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1. INTRODUCTION 

The limiting equations of the nonautonomous ordinary differentiable equation 
~-8 = f(x, s) are limit points, as [ t / -+ co, of the translated equations k = ft(x, s), 
where f t is defined by f $(x, s) = f (x, t + s), i.e., a translation in the time 
variable. The limit is taken in a prespecified space, and has to obey certain 
properties which will be discussed later. 

The general motivation for introducing the limiting equations is that there 
is a tight connection between the asymptotic behavior of the solutions of the 
original equation and the solutions of the limiting equations. This was 
demonstrated already by Markus [13] who considered an autonomous equation 
ff = f (x) as the unique limiting equation of a nonautonomous perturbation 
f = f (x) + gfx, s), where gt vanishes (in a certain sense) as t -+ CO. Miller 
[ 141 used the dynamics generated by the translations f t and the limiting equations 
to investigate almost periodic systems. Sell [17] established the fundamental 
theory of the limiting equations within the framework of topological dynamics. 
For a more complete description of the evolution of the concept and the various 
applications see Sell [18], Miller and Sell [15], and LaSalle [lo]. 

The usual approach was to embed the translates f” of the function f in a 
certain function space, and then to identify a suitable convergence. For instance, 
uniform convergence on compact sets was used by Miller [14] and Sell [17]; 
a certain weak convergence was used by Wakeman [21]. In all these cases the 
limiting equations were always ordinary differential equations. It was observed 
in [3] that the consequences and applications of the theory hold even if we 
allow the limiting equations to be “unordinary,” i.e., not ordinary, equations. 

* This research was supported in part by the O&e of NavallResearch under NONR 
N1467-AD-101000907, and in part by the Air Force Office of Scientific Research under 
AF-AFOSR 71-2078C. 

+ Present address: The Department of Mathematics, the Weizmann Institute, Rehovot, 
Israel. 

184 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 00224396 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82645407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LIMITING EQUATIONS 185 

The idea is to embed the translates 3i = ft(x, s) in a space of equations, not 
necessarily ode’s, and then under the appropriate convergence to show that 
the asymptotic behavior of solutions of the equation f = f(~, s) is governed 
by the limiting equations. This was done in [3] where under certain conditions 
a space of Kurzweil equations served the embedding. 

The purpose of the present paper is to find a general form of limiting equations 
of nonautonomous ordinary differential equations. The assumptions on the 
equation will be weak enough to include many examples of ordinary and un- 
ordinary equations, but strong enough so that the dynamics of the translates 
and the solutions can be developed. 

The assumptions placed on the nonautonomous ordinary differential equation 
are given in Section 2. The general form of the limiting equations will be an 
ordinary integral-like operator equation, an object which will be defined and 
discussed in Section 3. Two special cases of such equations will be mentioned 
in the examples of Section 10. The basic property that the limiting equation 
has to satisfy is the continuous dependence of the solutions when this limit 
is taken. Sections 4 and 5 are devoted to the continuous dependence. In Section 6 
we formally give the definitions of the translated equations, limiting equations, 
and the hull of the equation, together with some explanatory remarks. 

Section 7 presents one relation between the solutions of the original ordinary 
differential equation and those of the limiting equations. It is the invariance 
property. We give one application of it to stability theory. In Section 8 we 
give sufficient conditions for the precompactness of the set of translates, i.e., 
for the property that each sequence of translates has a subsequence which 
converges to a limiting equation. 

The limiting equations are not in general ode’s. But we shall find that if 
the equation is asymptotically autonomous, the unique limiting equation 
is necessarily an autonomous ordinary differential equation, and the original 
equation has the form 3i = &x) + g(x, s), where gt converges to zero. This 
is the main result of Section 9. (Asymptotically autonomous equations were 
discussed in [13, 201.) This conclusion is already untrue if the equation is 
asymptotically periodic, as the example in Section 10 shows. 

In the last section we turn to the formal construction of a local flow, as was 
done by Sell [17, 191, show how to build it under our conditions and point 
out some differences. 

2. THE ASSUMPTIONS 

Let fix, s) be the right-hand side of f = f(~, s). We assume that .f is con- 
tinuous in x E Rn and measurable in s E R, and satisfies locally the Caratheodory 
condition (i.e., for x in bounded sets 1 f(~, s)i < m(s) with vz locally integrable). 
We shall make an assumption on the equicontinuity of the primitive of f. 
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For this let p: [0, co) --+ [0, co] be nondecreasing, continuous at 0 with ~(0) = 0. 
We say that the function y: (a, b) + R* admits p as a modulus of continuity 

if I ‘/(s) - r(t)l < ~(1 s - t I) f or every S, t in [a, b] (see [4, p. 721). 

ASSUMPTION (A). For every compact KC R” there is a nondecreasing 
function pK: [0, a) + [0, co], continuous at 0 with ~~(0) = 0, so that whenever 
U: [a, b] + K is continuous the primitive F(t) = J~~(u(s), S) ds is defined and 
admits pK as a modulus of continuity. 

The assumption is not as restrictive as its length might suggest. If f(~, S) 
is bounded for x in compact sets then f certainly satisfies Assumption (A). 
A sufficient condition then is that / f(x, s)l < s+(s) for x E K compact, where 
m, is locally integrable and has a uniformly continuous ,primitive. If f(~, S) 
oscillates in s fast enough then the assumption might be satisfied while 
I~(x, s)j + 00 when s --+ co, as the following example (borrowed from [20]) 
shows: J(x, T) = (T sin r3, r cos r3). The reason for this type of hypothesis 
is basically to obtain the last conclusion in the following result. 

