2) f;(O) E+ E ET+,, f j(O) E; E E,, (i= 1, 2, . ..). 

(3) There exist constants q, < 1 and q2 < 1 such that the following 
inequalities hold for every natural number i: IIf ~(O)xll <q, /XII for all 
XE E,?, and Ilf ,!(O)xll aq, llxll for all XE E,:. 

Then zero is unstable with respect to the NDS {Fk}, and moreover, one 
can choose a sequence {x, } f rom Definition 7 belonging to E;. 

6. STABILITY IN THE FIRST APPROXIMATION FOR 
NEUTRAL TYPE EQUATIONS 

In this section we consider the following neutral functional differential 
equation with unbounded delay 

-$ [Dx+d(x)]+Bx+b(x)=O. (14) 
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We assume that the linear part of Eq. (14) 

satisfies the conditions of Theorem 3, and that the nonlinear mappings d 
and b satisfy the following four conditions. 

1N. The operators d and b are operators with exponentially fading 
memory of order ~1, i.e., they map C-,, into C,, and the-v are continuous and 
bounded. Boundedness means the existence of M< co such that the 
inequalities Ild(x)ll --7 d M llsll pi’, Ilb(x)ll pi’< M II-YII -i’ hold for every 
.K E c ~ ;, . 

In particular, d(0) = b(0) = 0. 

2N. The operators d and b are retarded in the sense of (3). 

These two conditions allow us to construct, as in the linear case, 
corresponding operators d and b that act in C_,( -c;cj, t], C-,(-co, t], 
and C ~ ,, for all v < 1’. 

Let 

2,~ =$ [Dx + d(x)] + Bx + b(x). 

By virtue of the previous paragraph the operator !2 is defined both on 
functions in C-, and on functions in C B for v < 7. The values of 2 lie in 
C :f and C I:, respectively. 

3N. For every t E R and cp E C-,,( - CG, t] the initial value problem 

(f!x)(s)=O for s > t, 

4s) = 4s) for s< t 
(15) 

has a unique solution. By a solution of problem (15) is meant, as in the 
linear case, a function X: IF! + E whose restriction to any interval ( - co, r] 
with r > t lies in C-,(-co, T] and that satisfies (15). 

We denote the solution of problem (15) by x( ., t, cp) and the solution of 
problem (13) by x2(., t, cp). 

4N. The derivatives of d and b at zero are zero operators in the 
following sense: 

I-K(s, t, cP)--K”(s, t, 4’)l <&b--t, lldl -,,,) IId-,,,, 

where E( ., r) + 0 as r + 0 uniformly on every bounded segment. 

It is easy to see that the function E in 4N may be assumed nondecreasing 
with respect to both arguments. 
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By virtue of (2), it is clear that in condition 4N II.II --y,, can be replaced 
by II . II _ ~‘,, for any v < y. In what follows we assume that v < y. 

Remark 6. Conditions 3N and 4N represent conditions of global 
existence, uniqueness, and differentiability of the solutions of problem (15) 
with respect to initial data. References to various concrete and general 
realizations of these conditions can be found in the book of Hale [22] and 
in the survey of Corduneanu and Lakshmikantham [lo]. 

Let us define the operators B’(t, t), V(t, t): C-,(-co, r] + C-,(-co, r] 
(r > I) of translation along the trajectories of (14) and (5) by the formulae 

CWt, 7)(cp)l(s)=x(.G t, rp) bE(--CCI,tl), 

[ v( t, Sk’](S) = Xyp(S, t, Cp) (SE(-Q tl), 

respectively. Clearly, W(t, z) and V(t, T) map CP,( -cc, t] into 
c-,( - 00, t] too. 

Note that condition 4N implies uniform differentiability of W(t, 7) at 
zero: 

II Wh T)(cp) - ut, tIcPI -y.r d&b- t, llqll +) llpll -,,,r; 

thus, [W(t,r)]‘(O)=V(t,r). One can replace II.)lPY,, by II.l)Py,, in this 
inequality. 

DEFINITION 8. Zero of Eq. ( 14) is said to be stable in C, if there exist 
N<w andr>OsuchthatforeverytEIW,s>t,andcpEC-,(---,t] 

provided II cpII _ ,,,f d r. Zero is called e-uponentiafly stable in CP y if this 
estimate is replaced by 

MS, t, cp)l < Nep”+‘“‘-‘) llqll --y,f 

for some E > 0. 
It is easy to see that stability in C_, implies exponential stability in Cm1 

for A < v. 

THEOREM 6. Assume that the operator 9 satisfies conditions of 
Theorem 2, the conditions lN-4N are fulfilled, and Eq. (5) is exponentially 
stable in C. Then the trivial solution of Eq. (14) is exponentially stable in 
C-, for some vs-0. 
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Proof: According to Theorem 3 there exists 1’” >O such that the 
estimate 

holds for all 11 E [0, v,]. Besides, since cp E CJ - xc, r], one can assume 
that the same estimate holds on the left half-line: 

IXPP(& t, cp)l <N,.e-*“-” Ildl --y,, (s < t). 

