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ABSTRACT 
The paper settles the asymptotic behaviour of the solutions of the difference- 

differential equation (1.1) in a case that was left open in N. G. DE BRUIJN [l]. 
Theorem 3.1 states that in this case all solutions have limits for 2 -+ co. A result 
about the speed of convergence is given by theorem 4.1. 

1. INTRODUCTION 

In this paper we shall study the asymptotic behaviour of the solutions 
of equations of the following kind: 

(1.1) wWf’(4 = (1+4(4)f@- l)-(1 +p(x))f(x)+r(x), 

where w is a positive continuous function on [l, W) and p, q, r are con- 
tinuous real functions on [l, oo) satisfying the inequalities p(z) > - 1, 

q(x)> - 1, Ip(4I <d-4, k(x)1 <p)(x), I+41 <&4, where v is a decreasing 
positive function on [l, c=) with convergent integral ST q(z)dx. 

A function f is called a solution of (1.1) if f is defined, real-valued and 
continuous on [0, 00) differentiable on (1, CXJ) and satisfying (1.1) on 
(1, co). Every continuous function f on [0, l] can be extended to a solution 
by means of solving the differential equation w(x)y’(x) + (1 +p(z))y(x) = 
= (1 + g(x))f(x - 1) + T(Z) for 1 Q 2 < 2 (with the initial condition y( 1) = f( l)), 
and so on. 

N. G. DE BRUIJN ([l], [2]) solved the question of the asymptotic be- 
haviour of the solutions with relatively mild restrictions on the coefficients 
of the equation. In order to give an idea, we explain the situation in the 
case w(x) = xWa, b constant. For or< 0 all solutions have limits if x: + 00 
([2]) ; for 01> 1 all solutions are asymptotically periodic ([l]) ; for 8 <ar < 1 
they are asymptotically periodic in a modified sense (argument x - jy t-” dt 
instead of x) ([l]). For 0 <01< Q the question was left open ([ 11). In this 
paper we shall prove that the behaviour in the case 0 < 01 Q 4 is the same 
as in the case ol< 0 i.e. that every solution has a limit. Moreover, in the 
special case w(x) = x-lj2 we shall prove a result about the speed of con- 
vergence. 
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2. PRELIMINARIES 
We use the following notation: 

M(x)= max f(t), m(x)= min f(t), WI = %4 - w4, 
z<t4z+1 z<tez+1 

where f is a solution of (1.1). 
Furthermore we use formulas like g(z) <O@(z)) ; this one denotes that 

there exist numbers Cl, CZ such that g(z) gC&z) for all x> Ca. 

LEMMA 2.1. Every solution f of (1.1) is bounded. Moreover, the limits 
of &f(z), m(z) and 6(z) for z + oo exist. 

PROOF. Let X> 0. Let 20 be a number such that J.f(z+ 1) =/(x0), 
x+l<xogz+2. If x0=x-1-1 then trivially H(z+l)gM(x). If z+l< 
<za:o<2+2 then f’(xo)>O and then we have, by (l.l), 

hence 

(2-l) 

(1 +p@o))~@+ 1) c (1 +crcQ))~(~) +r(xo), 

b1(2+1)<~(~)+(1+~(~))0(~(~+1)), 

where A(x)= max (IM(z)l, Im(z)l>. In a similar manner we obtain 

(2.2) m(z+1)~nz(z)+(l+~(z))O(~(x+1)). 

It follows that 

from which we infer that A is a bounded function. Using this in (2.1) 
and (2.2) we conclude that M(x) and m(z) have limits for x + 00. 

COROLLARY 2.1. If lim d(x) = 0 then lim f(z) exists. 
z-SC0 a-r-20 

LEMMA 2.2. If p, q, r are identically zero then M and S are monoto- 
nically non-increasing and m is monotonically non-decreasing. 

PROOF. Arguing in a similar manner as in the proof of lemma 2.1 we 
find that M(x + 1) <M(x). Suppose that M(x) is not monotonically non- 
increasing. Then there are numbers zr and E, ZI> 0, 0 < E c 1, such that 
JqXl) < qx1+ 6). 

Let the maximum Bl(zi + E) be attained at x2, i.e. 64(x1 + E) = f(xa). Then 
x1+1<22<x1+~+1, since xi+.z<za:2<z~+l would imply N(Q+E)= 
= f(zz) < M(xi). Hence f(xs) < M(xl -t 1). But then we have a contradiction : 
iIf < 64(x1 + E) = f(x2) Q dl(x~ + 1) < IIf( We can treat m(x) in a similar 
manner. 



