
International Journal of Solids and Structures 48 (2011) 280–291

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r
Random homogenization analysis in linear elasticity based on analytical bounds
and estimates

Juan Ma a,b,⇑, Ilker Temizer b, Peter Wriggers b

a School of Electronical and Mechanical Engineering, Xidian University, Xi’an 710071, PR China
b Faculty of Mechanical Engineering, Leibniz Universität Hannover, 30167 Hannover, Germany

a r t i c l e i n f o
Article history:
Received 23 June 2010
Received in revised form 16 September
2010
Available online 26 October 2010

Keywords:
Homogenization
Linear elasticity
Random effective properties
Random Factor Method
Monte-Carlo Method
0020-7683/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.ijsolstr.2010.10.004

⇑ Corresponding author at: School of Electronical
Xidian University, Xi’an 710071, PR China.

E-mail addresses: juan@ikm.uni-hannover.de (J. M
ver.de (I. Temizer), wriggers@ikm.uni-hannover.de (P
a b s t r a c t

In this work, random homogenization analysis of heterogeneous materials is addressed in the context of
elasticity, where the randomness and correlation of components’ properties are fully considered and ran-
dom effective properties together with their correlation for the two-phase heterogeneous material are
then sought. Based on the analytical results of homogenization in linear elasticity, when the randomness
of bulk and shear moduli, the volume fraction of each constituent material and correlation among ran-
dom variables are considered simultaneously, formulas of random mean values and mean square devia-
tions of analytical bounds and estimates are derived from Random Factor Method. Results from the
Random Factor Method and the Monte-Carlo Method are compared with each other through numerical
examples, and impacts of randomness and correlation of random variables on the random homogeniza-
tion results are inspected by two methods. Moreover, the correlation coefficients of random effective
properties are obtained by the Monte-Carlo Method. The Random Factor Method is found to deliver rapid
results with comparable accuracy to the Monte-Carlo approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The homogenization method has been developed and extended
to reduce the number of composite design parameters significantly
by the introduction of effective characteristics using potential or
complementary energy principles (Markovic and Ibrahimbegovic,
2006; Aboudi, 1991; Zohdi and Wriggers, 2005). The method relies
on a statistically representative sample of material, referred to as a
representative volume element (RVE). It is a finite sized sample
from the heterogeneous material that characterizes its macro-
scopic behavior (Aboudi, 1991; Zohdi and Wriggers, 2005; Torqu-
ato, 2002). Although this technique, in its modern version, is
more than 40 years old, there are many novel approaches and
applications, such as in the food industry (Kanit, 2006), some com-
posites made of wood (Lux, 2006), superconductors (Kaminski,
2005), even for time-dependent cases by ‘‘equation free” approach
(Samaey et al., 2006); a variety of materially nonlinear multi-com-
ponent composites can be homogenized as well (Idiart, 2006). Fol-
lowing numerous engineering applications, the strength of
composites can also be estimated by the homogenization method
(Steeves and Fleck, 2006).
ll rights reserved.
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Homogenization techniques deliver effective properties of het-
erogeneous materials. Exact computational approaches are sum-
marized in Zohdi and Wriggers (2005). Here, the attention is
focused to estimates and bounds. In this context, early approxima-
tions for the effective properties were first developed by Voigt
(1889) and Reuss (1929). In 1957, Eshelby (1957) obtained a rela-
tively compact solution that has been a basis for many approxima-
tion methods. Based on variational principles, Hashin and
Shtrikman (1962) developed a model that improved solutions of
the effective properties. Additional classical models have been
proposed to estimate the effective properties, including the Self-
Consistent method, the dilute distribution method, and the Mori
and Tanaka (1973) method. Further approaches for estimating or
bounding the effective responses of heterogeneous materials can
be found for instance in Aboudi (1991), Mura (1987) and Nemat-
Nasser and Hori (1999).

In recent years, a lot of attention is paid to random composites
because of an uncertainty in reinforcement location/shape and/or
pore spatial distribution in matrices, and randomness in compo-
nents. Kaminski reported the perturbation-based homogenization
analysis of two-phase composites (Kaminski and Kleiber, 2000)
and the perturbation-based homogenization analysis for thermal
conductivity of unidirectional fiber reinforced composites (Kamin-
ski, 2001). Sakata obtained a macroscopic response by applying
stochastic homogenization analysis for unidirectional fiber rein-
forced composites using the Monte-Carlo simulation (Sakata
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Table 1
A summary of analytical estimates for the effective elasticity moduli for spherical
particles in d-dimensions.

