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1. Introduction
A solid state physics model for the dislocation dynamics of a crystal [3] is the sine-Gordon equation

Vit — Yax +siny =0. (11)

It has attracted considerable attention because of many interesting properties of its solutions. For example, (1.1) is known
to propagate solitary waves. While some particular solutions of (1.1) such as a single-soliton, a double-soliton, and some
others can be found explicitly, in general there is no closed form solution, see [1].

Various modifications of this equation have also been found to be of interest in several applications. The perturbed
sine-Gordon equation describing the influence of variable external force and air damping is

Yo — Yxx+siny = f(t,X) —oye. (1.2)

This equation also describes the dynamics of Josephson junctions, see [10,13]. In [9] the perturbed sine-Gordon equation

Yie — Yae +siny = f(t, %) —ayr — Byexx (13)
is proposed for taking into account the dissipation due to the current along a dielectric barrier in Josephson junctions.

In [12] vacuum chamber gaps are studied using the extended sine-Gordon equation

Ve — Yax +siny = f(t,X) —ayr — BYexx +08(x — Xg) sin y, (1.4)
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where the § function at x = xo represents the presence of a gap in the vacuum chamber. We refer to [13] for various results
on mathematical properties of sine-Gordon equations.
The subject of our study is identification problems for damped sine-Gordon equations of the type

Yee FaYe — BYtxx — Yxx +siny = f(t,X) + 08(x —xp)siny inQ,
Y, 0=y, 1)=0 in(0,T), (1.5)
¥(0,%) = yo(x), ye(0,%x) =y1(x), x€(0,1),

where «, 8, o are constants, and Q = (0, T) x (0, 1). In fact, we study more general problems

V' +ay +BAY +Ay=f+@(y.9),
y0) =yoeV=H\(R), YO0 =y eH=L*Q),

see (2.7), in a multidimensional setting. They are fully described in Section 2.

Our main results in Sections 3, 4 are the uniqueness and the existence of solutions y of the nonlinear problem (2.7).
The continuous dependence of y on the parameters q = («, 8, 0) is established in Section 5. The Gateaux differentiability
of the solution map is proved in Section 6.

A study of identification problems for the nonlinear equation (2.7) is conducted in Sections 7 and 8. Let zg € W(0, T)
defined in (2.2). We want to characterize a parameter set ¢* = (a*, 8*, 0*) that minimizes objective function

J@=y@ -z ”iz(O’T:H) (1.6)

over an admissible set.

In Section 7 the identification problem is set up, and the objective function J is shown to be Fréchet differentiable
with respect to the parameter q. An expression for the Fréchet derivative D J in terms of the solutions of the direct and
the adjoint systems is presented. A criterion for optimal parameters g* is formulated in Section 8 as a bang-bang control
principle. An application of these results to the sine-Gordon equation (1.5) is considered in Section 9.

Our results for sine-Gordon equations with the external point source are new. Traditionally, Galerkin type methods
[11,13] use energy estimates for approximate solutions to conclude that one can extract a subsequence of such solutions
weakly convergent to the weak solution of (1.5). However, in our case such an approach is not possible, so we have devel-
oped a new method based on a fixed point argument, see Section 4.

For other types of semi-linear second order evolution equations see [6]. The Giteaux and Fréchet differentiability for
similar problems were established by us in [7,8,5,4]. Unlike these results, we exploit a higher regularity of the solutions
y(q) to established the Gateaux differentiability of the solution map without appealing to the Lions Transposition Principle,
see Section 6.

Optimization problems considered in this paper are developed for parameters q = («, 8, 0) € R3. The paper serves as a
foundation for problems with non-constant parameters. See [4] for such sine-Gordon equations without point sources.

2. Problem setup

Let 2 be an open bounded set in R? with a sufficiently regular boundary I'. Introduce the Hilbert spaces H = L2(£2)
with the norm |u| and the inner product (u,v) = fg uvdx, and V = H(l)(Q) with the norm |u| and the inner product
((u, v)) = (Vu, Vv). The dual H’ is identified with H leading to V C H C V' with compact, continuous and dense embedding.
Hence, there exist constants K1 = K1(£2) and Ky = K»(£2) such that

lw| < K1||lw||, foranyw eV, and |h|y <K3|h|, foranyheH. (2.1)

Let (u,v) denote the duality pairing between V = Hg)(_Q) and V' = H~1(£2). From now on the dependency on x is sup-
pressed, and " and ” stand for the time derivatives. Let

W(@O,T)={u: uel?0,T; V), v e %0, T; V), u" e L*(0, T; V')}, (2.2)

where the derivatives are understood in the distributional sense, see [11]. The standard L? norm | - |2, and || - ||y norm in
W (0, T) are introduced and discussed in Lemma 2.2.

To define a weak solution of the 1D damped sine-Gordon equation (1.5) one multiplies it by v € V and performs inte-
gration by parts for the terms containing the second partial derivatives in x.

Assuming that the solution y € W ¢ L%(0, T; V), the term with the delta function O'fol 8(x — xp)siny(t, x)v(x)dx =
o siny(t, xo)v(xg) makes sense, since y(t), ve V c C[O0, 1]. Accordingly, for v, w € V, let

(Fo(w), v)=sinw(xo)v(xp), xo€[0,1].

Then
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|{Fo(w), v)| < max |w|max |v| <c[w]v],
[0,1] [0,1]

since V is continuously embedded into C[0, 1]. Thus Fo: V — V' is well defined on V.
This leads to the following variational formulation for the sine-Gordon equation in the 1D case. Let £2 = (0, 1). Function
y € W is called a weak solution of the problem (1.5), if it satisfies

(/. v)+a(y.v)+B(VY.VV)+(Vy, Vv) + (siny, v) = (f,v) + o (Fo(¥). v),

y0) =yoeV, y (0 =yieH (2.3)

in the distributional sense on (0, T) for any v € V. Here f € L>(0, T; V'), and Vv = v,.

Define A:V — V' by (Au, v) = (Vu, Vv) = (u, v)), u, v € V. Then (2.3) can be rewritten as an equation for y in V’. This
form of the sine-Gordon equation also makes sense in the multidimensional case £2 c RY, and for functionals more general
than Fy.

In all our considerations parameters q = («, 8, 0) are assumed to be within the admissible set

P= {q = (@, B,0) € [@min. ¥max] X [Bmin, Bmax] X [Omin, Tmax] C Rg}’ (24)
where Bpin > 0.

Now we can state the object of our investigation.