PROPOSITION 2.1. Under Assumption (A), for each (t,, , x0) E R x Rn there 
is a solution qb(s) of the initial-value problem R = f (xi s), x(t,,) = x0 , which 
is dejined on a maximal interval (ol, 0). Also / 4(s)/ -+ CO as s + Al+ (resp. s --+ W-) 
;f 01 > -co (resp. if w < co). Moreover, every solution 4 of t = f (x, s) admits 
pK as a modulus of continuity on any interval [a, b] where 4: [a, b] --+ K. 

Proof. For a proof of the first two statements compare [6, Theorems 5.1, 5.21. 
The last statement follows immediately from the observation that if 4 is a 
solution then C(t) = +(a) + s: f (4(s), s) ds. 

3. ORDINARY INTEGRAL-LIKE OPERATOR EQUATIONS 

In [16] Neustadt developed the fundamental theory of integral-like operator 
equations. We shall be interested in a special class of these equations, namely, 
those which might arise as limiting equations of ordinary differential equations. 
We shall give the formal definition of our ordinary integral-like operator 
equations below, but the motivation is fairly simple and will be described 
now. We recall that the ode 2 = h(x, s) is equivalent to the integral equation 
x(t) = x(u) + j-i h(x(s), s) ds. Th e integral part can be viewed as an operator H 
which maps the function 4 into the function H&t) = si h($(s), S) ds, and 
the problem is to solve the functional equation u = u(a) + H,u. The ordinary 
integral-like operator equations will have the same structure as these functional 
equations but without assuming the representation as integrals with a kernel. 

DEFINITION 3.1. An ordinary integral-like operator H is a mapping which 
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associates with each Rn-valued continuous function $J and a in the domain 
of 4, a continuous function H,b, so that (1) H,: C[a, b] --f C[a, b] is continuous 
for each [a, b]; (2) H,+(t) = H&(S) + H&(t) for all a, s, t in the domain of 4. 

We say that H is consistent with Assumption (A) if whenever 4: [u, b] -+ 
KC P, R compact, then H& admits j*X as a modulus of continuity. 

It is quite clear what equation and concept of a solution should be associated 
with the ordinary integral-like operator H. We shall denote the equation by 
u = Hu (notice that Hu is not defined, only H,u is defined). A solution is a 
continuous function $J such that 4 = #(b) + H+# for any b in its domain. 
A maximally dejined solution is one which cannot be extended to a solution 
on a strictly larger domain. The initial value problem u = Ha, u(b) = x can 
be equivalently written as u = z + Hbu. The following result is analogous 
to Proposition 2.1. 

PROPOSITION 3.2. Let H be an ordinary integral-like operator which is CMZ- 
&tent with Asszlfnption (A). The-a f OT each (t, , x0) .E R x Rn there is a maximally 
de$ned solution 4, de$mzd on ( 01, W) of the initial value problem u = x0 -j- H8 u. 
AZso j 4(s)i -+ co as s -+ a+ (resp. s -+ w-) $a > --co (resp. w < co). Moreokr 
any ~olutioti $ of a = Hu admits pK as a moduhcs of continuity on euery inteerzral 
[a, b] where +: [a, b] -+ K. 

Proof. We again refer the reader to [6, Chap. 5J where the result is proved 
for ordinary equations but by using only properties of the corresponding 
integral equation. The last statement follows immediately from the equality 
4 = $(a) + H,$ and that H is consistent with Assumption (A). 

It should be clear that the concept of ordinary integral-like operator equations 
is an extension of an ordinary differential equation. Every ode can be viewed 
as an operator equation but not every ordinary integral-like operator equation 
can be represented as an ode. We shall encounter some examples in Section 10 
below, but it is worth noting that any continuous function # is a solution of a 
certain ordinary integral-like operator equation. For instance the equation 
determined by the constant valued operator defined by H&(t) = #(t) - #(a). 

4. A PREPARATION FOR THE CONTINUOUS DEPENDENCE 

Our assumptions allow escape of the solution in a finite time, i.e., maximally 
defined solutions with a bounded domain. Different solutions might have 
different domains. We shall need to consider the convergence of a sequence 
of solutions in order to establish the continuous dependence, and it will be 
convenient to embed all the solutions in one metric space. 

The family of functions which we define below wilI contain all the candidates 
for solutions of u = x + HOu where H is consistent with Assumption (A), 
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including the solutions of the original ordinary differential equation. Compare 
with Propositions 2.1 and 3.2. The modulus of continuity p used in the following 
definition is the one provided by Assumption (A). 

DEFINITION 4.1. Let I’ be the collection of all continuous noncontinuable 
functions y: (a(y), w(y)) -+ R*, so that 0 E (a(r), w(y)) and such that y admits 
pK as a modulus of continuity on each interval [a, b] where y: [a, b] + K. 
In particular this implies that 1 r(s)1 --f co as s -+ a(y)+ (resp. s -+ w(y)-) if 

44 > --co (resp. w(y) < co). A convergence is defined on I’ as follows. 
The sequence yk converges to y0 if rlc(t) -+ yO(t) uniformly on each compact 
subinterval of (ol(y,,), w(y,,)). In particular, c&J > lim sup +J and w(yO) < 
lim inf w(&. 

Remark. The type of convergence defined above is the one used in the 
continuous dependence results needed in the applications of topological 
dynamics. See [3, 10, 15, 181 and also Section 11 below. 