Model k* u*

SC P2
i¼1V ðiÞ kðiÞ�k�

kðiÞþgðu�Þ
¼ 0

P2
i¼1V ðiÞ uðiÞ�u�

uðiÞþf ðk� ;u� Þ ¼ 0

DF dk�

dV ð2Þ
¼ 1

1�V ð2Þ
½k� þ gðu�Þ� kð2Þ�k�

kð2Þþgðu�Þ
du�

dVð2Þ
¼ 1

1�V ð2Þ
½u� þ f ðk�;u�Þ� uð2Þ�u�

uð2Þþf ðk� ;u� Þ

MW k��kð1Þ

k�þgðuð1Þ Þ ¼ V ð2Þ kð2Þ�kð1Þ

kð2Þþgðuð1Þ Þ

� �
u��uð1Þ

u�þf ðkð1Þ ;uð1Þ Þ
¼ V ð2Þ uð2Þ�uð1Þ

uð2Þþf ðkð1Þ ;uð1Þ Þ

� �
Here Maxwell/Mori–Tanaka model yields identical results to the Mori–Tanaka
model, although the derivation procedures are slightly different (Torquato, 2002).
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et al., 2008). Sakata also reported the three-dimensional results of
perturbation analysis for the homogenized elastic tensor and the
equivalent elastic properties (Sakata et al., 2008) or the second-or-
der perturbation-based homogenization method (Sakata et al.,
2008). Kaminski also developed a higher order perturbation-based
analysis (Kaminski, 2007). Ostoja-Starzewski (2002) and Xu and
Brady (2005) designed other approaches like the Fourier Galerkin
method for random homogenization analysis. So far, most of the
analytical models still consider the randomness of the geometric
configuration like shape, size, location and distribution of particles,
and the perturbation-based homogenization analysis is used as a
main solution. For composites with different constituents, random-
ness of physical properties and volume fraction of the different
constituents has an important effect on the effective properties
after homogenization. Especially, the correlation among random
variables should be fully considered, as should be the correlation
among final random results. The perturbation method is based
on the hypothesis that a random variable has a small perturbation
about the mean value and subsequently Taylor series is used to de-
scribe a random variable as the sum of a determinate part plus a
perturbation part that together transform the nonlinear equations
into linear recursion formulas. For this reason, it is easy to get the
first-order perturbation expansion, but a great deal of computation
is needed to get the second-order or higher-order perturbation
terms and the final results because of second-order or higher-order
partial derivatives included. Moreover, this approach can quickly
become numerically intractable when a large number of random
variables are involved (Kaminski and Kleiber, 2000). Finally, due
to the existence of secular terms, the accuracy and application of
perturbation method is limited to some degree.

The goal of this work is to solve the random homogenization
problem by two different methods while completely considering
the randomness and correlation of the heterogeneous material.
Based on the summary of the analytical results regarding the esti-
mation of effective linear elasticity parameters, random effective
properties of the two-phase heterogeneous materials are analyzed
by the Random Factor Method (RFM) and the Monte-Carlo Method
(MCM), in which the randomness of the bulk and shear moduli,
volume fractions of the two constituents and the correlation
among the random variables are considered fully. The numerical
characteristics of effective properties after homogenization are de-
rived by means of the random variable’s moment method, and they
are then compared with those obtained by MCM in order to verify
the effectiveness of the method given in this paper. A future aim
along this direction is to introduce the uncertainty to the finite ele-
ment analysis of linear and nonlinear heterogeneous materials and
multiscale engineering problems with heterogeneities distributed
over multiple length scales.

2. Random analysis of the analytical bounds and estimates for
the effective elasticity moduli

2.1. Monte-Carlo Method (MCM)

Monte-Carlo Method, the alternative to RFM, is used to solve
the random problem by the test of random samples. According to
the principle of MCM, samples associated with every random var-
iable should be generated from their probabilistic distribution and
correlation. Each sample realization is analyzed to obtain target
quantities that display a statistical distribution. For normal distri-
butions that are typically obtained in homogenization techniques,
this statistical distribution is characterized by the mean value and
the mean square deviation. In most Monte-Carlo simulations, dif-
ferent random variables are assumed to be independent of each
other. However, this assumption does not hold in many engineer-
ing problems. Based on the Cholesky factorization of covariance
matrix of random vector (Ali Touran, 1992), the simulation of the
correlation among random variables is realized by MCM in this
work. Some computational results and conclusions about correla-
tion of random variables are given in Section 3.3.

2.2. Random Factor Method

The main ideas of Random Factor Method (RFM) (Ma et al.,
2006; Gao et al., 2004) are as follows. A random variable y can
be expressed as a random factor ~y multiplied by its mean value
ly : y ¼ ~y � ly. The random factor represents the randomness of
the variable; its mean value is 1.0 and its mean square deviation
is that of the random variable. ~y obeys the same probabilistic dis-
tribution as y.

The main analyzing procedure by RFM in this paper is: firstly,
the constituent’s random variable is expressed as its random factor
multiplied by its mean value; secondly, the material’s effective
properties are then written as random factors of constituents’ ran-
dom properties and volume fractions multiplied by their mean val-
ues respectively, that is, the material’s effective properties are the
functions of these random factors; finally, the mean values and
mean square deviations of the effective properties can be obtained
by using moment method of random variables.

RFM can directly and clearly reflect the influence of any random
variable on the results. Additionally, based on the random vari-
ables’ moment method, it is easy to consider the effect of correla-
tion among random variables on homogenization results by RFM.

In the following, aiming at two-phase heterogeneous materials,
the analytical bounds (Reuss–Voigt bounds (RV), Hashin–Shtrik-
man bounds (HS)) and estimates (Maxwell/Mori–Tanaka model
(MW), Self-Consistent model (SC), Differential model (DF)) listed
in Tables 1 and 2 (Torquato, 2002) will be considered. The mean
values and mean square deviations of random effective properties
will be derived by RFM.