Damped sine-Gordon problem. Let f € L2(0, T; V') and q = (&, 8,0) € P. Let F : V — V' be a Lipschitz continuous function.
We study solutions y € W (0, T) of the damped sine-Gordon problem

Y'+ay' +BAy + Ay +siny = f +oF(y),

y0 =yoeV, Y (0)=yi€H, (2.5)

where the equation is satisfied in the sense of distributions on (0, T) with the values in V', see [11,13]. Assumptions on F
are stated in Section 6.
It is convenient to consider (2.5) as a special case of a more general equation.

Second order nonlinear damped problem. Let f € [2(0,T;V’) and q = («, 8,0) € P. Let function @ : V x P — V' be
Lipschitz continuous with

v SL(Iwi —wal + 191 — q2lr3) (2.6)

for some L > 0 and any w1, wy €V, q1, q2 € P. Consider

|®(wi.q1) — (W2, q2)|

Y'+ay' +BAY +Ay=f+@(y,9,
y@=yoeV, y () =y eH. (2.7)
The sine-Gordon problem (2.5) is (2.7) with @(y,q) =0 F(y) —sin}y.

Second order linear damped problem. Let f € L2(0,T;V’) and ¢ = («, 8,0) € P. Let K > 0 and time dependent linear
operators B(t): V — V', t € [0, T] satisfy

B HL(V vy <K, and t— B(t)w is continuous on [0, T] (2.8)

for any we V.
Consider

y'+ay' +BAy +Ay+By=f,
y0) =yoeV, y(0)=y;€eH. (2.9)

The following lemma is of a critical importance throughout the paper. It is used in all uniqueness and existence results.

Lemma 2.1. Let w € W (0, T). Then, after a modification on the set of measure zero, w € C([0, T]; V), w’ € C([0, T]; H) and, in the
sense of distributions on (0, T) one has

%Hw”2 =2((w',w)) =2(Aw, w'), and %|W/|2 =2(w’, w'). (2.10)
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Proof. According to [13, Lemma 2.3.2], if u € L%(0, T; V) and its derivative u’ € L2(0, T; V'), then u is continuous from
[0,T] into H after a modification on a set of measure zero, and it satisfies d/dt|u|® = 2(u’, u). Letting u = w’ we get
w’ € C([0,T]; H) and the second equality in (2.10). For the first equality in (2.10) we can use [13, Lemma 2.3.2] with
V =H =V’, or just notice that the mapping x — ||x||? is Fréchet differentiable. O

Lemma 2.2. Let w € W (0, T). Define

Iwi3 = ”W”%Z(O,T;V) +| W/”iz(O,T;V) +]| W””iZ(o,T;v') (211)
and
”W”€V(O ry= max [[w(®) ”2 + |W,(t)‘2] +| W,”iZ(o vy T H Wﬂ”;(o ;v (212)
' te[0,T] T JT;
Then thenorms || - [l and || - lw = || - llw(o,1) are equivalent on W (0, T). Moreover (W (0, T), || - llw) is a Banach space.

Proof. By Lemma 2.1 we can assume that the functions w and w’ are continuous on [0, T] into V and H correspondingly,
so ||w]|w is well defined.

Note that [|[w|3 < T|w|2, + [lw|Z,. On the other hand, let to € [0, T] be such that [[w(to)|| = mino<;<r [|lW(t)||. Then
Tw(to)]? < ||w||§. Integrate the first equality in (2.10) on [tg, t] to get

t T
[wol’ < [weo)|’ +2/IIW’(S)II [wes)|ds < weo)|’ +2/HW/<S>H [ws]ds
0

to

< 1 2 7112 2 < 1 2
\f”W”z"‘”W||L2(0,T;V)+”W”LZ(O,T;V)\ ?‘H wliz

for any t € [0, T].
Similarly, let t1 € [0, T] be such that |w’'(t1)| = mino<:<7 |W'(t)|. Then using (2.10) and (2.1)

T
wol < wef +2 [ [w ol [wo]ds
0

1 2 2 2 K?
< ?” W/”LZ(O.T;H) + H WN”LZ(O,T;V’) + ”W/HLZ(O,T;V) < (T] + 1)”W”%

for any t € [0, T], and the equivalence of the norms follows. Since (W (0, T), || - ||2) is a Banach space, the norm equivalence
implies the same for (W (0, T), | - lw). O

We also need the following modification of the Gronwall's Lemma, see [2, Section B.2].

Lemma 2.3. Let C > 0 and functions a(t), b(t) € L'[0, T] be nonnegative a.e. on [0, T]. Suppose that n(t) € W 1[0, T1is nonnegative
on [0, T] and

n'(t) +a(t) < C(b(t) + (b)) (2.13)
is satisfied a.e. on [0, T]. Then

t t
10+ [ads < (n(O) +¢ [b ds) (214)
0 0

foranyte|[0, T].

Proof. Multiply (2.13) by e~! and rewrite it as

%(e_an(t)) +a()e " < Ch(t)e .

The integration over [0, t] gives
t t t
n(t) + / a(s)et =9 ds < et (n(O) +C / b(s)e™¢s ds) <ett (n(O) +C / b(s) ds)
0 0 0
and the result follows. O
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3. A priori estimates and uniqueness

In this section we derive various estimates and the uniqueness of the solutions and their approximations for prob-
lems (2.7) and (2.9). The function @ is assumed to satisfy the Lipschitz continuity condition (2.6). The existence of the
solutions is established in Section 4.

Theorem 3.1. Let T > 0. Then there exists a constant C > 0 independent of q € P such that

(i) Any solution y € W(0, T) of the nonlinear problem (2.7) satisfies
2
vl (31)

1Yy 0.0 < C2[Iyoll® + 111 + 1 f 2 g oy + [0 )]

foranyte|0,T].
(ii) Let uy,up € W(0, T) be two solutions of (2.7) with f1, fo € L2(0, T; V') correspondingly. Then their difference w = uy — uy
satisfies

Wiy 0.0 < Cl1f2 = fill2 o) (3.2)

foranyte[0,T].
(iii) The solution y of Eq. (2.7) is unique.

Proof. (i) If y is a solution of the nonlinear problem (2.7), then

" ¥)+BAY. Y )+ Ay, Y)=(f.¥y )+ (@@, . ¥)—a(¥.Y).

