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A B S T R A C T

A mathematical study for two-phase unsteady pulsatile flow of blood through a vessel in the presence
of body acceleration is presented in this paper. The blood in the core region is modeled as a non-
Newtonian fluid while in the peripheral region it is described as a Newtonian fluid. The effects of body
acceleration are also taken into account in this study. The continuity and momentum equations are used
to model the proposed problem in terms of a nonlinear partial differential equation. This equation along
with initial and boundary conditions is made dimensionless and then solved numerically using finite
difference method. The behavior of various flow quantitates is analyzed through a parametric study.

Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Blood composition consists of aqueous plasma, red blood cells
(RBCs, 98% by volume), some white blood cells (WBCs), and plate-
lets and a variety of lipoproteins [1]. Plasma particles consist of
various proteins, including clotting factors (fibrinogen) and various
ions. Although red blood cells are very numerous and morpholog-
ically very simple, they contain hemoglobin, which transports oxygen
throughout the body. The rheological features of blood are charac-
terized by its components and their interactions with each other.
Blood shows anomalous behavior while flowing through a large
vessel (femoral artery) because its viscosity varies along the diam-
eter of the vessel which depicts Fahraeus–Lindqvist (F-L) effect. The
definition of F-L effect is given in the literature as a phenomenon
in which the viscosity of a fluid/blood changes with the diameter
of the vessel. This effect is observed due to migration of sus-
pended cells in the radial direction which is due to variation of
composition of blood [2–4]. In order to capture the F-L effect, the
blood flow in arteries is treated as two-phase. The core layer is
treated as a non-Newtonian while peripheral layer is modeled as
a Newtonian fluid. Since the flow of blood in arteries is generated
by pulsatile pressure gradient produced by the pumping action of
the heart, several authors examined the F-L effects by considering

the flow to be unsteady. For instance, Majhi and Usha [5] have ex-
amined the F-L effect by considering third grade non-Newtonian fluid
in the core. In another study, Majhi and Nair [6] followed the same
study in the presence of body acceleration. Haldar and Andersson
[7] investigated the two-layer blood flow in a cosine shape artery
considering Casson model for blood. The pulsatile flow of blood in
the presence of body acceleration was examined by Usha and Prema
[8] by considering blood as Newtonian fluid.

The non-Newtonian properties exhibited by blood like shear-
thinning at high shear rate [9–11] and visco-elasticity at low shear
rate [12,13] motivated several other researchers to incorporate dif-
ferent non-Newtonian model while analyzing blood flow problems.
In this regard, single-layer pulsatile flow of blood using different
non-Newtonian fluid models can be found in the literature. [14–19].
Recently, two-layer pulsatile flow of blood with body acceleration
using a generalized second grade fluid model was investigated by
Massoudi and Phuoc [20]. In another study, Sankar [21] used
Herschel–Bulkley fluid in the core to discuss the pulsatile two-
layer flow of blood. The unsteady pulsatile flow problems in context
of dusty fluid were recently analyzed by Madhura et al. [22] and
Gireesha et al. [23,24].

In the present study we are interested to extend the idea of
Massoudi and Phuoc [20] by considering the Sisko model in the core.
It is noted from the study carried out by Massoudi and Phuoc that
the material parameters of the modified second grade fluid model
do not appear in the governing equation of the flow. In fact for the
particular flow situation considered by Massoudi and Phuoc the
modified second grade model and power-law model yield the same
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governing equation. The Sisko model used here is a generalization
of the power-law model. In this way our analysis is general and
include the results of Massoudi and Phuoc as a special case. More-
over, under pulsatile flow conditions, the blood is exposed to high/
low and medium shear rates in a single cardiac cycle. Branes et al.
[25] have showed that power law model most suitably captures the
blood rheology at medium shear rates, but it is not suitable for high/
low shear rates. In such situation, the Sisko model is the most
appropriate choice to depict the blood properties at high shear as
compared to other non-Newtonian models. The article is orga-
nized in the following fashion: Fundamental equations and
mathematical formulation is described in detail in sections 2 and
3. Finite difference method is evaluated for the developed non-
linear system of equations. The details are given in sections 4 and
5. Section 6 comprises results and their discussion under the in-
fluence of various parameters of interest. Finally, some concluding
remarks are drawn in section 7.