In Tables 1 and 2, the volume average hð�Þi ¼def
V ð1Þð�Þð1Þþ

V ð2Þð�Þð2Þ; hð~�Þi ¼def
V ð1Þð�Þð2Þ þ V ð2Þð�Þð1Þ; kð1Þ;uð1Þ;V ð1Þ are the bulk and

shear moduli and the volume fractions of the first type of constit-
uent; k(2), u(2) and V(2) are those of the second type of constituent;

f ðx; yÞ ¼ y½dx=2þðdþ1Þðd�2Þy=d�
xþ2y ; gðxÞ ¼ 2ðd�1Þ

d x; for HS model, it is assumed

that k(2) P k(1), u(2) P u(1).
Considering the randomness of k(1), u(1), k(2), u(2) and V(2) simul-

taneously, they can be written as kð1Þ ¼ ~kð1Þ � lkð1Þ ; k
ð2Þ ¼ ~kð2Þ�

lkð2Þ ;u
ð1Þ ¼ ~uð1Þ � luð1Þ ;u

ð2Þ ¼ ~uð2Þ � luð2Þ and V ð2Þ ¼ eV ð2Þ � lVð2Þ from
RFM, where ~kð1Þ; ~uð1Þ; ~kð2Þ; ~uð2Þ; eV ð2Þ are the random factors
of k(1), u(1), k(2), u(2), V(2) respectively, mean values of random fac-
tors are 1.0 and their mean square deviation are those
rkð1Þ ;ruð1Þ ;rkð2Þ ;ruð2Þ ;rV ð2Þ of k(1), u(1), k(2), u(2), V(2) respectively,
lkð1Þ ;luð1Þ ;lkð2Þ ;luð2Þ ;lV ð2Þ are mean values of every random variable
respectively.

For RV, HS and MW models in Tables 2 and 1, they are explicit
and can be generally described as follows:

k� ¼ G ~kð1Þlkð1Þ ; ~u
ð1Þluð1Þ ;

~kð2Þlkð2Þ ; ~u
ð2Þluð2Þ ;

eV ð2ÞlVð2Þ

� �
; ð1Þ



Table 2
A summary of analytical bounds for the effective elasticity moduli of macroscopically isotropic composites in d-dimensions in increasing order from left to right.

Matrix RV� HS� Effective HS+ RV+ Particle

k(1) hk�1i�1
hki � V ð1ÞV ð2Þ ðkð2Þ�kð1Þ Þ2

h~kiþgðuð1Þ Þ
k* hki � V ð1ÞV ð2Þ ðkð2Þ�kð1Þ Þ2

h~kiþgðuð2Þ Þ
hki k(2)

u(1) hu�1i�1
hui � V ð1ÞV ð2Þ ðuð2Þ�uð1Þ Þ2

h~uiþf ðkð1Þ ;uð1Þ Þ
u* hui � V ð1ÞV ð2Þ ðuð2Þ�uð1Þ Þ2

h~uiþf ðkð2Þ ;uð2Þ Þ
hui u(2)
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u� ¼ F ~kð1Þlkð1Þ ; ~u
ð1Þluð1Þ ;

~kð2Þlkð2Þ ; ~u
ð2Þluð2Þ ;

eV ð2ÞlV ð2Þ

� �
: ð2Þ

According to the random variables’ moment method (Gao et al.,
2004), one can obtain the mean values of k* and u* by substituting
the mean values lkð1Þ ;luð1Þ ;lkð2Þ ;luð2Þ ;lVð2Þ into Eqs. (1), (2), and
their mean square deviations can be computed by Eqs. (1) and
(2) in Appendix, where k(1), u(1), k(2), u(2), V(2) in @k�

@kð1Þ
; @u�

@kð1Þ
;

@k�

@kð2Þ
; @u�

@kð2Þ
; @k�

@uð1Þ ;
@u�

@uð1Þ ;
@k�

@uð2Þ ;
@u�

@uð2Þ ;
@k�

@Vð2Þ
; @u�

@V ð2Þ
are taken as their mean values;

ruð1Þ ;ruð2Þ ;rkð1Þ ;rkð2Þ ;rVð2Þ are mean square derivations of u(1), u(2),
k(1), k(2), V(2) respectively; qkð1Þuð1Þ and qkð2Þuð2Þ are the correlation
coefficients of k(1) and u(1), k(2) and u(2) respectively.

In the following, RFM is explicitly applied to the analytical
bounds and estimates considered. The method of computing mean
values is essentially equivalent to a deterministic evaluation of the
bounds and estimates. Hence, attention will be focused to the eval-
uation of the mean square deviation. For conciseness, only SC and
DF estimates will be explicitly analyzed. The application of the
overall approach to the remaining estimates and bounds follow
in a straightforward fashion from the methods employed in these
two applications.
2.3. Self-Consistent model

The mean values lk� and lu� can be directly obtained from the
formulas in Table 1. Note that SC model is a direct but implicit re-
sult where k* and u* are coupled each other, and one cannot di-
rectly solve the mean square deviations from Eqs. (1) and (2) in
Appendix. Firstly, one can add k* or u* to both sides of the corre-
sponding equation in Table 1 to obtain

k� ¼ k� þ
X2

i¼1

V ðiÞ
kðiÞ � k�

kðiÞ þ gðu�Þ
¼ G k�; u�; kð1Þ; kð2Þ;V ð2Þ

� �
; ð3Þ

u� ¼ u� þ
X2

i¼1

V ðiÞ
uðiÞ � u�

uðiÞ þ f ðk�;u�Þ ¼ F k�;u�; uð1Þ;uð2Þ;V ð2Þ
� �

: ð4Þ

From Eqs. (3) and (4), one can then obtained the partial differ-
ential Eqs. (3)–(6) in the Appendix, where g = g(u*), f = f(k*,u*).
The partial differential equations @k�

@kð2Þ
; @u�

@kð2Þ
; @k�

@uð1Þ ;
@u�

@uð1Þ ;
@k�

@uð2Þ ;
@u�

@uð2Þ can

also be obtained in a similar fashion. Note that only k(1) is the var-
iable in Eqs. (3), (4) of the Appendix and k(2), u(1), u(2), V(2), k*, u* are
taken as their mean values, and only V(2) is the variable in
Eqs. (5) and (6) of Appendix. Let common constants in these

partial differential equations be a ¼ @f
@k�

���
l

kð1Þ ;luð1Þ ;lkð2Þ ;luð2Þ ;lVð2Þ
; b ¼

@f
@u� jlkð1Þ ;luð1Þ ;lkð2Þ ;luð2Þ ;lVð2Þ

; e1¼ Vð1Þ

l
uð1Þ þf ðlk� ;lu� Þ

; h1¼
Vð1Þ l

uð1Þ �lu�ð Þ
l

uð1Þ þf ðl
kð1Þ ;luð1Þ Þð Þ2

; i1¼

V ð2Þ
#

l
uð2Þ þf ðlk� ;lu� Þ

; j1¼
l

Vð2Þ l
uð2Þ �lu�ð Þ

ðl
uð2Þ þf lk� ;lu�ð ÞÞ2 ; l1¼

l
uð2Þ �lu�

l
uð2Þ þf lk� ;lu�ð Þ;n1¼

l
uð1Þ �lu�

l
uð1Þ þf ðlk� ;lu� Þ

;

e2 ¼ Vð1Þ

l
kð1Þ þgðlu� Þ

; h2 ¼
Vð1Þðl

kð1Þ �lk� Þ
ðl

kð1Þ þgðlu� ÞÞ
2 ; i2 ¼

l
Vð2Þ

l
kð2Þ þgðlu� Þ

; j2 ¼
l

Vð2Þ l
kð2Þ �lk�ð Þ

l
kð2Þ þgðlu� Þð Þ2

;

l2 ¼
l

kð2Þ �lk�

l
kð2Þ þgðlu� Þ

; n2 ¼
l

kð1Þ �lk�

l
kð1Þ þgðlu� Þ

, where V ð1Þ ¼ 1�lVð2Þ .

After the partial differential equations are rewritten as the
Eqs. (7)–(16) in Appendix where c0 = 2(d � 1)/d, one can obtain
{xi} = {ci0} + [ci,j]10�10 � {xi} (i = 1,2, . . .,10; j = 1,2, . . .,10), where
{ci0} = {e2 � h2, i2 � j2,0,0, l2 � n2,0,0,e1 � h1, i1 � j1, l1 � n1}T is a
column vector and elements of the matrix [ci,j]10 � 10 are
c1,1 = c2,2 = c3,3 = c4,4 = c5,5 = 1 � e1 � b � h1 � i1 � b � j1, c1,6 = c2,7 =
c3,8 = c4,9 = c5,10 = �a � (h1 + j1), c6,1 = c7,2 = c8,3 = c9,4 = c10,5 = �c0 �
(h2 + j2), c6,6 = c7,7 = c8,8 = c9,9 = c10,10 = 1 � e2 � i2, and other ele-
ments are zero. Let x1 ¼ @k�

@kð1Þ
; x2 ¼ @u�

@kð1Þ
; x3 ¼ @k�

@kð2Þ
; x4 ¼ @u�

@kð2Þ
;

x5 ¼ @k�

@uð1Þ ; x6 ¼ @u�

@uð1Þ ; x7 ¼ @k�

@uð2Þ ; x8 ¼ @u�

@uð2Þ ; x9 ¼ @k�

@V ð2Þ
; x10 ¼ @u�

@Vð2Þ
, and

one can obtain {xi} from {xi} = K�1{ci0} by solving the system of lin-
ear equations, where the matrix K = I � [ci,j]10�10 and I is a 10 � 10
identity matrix.

One can finally get mean square deviations of k* and u* for SC
model by substituting @k�

@kð1Þ
; @u�

@kð1Þ
; @k�

@Vð2Þ
; @u�

@Vð2Þ
; @k�

@kð2Þ
; @u�

@kð2Þ
; @k�

@uð1Þ ;
@u�

@uð1Þ ;
@k�

@uð2Þ ;
@u�

@uð2Þ into Eqs. (1) and (2) of Appendix.

2.4. Differential model

For DF model in Table 1, the expressions for the mean square
deviations are implicit and coupled as well. Firstly, the mean val-
ues lk� and lu� of k* and u* can be obtained by the integral of
V(2) from 0 to 1.0. In order to evaluate rk� , note that one can obtain
the Eqs. (17), (18) in Appendix.

