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a b s t r a c t

The Entropy/Influence conjecture, raised by Friedgut and Kalai (1996) [9], seeks to relate
two different measures of concentration of the Fourier coefficients of a Boolean function.
Roughly saying, it claims that if the Fourier spectrum is ‘‘smeared out’’, then the Fourier
coefficients are concentrated on ‘‘high’’ levels. In this note we generalize the conjecture to
biased product measures on the discrete cube.

© 2012 Published by Elsevier B.V.

1. Introduction

Definition 1.1. Consider the discrete cube {0, 1}n endowedwith the productmeasureµp = (pδ{1} +(1−p)δ{0})
⊗n, denoted

in the sequel by {0, 1}np , and let f : {0, 1}np → R. The Fourier–Walsh expansion of f with respect to the measure µp is the
unique expansion

f =


S⊂{1,2,...,n}

αSuS,

where for any T ⊂ {1, 2, . . . , n},1

uS(T ) =


−


1 − p
p

|S∩T |
p

1 − p

|S\T |

.

In particular, for the uniform measure (i.e., p = 1/2), uS(T ) = (−1)|S∩T |. The coefficients αS are denoted by f̂ (S),2 and the
level of the coefficient f̂ (S) is |S|.

Properties of the Fourier–Walsh expansion are one of the main objects of study in discrete harmonic analysis. The
Entropy/Influence (EI) conjecture, raised by Friedgut and Kalai [9] in 1996, seeks to relate two measures of concentration of
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1 Throughout the paper, we identify elements of {0, 1}n with subsets of {1, 2, . . . , n} in the natural way.
2 Note that since the functions {uS}S⊂{1,...,n} form an orthonormal basis, the representation is indeed unique, and the coefficients are given by the formula

f̂ (S) = Eµp [f · uS ].
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the Fourier coefficients (i.e. coefficients of the Fourier–Walsh expansion) of Boolean functions. The first of them is spectral
entropy.

Definition 1.2. Let f : {0, 1}np → {−1, 1} be a Boolean function. The spectral entropy of f with respect to the measure µp is

Entp(f ) =


S⊂{1,...,n}

f̂ (S)2 log


1

f̂ (S)2


,

where the Fourier–Walsh coefficients are computed w.r.t. to µp.

Note that by Parseval’s identity, for any Boolean function we have


S f̂ (S)
2

= 1, and thus, the squares of the Fourier
coefficients can be viewed as a probability distribution on the set {0, 1}n. In this notation, the spectral entropy is simply the
entropy of this distribution, and intuitively, it measures how much the Fourier coefficients are ‘‘smeared out’’.

The second notion is total influence.

Definition 1.3. Let f : {0, 1}np → {0, 1}. For 1 ≤ i ≤ n, the influence of the i-th coordinate on f with respect to µp is

Ipi (f ) = Prx∼µp [f (x) ≠ f (x ⊕ ei)],

where x ⊕ ei denotes the point obtained from x by replacing xi with 1 − xi and leaving the other coordinates unchanged.
The total influence of the function f is

Ip(f ) =

n
i=1

Ipi (f ).

Influences of variables on Boolean functions were studied extensively in the last decades, and have applications in awide
variety of fields, including Theoretical Computer Science, Combinatorics, Mathematical Physics, Social Choice Theory, etc.
(See, e.g., the survey [12].) As observed in [10], the total influence can be expressed in terms of the Fourier coefficients:

Observation 1.4. Let f : {0, 1}np → {−1, 1}. Then

Ip(f ) =
1

4p(1 − p)


S

|S|f̂ (S)2. (1)

In particular, for the uniform measure µ1/2, I1/2(f ) =


S |S|f̂ (S)2.

Thus, in terms of the distribution induced by the Fourier coefficients, the total influence is (up to normalization) the
expectation of the level of the coefficients, and it measures the question whether the coefficients are concentrated on ‘‘high’’
levels.

The Entropy/Influence conjecture asserts the following:

Conjecture 1.5 (Friedgut and Kalai). Consider the discrete cube {0, 1}n endowed with the uniform measure µ1/2. There exists a
universal constant c, such that for any n and for any Boolean function f : {0, 1}n1/2 → {−1, 1},

Ent1/2(f ) ≤ c · I1/2(f ).