By Lemma 2.1
Zdt (v +1y2) + 8]y [ =(f. ¥)+ e .0, y) o]y
We have
(f+2.0.Y)|<|f+ (2.0 —20.9) +20.9|,. [y < (Iflv+|@0©.0|, +Liyl)|y|
gHyH ﬂ(||f||zv,+!\¢<o,q>!2v,+L2||y||2).
Therefore
(Y I + 1Y 1P <y (F12 + ey + |y + 112, (3.3)
dt
where y > 0 depends only on the bounds of the admissible set P.
By Lemma 2.3
t t
ly©) + Hy(t)Hz+f|!y/<s>||2ds<eyf<|y1|2+||yo||2+y/(\|f<s>|zv, : 2Q)ds)
0 0

t
< e”<|y1|2 + lyoll® + y/llf(S) |3, ds+ Ty | @0, sz)
0

?) (3.4)

2 ds+ 20,9

t
c1<|y1|2+ IIYO||2+/||f(S)|
0

for any t € [0, T].
Let v € V with ||v|| < 1. Then

(y//v V> = _a(y/! V) - ﬁ(Ay/’ V) - <Ay7 V> + <f7 V> +(¢(.y’ q)v V>'
Using |v| < Kq]||v]| = K1 we get

(v, V)| < Kictmax| /| + Bmax || + I¥1+ 1 v + Lyl + [@©. )] -

Therefore
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15 < C(1F13 + |25 + |y +1vI>+ ]y

and, by (3.4)

t
JIyol
0

where Cq, C3, C3 > 0 are constants independent of t € [0, T] or q € P. Adding this inequality to (3.4) proves (3.1).
(ii) The difference w = uy — u satisfies

t

é,ds<c3<|y1|2+ ||J’o||2+/“f(5)|

0

: ds ||¢<o,q>||2v/),

W'+ aw' + AW + Aw = (f2 — fi) + (@ (u2,q) — P (u1,9))

with zero initial conditions. An argument similar to the one used in part (i) of the theorem leads to estimate (3.2).
(iii) The uniqueness follows from (3.2). O

For the linear problem (2.9) we have

Theorem 3.2. Let T > 0. Then there exists a constant C > 0 independent of q € P such that
(i) Any solution y € W (0, T) of the linear problem (2.9) satisfies

11 0.0 < C2[Iyoll® + 1y11? + 1 f 12 g oy ] (3.5)
foranyt e [0, T].
(ii) Let uy,up € W (0, T) be two solutions of (2.9) with f1, fo € L>(0, T; V') correspondingly. Then their difference w = uy — uy
satisfies
Wiy 0,00 < C2 12 = fillf20 v, (3.6)
foranyte|[0, T].
(iii) The solution y of Eq. (2.9) is unique.
Proof. Let y be a solution of (2.9), then

(V" y)+BAY.Y)+(Ay. Y )=(f.¥) = (By. Y ) —a(y.¥).
By Lemma 2.1

1d
2t

Since ||B(t)w|lys < K||w||, we have

Y17+ 1y12) + By ) =(f.¥) — (By. ¥') —aly'|”.

[(f + By, y) < Iflv |y |+ Kiyll|y']

and the rest of the proof follows the argument of Theorem 3.1. O

Existence proofs of the next section are based on properties of finite-dimensional approximations y,, of the linear prob-
lem (2.9).

Let {A}p2, and {wy}2, be the eigenvalues and the eigenfunctions of the negative Laplacian —A in V, such that {w}2,
form an orthonormal basis in H. Then {w,</m},§°:] form an orthonormal basis in V, see [2, Chapter 6].

Fix m € N and let V;; =span{wy, ..., wy}. Define

m
Pph = Z(h, Wi)wg, heH. (3.7)
k=1

Then P, : H— Vy is an orthogonal projection in H and |Pph| < |h| for any h € H. Also Py, : V — Vp, is an orthogonal
projection in V and ||Pyv|| < ||v| for any v € V. Now define the adjoint projector P}, : V' — V' by

(Phg.v)=(g.Puv), geV' veV. (3.8)
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The approximate solution of the linear problem (2.9) is defined to be a function y,;; € W(0, T) that satisfies
Ym + Y + BAYy + Aym + PrBym = Py f,
Yym(©0) = Pmyo,  Ym(0) = Pmy1 (3.9)
in V',
Lemma 3.3.

(i) There exists a unique solution y,, € W (0, T) of Eq. (3.9).
(ii) The solution y;(t) € Vy forany t € [0, T], and ym, yi, € C([0, T]; V).
(iii) There exists a constant C > 0 independent of m € N and q € P such that

1ymli 0.0 < C2LIYol? + 13112 + 1f 1720 cv)] (3.10)
is satisfied for every approximate solution yn.

Proof. First, we notice that the solution of this linear equation is unique because of Theorem 3.2. Now suppose that z;; (t) =
> k1 &km () Wy satisfies

(Z;)/'p Wk) + a(Z;nv Wk) + :B(Azl/'nv Wk> + <Azm7 Wk) + <Bzm! Wk> = <f7 Wk)v

Zm(0) = Pmyo,  2,(0) = Pmy1 (3.11)

fork=1,2,...,m.
To see that the solution zy(t) also satisfies (3.9) it is enough to establish

(2 + azy, + BAZy, + Azm + P Bzm, wi) = (P f, wi) (3.12)

for any k € N. But for k <m, Eq. (3.12) is the same as (3.9), and for k > m Eq. (3.12) is reduced to 0 = 0. By the uniqueness
we conclude that yp,(t) = zn(t) € Vi
Since yn satisfies (2.9) with f =P}, f, and B= P} B, estimate established similarly to (3.5) gives

1Ym0,y < C2LIPmYoll® + 1Pmy1l® + | P f |22 0.0 - (3.13)

LetveV,

v||=1. Then

[(Prfov)| = [(f, PaV)| < I F Il AIPmVIE < I fllvrs

since ||Ppv|| < ||v]l = 1. Recalling that ||Pmyoll < |¥oll and |Pmy1| < |y1l, inequality (3.13) implies (3.10).
Therefore

1z 3 0.1y < C2[I1yoll® + 111 + 11 F 320 7.y - (3.14)
For each m € N, system (3.11) is a Cauchy problem for the system of ordinary differential equations that has a unique

solution zp(t). Because of the energy estimate (3.14) this solution exists on the entire interval [0, T]. Furthermore, the

component functions g, satisfy g,/gm € L2(0, T). Thus gm, &m € CI0,T], and we conclude that zy, z;,, € C([0, T]; V), and

Zh e [2([0,T]; V). O
4. Existence of solutions

Let function @ satisfy the Lipschitz continuity condition (2.6). First, we prove the existence for the linear problem (2.9)
using approximate solutions. Then the existence for the nonlinear problem (2.5) is established using a fixed point argument.