PROPOSITION 4.2. The space T can be made into a complete metric space 
so that the convergence in the metric coincides with the convergence given in Defini- 
tion 4.1. Also if K C RR is compact then the set (y E l? y(O) E K) is compact in r. 

Proof. Notice that the convergence is actually the compact open con- 
vergence and the only modification that has to be made is taking into account 
the different domains. Let m be a positive integer. For each y E r let &Jr) = 
sup{s < 0: 1 r(s)1 > m> and T,(y) = inf(s > 0: I r(s)] > m}, (sup+ = --co 
and inf + = co). Let ym be defined on all R by rm(s) = y(s) if s E [&Jr), T,(y)], 

~44 = AMy)) if s < t&) and Y&> = AT&N if s > Ch)- Let dm be 
the semimetric 

d,(y, 8) = sup{1 &s) - B,(s)l: ---co < s < m>. 

Notice that being close in d, means that y and 6 are close at least until one 
gets out of the ball with radius m. Define now a metric by 

d(r, 8) = f (1 /m2m) d,(y, S). 
WZ=l 

Then d is the desired metric. The completeness and compactness are immediate 
consequences of the equicontinuity hypothesis. 

5. CONVERGENCE OF EQUATIONS AND CONTINUOUS DEPENDENCE 

All the ordinary integral-like operators are assumed to be consistent with 
Assumption (A); i.e., if $: [a, b] --f KC Rn then H,$ admits pK as a modulus 
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of continuity where pK is provided by Assumption (A). We denote the collection 
of all these operators by s. 

DEFINITION 5.1. The sequence H(l), EF2),..., of ordinary integraLlike 
operators converges to H if whenever &: [a, b] -+ Rn is a sequence of con- 
tinuous functions which converge uniformly to 4 then H:‘+, converge uniformly 
to H&. (The equicontinuity assumption implies that pointwise convergence 
Hz’+(t) -+ H,+(t) implies uniform convergence.) 

Remark 5.2. The converging sequences in the space coincide with the 
converging sequences of the compact-open topology on 2. The convergence 
of Definition 5.1 can be easily generalized to convergence of nets (generalized 
sequences) but then the convergence would not be the convergence in the 
compact-open topology, and as a matter of fact will not be generated by a 
topology at all. See [l, Appendix B]. However, with the convergence given 
in Definition 5.1 X becomes a convergence space (2% space in the terminology 
of [7]) and the convergence is the continuous convergence, see [7, p. 1971. 

THEOREM 5.3. Suppose that H(l), Ht2),..., converge to H, and let zk -+ x 
in Rn. Let yk: be a maximally defined solution of u = zic -+ H$L. E&en a sub- 
sequence of y2 exists which converges in I’ to a solution of u = x +- I-l,u. 

Proof. The sequence ~~(0) = zk is bounded. By the compactness property 
of I’ (see Proposition 4.2) a converging subsequence, say ym -+ y, exists. The 
convergence 3/m -+ y is uniform on compact subintervals [0, t] or It, 0] of the 
domain of y. On these intervals Hhm’y, converge to E&,‘y. But the equality 
ym - x, = Him$, shows that the latter converge also to y - z. So HO~ = 
y - z and y is the desired solution. 

Remarks. The continuous dependence could be stated more elegantly 
in terms of the set s(z, H) of solutions of u = x + l+. The results simply 
say that this set-valued function is upper semicontinuous (see [2]). It is also 
easy to extend Theorem 5.2 and to prove also continuous dependence with 
respect to a in the equation u = x + H,u (in the theorem a = 0 was fixed). 
The type of continuous dependence presented in Theorem 5.3 is analogous 
to the Kamke lemma for ode’s (see [lq). 

The convergence given in Definition 5.1 is quite relaxed, but still not a 
necessary condition for the continuous dependence. For instance, let h, be 
defined on R x R by h,(x, s) = 0 if 1 x - s - 1 1 > l//z; Iz,(x, x - 1) = 4 , 
and let 0 < h,(x, s) < 2 1 be a continuous extension on the rest of R x I?. 
Then any sequence of solutions of c = h,(x, s), x(O) = ,zk , where .zA -+ z. 
converges to the constant function x(s) = z. However, the sequence hR does 
not integrally converge to h = 0. The convergence is relaxed enough to be a 
necessary condition for the continuous dependence of solutions of U(L) = 
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z(t) + E@(t), where we demand the dependence also on the continuous 
forcmg term z(t). Indeed, if & + 4 as in Definition 5.1 we define zle = 
#k - HA”Clc . Since the collection Hi’& is precompact there is a converging 
subsequence Him)4m and then z,(t) converges, say to z(t). Now clearly 4, 
is a solution of zc = zm(t) + HA% and if 4 is a solution of u = x(t) + E&u 
it follows that HA’)& --s’ H~“‘c$, and H ck) therefore converges to El. Compare 

[I, 21. 

6. TRANSLATES, LIMITING EQUATIONS, AND THE HULL 

Let 3i =f(~, 3) be the ordinary differential equation which satisfies Assump- 
tion (A). For t E R we define the translate f t off by 

f p, s) = f (x, t + 4. 

We denote by tran(f) the collection of all translates f t, t E Ii. 