The conjecture, if confirmed, has numerous significant implications. For example, it would imply that for any property
of graphs on n vertices, the sum of influences is at least c(log n)2 (which is tight for the property of containing a clique of
size ≈ log n). The best currently known lower bound, by Bourgain and Kalai [5], is Ω((log n)2−ϵ), for any ϵ > 0.

Another consequence of the conjecture would be an affirmative answer to a variant of a conjecture of Mansour [14]
stating that if a Boolean function can be represented by a DNF formula of polynomial size in n (the number of coordinates),
then most of its Fourier weight is concentrated on a polynomial number of coefficients (see [15] for a detailed explanation
of this application). This conjecture, raised in 1995, is still wide open.

The main object of this note is to generalize the Entropy/Influence conjecture to the product measure µp on the discrete
cube. We state a generalization of the conjecture to the biased case:

Conjecture 1.6. There exists a universal constant c, such that for any 0 < p < 1, for any n and for any Boolean function
f : {0, 1}np → {−1, 1},

Entp(f ) ≤ cp log(1/p) · Ip(f ).
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We prove that Conjecture 1.6 follows from the original EI conjecture, and that it is tight for the graph property of containing
a clique of fixed size (at the critical probability). This answers a question raised by Kalai [11].

In addition, we remark on three questions related to the EI conjecture:

1. We cite an unpublished result of Bourgain and Kalai which proves a variant of the conjecture for functions whose
Fourier weight beyond some level decays exponentially, and suggest a possible way to attack the entire conjecture via a
strengthening of Bourgain and Kalai’s result.

2. We give an easy proof of a weaker upper bound on the entropy of Boolean functions.
3. We show a connection between the EI conjecture and Friedgut’s characterization of functions with a low total

influence [8], and formulate a conjecture which is in a sense ‘‘intermediate’’ between Friedgut’s theorem and the EI
conjecture.

2. Entropy/Influence conjecture for the product measure µp on the discrete cube

In this section we consider the space {0, 1}np , for 0 < p < 1. First we formulate a variant of the EI conjecture for the
biased measure and prove that it follows from the original conjecture. Then we show that it is tight for the graph property
of containing a copy of a complete graph Kr as an induced subgraph, for random graphs distributed according to the model
G(n, p), at the critical probability pc .

Proposition 2.1. Assume that the EI conjecture holds. Then there exists a universal constant c such that for any 0 < p < 1, for
any n and for any f : {0, 1}np → {−1, 1}, we have

Entp(f ) ≤ cp log(1/p) · Ip(f ).

Ourproof is based on a standard reduction from thebiasedmeasureµp to the uniformmeasureµ1/2 first considered in [4].
Let p ≤ 1/2, and assume that p = t/2m.3 For any function f : {0, 1}n → R we define a function Red(f ) = g : {0, 1}mn

→ R
as follows: each y ∈ {0, 1}mn is considered as a concatenation of n vectors yi ∈ {0, 1}m, and each such vector is translated to
a natural number 0 ≤ Bin(yi) < 2m through its binary expansion (i.e., Bin(yi) =

m−1
j=0 2j

· yim−j). Then, for any y ∈ {0, 1}mn,

g(y) = g(y1, y2, . . . , yn) := f

h(y1), h(y2), . . . , h(yn)


,

where h : {0, 1}m → {0, 1} is given by

h(yi) =


1, Bin(yi) ≥ 2m

− t
0, Bin(yi) < 2m

− t.

We use two simple properties of the reduction. The first, proved by Friedgut and Kalai [9], relates the total influence of g
(w.r.t. µ1/2) to that of f (w.r.t. to µp).

Lemma 2.2 (Friedgut and Kalai). Let f : {0, 1}np → {−1, 1}, and let g = Red(f ). Then

I1/2(g) ≤ 6p⌊log(1/p)⌋Ip(f ). (2)

The second property relates the Fourier coefficients of f (w.r.t. µp) to corresponding coefficients of g (w.r.t. µ1/2).

Lemma 2.3. Let f : {0, 1}np → R, and let g = Red(f ). For any S ⊂ {1, 2, . . . ,mn}, denote Si = S ∩ {(i − 1)m + 1,
(i − 1)m + 2, . . . , im}, and for S ′

⊂ {1, 2, . . . , n}, let

V (S ′) = {S ⊂ {1, 2, . . . ,mn} : {i : |Si| > 0} = S ′
}.