Theorem 4.1. There exists a unique solution y € W (0, T) of the linear problem (2.9). This solution satisfies estimates (3.5) and (3.6).

Proof. The uniqueness and estimates (3.5) and (3.6) have already been established in Theorem 3.2.
By Lemma 3.3 the approximate solutions y,, satisfy

1ymliy 0.1y < C2[1yoll® +1y11 + 1 f 320, 1.1 ] (41)

where the constant C is independent of me N and q € P.
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This estimate shows that for any m € N the approximate solutions y, belong to the same bounded convex ball
lwllw < C of W(0,T). Since W(0,T) is a reflexive space, there exists a subsequence ym, of y; that converges weakly
to a function z € W (0, T). Because this is a distributional convergence, we have

Ym =2 inl*(0,T; V),

Y, —7Z inLl*(0.T: V),

y’' —~Z7" inL?(0,T; V'), (4.2)
my

where — indicates the weak convergence. We can also assume that y;, — z weak-star in L>°(0, T; V) and y;nk — 7/ weak-
star in L°°(0, T; H).
Because of the assumption (2.8), time-dependent operator B can be considered as a continuous linear operator from
L%(0, T; V) into L%(0, T; V). Therefore it is weakly continuous. Thus we can pass to the limit in (3.9) as m — oo and obtain
2/ +a7 + BAZ + Az+Bz=f.

The satisfaction of the initial conditions z(0) = yo and z’(0) = y; follows as in [11,2,6].
Thus z is a solution of (2.9). By Theorem 3.1 the solution z is unique, therefore the convergence in (4.2) as well as for
Ym — z, m— oo in L2(0, T; H) is for the entire sequence yn, and not just for its subsequence Ym- O

A convergence estimate for the sequence yp, is given in Theorem 5.1.
The main result of this section is the following theorem on the existence of solutions for the nonlinear problem (2.7).

Theorem 4.2. There exists a unique solution y € W (0, T) of the nonlinear problem (2.7). This solution satisfies estimates (3.1)
and (3.2).

Proof. The uniqueness and estimates (3.1) and (3.2) have already been established in Theorem 3.1.
In this proof we reference the linear problem (2.9) assuming B(t) = 0. According to Theorem 3.1 there exists a positive
constant C > 0 such that for any solution u € W (0, T) of the linear problem

u' +ou +BAU 4+ Au=f,

u@ =yo, u'(0)=y; (4.3)
we have

Il 0.0 < C2[Iyoll> + 1y1 P + 1 F 12 g oy -

and solutions uq, uy of (4.3) corresponding to f1, f> € L%(0, T; V') satisfy

2 2 2
luz = w1y 0.0 < C2Lf2 = FillZo v

for any t € [0, T]. Note that the same constant C can also be used for estimates (3.1) and (3.2) for the solutions of the
nonlinear problem (2.7).

Furthermore, inequality (3.4) shows that there exists a constant y > 0 such that solutions u of both linear (2.9) and
nonlinear (2.7) problems can be estimated for any t € [0, T] by

t t
'+ Ju)|? +f||u/<s)||2 <eyf<|y1|2+ yoll? +V/||f(5)| iwis) (4.4)
0 0

and
t

t
W' + uo] +/||u/<s>||2 <e”<|y1|2+ lyoll? +y/(||f(s>||2v, + @9
0 0

2) ds) (4.5)

correspondingly.
Choose 0 < 8§ < T to be such that

1
CLVS < > (4.6)
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and

yT 2 .1 1
CLVse = [llyoll* + y1lP + VIl f 320 1.y + TV [@ O, ) [ ]2 < > (4.7)

Let ug € W(0, T) be the unique solution of the linear problem

ug +aug + BAug + Aug = f + (0, q),
ug(0) = yo, uy(0) = y1. (4.8)

Such a solution ug € W (0, T) exists by Theorem 4.1.
Let B(0,8) C W(0, 8) be the following closed convex subset of the ball centered at ug

B(0,8) ={u e W(0,8): [lu—uollws <1, u0) = yo, u'(0)=y1}.

For any u € B(0, §) define the operator G(0, 8) : B(0,§) — W (0, 8) by G(0, §)u = w where w € W (0, §) is the unique solution
of the linear problem

w’ +aw' + BAW + Aw = f + @ (u,q),
w(0) = yo, w'(0) = y; (4.9)

on [0, d8].
Then for any uq, up € B(0, §) we have

|G(0.8)(u2) = G(0. &) (1) |y g 5) < C| P2, @) = @W1. D) 129 5.y < CLllU2 = Utll 20500
< CLVBI ~ w0 < 5 102 — Ui llwio . (410)
Now we estimate
|G(0,8)(uo) — uOHW(O,S) < C[ @ (uo, q) — 2(0,9) ”LZ(O,S;V’)
< CLIuol 20,5,y < CLVS|ltollo(0.5:v)- (411)

By (4.4) with f = f + ®(0,q)

t
lup@)|* + ||uo(t)||2+/|}u’o(s>||2ds<e”(||yo||2+|y1|2+y||f||§2(0,8;v,)+8y||q>(o, D)%) (412)
0
Therefore
1
luollieosivy < e (Iyol’ + Iy1l? + VI I, + TV [@©.0)7) 2
Thus
1
|G(0.8)(uo) — HOHW(o,a) S5
Let u € B(0, ). Then
|G(0.8)(w) — o < [|G(0,8)(u) — G(0, 8)(uo) | + || G(0, 8) (o) — uo |
1 1
<§Ilu—uOllw<o,a>+§<1. (4.13)

Thus G(0, §) is a contraction mapping on B(0, §). By Banach Contraction Mapping Theorem [2, Theorem 9.2.1] there exists a
unique fixed point y € B(0,§) of G(0, 8). By construction y € W (0, ) is the solution of the nonlinear problem (2.7) on the
interval [0, §].

Suppose that y is the solution of (2.7) on an interval [0, tg]. We are going to show that it can be extended to the interval
[to, to + 8] with the same § that was chosen above, following the same method as was used to show the existence of y for
t €[0,3].

Let ug € W (to, to + 8) be defined now as the unique solution of the linear problem

ug +aug + BAug + Aug = f + ¢ (0,9),
ug(to) = y(to), uy(to) = y'(to)- (4.14)
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Let

B(to,to +8) = {u € W(to.to +8): lu — tollweg.to+s) < 1, ulto) = y(to), u'(to) = y'(to) }.