DEFINITION 6.1. The ordinary integral-like operator equation u = Hu 
is a limiting equation of k = f (x, s) if there is a sequence of times t, , t, ,. . . , 
/ t, 1 --+ co so that ftj integrally converges to H (see Definition 5.1); i.e., 
whenever &: [a, b] + R” converges uniformly to 4 then jz f (&(s), tj + s) ds 
converges to H&(b). The positiwe (negative) limiting equations are those where 
the sequence tj + co (resp. tj --f -co). 

Remark 6.2. It is clear that if f tj integrally converges to H then for a fixed 7 
the sequence ftjfT also integrally converges, and to the translate H7 of H, 
where HT is defined in a natural way. A formal way of defining H7 is as follows. 
For a function 4 define @ by p(s) = $(T + s). Then H7 is given by 

W>a W) = f&+&V + 4. 

Remark 6.3. Notice that the limiting equations are defined with respect 
to the particular convergence given in Definition 5.1. A different notion of 
convergence will produce a different class of limiting equations. Also, being 
an g* space, or a convergence space, the closure of a set in % is naturally 
defined to be the collection of all limits of sequences in the set, and a set is 
closed if it contains all these limits. Notice that the closure of a set is not 
necessarily closed. 

DEFINITION 6.4. The hull off, denoted by hull(f), is the closure of tran(f). 

Remark. Obviously tk -+ t implies f tk --f ft. Therefore, hull(f) is the 
union of tran(f) and the limiting operators off. 
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COROLLARY 6.5. The hull of f is translation i~var&zn~, i.e., HE hull(f) 
implies H7 E hull(f) for all 7 (see Remark 6.2). 

The following result is the analog of the completeness of the space. 

PROPOSITION 6.6. Let t, , &,..., / t, [ + CD be a sequence of times. Suppose that 
mhenever 4%: [a, b] --t Rfi converge uniformly then Ifif&( t, + s) ds is a 
Cauchy sequence in Rn. Then the operator H de$ned by H&(b) = lim Jif(&s), 
t, + s) ds is an ordinary integraGlike operator, consistent with Assumption (A), 
and consequently u = Hu is a limiting equation of 3i = f (x, s). 

Proof. We have to check the conditions in Definition 3.1. Assumption (A) 
implies that the limit H,$ of the integrals admits also pK as a modulus of con- 
tinuity if #: [a, b] ---f K, so His consistent. This also implies that H,: C[a, b] + 
C[a, b] will be continuous if Ha+(t) is p oin wise t continuous. Let us show 
the pointwise continuity. Let & + 4. For each j there is a time tj with / tj j 
large enough so that H,&(b) is close to s”,j(&(s), ti + s) ds. The latter converges 
as j -+ co to H&(b), so H,&(b) -+ H&(b). This proves that condition (I) in 
Definition 3.1 is satisfied. Condition (2) is obviaus. 

We shall need the concept of a compact and a precompact set, and naturaIly, 
a set is precompact if any sequence in it has a converging subsequence; the set 
is compact if it is precompact and closed. But notice that the closure of a pre- 
compact set is not necessarily compact. 

DEFINITION 6.7. The set tran(f) (of all translates J” of f) is positively 
(negatively) precompact if (f”: t >, 01 (resp. (f”: t < 0)) is precompact. 

7. INVARIANCE 

The w-limit set of a function 4(b), denoted by Q(#), is the set of all limit 
points of+(t) as t -+ co. If $ is a solution of the autonomous ordinary differential 
equation ti = j(x) and if the solution through any initial value is unique, 
then 52($) is invariant in the sense that the solution through a point of &?(+I 
stays in a($) on its entire domain, This well-known observation was found 
to be very fruitful in many areas. In connection with stability theory it is the 
basis of the LaSalIe invariance principle which combines the invariance and 
Lyapunov functions to form a powerful tool in detecting stability properties 
of the system. See [lo, 151 and the references therein. 

If & = f (x, s) is nonautonomous a problem arises, namely, with respect 
to what equation will the w-limit set be invariant Z Since f varies in time we 
cannot expect that solutions of f itself will not leave Q(4). The answer was 
given by constructing the limiting equations. Indeed, under appropriate con- 
ditions the w-limit set is invariant under the right limiting equation. This 
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was established by Markus [13] when the only limiting equation is autonomous 
(see also [20]), and was generalized by Dafermos, LaSalle, Miller, Sell, Wakeman, 
and others. See [lo, 151 for historical notes and references. 

We shall establish invariance under the weak concept of convergence given 
in Definition 5.1. Here the limiting equations can be unordinary differential 
equations. The formulation and definition of the invariance follow the treatment 
given by Strauss and Yorke (201 f or asymptotically autonomous systems. 

DEFINITION 7.1. The set B C Rn is semiinvariant with respect to the equation 
u = u(0) + E&U if for each z E B there is a maximally defined solution 4 
of u = z + Z&u so that 4(t) E B for all t in the domain of+. The set B CR” is 
semiinvariant with respect to a class of equatirms (ti = u(O) + H,,u: HE fl} 
if for each a E B there is an HE GP and a maximally defined solution + of 
u = z + H,u so that 4(t) E B for all t in its domain. 

If the uniqueness of the solution of u = z + H,u holds then semiinvariance 
is reduced to the usual invariance, as described at the beginning of the section. 
However, the quantifier in the second part of Definition 7.1 justifies the use 
of the “semi” before the invariance. 

DEFINITION 7.2 (Compare [20, Definition 2.21). Let @ be a family of func- 
tions. The generalized w-limit set G(D) of @ consists of those points z t R” 
for which there exist sequences tj + co and & in @ so that &(t$) -+ z as j + co. 
If @ consists of one element + we write Q(4) for Q((+}). 