Then: 
S∈V (S′)

ĝ(S)2 = f̂ (S ′)2. (3)

Proof. For each S ′
⊂ {1, 2, . . . , n}, let fS′ : {0, 1}np → R be defined by fS′ = f̂ (S ′)uS′ . We claim that

Red(fS′) =


S∈V (S′)

ĝ(S)uS . (4)

3 It is clear that there is no loss of generality in assuming that p is diadic, as the results for general p follow immediately by approximation.
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This claim implies the assertion, as by the Parseval identity, Eq. (4) implies:
S∈V (S′)

ĝ(S)2 = ∥Red(fS′)∥2
2 = ∥fS′∥

2
2 = f̂ (S ′)2.

(The first and third equalities use the Parseval identity, and themiddle equality holds since by the structure of the reduction,
it preserves all Lp norms.)
In order to prove Eq. (4), we use Proposition 2.2 in [13] that describes the exact relation between the Fourier coefficients of
Red(f ) and the corresponding coefficients of f . By the proposition, for all S ∈ V (S ′),

Red(f )(S) = c(S, p) · f̂ (S ′),

where c(S, p) depends on S and p but not on f . Hence, for all S ∈ V (S ′), we have Red(fS′)(S) = Red(f )(S) (since both are
determined by S, p, and f̂ (S ′)). Similarly, for all S ∉ V (S ′), Red(fS′)(S) = 0, since fS′(S ′′) = 0 for all S ′′

≠ S ′. Therefore, the
Fourier expansion of Red(fS′) is:

Red(fS′) =


S∈V (S′)

Red(f )(S)uS,

as asserted. �

Now we are ready to prove Proposition 2.1.

Proof. Let f : {0, 1}np → {−1, 1}, and let g = Red(f ). By Eq. (3),

Ent1/2(g) =


S⊂{1,2,...,mn}

ĝ(S)2 log
1

ĝ(S)2
=


S′⊂{1,2,...,n}


S∈V (S′)

ĝ(S)2 log
1

ĝ(S)2

≥


S′⊂{1,2,...,n}


S∈V (S′)

ĝ(S)2 log
1

f̂ (S ′)2
=


S′⊂{1,2,...,n}

f̂ (S ′)2 log
1

f̂ (S ′)2
= Entp(f ). (5)

(The inequality follows since by (3), we have ĝ(S)2 ≤ f̂ (S ′)2 for all S ∈ V (S ′).) Combining Eq. (5) with Eq. (2) and applying
the EI conjecture to g , we get:

Entp(f ) ≤ Ent1/2(g) ≤ c · I1/2(g) ≤ c · 6p⌊log(1/p)⌋Ip(f ),

and therefore,

Entp(f ) ≤ c ′p log(1/p)Ip(f ),

as asserted. �

Consider the random graph model G(n, p). Recall that in this model, the probability space is {0, 1}Np , where N =
 n
2


,

the coordinates correspond to the edges of a graph on n vertices, and each edge exists in the graph with probability p,
independently of the other edges. It is well-known that for the graph property of containing the complete graph Kr as an
induced subgraph, there exists a threshold at pt = Θ(n−2/(r−1)). This means that if p ≪ n−2/(r−1) then Pr[Kr ⊂ G|G ∈

G(n, p)] is close to zero, and if p ≫ n−2/(r−1) then Pr[Kr ⊂ G|G ∈ G(n, p)] is close to one. We choose a value p0 in the critical
range, consider the characteristic function f of this graph property in G(n, p0), and show that the assertion of Proposition 2.1
is tight for f . In order to simplify the computation, we choose p0 such that the expected number of copies of Kr in G(n, p0)
is ‘‘nice’’. However, the same argument holds for any value of p in the critical range.

Proposition 2.4. Let n, r be integers such that r < log n. Consider the random graph G(n, p0) where p0 is chosen such that n
r


· p(

r
2 )

0 = 1/2. Let f be defined by:

f (G) = 1 ⇔ G contains a copy of Kr as an induced subgraph,

and f (G) = 0 otherwise. Then

Entp0(f ) ≥ c · p0 log(1/p0) · Ip0(f ),

where c is a universal constant.