2. Fundamental equations

Flow equations for an incompressible fluid are given by

∇⋅ =u 0, (1)

ρ ρd
dt

G t
u

T= ∇ ⋅ + ( ), (2)

where u is the fluid velocity, ρ is the density, T is the Cauchy stress
tensor and d dt is the material time derivative given by:

d
dt t

⋅( ) =
∂ ⋅( )
∂

+ ⋅∇( )u . (3)

The Cauchy stress tensor for a Sisko fluid is given by
Reference 26:

T I S= − +p , (4)

in which p is the pressure, I is the identity tensor and S is the
extra stress tensor defined by

S A= +⎡
⎣⎢

⎤
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−
ε ε1 2

1
1Π

n
*, (5)

where n, ε1 and ε2 are the material parameters defined differently
for different fluids. Note that for n = 1 or ε2 0= , the Newtonian fluid
model is recovered and if ε1 0= then the generalized power law
model can be obtained. A1* is the first Rivlin-Ericksen tensor defined
by

A L L1* = + T (6)

in which L u= ∇ , (7)

and trΠ = 1
2

1
2( * ).A (8)

3. Mathematical formulation

For the present analysis, the artery is assumed to be a circular
tube. For mathematical formulation, we have employed the cylin-
drical co-ordinates ( r z, ,θ ) system. Following Reference 27, a local
acceleration term is also included in the momentum equation. The
geometry of the flow configuration is presented in Fig. 1.

It can be shown that the radial velocity is negligibly small in mag-
nitude and may be neglected for low Reynolds number flow. For
the present case the velocity field is taken as

ui iu r t i= ( )[ ] =0 0 1 2, , , , , . (9)

Using Eq. (9), continuity equation is identically satisfied and
z-component of equation of motion gives

ρ ρ∂
∂

= − ∂
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+ ( ) + ∂
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( ) =u
t

p
z
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r r

rS ii
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1
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We have divided our domain 0 ≤ ≤r b as 0 ≤ ≤r a (a core region)
and a r b≤ ≤ (a periphery region). It is also assumed that the fluid
in the core is a Sisko fluid [26] and in the periphery a Newtonian
fluid. Thus the shear stress tensor is given by
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Where μ is the viscosity of the Newtonian fluid and the equation
for pressure gradient is taken from Reference 28:

− ∂
∂

= +p
z

A A tp0 1 cos ,ω (12)

where ∂ ∂p z is the pressure gradient produced by the pumping
action of the heart, A0 is the systolic component of the pressure
gradient, A1 is the amplitude (diastolic) of the fluctuation of the pres-
sure gradient, ω πp pf= 2 is the circular frequency and fp is the pulse
rate frequency. Further, the body acceleration is given by Refer-
ences 6, 20, 29, and 30.

G t A tg b( ) = +( )cos ,ω φ (13)

where Ag is the amplitude, fb is the frequency [ ω πb bf= 2 ] and φ
is the lead angle of G with respect to the heart action. Eliminating
Srz between (10) and (11), the equation in the core region is ob-
tained as, i.e. 0 ≤ ≤r a
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Similarly, for the periphery region, i.e. a r b≤ ≤ ,
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The boundary and initial conditions for the present flow con-
figuration are

∂
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=( ) ( )
=

u
r
r t

r
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0

0
,

, Symmetry condition

u r t r b2 0, ,( ) ( )== No-slip condition

Fig. 1. Schematic diagram of flow in vessel.
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The last two boundary conditions in Eq. (16) represent the con-
tinuity of velocities and stresses at the interface. The flow rate and
shear stress at wall are respectively given by
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a
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2 , (17)
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4. Dimensionless formulation of the problem

Introducing the dimensionless variables [20]

r t
r
b

u
u

U
tp= = =, , ,

0 2
ω
π

(19)

Eqs. (14) and (15) may be cast as (after dropping bars)
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The dimensionless boundary conditions become
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It is pointed out that Eq. (20) reduces to the corresponding equa-
tion of Massoudi and Phuoc [20] when ε → 0 . The volume flow rate
and the shear stress at wall are respectively given by
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5. Numerical solution

We have integrated Eqs. (20) and (21) subject to the boundary
and initial conditions given in Eq. (22) numerically by using a finite
difference method which is forward in time and central in space.
For details about this method see References 19, 31, and 32. Let us
denote u r ti j1 ,( ) as u i

j
1 and approximate various partial derivatives

as
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Similarly, for the time derivative we define the approximation:
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Using Eqs. (26) and (27), Eqs. (20) and (21) may be trans-
formed to the following difference equation
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For the solution of the present problem we have discretized the
radius by using the formula r i ri = −( )1 Δ , i Nc= +( )1 2 1, , . ,… such that
r rN core+( ) =1 and r i N i N N Ni c c c= − +( )( ) = + + +( )1 1 2 1, , , ,…… with the
following central difference approximation rN+ =1 1, where Δr is the
increment in the radial direction. Similarly for discretization
of time, we have used the following discretization formula
t j t ij = −( ) =( )1 1 2Δ , , , ..… , where Δt is the small time increment.
We have considered the following step size Δr = 0 025. and the time
step as 0.00001 for the present problem, so that the results may con-
verge to the accuracy of an order ∼ 10 7− .