For any u € B(tg,tg + &) define the operator G(to,to + &) : B(to,to + 8) — W(to, to + &) by G(to, to + §)u = w where
w € W (to, to + §) is the unique solution of the linear problem

w’ +aw' + BAW + Aw = f + @ (u, q),

w(to) =y(to),  W'(to) =y (to). (4.15)
Arguing as in (4.10) and (4.11) we get

6o, to +8)(w2) — Gto, 0+ WD) y05) < 512 ~ U1 W)
and

|G(to. to + 8) (o) — uo ||W(t0,t0+5) < CLV8||uoll 1oty to-+6:v)-

Applying estimate (4.12) on the interval [tg, tg + ] we get

2
vr)-

0l ey sy < €7 (1Y C | +[Y I + ¥ 1 12y o0y + 67 [€0.0)]
By (4.5)

2
v)-

2 2
[y |” + 15" <e”® (Iyoll® + 1y112 + ¥ f12.¢5: vy + 1o [ 0. )]
Therefore
140110 kg tg-45:v) < € TV (Iyoll® + 1y11) + € YT 0 covn T VI I o rsivn
2 2
+e’ 0y | @(0,q), +e sy 20,9,

2
<e" (1ol + 11l + VI f 1220 400y + TV 2O, D7)

and

1

| Gto. to+8)W0) — o]y o cp18) < 3

Thus G(to,tp + &) is a contraction on B(tp, to + ) and there exists a fixed point y of G(tg, to + &) which is the solution of
the nonlinear problem

v 4+oau +BAY +Au=f+P(u,q),
uto) =y(to),  u'(to) =y'(to) (4.16)

on the interval [tg, to + 8]. Therefore the solution y(t) was extended to the interval [0, ty + 8]. Consequently, the solution y
exists on the entire interval [0, T]. O

5. Convergence estimates and continuity of the solution map

Now that the existence of the solution of the nonlinear problem is established, we show that the solution can be
approximated using a Galerkin method. We also prove that the solution map ¢ — y(q) is continuous from P into W (0, T).

Theorem 5.1. Define an approximate solution y,, € W (0, T), m € N for the nonlinear problem (2.7) as the solution of

Ym+ oYy + BAYL + Aym =Py f + Pr®(Ym, Q).

Ym(©0)=Pmyo,  Ypu(0)=Pmy (5.1)
that is satisfied in the sense of distributions on (0, T) with the values in V'.
Then

(i) The solution y of (2.7) and its approximations yp, satisfy the following convergence estimate

2 2 2
max [|y© —ym® | +]y'© = yu O]+ ¥ = ¥mli20 1.0,

<C(f, 2)(Iyo = Pmyol* + 1y1 = Pny1l® + |¥' = Pny'| 20 121 (5.2)
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(ii) We have y,, — y weakly in W (0, T) as m — oo.
(iii) The solution satisfies y € C([0, T]; V) and y’ € C([0, T]; H).

Proof. The difference y — y, satisfies

@ =ym)" +BAY —ym) +AY —ym)=f — P f+ @Y, Q) — Pp®(Ym. @) — (Y — ym)'
By Lemma 2.1

1d / ;2 2 ’ ;2

S Iy =yml”+lly = yml?} +B|Y — vl
(F=PLf. Y — Vi) +{@ @) = Pa®m. @), Y — Vi) — |y — yiu|*. (5.3)

Since y;, € Vi we have Ppy;, = y;,. Therefore

(F=Pof.y —ym)={f-d=P) (Y —ym))=(f. ¥ — Pny)

=]

and
(@, @) = Pp®(Ym. 0. Y —yn)=(I1—Pp)2 . 0. Y — yp) + (Pi(®Y. ) = P(Ym. D). ¥ — V)
= (2,0, Y — Pmy )+ (@Y. Q) — P Ym, D), Pm(¥ — ¥iy))-
Thus
1d
Ed—{!y’—yﬁnlﬂ||y—ym||2}+ﬁ||y’—yinH2
<c(IfIv [y = Pmy'| + 2. 0]y Y = Pmy'|| + LIly = ym yil). (5.4)

By Theorem 3.1 ||y|| < c. Therefore the integration of (5.3) on [0, t] and the Gronwall’s Lemma give

Y/ © = YO + [y© = ym® |* <c(F. @) (191 = Pmy1l? + 1¥0 = Pmyol> + |V = Pny' | 20.1.v))- (5.5)

This inequality and (5.4) imply (i) of the theorem.

Recall that y’ € L?(0, T; V). Therefore ||y’ — Pmy'll;2(0.1,v) — 0 as m — oo by the Monotone Convergence Theorem. Since
Ym, Y € C([0, T1; V) the conclusion (iii) follows from (i).

By (i) we have y,; — y and ym — y strongly in L2(0, T; V) as m — oo. Thus, to establish the weak convergence in
W (0, T) it remains to show that y;, — y” weakly in L%2(0,T; V') as m — oo.

Let v € V. Then

(V' =ymv)=—a(y —yn.v) = BA(Y = yp)- v) = (AQY — ym). v) + (f — Pp f.v)
(@Y. @) = Pr® (. @), v)+ (Pr(®(y, Q) — @ (Ym. ), V). (5.6)

Since (f — Py f,v)=(f, = Pm)v), (2(¥,q) — Pr@(y,q), V) =(D(y,q), I — Pp)v) and [(Pr(D(¥,q) — P (Ym.q)), V)| =
K2 (y,q) — DP(Ym,q), PmVv)| < LIy — ymllllv| we conclude that every term in (5.6) approaches zero as m — oo. Thus (iii) is
proved. O

Remark 5.2. Using @ =0 and slightly modifying the argument of Theorem 5.1 we obtain that the solution y of the lin-
ear problem (2.9) and its approximations y,, defined in (3.9) satisfy the convergence estimates and other conclusions of
Theorem 5.1.