Proof. The result is a combination of an upper bound on Ip0(f ) with a lower bound on Entp0(f ).
In order to bound Ip0(f ) from above, note that a necessary (but not sufficient) condition for an edge e = (v, w) to be

pivotal for f at a graph G4 is that there exists a set S of r vertices including v and w such that all
 r
2


edges inside S except

4 An edge e is pivotal for the property f at a graph G if f (G) = 1 and f (G \ {e}) = 0.
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for e appear in G. Hence, a simple union bound yields that for any edge e,

Ip0e (f ) ≤


n − 2
r − 2


· p(

r
2 )−1

0 =
r(r − 1)

n(n − 1)p0
·

n
r


p(

r
2 )

0 =
r(r − 1)

2n(n − 1)p0
,

and thus,

Ip0(f ) =


e

Ip0e (f ) ≤
1
p0

·
r(r − 1)

4
. (6)

In order to bound Entp0(f ) from below, we show that at least a constant portion of the Fourier weight of f is concentrated
on coefficients that correspond to copies of Kr in {0, 1}N . Concretely, we show that if S corresponds to a copy of Kr , then:

f̂ (S)2 ≥ c ′
·

n
r

−1
. (7)

As the number of such coefficients is
 n
r


, it will follow that:

Entp0(f ) ≥


{S: S is a copy of Kr }

f̂ (S)2 log


1

f̂ (S)2


≥ c ′

· log
n
r


≥ c ′′

· r log(n), (8)

where the rightmost inequality holds since r < log n. Finally, a combination of Eq. (8) with Eq. (6) will imply:

Entp0(f ) ≥ c ′′
· r log(n) ≥ c ′′

·
r(r − 1)

2
· log(1/p0) ≥ c ′′

· p0 log(1/p0) · Ip0(f ),

as asserted.
To prove Eq. (7), consider a specific copy H of Kr and denote its set of edges by S = E(H). By the definition of the Fourier

coefficients, we have:

f̂ (S) =


T∈{0,1}N

µp0(T )


−


1 − p0
p0

|S∩T | 
p0

1 − p0

( r
2 )−|S∩T |

f (T )

=


T∈{0,1}N

µp0(T \ S) · (p0(1 − p0))(
r
2 )/2(−1)|S∩T |f (T )

= (p0(1 − p0))(
r
2 )/2


T∈{0,1}N

µp0(T \ S)(−1)|S∩T |f (T ), (9)

where µp0(T \ S) denotes the induced measure of the graph T \ S. Note that the total contribution to f̂ (S) of {T ∈ {0, 1}N :

S ⊂ T } is

(−1)|S| · (p0(1 − p0))(
r
2 )/2, (10)

since f (T ) = 1 for all T ⊃ S. On the other hand, if f (T ) = 1 and T ) S, then T contains a copy of Kr , in which k ≤ r − 1
vertices are included in V (H), and the remaining r − k vertices are not included in V (H). Hence, the total contribution to
f̂ (S) of {T ∈ {0, 1}N : S ( T } is bounded from above (in absolute value) by:

(p0(1 − p0))(
r
2 )/2 ·

r−1
k=0


n

r − k

 r
k


p
( r
2 )−


k
2


0 = (p0(1 − p0))(

r
2 )/2 · (1/2 + on(1)), (11)

since for our choice of p0, the term corresponding to k = 0 equals
 n
r


p(

r
2 )

0 = 1/2, and the other terms are negligible.
Combining estimates (10) and (11), we get:

f̂ (S)2 ≥ (1 − 1/2 − on(1))2(p0(1 − p0))(
r
2 ) ≥ cp(

r
2 )

0 = (c/2) ·

n
r

−1
. (12)

This completes the proof. �
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We conclude this section by noting that if p is inverse polynomially small as a function of n, then one can easily prove
a statement which is only slightly weaker than the EI conjecture. In [15] it was shown that with respect to the uniform
measure, we have

Ent1/2(f ) ≤ (log n + 1)I1/2(f ) + 1,

for any Boolean f . The statement generalizes easily to a general biased measure µp, and yields the following:

Claim 2.5. There exists a universal constant c such that for any 0 < p < 1, for any n and for any f : {0, 1}np → {−1, 1}, we
have

Entp(f ) ≤ cp(1 − p) log(n) · Ip(f ).