3. THE ASYMPTOTIC BEHAVIOUR 

For convenience we introduce the abbreviations V and W: if w is of 
bounded variation on every interval [l, x], x> 1, then V(x) will denote 
the total variation on this interval 

W) = J= Idw(x)I ; 
1 

further we introduce a sequence W(n), n= 2, 3, . . . . defined by 
a-1 k+l 

W(n)= 2 [ J (w(z))-2dx]-1. 
k-l k 

THEOREM 3.1. If w satisfies the following additional conditions 
i) w is of bounded variation on every interval [l, x], x > 1, 
ii) W(n) -+ 00 if n + co, 

iii) lim inf,,, V(n)/W(n)< 1, 
then every solution f(x) of (1 1) has a limit for x + 00. 

PROOF. Squaring w(x)/‘(x) +f(x), using (1.1) and integrating from 1 
to n, n= 2, 3, . .., we obtain 

(3-l) 
,j [w(x) f’CW dx + 2 ,j ~(4 f’@) f&I dx = 

=/ (f(4)2 d-1 W))2 dx+JW 

where R(n) is a bounded function of n (since f is bounded). 
For our purpose we need an upper bound for the right-hand side of 

(3.1) and lower bounds for the integrals on the left-hand side of (3.1). 
The right-hand side of (3.1) is bounded above since f is bounded. 

We treat the second integral on the left-hand side of (3.1) as follows : 
the function g defined by g(x) =K w(t) f’(t) dt is bounded, for, by (l.l), 
we have g(x) = Ji f(t) dt - x-, f(t) dt + K (g(t) f(t- 1) + p,(t) f(t) + r(t)) dt is 
bounded. Integrating by parts we obtain 

2 s” 44 f’(x) f(x) dx = 2 s” 4x1 f’(xM4 -f(n)) dx + W(n) g(n) = 
1 1 

=2f(n)s(n) - (f(l) -f(n))2 41) -s" (f(x) -fW)2Wx). 
1 

Hence 

(3.2) 2 ~w(x)f’(x)f(Z)dx~0(1)-~ (f(4-f(4)2Wx). 
1 1 

If V is bounded then the right-hand side of (3.2) is bounded below. 
If I’ is unbounded we proceed as follows: Let Ml, ml, 81 be the limits 
of M, m and 6, respectively. We assume &> 0. For every E, O<E<&, 
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there is a natural number N(E) such that [M(z) --MiI <e/2, IV+) ---ml1 <c/2, 
16(z)-611<~/2 if x>N(e). Then (f(x)-f(n))2<(&+~)2 if ~>N(E). Hence, 
for n>iV(a), 

j (f(4-f(n))2we< ~V(Z)-f(n))2dV(z)+(hfE)2V(n). 
It follows that in all cases we have 

(3.3) 2 ; ~(~)f’(~)f(~)~>0(1)-(61+&)2’V(n), 

if e is fixed. 
Next we deal with the first integral on the left-hand side of (3.1). 
We have 

k+l k+l 

W) Q s If’Wl~x= s WfW~ * 
k k 

Application of Schwarz’s inequality gives 
k+l k+l 

w))2< s k44f'(412dX s (w(x))-2dx. 
k k 

Dividing by the second integral on the right-hand side, summing over 
k from 1 to n- 1, we obtain 

(3.4) j [W(X) f’(X)j2 dX $1 
1 

[?I (W(X))2 dX]-1 (8(k)j2. 

Furthermore, 
n-l k+l n-l 

(3.5) kXl [ i O-J@))-~ dzl-l (W3)2> k ;)+, a k31 -42j2 J+'(n) + O(l) 

if E is fixed. Combining (3.1), (3.3) and (3.5) we obtain 

(dl + 42)2w(12) - (&+ &)2V(1z) Q O(l), 

if E is fixed. Dividing both sides by W(n) and letting n --f oo through 
values of n such that V(n)/W(n) + LX= lim inf V(n)/W(n), we obtain 
(&-42)2<(81+ ) E aa. Making E + 0 we get a contradiction. Hence &= 0. 
Application of corollary 2.1 completes the proof. 

REMARK 1. Theorem 3.1 applies if w is a monotonically non-increasing 
function with divergent integral JF (w(x))2 dx, in particular if w(x) = xPL1, 
0 <ol Q 4. The theorem also applies if w(x) = xeoI, oc < 0. 

REMARK 2. If w(x) =x+, Ocargi, ~(2) =&) =r(x) = 0, then it is 
easily proved that every solution f has n continuous derivatives for x>n, 
n= 1, 2, . . . . Moreover, f(k)@+ k), k > 1, is a solution of an equation of 



77 

type (1.1). (See [l]). Hence, by theorem 3.1, all derivatives have limits 
for x -+ 00. Of course, lim f(k)(~)=0 if k>O, since f is bounded. 