The generalized w-limit set is obviously closed. The following theorem 
is the generalization of Strauss and Yorke [20, Theorem 2.41 to the non- 
autonomous case. Strauss and Yorke [20, Sect. 21 have shown how this type 
of invariance applies to a variety of situations. For the definition of tran(f), 
and the precompactness see the previous section. 

THEOREM 7.3. Suppose that tran(f) is positively precompact. Let @ be a 
collection of maximally dejked solutions of k = f (x, t). Then Q(Q) is semiinvariant 
with respect to {u = u(O) + H,u: HE SJ where SD is the family of the positive 
limiting equation. 

Proof. Let x E Q(Q). Then z = lim zk with xL = &(tk), t, -+ co and 
& E @. The function yk(s) = &Jtlc + ) s is a maximally defined solution of 
2 = f yx, s), x(0) = Zk . By the positive precompactness of tran(f) a sub- 
sequence, say f Q, integrally converges to a positive limiting integral-like operator 
H. By Theorem 5.3 a subsequence yz of y$ exists which converges in r to a 
solution y of u = x + H,u. We shall show that y(t) E Q(Q) for all t in the 
domain of y. The convergence in r (see Definition 4.1) implies that y(t) is 
the limit of yi(t) = &(ti + t). But also, t, + t -+ co, so y(t) E Q(Q). This 
completes the proof. 
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The theorem does not guarantee a solution which is defined for all t G R. 
In fact, escape in a finite time might occur even if the original equation is 
autonomous and @ contains only one solution. However, the following holds. 

PROPOSITION 7.4. If 52(Q) in Theorem 7.4 is bounded then for each z E G(Q) 
there is a solution + of a positive limitin. equation u = z + E&u so that #(t) 
is dej%ed and belongs to Q(@), for all t E R. 

Proof. Immediate from Theorem 7.3 and Proposition 3.2. 
We shall demonstrate now how the invariance can be used in establishing 

stability. The basic idea is due to La&Be, and was used later by several authors 
(see IlO]). In order to isolate the role of the invariance we shall make some 
assumptions that usually are deduced as properties from the structure of the 
system, See the remark following the example. 

EXAMPLE 7.5. Consider the xy system (x and y are vectors) 

2 = I!(% y, t>, 

j = 4x, ~9 t>y + ~(3, Y). 

Assume that: (1) p(x, y) f 0 if x #= 0; (2) every solution (x(t), y(t)) is positively 
bounded and satisfies y(t) + 0 as t -+ co; (3) Assumption (A) is satisfied and 
tran(f), where f represents the right-hand side of the system, is positively 
precompact. Then each solution (x(t), y(t)) converges to (0,O) as t -+ CO. 

Pmof. By (2) th e w-limit of the solution (x(t), y(t)) is not empty and can- 
tained in ((x, y): y = 01. It is also semiinvariant as Theorem 7.3 assures. 
We shall show that the only semiinvariant subset af ((x, y): y = 0) with respect 
to hull(S) is the origin. Indeed, if $ = (@), (9) is a function and H is any 
limiting equation, then the y coordinates of H& equal to sip@(s), 0) ds, and 
by (1) it is not identically zero if l(s) is not identically zero. So a function (t(r), ‘0) 
cannot be a solution of any limiting equation unless [(‘(s) = 0, and ((0, 0)) 
is the only candidate for a semiinvariant set. This completes the proof. 

Rem&s. The point in Example 7.5 is that we do not have to actually 
compute the limiting equations, which might be fairly complicated. The struc- 
ture of the equation yields the necessary information on the limiting equations. 

Property (2) in the example is quite strong and usually is deduced from 
the structure of the equation with the aid of Lyapunov functions. The particular 
scalar example. 

I + h(x, %, t)k + p(x) = 0 (7.6) 

which is equivalent to $ = y, j = --4(x, y, t)y -p(x) arises in reactor 
dynamics and was first studied by Levin and Nohel [12] where (under 
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appropriate assumptions) a Lyapunov function is used to establish property 
(2). Wakeman [21] gave a proof of the global asymptotic stability of the origin 
of (7.6) under assumptions similar to [12], and by using the same invariance 
argument which we use in the present paper, but his limiting equations are 
always ode’s A relaxation of the conditions was obtained in [3] by allowing 
more general limiting equations. Property (3) above together with the pre- 
compactness criterion in Theorem 8.1 below give a further relaxation of the 
conditions. 

A more general system, where x and y might be vectors, was treated by 
Levin [ll]. The form of the equations in [l l] is more general than our example, 
but for the particular form of Example 7.5 our conditions are weaker than 
those of [ll]. 

8. THE PRECOMPACTNESS OF tran(f) 

The precompactness of tran(f) pl y a s a significant role in establishing the 
semiinvariance (Theorem 7.3) and its applications (Example 7.5). It is important 
in other applications too. We shall give here a sufficient condition for the 
precompactness. 

The idea is simple. If f(~, 3) satisfies Assumption (A) then for a fixed con- 
tinuous 4: [a, 61 + R” any sequence JLf($(s), tj + s) ds where 1 tj 1 -+ CO has a 
convergent subsequence. A diagonal process will give a subsequence of tj 
for which the integral converges for every $J in a dense sequence of C[a, b]. 
An equicontinuity property of f( , ) x s in x will guarantee the joint convergence 
required in Definition 5.1. Our purpose is to find an appropriate equicon- 
tinuity assumption. 

