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ABSTRACT

Firstly, the Earth's gravitational field from the past Challenging Minisatellite Payload
(CHAMP) mission is determined using the energy conservation principle, the combined error
model of the cumulative geoid height influenced by three instrument errors from the current
Gravity Recovery and Climate Experiment (GRACE) and future GRACE Follow-On missions is
established based on the semi-analytical method, and the Earth's gravitational field from the
executed Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission is
recovered by the space-time-wise approach. Secondly, the cumulative geoid height errors
are 1.727 x 10~ m, 1.839 x 10~* m and 9.025 x 1072 m at degrees 70,120 and 250 from the
implemented three-stage satellite gravity missions consisting of CHAMP, GRACE and GOCE,
which preferably accord with those from the existing earth gravity field models involving
EIGEN-CHAMPO03S, EIGEN-GRACE02S and GO_CONS_GCF_2_DIR_R1. The cumulative geoid
height error is 6.847 x 1072 m at degree 250 from the future GRACE Follow-On mission.
Finally, the complementarity among the four-stage satellite gravity missions including
CHAMP, GRACE, GOCE and GRACE Follow-On is demonstrated contrastively.

© 2015, Institute of Seismology, China Earthquake Administration, etc. Production and
hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

to-satellite tracking in the high—low/low—low mode (SST-HL/
LL) and the satellite gravity gradiometry (SGG) [1]. The global
static and time-varying gravitational field can reflect the

The 21st century is a new epoch that we upgrade the
cognitive capabilities to the digital earth using the satellite-to-
satellite tracking in the high-low mode (SST-HL), the satellite-
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spatial distribution, movement and variation of materials on
and inside the Earth, and can dominate the undulation and
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change of the geoid. Accordingly, the investigations on the
fine configuration and time-variable characteristics of the
Earth's gravitational field not only are requirements for
geodesy, solid earth geophysics, oceanography, hydrology,
glaciology, space science, etc., but also will provide
important  information  for  resource  exploration,
environmental protection and disaster monitoring [2—8].

As shown in Table 1, the successful launch of the past
CHAMP satellite, the current twin GRACE satellites and the
executed GOCE satellite, and the upcoming implementation
of the future twin GRACE Follow-On satellites [9—17] declare
that we will meet the era of the unprecedented satellite
gravity exploration.

The Earth's gravitational field from the past CHAMP, cur-
rent GRACE, executed GOCE and future GRACE Follow-On
missions are, respectively, recovered making use of three
different methods comprising the energy conservation prin-
ciple, the semi-analytical method and the space-time-wise
approach, and the advantages and disadvantages from the
four-stage satellite gravity missions are in detail discussed in
this study. This work not only is propitious to providing the
theoretical and methodological basis for mapping the next-
generation Earth gravity field model with high accuracy and
spatial resolution, but also has the reference significance for
the development direction of the future deep space satellite
gravity missions (e.g. Moon [18,19], Mars [20]).

2. Methods
2.1. Past CHAMP mission

The energy conservation principle [21-31] is one of the
efficient approaches to recover the CHAMP Earth's gravita-
tional field complete up to degree and order 70. The advantage
is that the Earth's gravitational field is in favor of being easily
recovered because the energy observation equation has a
linear relationship between the spherical harmonic co-
efficients of the geopotential and the Earth's disturbing po-
tential. The disadvantage is that the determination accuracy
of the Earth's gravitational field is sensitive to the observation
error in the orbital velocity.

In the Earth-centered inertial (ECI) frame, the energy
observation equation of the single satellite is defined as

T=E—-E+V,—-Vr—-Vy—E (1)

where T represents the Earth's disturbing geopotential,

L 1
T(r,0,2) :GTM

1=2 m=

R\’ ) _
{ (Te) (Cim cosMA+ Sy, SINMA) Py (COS )
0

where r shows the distance from the satellite's centroid to the
geocenter, ¢ and 2 display the geocentric colatitude and
geocentric longitude, GM denotes the product of the gravita-
tional constant G and the Earth's mass M, R. presents the
Earth's mean radius, Pi,(cosé) denotes the normalized Leg-
endre polynomials with degree 1 and order m, and Cyy,, Sim
express the estimated geopotential coefficients.