REMARK 3. If we examine the proof of theorem 3.1 then several 
generalizations come into mind. For instance, we can replace f(x- 1) in 
the right-hand side of (1.1) by a linear convex sum in which f appears 
with different retardations of the argument. We can also drop the linearity 
of the right-hand side of (1.1). These considerations suggest a generalization 
to cases where a Stieltjes integral appears in the right-hand side of (1 .l). 
We give theorem 3.2 as an example, although further generalizations 
are still possible. 

THEOREM 3.2. Let g be a non-decreasing function on [0, l] with the 
properties: g(l)-g(O)=l, g(l)-g(#)=@>O. Let h be an increasing locally 
Lipschitzian function on (-00, 00) (i.e. IQ)-h(y)j/]x-y] is bounded if 
x and y are bounded) with the properties h(0) = 0, ]+)I --t oo if 1x1 + 00. 
Let w, p, q and r be as in theorem 3.1 except for condition iii), which 
is replaced by the stronger condition lim inf V(n)/ W(n) = 0. Then every 
solution f(z) of 

(3.6) WX)f’(x)=P+4W) i h(f(x-t))dg(t)-(l+p(x))h(f(x))+r(x) 
0 

tends to a constant if x --f 00. (Our Stieltjes integrals Ji are taken over 
the closed interval [0, 11; in other words they are what is often denoted 
by S;‘). 

REMARK. It can be proved that there exists precisely one solution f 
which equals a prescribed continuous function on [0, l] (For example 
see [4]). 

PROOF OF THEOREM 3.2. First we prove the analog of lemma 2.1 for 
solutions of (3.6). Let ~20. There is a number ~0, z+l<xo<x+2, such 
that M(z+l)=f(~o). Ifz+l<zo<x+# then triviallyM(z+l)<M(z+*), 
h(M(z+l)gh(M(z+#)). If z+$<z0<2+2 then f’(~0)>0. In this case 
we have, by (3.3), 

(l+I)(xo))h(~(x+1))g(1+~(xo:o)) i h(f(xo--t))&g(t)+r(xo:o)< 
0 

<w(l +a(xo)) wf(x+ 1)) +/Ml +Q(xo:0))ww+Q)) +MoIo), 

where 

8FJD dg@)>/% cw1=1--p1. 

It follows that 

h(~(x+1))<~(~(x+~))+(1+B(x+Q))O(~(x+l)), 
6 Indagationes 
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where B(x)= max {Ih(M(z))j, [h(m(x))l). In a similar manner we obtain 

It results that 

from which it follows that B is a bounded function. Using this result in 
the inequalities for M and nz we conclude that M(z) and m(z) have limits 
for 2 + 00. 

Proceeding in the same way as in the proof of theorem 3.1 (squaring 
integrating) we obtain 

(3.7) 

/ 

[ C44f’(W~~ + 2 [ 44 f’(4 W(4) &J = 

=I $t h(f(x-t))dg(t)12-[h(f(x))12}~x+R(n). 

Put H(x)= c h(s) ds. Obviously H(z) > 0. Integrating by parts we 
obtain 

(3.8) 

2 / w@)f’@) W(x)) dx=2w(n)W(n)) -2wP) W(l)) - 

- 2 s” H(f(x)) dw(x) > O( 1+ V(n)). 
1 

In order to prove that the right-hand side of (3.7) is bounded above 
we proceed as follows: 

n 1 

S U f W(X - 0) dsV)12 - WW12) d: = 
1 0 

0 11 

= S dx S J {Wx - 0) Wx - 4) - WW)12&V) dg6-d = 
1 0 0 

11 n 

= J .f h(t) W) S @(f(x - t)) Wx - 4) - WW)121 dx= 
0 0 1 

11 n 

= d i 4m4-m s {-~[h(f(x-t))-h(f(x-8))12+ 

+ HWx- WI2 + 4W(x -@)I2 - WW12j dxg 
1 n 

< .f dg(t) J {EW(x- WI2 - [W(4)12) dx = 
0 1 I 

1 1 II 1 

= S WH S Cf4f(4)12 a-c- J VW4)12 dx}< J [h(f(x))12 ok 
0 1-t 98-t 0 
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The proof of theorem 3.2 is completed as follows. Let lim &r) =8x. 
Then the right-hand side of (3.4) (obviously (3.4) is valid) is >@fW(n) 
for n sufficiently large, since W(n) + bo if n -+ do. Using this result and 
combining (3.7), (3.4) and (3.8) we obtain 

&fW(n)<O(l+ V(n)). 