6. Graphical results and discussion

To observe the quantitative effects of the Sisko material param-
eter, computer code is developed for the numerical simulations in
Matlab. In this study, generally we have taken ϕ = 0 and the radius
of the core is to be 60% of the radius of the tube. Our results are
based on the data of two different arteries (radius): for smaller vessel,
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coronary artery, the data are chosen as ( A dyne cm= 698 65 3. ,
r cm= 0 15. ) and for larger vessel, femoral artery, the data are
chosen as ( A dyne cm= 32 3 , r cm= 0 5. ) [18] and value of Womersley
number is chosen as 2.

The time-series of velocity at the central plane are shown in Fig. 2
for both femoral and coronary arteries. These graphs show that ir-
respective of the artery type, the velocity at the center fluctuates
around its mean value, increases and finally reaches the steady state
condition as the time increases (here we define τ s is the dimen-
sionless steady state time where the maximum velocity distribution
is obtained). Fig. 2(a) and (b) shows that the amplitude of the ve-
locity increases by increasing the amplitude of the body acceleration

while it shows decreasing trend by increasing the pulse frequency
fb (Fig. 2c,d) and material parameter of the Sisko model (Fig. 2e).

A comparison of our numerical results in the limiting case when
ε → 0 with that of Massoudi and Phuoc [20] is presented in Fig. 3.
Here radial and time evolutions of axial velocity for coronary artery
are compared. It is observed that our results are in pleasing agree-
ment with the existing results of Massoudi and Phuoc [20]. This
obviously corroborates the validity of our model and further
strengthens our faith on results obtained through it.

The velocity profiles at different time instances for femoral artery
are shown in Fig. 4. It is generally observed from these plots that
the body acceleration increases the magnitude of velocity while an

0 1 2 3 4 5 6
-2

-1

0

1

2

0 1 2 3 4 5 6

0

1

2

3

0 1 2 3 4 5 6
-2

-1

0

1

2

3

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

D
im

en
si

o
n

le
ss

 V
el

o
ci

ty
 a

t 
r 

=
0

D
im

en
si

o
n

le
ss

 V
el

o
ci

ty
 a

t 
r 

=
0

D
im

en
si

o
n

le
ss

 V
el

o
ci

ty
 a

t 
r 

=
0

Dimensionless Time, 

B2= 21.67 D
im

en
si

o
n

le
ss

 V
el

o
ci

ty
 a

t 
r 

=
0

D
im

en
si

o
n

le
ss

 V
el

o
ci

ty
 a

t 
r 

=
0

Dimensionless Time, Dimensionless Time, 

Dimensionless Time, Dimensionless Time, 

d: = 6.6,  = 4.64, = 0.1
c: = 1.41, = 21.67, = 0.1 

e: = 1.41, =21.67, n = 0.635

= 43.35 = 4.64

= 9.27

= 0.0

fb = 0.6 Hz

fb = 2.4 Hz

fb = 1.2 Hz

fb = 0.6 Hz

fb = 2.4 Hz

fb = 1.2 Hz

= 0.1 = 0.8 = 1.5

a: = 1.41 = 1.2, = 0.1,  n = 0.635
b: = 6.6,  = 1.2, = 0.1, n = 0.635

Fig. 2. Time-series of velocity at r = 0 for flow in two arteries, where (a), (c) and (e) are for larger artery (r = 0.5 cm, A0 = 32 dyne/cm3) and (b) and (d) are for smaller artery
(r = 0.15 cm, A0 = 698.65 dyne/cm3). Velocity graphs for different values of B2 (varying Ag) are shown in (a), (b); velocity graphs for different values of fb are shown in (c) and
(d); velocity graphs for different values of ε are shown in (e).
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increase in pulse frequency fb decreases its magnitude. There are
inflection points within the time cycle of the velocity profile where
the shapes of velocity changes from convex to concave. It is ob-
served from Fig. 4(a) that the shape of the velocity profile is parabolic
in the absence of body acceleration at the beginning of the fluctu-
ation cycle or t ts= as evident in Fig. 4(b). Fig. 4(c) and (d) indicates
that the maximum velocity shifts from the center of an artery toward
the wall during the first half of fluctuation cycle and then moves
back to the center of an artery during the second half of fluctua-
tion cycle. The core region is taken as Newtonian and the effects
of body acceleration are minimized in comparison with other panels
in Fig. 4(e). It is noted from this figure that the velocity profile returns
to its parabolic shape and the curve becomes concave at t t ts half= + .
In Fig. 4(f) the core region is assumed as non-Newtonian fluid and
the effect of body acceleration is increased. This results in the forward
shift of the fluctuation cycle.