Theorem 5.3. Suppose that function @ satisfies the Lipschitz continuity condition (2.6). Letq = (a, 8,0) € P and y(q) € W (0, T) be
the solution of the nonlinear problem (2.7). Then the solution map q — y(q) from P into W (0, T) is continuous.
Moreover, there exists a constant C > 0 independent of q € P such that

|y@2) = y@v|ye.r <Claz —qiles. (5.7)
forany q1,q, € P.
Proof. Let w = y(q2) — y(q1). Then

W+ AW + B AW = —(B2 — BDAY (q1) — W' — (2 — 1) Y (q1) + @ (¥(@2). 42) — P(¥(q1). q1) (5.8)
with z(0) =0, z/(0) = 0. Therefore
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|

W+ 1w} + B2 W' || = =(B2 — BD(AY @1, W) — aa|w'|* = (et — 1) (¥ (q1), W)
+(®(y(@2).q2) — @(¥(@q1).q1). w'). (5.9)

N =
Q

t

Since

(@ (y@2).92) — ®(¥(q1). q1). w')| <L(Iwll + |2 — q11gs3) | W’
the integration of (5.9) on [0, t], (3.1) and the Gronwall’s inequality give

3

2 2 2
[W'|"+ wl* <clg2 — qilzs.

and it follows that

max{[w'[* + 1w I]+ [ W[ G2 v, < claz = @1 s (5.10)

We estimate ”WN”Lz(O,T;V’) by the same method that was used in previous theorems. Let v € V be such that ||v| =1.
Then, from (5.8) we obtain
(W V) <c(lwll+ W] +182 = Bil + a2 — 1| + 142 — i |3 ). (511)
Now estimates (5.10) and (5.11) give the desired result. O

6. Gateaux differentiability of the solution map

By Theorem 5.3 the solution map q — y(q) is continuous from P into W (0, T). Our next result shows that the solution
map is also Gateaux differentiable on P assuming certain differentiability conditions on the nonlinear terms.

Definition 6.1. Function F : V — V' is called Fréchet differentiable if for every u € V there exists a bounded linear operator
DF(u):V — V' (the Fréchet derivative of F at u) such that
IF(w) — F(u) = DFu)(w —u)|lv/

lim =0. (6.1)
lw—ul|—0 lw—ul

Definition 6.2. Function F : V — V' is called uniformly Fréchet differentiable on V if

|F(w) — F(u) — DF (u)(w —u)|

for some M >0 and any w,u e V.

s SMllw —u|? (6.2)

Definition 6.3. Let ¢*, q € P. The solution map g — y(q) of P into W (0, T) is said to be Gateaux differentiable at g* in the

direction g — g* if there exists a function Dy(q*;q — q*) € W(0, T) such that

Y@ +irg—q) —y@)
A

lim
r—0

Dy(q*;q — q%) =0. (6.3)

W(0.T)
If ¢* € bnd P (the boundary of the set P), then it is assumed that A > 0 in (6.3).
Theorem 6.4. Suppose that function F : V — V' satisfies

(i) FisboundedonV.

(ii) F is uniformly Fréchet differentiable on V.
(iii) IDF@)llrv,vy <L forsome L >0andanyueV.
(iv) DF is Lipschitz continuous: there exists C > 0 such that

|DF@) = DF W)y yry < Cllu—wl. (6.4)

Let q,q* € P and y(q) be the solution of the sine-Gordon problem (2.5). Then the solution map y(q) : P — W (0, T) is Gdteaux
differentiable on P. Its Gdteaux derivative z= Dy(q*; q — q*) € W (0, T) at g* in the direction q — q* is the unique solution of the
linear problem

7'+ otz + B*AZ + Az=0"DF(y(q*))z — (cos y(q*))z + (a* — ) y'(q%)

+(8" = B)AY (@) — (0" —0)F(y(a")) (6.5)
with z(0) =0 and Z/(0) = 0.
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Proof. Since |[DF(u)| v vy <L, it follows from the Mean Value Theorem that function F is Lipschitz continuous on V. For
ueV and q€ P define @ :V x P — V' by

@& (u,q) =0 F(u) —sinu. (6.6)

With this choice of @ nonlinear problem (2.7) becomes the sine-Gordon problem (2.5).

Since F is bounded on V, and P is bounded in R3, function @ is Lipschitz continuous on V x P. Therefore all the results
of the previous sections are applicable to the sine-Gordon problem (2.5). In particular, this problem has a unique solution
y(q) € W(0, T). Furthermore, by Theorem 5.3 we have

|¥@2) = y@) |y .1 < Claz = ailps- (6.7)

Concerning problem (6.5) note that y(q*) = y(t; g*). Therefore (6.5) is a linear problem (2.9) with B(t)z=0*DF(y(q*))z—
(cos y(q*))z. It satisfies ||B(t)|lr(v,v/y < K for some K > 0. The continuity of t — B(t)w € V' follows from the continuity of
t — y(t;q*) € V and (6.4). By Theorem 4.1 problem (6.5) has a unique solution z€ W (0, T).

Let A #0 and g, =q* + A(q — q*). Then

y'(q@*) +a*y'(q") + B*AY (¢%) + Ay(q*) = f + o *F(y(q¥)) — siny(q*) (6.8)
and

V(@) +ay' (@ + BAY (@) + Ay(@) = f + 0 F(y(@)) —siny(q). (6.9)
Also

Y (@) + oY @) + BLAY (@) + Ay (@) = f + 0, F(y(q5)) — siny(qy) (6.10)
or

Y'(@) +a*y' (@) + B AY (@) + Ay(@) = f+ 0 F(y(@n) —siny(q:) + A(a* —a)y'(q:)
+A(B* — B)AY' (@) — 1(0* — o) F(y(qn))- (6.11)

Since q, — q* = A(q — q*) the difference z, = (¥(q,) — y(q*))/X satisfies

7 +a'z, + Az, + Az = T (F(v@n) - F(y(a")) - @) = @ 4 (@ —a)y' @)
+ (B* = B)AY' (@) — (0" — 0)F(y(a)). (6.12)

Therefore the difference w;, =z, — z satisfies

O—*

Wi+ oW + BT AW, + Aws = —(F(y(@n) = F(y(a"))) - " DF(y(q"))z
B (sin y(@qy) ; siny(q*) (cosy(q*))2> + (@ —a) (V@) -y (q"))
+(B*=B)A(Y @) —Y'(q") — (0" = o) (F(y@») — F(y(a")))- (6.13)

Note that

%(F (v@v) = F(y(a"))) - DF(y(q"))z = %(F (¥@w) = F(y(a*)) = DF(y(a")) (v@n) - y(a")))
+ DF(y(q%))(zx — 2) (6.14)

and

<sin y(qy) —siny(q®)

= - (cosy(q*))2> = %(siny(qx) —siny(q*) = (cos y(q")) (y(@) — ¥(q")))

+ (cos y(q*))(zx — 2). (6.15)
Thus (6.13) is
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wi +a*w) + BTAW) + Aw, =0 *DF(y(q"))ws. — (cos y(q*)) wa
*

+ UT(F(J/(CIA)) —F(y(q")) - DF(y(q"))(y(@») — ¥(a"

)