Dividing by W(n) and letting n + 00 through values of n such that 
V(n)/ W(n) -+ 0 we obtain &= 0. 

4. THE SPEED OF CONVERGENCE 

We shall restrict ourselves to the equation 

(4.1) x-f’(x) =f(x- 1) -f(x), 

with LY=$, although the method can be used if O<or < *. 
If f is a solution of (4.1), we already know that 

f(x)=C+o(l) (x + 00). 

The question arises what more can be said. We shall make the agreement 
that in this section f will denote a solution of (4.1) with the property 
that f(z) -+ 0 if x -+ 00. This is possible since (4.1) is linear and constants 
are solutions. 

LEMMA 4.1. There exists a sequence {xk}rS1 with the properties: 
f(xk)=O, O<~k+i-~kgl for k=l, 2 . . . . 5k + 00 if k + 00. 

PROOF. Application of lemma 2.2 yields M(z) > 0, m(x) Q 0 for 2 > 0. 
Hence there is at least one zero of f in every closed interval of length one. 
For n > 1 let un be the largest zero with u,, <n, and vR the smallest with 
vn>n. Hence n--l<zl,<v,<ni-I, v,-uu,<l, v~Qu,,+~, u,,+l-v,,<l. 
Omitting duplications from the sequence UI, vi, UZ, va, . .., we obtain a 
sequence with the required properties. 

For later reference we quote the following well-known inequality of 
Poincare ([3], theorem 257): 

LEMMA 4.2. If g E @([a, b]), b >a and if g(u) =g(b) = 0 then 

i (g’(x))2 dx > JP(b - a)-2 i (g(x))2 dx. 
a 

THEOREM 4.1. If /(CC) is a solution of (4.1) which tends to zero for 
x--f 00, then 

f(x) = 0(x-q (x + 00). 
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PROOF. Squaring ~--1/sf)(~~~)+f( ) 2 , using (4.1), integrating from n to m, 
1 <n <m natural numbers and letting m --f oo we obtain 

(4.2) y(f’(x))2x-ldx = s” (f(x))2rZx+ (f(n))zn-1’2 - -& y (f(x))zx-3’2dx. 
n n-1 R 

Put 

u(x) = ; (f(t))2 dt, v(x) = u(x) + (f(X))2 x-1’2. 
a-l 

We have V’(Z) = - (f(z) -/(CC- 1))2- *(f(x))2 x-3/2, whence v is non- 
increasing. We note that 

(4.3) ; (f’(x))2 x-1 dx < v(n). 
¶I 

Using lemmas 4.1 and 4.2 we obtain the following chain of inequalities : 

7 (f’w2t1 d-f> 2 x& “s” (f’(W &a 
en 3 

zk+1 

(4.4) 
! %+l 

>n2 2 J (f(t))2(t+ l)-ldt>n2 7 (/@))a@+ l)-ldt> 

ak>n % a+1 

>n2 5 (I~+2)-1ItS+1V(t))~dt=+ z (k+3)-lu(k+2). 
L-n+1 k k-n 

Further we have the inequality 

(44 7 (f’(q)2tl&a : (k+$)-l(d(k))2, 
n k-n 

which can be derived in a similar way as (3.4). From lemma 2.2 and the 
fact that f( ) x + 0 if x + bo it follows that m(k)<O<M(k), whence 
(f(k+2))s<(8(k+2))s<(S(k))s. Using this in (4.6) we derive 

(4.6) n2(n + 2)-l/2 7 (t’(t))wtsna,~ (k+3)-l(f(k+2))2(k+2)-1’2. 
0 

Adding (4.4) and (4.6), wing (4.3), we infer 

or, since v is non-increasing 

(4.7) 3~2~:~ (k+2)-1~(k+l)<(l+n~(n+2)-~/~+n~(n+2)-~) v(n). 
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Putting 

we obtain from (4.7) 

from which it follows 

So we have 

(1,s) S,<SA-1, 

that 

s, = O(n-9). 

5 (k+ 2)-l v(k+ 1) = O(r9). 
k-n 

Since v is monotonically non-increasing we have 

w(n) i (k+ 2)-l = O(n-9, 
k3anle 

whence 
v(n) = O(n-9). 

From (4.3) and (4.5) it follows that 

2 (k+~)-1(8(k))2=O(n-“), 
k-n 

hence, by the same device (since (S(k))2 is also monotonically non-in- 
creasing), 

(S(n))2= 0(%-q, 

which completes the proof. 

REMARK. There are reasons to believe that the result of theorem 4.1 
is not the best possible one. 
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