Proof. Assume w.l.o.g. that p ≤ 1/2. As shown in [15], we have:

Entp(f ) ≤ (log n + 1)

S

|S|f̂ (S)2 + ϵ log(1/ϵ) + 2ϵ,

where 1 − ϵ = f̂ (∅)2. (Note that this part of the proof of Theorem 3.2 in [15] holds without any change for the biased
measure.) In order to bound the term ϵ log(1/ϵ)+ 2ϵ, it was shown in Proposition 3.6 of [15] that by the edge isoperimetric
inequality on the cube, it is bounded from above by 2I1/2(f ). By Eq. (2), this implies that for the measure µp, we have

ϵ log(1/ϵ) + 2ϵ ≤ 12p⌊log(1/p)⌋Ip(f )

(since the reduction from the biased measure to the uniform measure preserves the expectation). Thus, by Eq. (1),

Entp(f ) ≤ (log n + 1) · 4p(1 − p)Ip(f ) + 12p⌊log(1/p)⌋Ip(f ) ≤ cp(1 − p) log(n)Ip(f ),

as asserted. �

For p that is inverse polynomially small in n, the statement of Claim 2.5 differs from the assertion of the EI conjecture
only by a constant factor.

3. Three remarks

In this section we remark on three questions related to the Entropy/Influence conjecture.

3.1. Functions with a low Fourier weight on the high levels

One of the important classes of Boolean functions for which one can hope to find a simpler proof of the EI conjecture are
functions whose Fourier coefficients decay rapidly beyond some level. In the basic case where the coefficients beyond some
level k vanish, a variant of the conjecture was shown by Diakonikolas et al. [7]:

Proposition 3.1 ([7]). Let f : {−1, 1}n1/2 → {−1, 1}, such that all the Fourier weight of f is concentrated on the first k levels.
Then all the Fourier coefficients of f are of the form

f̂ (S) = a(S) · 2−k+1,

where a(S) ∈ Z. In particular, Ent1/2(f ) ≤ 2(k − 1).

We present a different proof of a slightly more general statement. Note that we replace the domain by {−1, 1}n here, so that
the characters are given by the simpler formula

u{i1,...,ir }(x) = xi1 · xi2 · · · · · xir .

Proposition 3.2. Let f : {−1, 1}n1/2 → Z, such that all the Fourier weight of f is concentrated on the first k levels. Then all the
Fourier coefficients of f are of the form

f̂ (S) = a(S) · 2−k,

where a(S) ∈ Z. In particular, Ent1/2(f ) ≤ 2k.

Remark 3.3. Note that Proposition 3.1 follows from Proposition 3.2 by moving from a function f : {−1, 1}n → {−1, 1} to
the function (1 + f )/2 whose range is contained in Z and whose Fourier coefficients are halved.



3370 N. Keller et al. / Discrete Mathematics 312 (2012) 3364–3372

Proof. The proof is by induction on k. The case k = 0 is trivial. Assume that the assertion holds for all k ≤ d − 1, and let f
be a function of Fourier degree d (i.e., all its Fourier coefficients are concentrated on the d lowest levels). For 1 ≤ i ≤ n, let
f i be the discrete derivative of f with respect to the ith coordinate, i.e.,

f i(x1, . . . , xi−1, xi+1, . . . , xn) =
f (x1, . . . , xi−1, 1, xi+1, . . . , xn) − f (x1, . . . , xi−1, −1, xi+1, . . . , xn)

2
.

It is easy to see that if f =


S f̂ (S)uS , then the Fourier expansion of f i is given by:

f i =


S⊂({1,2,...,n}\{i})

f̂ (S ∪ {i})uS . (13)

Hence, f i is of Fourier degree at most d − 1. Note that by the definition of f i, we have 2f i(x) ∈ Z for all x ∈ {−1, 1}n−1,
and thus by the induction hypothesis, the Fourier coefficients of f i satisfy 2f̂ i(S) = a(S) · 2−d+1, where a(S) ∈ Z. This holds
for any 1 ≤ i ≤ n, and therefore, by Eq. (13), all the Fourier coefficients of f (except, possibly, for f̂ (∅)), are of the form
f̂ (S) = a(S) · 2−d, where a(S) ∈ Z. Finally, f̂ (∅) must also be of this form, since otherwise f (x) cannot be an integer. This
completes the proof. �

A more interesting case in which the Fourier coefficients beyond some level k decay exponentially was covered in an
unpublished work of Bourgain and Kalai [6].