)
- %(Siﬂﬂfh) —siny(q*) — (cosy(q*)) (y(@n) — ¥(q%)))
+ (e —a)(¥' @) — ¥ (q%) + (B* — B)A(Y @) — V(%))
— (0" = 0)(F(y(@n) - F(¥(a)))- (6.16)

This is a linear equation for w,. By Theorem 3.1(i) we have the estimate

||W)\||€v(o,r) < c[ ‘ %(F(y(th)) —F(y(q*)) — DF(y(a%)) (¥ (@) — ¥(q*))) ;(OJ;V/)
" H%(Siny(fm = siny(q*) = (cos y(q%)) (y(@») — ¥(a"))) 2.1V

o = oy @) = ¥ (@) 2o + 18— B 1Y @) = ¥ (@) | 2orr,
+|o* - Ulz”y(q,\) — y(q*)Hiz(O’T;v)] =h+Ih+I3+1s+1s. (6.17)

The last three terms I3, I4 and Is in (6.17) approach zero as A — 0 by Theorem 5.3.
For the first term I; we use the uniform Fréchet differentiability of F to obtain

ds

Ih= ;—z/HF(y(s; 4)) = F(v(s:4")) = DF(y(s:4")) (v(s: a) = ¥(s:4")) [,

T
M? M2T 4
<ck—2/Hy(s;qx) - y(s q*)H4dS<CT(OlgtagTHy(t;qx)—y(t;q*)U) :
0

By (2.12), maxoge<t 1Y(6: q) — Y (& g9 < Ny (@x) — y@)llwo,1)- By Theorem 5.3, [|y(q:) — ¥(@)llwo,1) < Clgr — q*|gs.
Therefore

4 4
I <c—5—|ax — q*|gs <cA?|g — q*[ps. (6.18)
Thus I1 — 0 as A — 0. For the second term [, we use inequality

|sinb — sina — cosa(b —a)| < |b —a?, abeR

and argue as above to obtain

T
< [Ivsian - y(sa)ltas< Sla - ol <clla—a'fh. (619)
0

Thus I, — 0 as A — 0.
Therefore ||wy|lwo,1) = llz» — Zllw©,T) = 0 as A — 0, and the theorem is proved. O

7. Fréchet differentiability of the objective function

Let zg € W(0, T). In Section 8 we study the identification problem of finding a parameter g* that minimizes objective
function

J@=|y@ -z ”iz(o,T;H) (7.1)

over q € P. The continuity of ] follows from Theorem 5.3.

In this section we show that the objective function is Giteaux differentiable in P, and Fréchet differentiable in int P. Since
P C R3 this goal can be restated as establishing the existence of directional derivatives, and proving the differentiability of J.
The expressions for the derivatives are given in terms of the solutions y(q) and p(q) of the direct and the adjoint systems
respectively.



662 S. Gutman, J. Ha /J. Math. Anal. Appl. 375 (2011) 648-666
Given g € P the adjoint state p(q) € W (0, T) is defined as a solution of the linear terminal value problem

p" —ap’ — BAp'+ Ap — o (DF)*(y(@)p + (cos y(@)p = y(@) — za,
p(T)=0, p'(T)=0, (7.2)
where (DF)*: V — V' is the operator adjoint to DF.
Assuming that F satisfies conditions of Theorem 6.4, after the change of variable s =T —t system (7.2) becomes a special
case of the linear problem (2.9). Therefore the conclusions of Theorem 4.1 are applicable to (7.2), including the existence
and the uniqueness of the solution p(q).

From the definition (7.1) of the functional ] we derive the expression for its Gateaux derivative D J(q*;q — g*) at ¢* in
the direction q — g¢*

T
DJ(q*;q—q") =2 /(y(q*) —24,Dy(q*; q — q*)) dt. (7.3)
0

Let q € P. Define linear operators

L@w=w"+aw + BAW + Aw — o DF(y(q))w + (cos y(q))w (7.4)

for w € W (0, T) satisfying w(0) = w’(0) =0, and

LXq)p=p"—ap —BAp'+ Ap — o (DF)*(y(@)p + (cos y(@))p (7.5)

for p e W(0, T) satisfying p(T) = p/(T) = 0. Then, for such w and p we have

T T
/(E*(q)p, w)dt = /(p, L(qw)dt. (7.6)
0 0

With this notation Eq. (6.5) for the Gateaux derivative z= Dy(q*, q — q*) becomes

L(")z= (" =)y (q") + (8" = B)AY' (@) — (0" = o) F(v(d")). (7.7)
and Eq. (7.2) for the adjoint state p(q*) becomes

£*(q*)p(q*) = y(q*) — za- (7.8)

Theorem 71. Let q,q* € P. Suppose that F : V — V'’ satisfies conditions of Theorem 6.4. Then objective function J(q) =
ly(qQ) —z4 ||%2 (O.T:H) is Gdteaux differentiable on P, and its Gateaux derivative D J(q*, q — q*) at q* in the direction q — q* is given by

DJ(q".q—q") = (e —a)a(q") + (B — B*)b(q") + (0 — 0™)c(q"). (7.9)
where

(@) =2 [ (v(@"). pla’) et 710)

b(g") =2 f (Ay'(q*). p(q"))dt (711)
and

() =2 [ {F(y(@). pla") e (712)
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Proof. We have

T
DJ(q*:q—q") 2/ *) —z4.Dy(q*:q —q*)) dt
0

(p(a*). £(q")2)dt

o
L
*
—_
SN—"
=
—_
)
*
S—"
o
QU
—~
Il
N
S
—~—

T T
2(a* — / q*))dt+2(8* — B /Ay ). p(q*))dt
0 0

~2(0"~0) [IF(r(@).p(a"))ae 13)

which is (7.9)-(7.12). O

Theorem 7.2. Let q € int P. Suppose that F : V — V'’ satisfies conditions of Theorem 6.4. Then objective function J(q) =
ly(@q) — zq H%Z(o T:H) is Fréchet differentiable on P, and its Fréchet derivative D J(q) is given by D J(q) = V J(q) = {a(q), b(q), c(q)),

where the functions a, b, c are defined in (7.10)-(7.12).

Proof. Functions a(q), b(q) and c(q) are the partial derivatives of J(q). Therefore, to show the differentiability of J(q) it is
enough to establish their continuity. By Theorem 5.3 the solution map q — y(q) is continuous from P into W (0, T). Thus,
according to (7.10)-(7.12) functions a(q), b(q) and c(q) are continuous, provided the solution map q — p(q) is continuous
from P into L2(0, T; V).