In the same way, the additionally required terms @

@kð2Þ
@k�

@Vð2Þ

� �
;

@
@uð1Þ

@k�

@V ð2Þ

� �
; @
@uð2Þ

@k�

@Vð2Þ

� �
; @

@kð2Þ
@u�

@Vð2Þ

� �
; @
@uð1Þ

@u�

@V ð2Þ

� �
; @
@uð2Þ

@u�

@Vð2Þ

� �
can be ob-

tained and can also be rewritten as @

@Vð2Þ
@k�

@kð2Þ

� �
; @

@V ð2Þ
@k�

@uð1Þ

� �
;

@

@V ð2Þ
@k�

@uð2Þ

� �
; @

@Vð2Þ
@u�

@kð2Þ

� �
; @

@Vð2Þ
@u�

@uð1Þ

� �
; @

@Vð2Þ
@u�

@uð2Þ

� �
. Note that these are

differential equations that need to be solved in a similar fashion
to the evaluation of the estimate, namely by numerical integration.

For instance, for @

@V ð2Þ
@k�

@kð1Þ

� �
, one needs to integrate @k�

@kð1Þ
with respect

to V(2). For this purpose, let c1 ¼ kð2Þ�k�

kð2Þþg
; c2 ¼ uð2Þ�u�

uð2Þþf ; c3 ¼ k� þ g;

c4¼u� þ f ; c5¼ kð2Þ�k�

ðkð2ÞþgÞ2
; c6¼ uð2Þ�u�

ðuð2Þþf Þ2
; c7¼uð2Þ þ f ; c8¼ kð2Þ þg; c9¼ @f

@k� ;

c10¼ @f
@u�, where k*, u*, k(1), u(1), k(2), u(2), V(2) in c1� c10 are taken as

their mean values, so c1� c10 are ten constants in differential

equations @

@Vð2Þ
@k�

@kð1Þ

� �
; @

@Vð2Þ
@k�

@kð2Þ

� �
; @

@Vð2Þ
@k�

@uð1Þ

� �
; @

@V ð2Þ
@k�

@uð2Þ

� �
; @

@V ð2Þ
@u�

@kð1Þ

� �
;

@

@V ð2Þ
@u�

@kð2Þ

� �
; @

@Vð2Þ
@u�

@uð1Þ

� �
; @

@Vð2Þ
@u�

@uð2Þ

� �
. In order to obtain @k�

@kð1Þ
; @k�

@kð2Þ
;

@k�

@uð1Þ ;
@k�

@uð2Þ ;
@u�

@kð1Þ
; @u�

@kð2Þ
; @u�

@uð1Þ ;
@u�

@uð2Þ, differential equations are then inte-

grated from V(2) = 0 to V(2) = 1. Due to k* = k(1), u* = u(1) at V(2) = 0,
integral initial conditions to be employed are @k�

@kð1Þ
¼ 1; @u�

@kð1Þ
¼ 0;

@k�

@kð2Þ
¼ 0; @u�

@kð2Þ
¼ 0; @k�

@uð1Þ ¼ 0; @u�

@uð1Þ ¼ 1; @k�

@uð2Þ ¼ 0; @u�

@uð2Þ ¼ 0 respectively.

In the present work, @k�

@kð1Þ
; @k�

@kð2Þ
; @k�

@uð1Þ ;
@k�

@uð2Þ ;
@u�

@kð1Þ
; @u�

@kð2Þ
; @u�

@uð1Þ ;
@u�

@uð2Þ

will be computed using the fourth order Runge–Kutta numerical
integration method. The mean square deviations of k* and u* are
obtained from Eqs. (1) and (2) in Appendix. Note that @k�

@Vð2Þ
and

@u�

@V ð2Þ
can be obtained by directly substituting mean values of k(2),

u(1), u(2), V(2), k*,u* into @k�

@Vð2Þ
and @u�

@V ð2Þ
in Table 1.

3. Numerical examples

In this section, the RFM results are demonstrated numerically.
Here the input parameters of the two constituents in the
heterogeneous material are taken to be {d,k(1),u(1),k(2),u(2)} =
{3,4,1,120,20}, where the physical units of k(1), u(1), k(2) and u(2)

are GPa. When taking variation coefficients of random variables



Table 4
Computational results of different random models by Random Factor Method.

Model k* u*

1 akð1Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0:7340 lu�HS�
¼ 2:8009;ru�HS�

¼ 0:1017

auð1Þ ¼ akð2Þ ¼ auð2Þ ¼ aV ð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 0:0547 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0

2 akð2Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0:0425 lu�HS�
¼ 2:8009;ru�HS�

¼ 0

auð1Þ ¼ akð1Þ ¼ auð2Þ ¼ aV ð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 0:7177 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0:214

3 auð1Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0:1118 lu�HS�
¼ 2:8009;ru�HS�

¼ 0:2320

akð1Þ ¼ akð2Þ ¼ auð2Þ ¼ aV ð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 0 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0:0796

4 auð2Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0 lu�HS�
¼ 2:8009;ru�HS�

¼ 0:0359

auð1Þ ¼ akð2Þ ¼ akð1Þ ¼ aV ð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 1:1410 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0:7742

5 aV ð2Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0:9357 lu�HS�
¼ 2:8009;ru�HS�

¼ 0:3260

auð1Þ ¼ akð2Þ ¼ auð2Þ ¼ avð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 3:3182 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0:8851

6 akð1Þ ¼ auð1Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0:7697 lu�HS�
¼ 2:8009;ru�HS�

¼ 0:2756

akð2Þ ¼ auð2Þ ¼ aV ð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 0:5472 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0:0796

7 akð2Þ ¼ auð2Þ ¼ 0:1 lk�HS�
¼ 8:8842;rk�HS�

¼ 0:0425 lu�HS�
¼ 2:8009;ru�HS�

¼ 0:0359

akð1Þ ¼ auð1Þ ¼ aV ð2Þ ¼ 0 lk�HSþ
¼ 24:0602;rk�HSþ

¼ 1:4922 lu�HSþ
¼ 8:0161;ru�HSþ

¼ 0:7798

Table 5
mean square deviations of k* and u* for SC model.