Theorem 3.4. There exists a function C : (0, 1/2) × (0, ∞) → (0, ∞) such that the following holds: For any n ∈ N, let
f : {−1, 1}n → {−1, 1} and assume that there exist c0 > 0, 0 < a < 1/2, and 0 < k < n, such that for all 0 ≤ t ≤ n,

{S:|S|>t}

f̂ (S)2 ≤ ec0k · e−at ,

then for any α > 1, there exists a set Bα = B(f , α, c0, a, k), such that:

1. log |Bα| ≤ C(c0, a) · αk.
2.


S∉Bα
f̂ (S)2 ≤ n−α .

The theorem asserts that if the Fourier weight of f beyond the kth level decays exponentially, then most of the Fourier
weight of f is concentrated on exp(Ck) coefficients, and thus, Ent1/2(f ) ≤ C ′k (for an appropriate choice of C ′). The proof
uses the dth discrete derivative of f (like our proof of Proposition 3.2 above), and the Bonami–Beckner hypercontractive
inequality [2,1]. We note that the exact dependence of C on a (i.e., the rate of the exponential decay) in the assertion of the
theorem, which is important if a is allowed to be a function of n, is of order C = Θ(a−1 log(a−1)).

We would like to suggest a possible way to attack the entire EI conjecture via a combination of a tensorisation technique
and an extension of Theorem 3.4 (and Proposition 3.1).

In [11], Kalai observed that the EI conjecture tensorises, in the following sense. For f : {−1, 1}l1/2 → {−1, 1} and
g : {−1, 1}m1/2 → {−1, 1}, define f ⊗ g : {−1, 1}l+m

1/2 → {−1, 1} by:

f ⊗ g(x1, . . . , xl+m) = f (x1, . . . , xl) · g(xl+1, . . . , xl+m).

Furthermore, let

f ⊗N
= f ⊗ f ⊗ · · · ⊗ f ,

where the tensorisation is performed N times. It is easy to see that I1/2(f ⊗N) = N · I1/2(f ) and Ent1/2(f ⊗N) = N · Ent1/2(f ).
Hence, proving the EI conjecture for any ‘‘tensor power’’ of f is equivalent to proving the conjecture for f itself.

This observation was used in [15] to deduce that it is sufficient to prove a seemingly weaker version of the conjecture:
Ent1/2(f ) ≤ cI1/2(f ) + o(n), where n is the number of variables.

We observe that by the Law of Large Numbers, as N → ∞, the level of the Fourier coefficients of f ⊗N is concentrated
around its expectation, which is N · I1/2(f ). In particular, it is easy to check that the total weight of coefficients above level
2N · I1/2(f ) goes to 0 as N → ∞.

If it were the case that for N large enough the weight above level N · I1/2(f ) is zero, then Proposition 3.1 would imply
the EI conjecture in the form Ent1/2(f ⊗N) ≤ 2N · I1/2(f ). Bourgain–Kalai’s Theorem 3.4 allows to replace the unreasonable
condition that there is no weight above level 2N · I1/2(f ) by a weaker condition on the decay of the Fourier spectrum of f ⊗N .

Unfortunately, even Bourgain–Kalai’s Theorem 3.4 (applied for k = Θ(N · I1/2(f )) together with a large deviation
estimate) is not sufficient to obtain the Entropy/Influence conjecture. However, we believe that either a strengthening of
Bourgain–Kalai’s Theorem or a stronger utilization of the tensor structure may lead to a proof of the conjecture along the
lines suggested here.
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3.2. A weaker upper bound on the entropy of Boolean functions that can be easily proved

As mentioned in Section 2, it was shown in [15] that with respect to the uniform measure, one can easily prove the
following weaker upper bound on the entropy of any Boolean function:

Ent1/2(f ) ≤ (log n + 1)I1/2(f ) + 1. (14)

We provide an independent proof of an upper bound which is slightly stronger than (14).