Let B(t): V — V' be defined by

B(t) =0 (DF)*(y(t: q)) — (cos y(t: q))

for any t € [0, T]. Since F satisfies conditions of Theorem 6.4, we conclude that operators B(t) satisfy conditions (2.8).
Therefore the conclusions of Theorem 4.1 are applicable to (7.2), and we can use inequality (3.2) to estimate

|p@2) = p@) |y 0.1y < l¥@2) = ¥@D| 20 7.y < €la2 = d1lps
for q1,q2 € P. Thus ¢ — p(q) is continuous as claimed, and the theorem follows. O

8. Optimal parameters
In this section we assume that g* € P is an optimal parameter for the problem
®\ . 2
J(@*) = infJ(@ = ;gﬂly(q) zd|| 20,71 (81)
By Theorem 5.3 the solution map q — y(q) is continuous on P, therefore the minimization problem (8.1) has a solution.

Theorem 8.1. Suppose that function F satisfies conditions of Theorem 6.4, and q* € P be an optimal parameter of (8.1). Let the
functions a(q), b(q) and c(q) be defined by (7.10)-(7.12).

(i) Ifq* e int P, then
a(q*) =b(q*) =c(q*) =0. (8.2)
(ii) Ifg* € P, then
(@ —a*)a(@) + (8 = B*)b(a") + (0 — 0")e(a")

forany q e P.
(iii) The optimality condition (8.3) can be restated as a bang-bang control principle

\Y%

0 (8.3)

o = %{Sign(ﬂ(q*)) + 1}omax — % {sign(a(q")) — 1}etmin. (8.4)

ifa(@) #0.
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= %{Sigﬂ(b(q*)) + 1} Bmax — %{sign(b(q*)) — 1} Bmin- (85)
ifb(g*) #0.
0" = %{Sign(c(q*)) + 1}0max — %{sign(c(q*)) —1}Omin, (86)
ifc(@*) #0.
?rmf' The necessary optimality condition for q* is D J(g*:q — q*) >0 for any q € P. According to Theorem 7.1 it takes the
orm
(o= a)a(a") + (B = 7)b(a") + (o — 0*)e(a") >0 (87)

for any g = («, B,8) € P. If ¢* € int P, then (8.7) can be satisfied only if a(q*) = b(g*) =c(q*) =0.

Recall that the admissible set P was defined in (2.4). Choose q = («, 8*, 8*) € P. Then (8.7) becomes (o* — @)a(q*) >
0 for all o € [0¢min, ¥max]. If &¢* € (min, ¥max) then we must have a(qg*) = 0. If a(q*) > 0 then o* = amax. If a(@*) <0
then o* = orppin. Thus the case a(q*) # 0 can be compactly written as (8.4). A similar argument is used for b(q*) # 0 and

c(@)#0. O
9. Application to damped sine-Gordon equation

Following the setup for the one-dimensional sine-Gordon problem in Section 2, let u, w,veV = Hg)(O, 1). Fix xo € [0, 1]
and define nonlinear functional Fo:V — V' by

(Fo(w), v) = sinw(x)v(xo).
Then |(Fo(w), v)| = [sinw(Xp)||v(x0)| < ||v]]. Therefore ||Fo(w)|lys <1 for any w € V. Thus Fy is bounded on V. Also

|{Fo(u) — Fo(w), v)| < |u(xo) — w(xo)||v(x0)| < lu — wll|lv].

Therefore ||Fo(u) — Fo(w)|ly’ < |lu — w| and functional Fy is Lipschitz continuous on V.
Let q € P. To simplify the formulas assume that o € [Opmin, Omax] C [—1, 1]. Define

(@(w,q), v)=0(Fo(w), v)— (sinw, v).
Then
[{@(w.q).v)| < |Fo(w)|,, + Isinw| <2.

Therefore ||®(w, q)|ly’ < 2. Since

< ([|[Fo(w) = Fo)||,,, + g — q*| + |w — ul)|v(x0)|
<c(llu—wll+|g—g*|)lvl, (9.1)

function @ is Lipschitz continuous on V x P.

(@(w, ) — & (u.q%). v

Theorem 9.1. One-dimensional damped sine-Gordon problem (1.5) has a unique weak solution y(q) defined in (2.3).
Proof. Apply Theorem 4.2. O

We claim that F is Fréchet differentiable on V, and that its Fréchet derivative is given by
(DFo(u)w, v) = cos u(xo)w(xo) v(xo).
Indeed, fix u € V, and let linear operator T, : V — V’ be defined by
(Tyw, v) =cosu(xg)w(xp)v(xg), v,weV.
Then
[(Tuw, v)| < WiVl

Therefore [[Tyuwlly < [wll, and [[Tullrv vy < 1.
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From inequality
|sinb —sina — cosa(b —a)| < |b—al*>, a,beR
we get
|(Fo(w) — Fo(u) — Tu(w — u), v)| < |sin w(xg) — sinu(xo) — cosu(xo)(w(xo) — u(xo))||v(x0)|
< |wixo) — U(Xo)’2|V(Xo)| <lw —ul?|vll. (9.2)
Thus

|Fo(w) — Fo(u) — Tu(w —w) |, < lw —u||®. (9.3)

This means that Fg is uniformly Fréchet differentiable on V, and DFg(u) = T,. Furthermore, inequality (9.3) shows that
(6.2) is satisfied with M =1.
Similarly

[((DFo(uz) — DFg(u))w, v)| < |cosua(xo) — cosuy xo)| Iwll[[v]l < lluz — uq [Iwll]|v].
Therefore ||(DFo(uz) — DFo(u1))wlly: < [luz — uqlliw|l, and

HDFO(UZ) - DFO(u‘l)HL(V,V/) < ”u2 - U]”.

Thus inequality (6.4) is satisfied with C =1, and DFy is Lipschitz continuous.
Theorem 9.2. Minimization problem

J(q*) = min J (@) =21€i151/|y(t,x; Q) — za(t, 0| dxde,  Q =[0,1] x [0, T],

for the one-dimensional sine-Gordon problem (1.5) has a solution g* € P.
Furthermore, if the optimal coefficient q* € int P, then it can be characterized by

vJ(q*) =(a(q*).b(q").c(q")) =0,

where
/ (t.x;q%)p(t, x: ) dxdt,
Q
T
ZfYXt (t.x:%), p(t, x; q%) dxdt,
0
and
T
c(q*) =2/siny(t,xo;q*)P(t7X0?q*)dt'
0

If g* € bnd P (the boundary of the set P), then the solution map q — y(q) is Gateaux differentiable, and the optimal coefficient q*
is characterized by (8.3).

Proof. Use Theorem 8.1. O
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