Results (MCM) V(2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rk� 0.4544 0.5279 0.6061 0.7328 0.9853 1.6258 3.0448 5.3586 9.7083

r#
k�

0.4312 0.4767 0.5151 0.5661 0.6797 0.9167 1.3615 2.1972 3.5922

100� rk� � r#

k�

� �.
r#

k�
5.38 10.74 17.67 29.45 44.96 77.35 123.64 143.88 170.26

ru� 0.1213 0.1481 0.1852 0.2590 0.4560 0.8376 1.3542 1.8693 2.4728

r#
u�

0.1120 0.1314 0.1577 0.2064 0.3003 0.4677 0.6896 0.9605 1.2259

100� ru� � r#
u�

� �.
r#

u�
8.3 12.71 17.44 25.48 51.85 79.09 96.37 94.62 101.71

Here r#
k� and r#

u� are mean square deviations when correlation coefficients qkð1Þuð1Þ ¼ qkð2Þuð2Þ ¼ 0.

Table 6
computational results of mean square deviation of k* and u*.

rk� q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

rk� 0.680 0.893 0.917 0.922 0.954 0.972 0.995 1.033 1.045 1.053 1.075

100� rk� � r^k�
� �.

r^k�
0 31.32 34.85 35.59 40.29 42.94 46.32 51.91 53.68 54.85 58.09

ru� 0.3 0.436 0.442 0.439 0.451 0.448 0.445 0.461 0.461 0.458 0.463
100� ru� � r^u�

� �	
r^u� 0 45.33 47.33 46.33 50.33 49.33 48.33 53.67 53.67 52.67 54.33

Here q means qkð1Þuð1Þ ¼ qkð2Þuð2Þ ; r
^
k� and r^u� are mean square deviations when qkð1Þuð1Þ ¼ qkð2Þuð2Þ ¼ 0.

Table 3
Computational results of effective bulk and shear moduli k* and u* by different methods.

RV� RV+ HS� HS+ MW SC DF

Results of Random Factor Method
lk� 7.7419 62 8.8842 24.602 8.8842 12.9001 10.0448
rk� 0.7502 9.0024 0.7724 2.3044 0.7724 0.9166 0.8112
lu� 1.9048 10.5000 2.8009 8.0161 2.8009 4.8851 3.4726
ru� 0.1819 1.5009 0.2809 1.1725 0.2245 0.4406 0.2791

Results of Monte-Carlo Method

lk� 7.7359 62.0569 8.8688 23.9588 8.8722 12.8662 9.8220
rk� 0.7478 9.0502 0.7939 2.5078 0.7962 0.9853 0.8295
lu� 1.9024 10.5081 2.7900 8.0118 2.7901 4.8679 3.3745
ru� 0.1817 1.5005 0.2441 1.0677 0.2454 0.4560 0.2766
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as akð1Þ ¼rkð1Þ=lkð1Þ ¼ 0:1; auð1Þ ¼ruð1Þ=luð1Þ ¼ 0:1; akð2Þ ¼rkð2Þ=lkð2Þ ¼
0:15; auð2Þ ¼ ruð2Þ=luð2Þ ¼ 0:15; aV ð2Þ ¼ rVð2Þ=lVð2Þ ¼ 0:05 simulta-
neously, the random homogenization results are presented in
Tables 3–7 and Figs. 1–7. Results obtained from two different meth-
ods are generally given in the form of mean value ly� , upper bound
ly� þ 3ry� and lower bound ly� � 3ry� according to ±3r rule.
3.1. Computational results of analytical bounds and estimates by two
methods

In Table 3, random effective bounds and estimates for a single
microstructure are given when V(2) = 0.5 and correlation coeffi-
cients qkð1Þuð1Þ ¼ qkð2Þuð2Þ ¼ 0:5.
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Fig. 1. Curves of RV model.

Table 7
correlation coefficients of k* and u* when V(2) = 0.5 by Monte-Carlo Method.

qkð1Þuð1Þ ¼ 0:1 qkð1Þuð1Þ ¼ 0:5 qkð1Þuð1Þ ¼ 0:1 qkð1Þuð1Þ ¼ 0:5 qkð1Þuð1Þ ¼ 0:9 qkð1Þuð1Þ ¼ 0:1 qkð1Þuð1Þ ¼ 1
qkð2Þuð2Þ ¼ 0:1 qkð2Þuð2Þ ¼ 0:1 qkð2Þuð2Þ ¼ 0:5 qkð2Þuð2Þ ¼ 0:5 qkð2Þuð2Þ ¼ 0:1 qkð2Þuð2Þ ¼ 0:9 qkð2Þuð2Þ ¼ 1