The first term Ey, = %\ﬂz on the right-hand side of equation
(1) is the kinetic energy, where 7 represents the orbital velocity
vector. The second term E; = [7f dt is the dissipative energy,
where f shows the non-conservative force (e.g., atmospheric
drag, solar radiation pressure, the Earth's albedo, orbital
altitude and attitude control forces, etc.). The third term V,, =
—we(Xy — yX) is the geopotential rotation, where w. denotes the
Earth's angular rotation rate. The fourth term Vr is the three-
body disturbing potential (e.g., lunisolar gravitation, Earth's
solid tides, ocean tides, principle of relativity effect, etc.).
The fifth term Vo =GM/r is the geocentric potential. The last
term E, is the energy constant derived from the initial
orbital position and orbital velocity vectors.

2.2. Current GRACE and future GRACE Follow-On
missions

The semi-analytical method [32—37] is an efficient method
for estimating the accuracies of the Earth's gravitational field
from the current GRACE and future GRACE Follow-On mis-
sions. The principle of the semi-analytical method is that the
accuracy of the Earth's gravitational field is estimated using
the error model of the satellite observation equation estab-
lished by the relationship between the cumulative geoid
height error and the measurement error of the space-borne
instruments. The advantages are that the establishment of
the high-degree earth gravity field model is rapid, the physical

Table 1 — A comparison of the past CHAMP, current GRACE, executed GOCE and future GRACE Follow-On missions.

Satellite gravity missions

Parameters

CHAMP GRACE GOCE GRACE Follow-On
Scientific institution GFZz* NASAP and DLR® ESA? NASA
Mission lifetime 2000-07-15—-2010-09-19 2002-03-17 2009-03-17-2013-11-10 2016—2020
Orbital altitude 454—300 km 500—300 km 250—240 km about 250 km
Orbital inclination 87° 89° 96.5° 89°
Orbital eccentricity <0.004 <0.004 <0.001 <0.001
Inter-satellite range = 220 km = 50 km
Tracking mode SST-HL SST-HL/LL SST-HL/SGG SST-HL/LL
Spatial resolution 285 km 166 km 80 km 55 km

& GFZ: GeoForschungsZentrum, Potsdam, Germany.

b NASA: National Aeronautics and Space Administration, USA.

¢ DLR: Das Deutsche Zentrum fiir Luft-und Raumfahrt, Germany.
4 ESA: European Space Agency.
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significance of the satellite observation equation is definite,
and the error analysis is easy. We created the combined error
model of the cumulative geoid height influenced by the
measurement errors in the satellite-borne payloads using the
semi-analytical approach. Accordingly, the accuracies of the
Earth's gravitational field from GRACE and GRACE Follow-On
can be accurately and rapidly estimated based on the com-
bined error model of the cumulative geoid height.

The combined model of the cumulative geoid height error
6N impacted by three error sources including the inter-satel-
lite range-rate ¢p,,, orbital position ¢ér and non-conservative
force ¢f is established as

L 1 Re r 21+1
6N =R, \j 3 {W oM (R_e) o%(én)} )

1=2

where 6y = $ a?(6p12) + a$< %@‘W%r) + a?([ ofdt).

The calculational processes of estimating the cumulative
geoid height error using the combined error model are
depicted as follows (e.g. future GRACE Follow-On mission).

Firstly, the random white noises 6n of the normal distri-
bution with an observation period of 30 days and a sampling
interval of 10 s are produced.

Secondly, the orbital position of the future twin GRACE
Follow-On satellites are simulated based on the numerical
integration formulas of the 9th-order Runge—Kutta linear
single-step method associated with the 12th-order Adams-
Cowell linear multi-step method. The simulation parameters
of the satellite orbit are listed in Table 1.

Thirdly, the grids with a 1° x 1° resolution are plotted on the
Earth's surface of longitude 1(0°—360°) and latitude ¢(—90° — 90°),
and on(¢,4) is put in the track position of the satellite orbit on the
Earth's surface.

Finally, according to the spherical harmonic expansion,
on(¢,4) is displayed as

L

on(¢, ) = Z i [(Csn,, COS M2+ Sy, SIN MA)Piy(sin ¢)] (3)

1=0 m=0

where C;,, ,Ssy,, denote the expansion coefficients of 6n(¢,4).