Recall that we assumed that f(~, s) is continuous in X, and therefore uniformly 
continuous on compact subsets of R”. See Section 2 for a definition of a modulus 
of continuity. 

THEOREM 8.1. Suppose that for every fixed s and a fixed compact set KC Rn 
the function f (*, s) admits I+(-, s) as a modulus of continuity, where v&S, s) is 
integrable in s for a fixed 6 and Jz” ~(8, T) dr < A&(S) for every s with NK(S) -+ 0 
as 6 -+ 0. Then tran(f) is precompact. If the conditions are satisfied only for s 
in a set [so , 00) then tran(f) is positively precompact. 

Proof. From the equicontinuity assumption in the theorem we easily get 
the following estimation. If 4, z,6: [a, b] --f K are continuous and sup 1 d(s) - 
#(s)l < S then for every t E R 

1 Jbu (f(d($ t + 4 -fV(4 t + 4 ds 1 G (I b - a I + 1) Nds). U3.2) 
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Let tk be a sequence of times. For a fixed interval [a, KJ let & be a dense sequence 
in C[u, b]. For j = 1 the sequence Jif($Js), t, + s) & has a convergent sub- 
sequence, and denote the corresponding sequence of times by ta,l . For j = 2 
the sequence J~f($&), t,,, + s) ds h as a convergent subsequence and denote 
the corresponding sequence of times by tk3,, and so OR. The diagonal sequence 
or = t,,z has the property that Jzf(&(~), 71 + s) & converges for any fixed j. 

We now use the estimation (8.2) to show that whenever & -+ $ in C[CL, b] 
the sequence llf(&(s), T& + s) d s is a Cauchy sequence in R”. Indeed, 

where $ is fixed and belongs to the dense sequence & above. Since & converges 
it follows that for every 6 > 0 a 4 can be found so that if E is large enough 
sup I +(s) - MI G 6. BY using (8.2) we deduce that IX and Ja are less than 
(I b - Q I + 1) NK@) w ere K is a compact set containing all #f&). Since h 
NE(B) is small when 6 is small it follows that I1 and 1, are small for E, m large 
enough. The quantity I2 is small for 1, m large since $ belongs to the dense 
set chosen before. 

So far, for a fixed interval [a, b] we found a subsequence rz such that if 
#1 --+ #J in C[u, b] the sequence J-if(&(~), or + s) ds converges. We can find 
a subsequence of it, T~,~, so that the integrals on another interval, say [a, , b3] 
will converge, and a subsubsequence rz,a for [us ,6a] and so on for a dense 
collection of subintervals. The diagonal sequence t, = rE,t has the property 
that ftz integrally converges. Indeed the conditions of Proposition 6.6 are 
fulfilled for a dense collection of intervals [ai, bJ, but the equicontinuity 
in Assumption (A) implies that they hold for every [a, b]. This completes 
the proof of the main statement. In view of this the last statement is obvious. 

Remark,. The sufficient condition in Theorem 8.1 is given in terms of the 
functionf(x, s). It is clear that the validity of an estimatian of the type of (8.2) 
is what is really needed for the proof. It would be interesting to establish 
precompactness without equicontinuity. In general tran(f) is not precompact 
even if f (x, s) is bounded, (see for instance the example in Remark 9;2 below). 
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9. ASYMPTOTICALLY AUTONOMOUS EQUATIONS 

Intuitively an equation G+ = f(~, s) is asymptotically autonomous if as time 
progresses, s -+ co, the solutions behave like solutions of an autonomous 
system. An example is a perturbation I = h(x) + g(x, s) of the autonomous 
system 2 = h(x), where g converges to zero as s -+ co. Here, for s large the 
solutions are close to solutions of the autonomous system 3i = h(x) which 
is the unique limiting equation. It is reasonable to define “asymptotically 
autonomous” by requiring that tran(f) will be positively precompact and 
that a unique positive limiting equation exists. In this case, this limiting equation 
is invariant under translates (Remark 6.2) and is thus autonomous. Compare 
Dafermos [5, Definition 4.4 and the observation which follows it]. The main 
result of this section is to show thatif the equation 3i = f(~, s) is asymptotically 
autonomous in this sense then the unique limiting equation is necessarily an 
autonomous ordinary differential equation, i.e., f(x, s) = h(x) + g(x, s) where 
gt integrally converges to zero. 

Perturbed autonomous equations 2 = h(x) + g(x, s), where the perturbation 
g(x, s) becomes small in some sense when s ---f CO, were studied by Markus 
[13], and the conditions were eased by Strauss and Yorke [20]. (The conditions 
used in [13] or [20] imply that Assumption (A) is satisfied.) The convergence 
given in Definition 5.1 provides a “sense” for the convergence of g to zero 
so that the autonomous unperturbed equation k = h(x) will govern the behavior 
of the solutions for large s. Notably this convergence is weaker than the “mostly 
converges to zero” introduced by Strauss and Yorke [20]. While we demand 
that jtg(&(s), tfc + s) ds -+ 0 if h(s) A+(S) uniformly and t, -+ 00, in [20] 
it is required that the integral will converge to zero for every bounded sequence 
& . The sequence g,,, in the example constructed in [ 1, Appendix B] integrally 
converges to 0 but not mostly converges to zero. 

THEOREM 9.1. Suppose that tran(f) is positively precompact and that there 
is only one limiting equation when t --+ 00. Then this limiting equation is an 
autonomous ordinary d@erential equation. 