qk�DF u�DF
0.3812 0.6542 0.4019 0.6734 0.8717 0.4329 0.9612

qk�SC u�SC
0.6039 0.6809 0.6547 0.7318 0.7669 0.7140 0.8895

qk�MW u�MW
0.2925 0.6124 0.2885 0.6290 0.9046 0.3068 0.9883

qk�HSþ u�
HSþ

0.8390 0.8468 0.9079 0.9118 0.8545 0.9669 0.9929

qk�HS� u�HS�
0.2862 0.6206 0.2971 0.6167 0.9035 0.3048 0.9879

qk�HSþ u�HS�
0.2283 0.3252 0.2389 0.3219 0.4023 0.2581 0.4076

qk�HS� u�
HSþ

0.0383 0.0586 0.0677 0.0884 0.0756 0.0982 0.1495

qk�RVþ u�
RVþ

0.0970 0.0991 0.4997 0.5017 0.0976 0.8996 0.9999

qk�RV� u�RV�
0.0990 0.4969 0.1012 0.4960 0.8960 0.1028 0.9996

qk�RVþ u�RV�
0.0093 0.0146 0.0457 0.0535 0.0260 0.0730 0.1036

qk�RV� u�
RVþ

0.0016 0.0236 0.0249 0.0444 0.0436 0.0529 0.0881
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Fig. 2. Curves of HS model.
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In Figs. 1–5, curves of k* and u* of RV, HS, MW, SC and DF mod-
els obtained by the two methods are given when correlation coef-
ficients qkð1Þuð1Þ ¼ qkð2Þuð2Þ ¼ 0:5.

From Table 3 and Figs. 1–5, one observes that.

(1) As analytical bounds, HS is tighter than RV. From Table 3, one
can get rk�

RVþ
� rk�RV�

> rk�
HSþ
� rk�HS�

, which is showed in
Figs. 1,2, e.g. the distances between curves lk�RV�

� 3rk�RV�

and lk�
RVþ
� 3rk�

RVþ
are greater than those between curves

lk�HS�
� 3rk�HS�

and lk�
HSþ
� 3rk�

HSþ
. That is, compared with

RV, with the tightening of mean value HS, its upper bounds
and lower bounds tighten too. But onecannot get the similar
conclusion about estimates MW, SC and DF models.

(2) Generally, computational results and curves obtained by
RFM are in very good agreement with those obtained by
MCM.
3.2. Effects of randomness on final results

In order to inspect the impact of random variables on random
effective properties k* and u*, different random models are taken
for HS bounds by RFM in Table 4 when V(2) = 0.5 and qkð1Þuð1Þ ¼
qkð2Þuð2Þ ¼ 0:5. From the results of random models 1–5, when ran-
dom dispersion of k(1), u(1), k(2), u(2), V(2) is equal, both k(1) and
u(1) has a greater impact on k�HS� and u�HS� respectively, while k(2)

and u(2) has the greater impact on k�HSþ and u�HSþ respectively, but
one can draw the conclusion from rk� and ru� that the randomness
of V(2) has the greatest effect on k* and u*, that is, for constituent
with greater bulk and shear moduli, its random volume fraction
should be paid more attention to. From the results of random mod-
els 6–7, when the random dispersion of k(1) and u(1) equals that of
k(2) and u(2), the former has the greater effect on k�HS� and u�HS� ,
while the latter has the greater effect on k�HSþ and u�HSþ . In a word,
the randomness of different constituents and their volume frac-
tions has the obvious impacts on different effective properties,
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Fig. 3. Curves of MW model.
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which should be carefully considered in the designs of composite
materials and structures and even in the structural probability
analysis. Note the impact can also be inspected by MCM.

3.3. Correlation of random effective properties

Correlation coefficient is typically referred to as linear correla-
tion coefficient which is a measurement of the linear correlation
degree between random variables. In order to inspect the influence
of correlation among random variables on effective properties,
mean square deviations of SC model are computed by MCM. The
number of realizations in MCM is 5000. rk� and ru� in Table 5
are obtained when qkð1Þuð1Þ ¼ qkð2Þuð2Þ ¼ 0:5 and taking V(2) as differ-
ent values, and results in Table 6 are given when qkð1Þuð1Þ and
qkð2Þuð2Þ are taken as different values and V(2) = 0.5.

From Table 5, effects of correlation coefficients on rk� ; ru� ; r#

k�

and r#
u� obviously increase with the increase of V(2), and the effects

are greatest when V(2) = 0.9 and rk� and ru� are much greater than
r#

k� and r#
u� at this time. Moreover, it demonstrates once again the
conclusion from Table 4 that the randomness of V(2) has a greater
influence on randomness of k* and u*. From Table 6, with the
change from non-correlation to correlation among random vari-
ables, effects of q on rk� and ru� increase and this effect is maxi-
mized when q = 1, which demonstrates that the correlation
between random variables should not be omitted.

Since the correlation among random variables is considered, the
random effective properties definitely have correlation too. In Ta-
ble 7, the correlation coefficients of k* and u* of DF, SC, MW, HS,
RV models are given when taking different correlation coefficients
qkð1Þuð1Þ and qkð2Þuð2Þ at V(2) = 0.5. Simulation times of MCM for every
model are the same as those in Figs. 1–5. The curves of correlation
coefficients of RV, MW, SC and DF are given in Figs. 6,7 by MCM. It
should be noted that if one can get the joint probability density
function of k* and u* when assuming that probability distribution
density of every random variable is known, the correlation coeffi-
cient of k* and u* can then be obtained by probability theory. But
this approach cannot be pursued in the context of RFM. So the
work in Table 7 and Figs. 6,7 can only be done by MCM.
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Fig. 4. Curves of SC model.
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From Table 7 and Figs. 6,7, the following conclusions can be
obtained.