Fix now E > 0 and choose positive numbers V, 1, q, T such that v < boo, 
I<q< 1, N,,e-“‘<I, and -logqa2T(v+e). 

The above estimates imply the bound 

Ix’@, t, cp)l <fe-‘[“-“+T” llcp-,,, (SE R). 

In terms of the translation operator I’(t, T) this inequality means that 

II V(t, t+ T)ll 61 

for all t E R. 
Wefi~tEIWandlett~=t+(i-l)T,E,=C~,,(-~,t~].Let~~:E~~E,+~ 

be defined by the formula 

fi= w(fi9 ri+ 1) (i = 1, 2, . ..). 

It is easy to see that the thus defined NDS satisfies conditions of 
Theorem 4. This theorem asserts the existence of rO > 0 such that 

11 W(r~ fk+l)((P)II -e,,,,~qk IidI -,I,, (16) 

for every ~PEC-,X--, tl, II~ll-v.,~rO. 
Further, condition 4N and well-posedness of problem (6t(7) imply the 

estimate 

(17) 

for all t<q<<+T, ~EC,(-~J,<], IIcp-,,~~<ro. Fix an arbitrary s>,t 
and denote [(s - t)/T] by k, where [ .] denotes the greatest-integer 
function. Inequalities (16) and (17) imply that 

11 w(t, s)(~)II -,.,s= 11 W(fk+ Iv sjO w(t~ tk+,)((P)iI --Y.s 

G K II Wt, t/c+ ,)(cP)iI -,,.rk+, d Kqk IicPIl -y,,. 
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It remains to note that 

and the theorem is proved. u 

DEFINITION 9. We shall call the trivial solution of Eq. (14) unstable in 
C-, if for every t E lR there exist a constant L > 0, a sequence {cp,} c 
C,.( - cc, t], and a sequence {sm} c [t, +co) such that 

lim II(P~II -,..I=O m-r 

and 

I.e,, t, cp,)l 2 L. 

It is easy to see that instability in CPi implies instability in C-,, for 1< v. 

THEOREM 7. Assume that the operator 9 satisfies the conditions of 
Theorem 2, conditions lN4N are fulfilled, the operator 3’: C + C -’ is 
invertible, and Eq. (5) is unstable in C. Then the trivial solution of Eq. (14) is 
unstable in C, for some v > 0. 

It should be emphasized that instability is asserted in C, and not in CP,. 

Proof: According to the assumptions Eq. (5) possesses an exponential 
dichotomy in C,, for some v > 0. Note that the subspaces C I,( - co, t] are 
nontrivial since otherwise Eq. (5) would be stable. 

Let us choose T> 0 such that 

NepvT= q1 < 1 and N-‘e”‘=q,> 1. 

Just as in the proof of Theorem 6 the first inequality implies the estimate 

IlV(t,t+T)cp+II-,,,,+.bq, II~+ll-,,,, 

for all t E IF! and cp E C,( - cx), t]. We prove now that the second inequality 
implies the estimate 

IIVt, t+T)cp-L,>,,+.2qz Ilv-II-,,, 

for all tE[W and ~EC-,(--, t]. 
Let x = x”( ., t, cp) and substitute x- for cp and t + T for t in the second 

inequality in 4D, 

Ix-(s)l ~Ne”[s-(‘+T)l IIx-ll -,,,,+T 
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and thus 

Fix re[W and as above set ti=t+(i-1) T, E;=C,.(-W, ri]q 
E’ = C ?,( - CG, t;], and 

It is evident that the NDS defined by the sequence {h} satisfies the 
conditions of Theorem 5, and, therefore, there exist a constant L > 0, a 
sequence {(p,} c C-J-co, r], and a sequence of natural numbers {k,} 
such that 

h bmll -,m.l=O (18) m-cc 

and 

II w4 ~/Jcp,)ll -“,Q, a L. 

Now, in the first place, the second inequality in 4D implies that 
(P,,, E C,,( - c(j, t] and 

lim II~LII~,, = 0. 
m-cc 

And, in the second place (we denote tk,,, by t(m)), 

L G II WC W))(cp,)ll -r,,(m) 
= sup{ (e “CSP c(m)‘X(S, t, cp,)l : s < t(m)} 

= maxfsup{ le v[s-~‘““x(s, t, rp,)J : s < r}, 

sup{ le “cs-r(m)‘X(S, t, f&)1: t <s< t(m)}}. 

The first term on the right-hand side under the max sign tends to zero as 
m + 00 because of (18), and, hence, without loss of generality one can 
assume that 

sup{ le tf-r(m)lx(s, t, cp,)(: t <s < t(m)) 2 L. 
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This implies the existence of s, 2 I such that 

and the proof is complete. 1 

Remark 7. Some conditions for the invertibility of the operator 9’ can 
be obtained in the case of constant coefficients with the help of the results 
from [28, 40, 511. 
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