The velocity profile for smaller artery, coronary artery, is shown
in Fig. 5. Fig. 5(a–b) shows that the velocity profiles follow the same
pattern as shown in Fig. 4. A comparison of the velocity profiles in
Figs. 4 and 5 for two arteries reveals that the velocity is faster in
larger artery as compared to smaller artery while its grows signifi-
cantly slowly for Newtonian case as compared to the non-Newtonian
case. Fig. 5(g) shows the effect of material parameter of the Sisko
model. It is found that the magnitude of velocity increases by de-
creasing ε which ultimately shows that velocity profile is a

decreasing function of material parameter. Fig. 5(h) shows a de-
crease in velocity by increasing the thickness of the peripheral layer.

Figs. 6 and 7 present the effects of body acceleration Ag , body
force fb, shear-thinning and material parameter on the dimension-
less flow rate and the dimensionless shear stress. The profiles indicate
that the flow rate and the wall shear stress fluctuate around mean
values and these mean values become constant values when steady
state conditions are achieved. It is also observed that the ampli-
tude of fluctuation increases with an increase in the amplitude of
body acceleration while it shows converse behavior with increas-
ing the material constant of the Sisko model. The fluctuation of these
profiles is always between a positive and a negative value in the
time cycle for the larger artery, while for the small artery such fluc-
tuations of wall shear stress in the smaller artery are significantly
higher (about three to five times) than those obtained for the larger
artery.

Now, we would like to comment on the significance of the Sisko
model in the light of the above discussion.

It has been pointed by Yilmaz and Gundogdu [1] that all the gen-
eralized Newtonian fluid models of (blood) viscosity show shear-
thinning behavior and must meet the following requirements. They
must effectively fit the viscosity shear rate data of blood at all shear
rates, whether high, medium or low. Power-law model is suitable
for blood at medium shear rates. However, it does not represent the
blood rheology at low and high shear rates. In fact power-law
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equation predicts infinite viscosity at low shear rate and zero vis-
cosity as shear rate approaches to infinity. The Sisko model extends
the power-law model to include a finite value of viscosity as shear
rates approach infinity. In this sense, the Sisko model is better capable
of predicting the blood rheology at high shear rates. Graphical il-
lustrations show that the additional constant μ∞ ( ε in dimensionless
form) in the Sisko equation significantly alters the flow character-
istics of blood. It is observed that the power-law model predicts
higher value of the amplitude of dimensionless velocity at r = 0 than
the Sisko model. Similar is the case with dimensionless radial ve-
locity. This significant effect of ε on velocity is later transmitted in
other variables such as flow rate and wall shear stress. It is found

that flow rate through artery decreases while wall shear stress in-
creases in going from power-law to the Sisko model. For instance,
keeping the other parameters fixed, a decrease of 20% is noted in
the flow rate as ε changes from 0 to 1.5.

The above discussion clearly shows that inclusion of ε in the
power law equation brings significant qualitative changes in the
results.

7. Concluding remarks

A mathematical model for two-layer unsteady pulsatile
flow in the presence of body acceleration is derived using the
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constitutive equation of a Sisko model. The important
phenomena associated with this equation are presented
and discussed in detail with particular focus on interaction
of these phenomena with pulsatile flow and body acceleration.
The present analysis is more general and even such flow
analysis with F-L effect in the Sisko fluid is not yet available
in the literature. The following points are concluded from this
study.

• The magnitude of blood velocity in the femoral artery is greater
than in the coronary artery.

• Body acceleration increases the amplitude of the flow
velocity.

• The material parameter of the Sisko model has greater influence
on blood flow in coronary artery as compared to the femoral artery.

• This study also demonstrates the potential of rheological prop-
erties of the blood to control the important variables associated
with the blood flow.

• The results obtained here show pleasing agreement with the ex-
isting results of Massoudi and Phuoc [20].
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Nomenclature

a Radius of core region
A0 Amplitude of the pressure gradient
A1 Amplitude of the pulsatile component
Ag Amplitude of the body acceleration
b Radius of an artery
B1 Dimensionless pulsatile constant
B2 Dimensionless body acceleration constant
E Ratio of the systolic to diastolic pressure
fp Heart pulse frequency
G(t) Body acceleration
N Power law constant

P Pressure
Q Volumetric flow rate
r Radial co-ordinate
T Time
u1 Velocity component in core region
u2 Velocity component in periphery region
U0 Average velocity

Greek symbol
Π The second invariant of strain-rate tensor
A1* first Rivlin–Ericksen tensor
μ1 Viscosity of the non-Newtonian fluid
μ2 Viscosity of the Newtonian fluid
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ρ1 Density of the core fluid
ρ2 Density of the Plasma fluid
φ Phase angle
ωp Circular frequency
ε1 Asymptotic value of viscosity at very high shear rates
ε2 Consistency
α Womersley number of the non-Newtonian fluid
γ Womersley number of the Newtonian fluid
τ s Wall shear stress
μ* Dimensionless viscosity
ρ* Dimensionless density
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