(1) Generally, the strong correlation exist between k�HSþ and
u�HSþ ; k�SC and u�SC even if qkð1Þuð1Þ and qkð2Þuð2Þ are very small,
(qk�SC u�

SC
¼ 0:6039 and qk�

HSþ u�
HSþ
¼ 0:8390 when qkð1Þuð1Þ ¼

qkð2Þuð2Þ ¼ 0:1); the correlations of k�DF and u�DF ; k�HS� and
u�HS� ; k�MW and u�MW take the second place; so these correla-
tions should be fully considered in the design of materials
and structures.

(2) For RV model, the correlation coefficients qk�
RVþ u�

RVþ
and

qk�RV� u�RV�
clearly illustrate the increasing trend with the

increase of the qkð1Þuð1Þ and qkð2Þuð2Þ ; the correlation of k�RVþ and
u�RV� ; k

�
RV� and u�RVþ can be omitted; qkð1Þuð1Þ has a greater effect

on qk�RV� u�RV�
while qkð2Þuð2Þ has a greater effect on qk�

RVþ u�
RVþ

.

(3) For HS model, the correlation between k�HSþ and u�HSþ is stron-
gest and its change with qkð1Þuð1Þ and qkð2Þuð2Þ is not very obvi-
ous, and the correlation between k�HS� and u�HS� comes
second; qkð1Þuð1Þ has a stronger effect on qk�HS� u�

HS�
than qkð2Þuð2Þ
does; the correlations of k�HS� and u�HSþ , especially the corre-
lation between k�HSþ and u�HS� , can be omitted.

(4) For MW, SC and DF models, correlations of k�MW and u�MW ; k
�
DF

and u�DF are affected strongly by qkð1Þuð1Þ ; all correlations
increase with the increase of qkð1Þuð1Þ and qkð2Þuð2Þ .

Because the accuracy of results obtained by MCM definitely de-
pends on the simulation number, there are local fluctuations in the
curves of Figs. 6 and 7. With the increase of simulation number,
curves in Figs. 8 and 9 are much smoother than those in Figs. 6
and 7, but the cost of the former is much more expensive than that
of the latter.

4. Conclusions

The subject of homogenization is devoted to the determination
of the properties of a homogeneous material that approximates the
behavior of the original heterogeneous problem. These properties
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Fig. 5. Curves of DF model.
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are termed macroscopic, effective, apparent properties in various
sources. Concatenated in a single sentence, these are the properties
that ‘‘appear” to approximate the ‘‘effects” of the microscale fea-
tures on the ‘‘macroscale”. In linear elasticity problem, these prop-
erties can be illuminated by analytical bounds (Reuss–Voigt
bounds and Hashin–Shtrikman bounds) and estimates (Maxwell
model, Self-Consistent model and Differential model) after the
homogenization. In this work, the homogenization of heteroge-
neous materials with randomness was pursued in the context of
linear elasticity based on analytical estimates and bounds. In order
to compute the mean value and mean square deviation associated
with the effective properties when one or more micromechanical
variables display randomness, two methods were employed and
compared. The Random Factor Method (RFM) was observed to de-
liver rapid numerical results of comparable accuracy with the com-
putationally intensive Monte-Carlo Method (MCM). For example,
for the Self-Consistent estimate, the time consumed by RFM is only
0.83% of that cost by MCM based on 5000 realizations to get the
curves and computational results when considering all random-
ness and correlation among materials’ variables at the same time.
On the other hand, although the correlation of constituents’ prop-
erties can be fully considered by RFM during the solution of the
mean square deviation of the effective properties, the correlation
coefficients among the effective properties cannot be computed
because one cannot obtain the probability distribution density of
the effective properties by RFM, which is the limitation to the
application of RFM. MCM is a more suitable numerical simulation
method for this purpose.

Generally, the effective properties are not normal random vari-
ables even if constituents’ parameters are normal variables, except
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that the system is linear and has only one Gaussian random vari-
able in the input. But the effective properties can still be similarly
assumed as Gaussian variables especially when samples large en-
ough are taken for RV, HS, MW, SC and DF models by MCM accord-
ing to the central limit theorem. Based on this assumption, the
mean value and mean square deviation can be obtained by several
mature methods and ±3r rule is used to illustrate the random dis-
persion degree of the effective properties. Another possible consid-
eration to replace the ±3r rule may be the use of the third central
probabilistic moment in the future work.
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From the tables and figures, the randomness of different constit-
uents’ properties and the volume fractions has the obvious impact on
different effective properties, e.g. volume fraction V(2) has the great-
est effect on k* and u*, moreover, the correlations existing among k�HSþ

and u�HSþ ; k
�
SC and u�SC ; k

�
DF and u�DF ; k

�
HS� and u�HS� ; k

�
MW and u�MW cannot

be omitted, etc. All of these conclusions should be fully considered
in the engineering application of materials and structures.

Although the results presented in this work were limited to linear
elasticity analysis based on analytical estimates and bounds, the
RFM is extensible to the homogenization of a heterogeneous med-
ium with arbitrary microstructure in the generally inelastic finite
deformation regime. Computational approaches that are suitable
to this purpose are currently being pursued by the authors. In a
word, the Random Factor Method, when applicable, is an efficient
tool of assessing uncertainty in the response of composite materials.
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