Proof, (The positive precompactness is not needed in the proof. See the 
remark below.) We know that the limiting equation is an ordinary integral- 
like operator equation u = Hu (Definitions 3.1, 6.1). We have to show the 
existence of a continuous function h(x) so that H,+(b) = Jl h($(s)) ds for 
every 4: [a, b] -+ Rn continuous. 

Consider the constant function z(t) = x, and define e,(b) = E&z(b). Since 
any translate HT of H is equal to H it follows that the continuous function 
e,(b) has the property e,(2b) = 2e,(b). It is then an easy exercise to show that 
e,(b) = be,(l) or if we denote e,(l) = h(x) then H,z(t) = h(z)t. The continuity 
of H,, on C[O, l] implies that h(z) is continuous. 
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Let $: [a, b] -+ pin be continuous. We construct a piecewise constant function 
&(s) on [a, b] as follows. Let a = tr < t, < ..* < t,,, = b be a uniform 
partition, i.e., &I - tj = Aj is constant, Define &(s) = $(t?) if tj < s < Q+~ 
this for j = l,..., K. For Q large enough the integral fif(&(lc(s), S) ds is close to 

C;a h(#WA, . If we change the values of qlr, on a small portion of [a, b] and 
the change is not big, it will cause only a small change in the value of the integral. 
So let us change $J~ on the intervals [tj - E, tJ for E small, and make it a con- 
tinuous function (blc (say, by changing the constant to a linear function). Now 
(Fiji -+ 4 in C[a, b] as k ---f 00, and therefore fif(&(s), 7R: + S) ds -+ H&(b). On 
the other hand the integral converges as lz -+ 00 to the Riemann integral 

(here bi = t,(K) and Aj = A,(k)). This completes the proof. 

Remark 9.2. As was mentioned above, it is enough to assume that there 
is a unique positive limiting equation in order to conclude that it is an autono- 
mous ordinary differential equation. (And actually the proof can be,modified 
in order to show that an autonomous ordinary integral-like operator equation 
which is consistent with Assumption (A) is already an ordinary difherential 
equation.) The positive precompactness of tran(f) was added because uniqueness 
of the limiting equation alone does not provide the asymptotic results in which 
we are interested, and the equation is not asymptotically autonomous. 

Consider the following example (based on [21, (ZO)]). The function f(x, S) 
is defined on R x R. We set f (x, s) = 1 if s - x = 2” for a certain ;zr = 
1, 2 ,... . Also f (X, s) = 0 if / s - x - 2” i > 2-” for every n = 1, 2 ,... . We 
now extend J continuously to all (x, s) but so that 0 < f(x, s) < 1. There 
is only one limiting equation, namely, 5 = 0. But for t, = 2n the sequence 
jtw does not have a converging subsequence, and moreover, the continuous 
dependence does not hold, namely, the unique solution of 3i: = f (x, 2” -t s), 
x(0) = 0 is x(s) = s and it does not converge to the zero solution. 

Remark. Theorem 9.1 does not rule out the possibility that all the limiting 
equations will be autonomous equations, but there will be more than one 
limiting equation. For instance if f (x, s) = sin ln(i s / + I), then tran(‘) is 
precompact and the limiting equations (positive or negative) are exactly the 
autonomous equations z? = 01 for -1 < ot < 1. 

10. SOME EXAMPLES 

We start with an example where the limiting equations consist of one periodic 
orbit under translations, but yet no limiting equation is an ordinary differential 
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equation. This shows that the uniqueness in Theorem 9.1 cannot be replaced 
by periodicity. 

EXAMPLE 10.1. Let 17(t) be a continuous nondecreasing function on [0, 2~~1 
with ~(0) = 0, 7(2n) = 277 and such that 7 is not absolutely continuous with 
respect to the Lebesgue measure (for instance the Cantor function). Extend r 
to the whole line by letting y(t) = 2?TK + ~(t - 27&) if 2& < t < 27~(R + 1). 
Let F(t) be a Cl function, nondecreasing so that j F(t) - 7(t)] + 0 as t -+ 03, 
i.e., for large ( t (, F(t) is a smooth approximation of 7(t). Let f(t) = F’(t) 
be the derivative of F. Consider now the two-dimensional equation 

* = f(t)r, 

j = -f(t)x. 
(10.2) 

The general solution of (10.2) is easily computed and has the form (x(t), y(t)) = 
(A sin(F((t) - a), A cos(F(t) - a)). Such a solution clearly converges to the 
periodic solution (A sin($t) - oi), A cos(~(t) - a)). But the latter is not 
absolutely continuous so it is not a solution of any ordinary differential equation. 
We shall find now the limiting equations that govern the limiting behavior 
of our system. The ode (10.2) is equivalent to 

(10.3) 

keeping in mind that f(s) ds = dF(s), and when the integral is the Lebesgue- 
Stieltjes integral. The translation of the equation by 7 has the form 

(4th y(t)> = (x(4, ~(4) f Jai (Y(S), -x(4) W - 4 (10.4) 

If 1 7k j + co and T,(mod 2~) + g then the sequence of translates converges to 

(10.5) 

The construction of d? as a periodic measure which is not absolutely continuous 
with respect to the Lebesgue measure dt completes the argument. 