Claim 3.5. For any n and for any f : {0, 1}n1/2 → R, we have

Ent1/2(f ) ≤

n
i=1

h(I1/2i (f )) ≤ 2I1/2(f )(1 + log n − log I1/2(f )),

where

h(x) = −x log x − (1 − x) log(1 − x).

Proof. As the proof deals only with the uniformmeasure on the discrete cube, we write Ent(f ) and I(f ) instead of Ent1/2(f )
and I1/2(f ) during the proof.

Let S ⊂ {1, 2, . . . , n} be chosen according to the Fourier distribution (i.e., Pr[S = S0] = f̂ (S0)2), and let Xi = 1{i∈S}. Then
by the basic rules of entropy,

Ent(f ) = H(S) = H(X1, . . . , Xn) ≤

n
i=1

H(Xi) =

n
i=1

h(Ii(f )),

thus obtaining the first inequality. Note that if Ii(f ) ≥ 0.5, then h(Ii(f )) ≤ 2Ii(f ), and otherwise, h(Ii(f )) ≤ −2Ii(f ) log Ii(f ).
Therefore,

1
2
Ent(f ) ≤ I(f ) +

n
i=1

Ii(f )(− log Ii(f ))

= I(f )


1 +

n
i=1

Ii(f )
I(f )

·


− log

Ii(f )
I(f )

− log I(f )


.

Wenote that the expression
n

i=1 Ii(f )/I(f )(− log Ii(f )/I(f )) is the entropy of the random variable Y defined by Pr[Y = i] =

Ii(f )/I(f ) which is supported on {1, 2, . . . , n}, and is therefore bounded by log n. We thus conclude that

1
2
Ent(f ) ≤ I(f )(1 + log n − log I(f ))

as asserted. �

Remark 3.6. It is easy to see that the bound of Claim 3.5 is stronger than (14) in some cases, in particular when there is
variability in the influences of different coordinates.

We note that the proof does not use the fact that f is Boolean and indeed it could not provide a proof of the EI conjecture,
as can be seen, e.g., for the majority function, where I1/2(f ) is of order

√
nwhile

n
i=1 h(I

1/2
i (f )) is of order

√
n log n.

3.3. Relation to Friedgut’s characterization of functions with a low influence sum

In [8], Friedgut showed that any Boolean function f : {0, 1}np → {0, 1} essentially depends on atmost C(p)I(f ) coordinates,
where C(p) depends only on p. The main step of the proof is to show that most of the Fourier weight of the function is
concentrated on sets that contain one of these coordinates. A stronger claim one may hope to prove is that most of the
Fourier weight is concentrated on at most C(p)I(f ) coefficients. Formally, we raise the following conjecture that resembles
the assertion of Bourgain–Kalai’s theorem:

Conjecture 3.7. For any 0 < p < 1 and any 0 < ϵ < 1, there exists a constant C(p, ϵ) > 0 such that for any n and for any
f : {−1, 1}np → {−1, 1}, there exists a set Bϵ(f ) ⊂ {0, 1}n such that:

1. log |Bϵ(f )| ≤ C(p, ϵ) · I(f ), and
2.


S∉Bϵ
f̂ (S)2 < ϵ.
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This conjecture looks quite strong and even implies a variant of Mansour’s conjecture [14] (since as shown in [3], if
a Boolean function f can be represented by an m-term DNF, then I1/2(f ) = O(logm)), but it still does not imply the EI
conjecture, since the remaining Fourier coefficients (whose total Fourier weight is at most ϵ) can still contribute n · ϵ to
Ent1/2(f ).

We note that if Conjecture 3.7 holds, it clearly can be combinedwith Friedgut’s theorem to obtain an additional condition
on the set Bϵ(f ):

log
 Bϵ(f )

 ≤ C(p, ϵ) · I(f ), (15)

where


Bϵ(f ) ⊂ {1, 2, . . . , n} is the set of all coordinates included in at least one of the sets Bϵ(f ). That is, not only the
Fourier weight is concentrated on a ‘‘small’’ set of coefficients, these coefficients also depend on a ‘‘small’’ set of coordinates.
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