The example above is a particular case of the class of equations 

x(t) = ~(4 + j-’ h(x(4 s) drl(s>, 
a 

(10.6) 

where x E Rm and 7 is a function with bounded variation. These equations 
might arise as limiting equations of nonautonomous ordinary differential 
equations, but are not ordinary differential equations, unless 7 is absolutely 
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continuous. If (10.6) is consistent with Assumption (A) then q has to be con- 
tinuous, so a jump might not occur in the context of this paper. 

Another observation is that (10.6) cannot be autonomous unless d??(s) is a 
constant multiplication of dt. Indeed, the only translation invariant measure 
of the line is (up to a multiplication) the Lebesgue measure. This of course 
agrees with Remark 9.2. 

Another typical example of unordinary equations which might appear as 
limiting equations of nonautonomous ordinary differential equations are the 
Kurzweil equations. Kurzweil [8, 91 developed a theory of generalized ordinary 
differentia1 equations. In [3] a special class of Kurzweil equations was investigated 
in connection with the subject of the present paper. Conditions were given 
under which every limiting equation is a Kurzweil equation. Let us mention 
that Kurzweil equations which do not satisfy the conditions in [3] might also 
appear as limiting equations. 

11. NONAUTONOMOUS EQUATIONS AS LOCAL FLOWS 

The basic construction of Sell [17] enables us to view the dynamical process 
generated by a nonautonomous equation as an autonomous system, a flow, 
on an appropriate phase space. Thus we can apply the abstract theory of flows 
to deduce properties of the nonautonomous system. This fruitful technique 
was demonstrated in many occasions, see the recent survey by Miller and 
Sell [15]. The invariance result treated in Section 7 above is one consequence 
of the theory, compare LaSalle [lo], but there are more. 

We want to show that the basic flow can be built under the assumptions 
adopted in this paper. We shall follow the construction in [15, 17, 181, with 
only some changes which we list now. The first change is that the phase space 
contains unordinary equations, namely, ordinary integral-like operator equations. 
We also follow Sell [19] and construct the local flow without the uniqueness 
assumption. For this purpose we add the space r defined in Section 4 to the 
phase space. Finally, we construct the flow on a convergence space (=Y* space) 
and not on a topological space. This was already done by LaSalle [lo]. 

We first define the phase space, then construct the candidate for local flow, 
and only later mention the definition of a local flow and make some comments. 

Let & = f(~, s) be an ordinary differential equation satisfying Assump- 
tion (A). Let # be the collection of all ordinary integral-like operator equations 
which are consistent with Assumption (A) (see Definition 3.1). For eath H E .X 
let r(H) be the collection of the maximally defined solutions y E r of u = 
u(0) + H,u (see Definition 4.1 and Proposition 4.2). In Remark 6.2 w-e defined 
the translation Hr of H. For y E r we let Y?(S) = ~(7 + s). If y is a solution 
of u = Hu then clearly y* is a solution of u = H%. Let 
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Then X is translation invariant. For t in the domain of y E r(H) define 

The space r is a complete metric space (Proposition 4.2). The space &’ 
is a convergence space (Definition 5.1, Remark 5.2). Therefore, the natural 
product convergence is defined on r x 2 which makes it a convergence 
space. Theorem 5.3 implies that X is a closed subset of I’ x 2. (The space X 
is even complete when the completeness in the 2 coordinate is along the lines 
of Proposition 6.6 but with respect to a sequence of operators.) 

The mapping r has the following properties. Here p stands for a typical 
element of X, and I, is the domain of rr(t, p), (i.e., the domain of y ifp = (y, H)). 

(1) +4P> = P. 

(2) t E I, and s E~~c~,~J implies t + s E I, and ~(s, ~(t, p)) = rr(t + s, p). 

(3) Each I, = (w, , WJ is maximal in the sense that either wl, = on 
(m, = -co) or (rr(t, p): t > 0) (resp. {r(t,p): t < 0)) is not precompact. 

(4) Z-: R x X -+ X is continuous when defined, i.e., continuous on 

((4 p>: t E I,>. 
(5) p, -+ p implies I9 C lim inf Is, . 

Conditions (1) and (2) are easily checked. Condition (3) is a consequence 
of Proposition 3.2. Condition (4) is implied by Definitions 4.1, 5.1, and Theorem 
5.3. Condition (5) follows from Definition 4.1. 

Properties (l)-(5) are the requirements from a local flow (compare [lo, 15, 171). 
For most purposes it is enough to consider the restriction of r to the smallest 

closed set Z’l which contains the hull of $ (Although hull(f) is the closure 
of tran(f), it might not be closed since we work in a convergence space.) If 
the solution y = y(t, z, H) of u = z + H,u for HE Z1 is always unique, 
then the local flow could be constructed on Rn x Z1 (rather than on r x 8’) 

by 
r(t, z, H) = (At, x, fq, fq. 

Then Theorem 5.3 guarantees that conditions (4) and (5) hold, while Proposi- 
tion 3.2 implies condition (3). 

We constructed the local flow on a convergence space. Sometimes one needs 
a topological space, even with a uniformity structure (see [18]). It is clear 
that if we topologize X, and the topology is determined by convergence of 
sequences, then n will still be a local flow provided the convergence in the 
topology implies the convergence in X as above. If condition (4) is reformulated 
and the requirement is sequential continuity then the compact-open topology 
on Z is an appropriate one (see Remark 5.2). Notice, however, that some 
ingredients of the structure are not preserved by changing the convergence 
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structure or the topology. For instance, the hull off as the closure of ~-an(f) 
might be different. We also might loose the precompactness of tran(f) by 
taking a topology which is too strong. 
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