1 -
(Conm > Somm) = in Jon(¢, )Y (¢, 2)cos pdeda (4)
The variance of én at every degree is expressed as

at(om) =>_ (€2, + 5, )
m=0

Substituting equation (5) into (2), the accuracy of the Earth's

gravitational field is conducive to being precisely and rapidly

estimated.

2.3. Executed GOCE mission

The core ideas of the Earth's gravitational field recovery
from the executed GOCE mission adopting the space-time-
wise approach are described as follows [38]. Firstly, the four
equidistant and regular reference spherical surfaces with
the center of sphere located at the geocenter are designed

and the GOCE satellite orbit is located between the second
and third reference spherical surfaces. The gridding is
averagely measured off according to the longitude and
latitude on the every reference spherical surface. Secondly,
the satellite gravity gradient data are rapidly calculated by
the fast Fourier transform (FFT) on each reference spherical
surface and are transformed from the reference spherical
surfaces to the satellite orbit by the three-dimensional
interpolation (Space-wise approach). Finally, equation (6) is
solved at the satellite orbit, and the geopotential coefficients
are derived from the least-squares procedure (Time-wise
approach).

In the Earth-centered inertial frame, the observation
equation of the satellite is defined as

Y1 = AmsnXnc1 (6)

where y,,.1 denotes the gravity gradients at satellite orbit, m
represents the number of the satellite gravity gradients; Ay xn
displays the design matrix with rows m and columns
n=12_ +2Lmax — 3, Lmax is the maximum degree of the
spherical harmonic function; and X,.; expresses the esti-
mated earth's geopotential coefficients.

Because equation (6) is the overdetermined large-scale
system of equations, it does not have an exact solution, but
a least-squares solution. Multiplying equation (6) by ATE™?
on both sides at the same time yields
ATE"'y = ATET'Ax )
where E represents the error covariance matrix of the satellite
gravity gradients. In this study, the random white noises of
normal distribution are introduced into the satellite gravity
gradients during the numerical simulation process.

When the spherical harmonic degree of the Earth's gravi-
tational field recovery is higher (Lya.x>150), ATA is an ill-
conditioned matrix, and the ill condition is apt to be sharply
intensified with the increase in the spherical harmonic de-
gree. Because the ill condition will lead to decrease the accu-
racy of the Earth's gravitational field recovery, the
regularization will play a significant role in the satellite gravity
recovery step. The main effect of the regularization is to
reduce ill condition and suppress the high-frequency noise of
the Earth's gravitational field determination [39]. The Kaula
regularization can be defined as

K = KoKy 8)

where K, represents the Kaula regularization parameter. As
for recovering the GOCE Earth's gravitational field complete up
to degree and order 250, K, =2 x 107'°. K; denotes the Kaula
regularization function,

Ki = o5 1*(i) ©)

where ¢; denotes Kronecker symbol, and I(i) shows the
spherical harmonic degree of the Earth's potential coefficients
corresponding to the row (column) number i.

By adopting the Kaula regularization, equation (7) can be
modified as

ATE'y = (ATET'A +K)X (10)
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Assuming G=ATE"'y, N=ATE'A + K, equation (10) can be
rewritten as

anl = Nnxninxl (11)

In general, A,., is a large-scale design matrix. Due to
consuming a large number of the memory space, it is very
difficult to store A, Although the normal matrix Ny, is
much smaller than A,, ., large numbers of the memory space
(about 12 Gb) is required to store Ny..n,. Nu.n is @ block-diago-
nally dominant matrix.

The pre-conditioned conjugate-gradient iterative approach
(PCCQG) is one of the most efficient methods to solve the large-
scale linear system of equations. During solving equation (11),
the block-diagonal part of N,.., is chosen as Py, and the off-
block-diagonal part of P,., is zero. Thereby, P,., maintains
the characteristics of N,.,, and the computation of P;in is
much easier than N, !,. In a word, the number of iterations
can be substantially reduced by the appropriate choice of
P,.n (reducing approximately 1000 times as compared to the
direct least-squares method).

3. Results

As illustrated in Fig. 1, the asterisk, solid bold, dashed slim
and solid slim lines respectively express the cumulative geoid
height errors based on the accuracy indexes of the space-
borne instruments (Table 2) from the past CHAMP, current
GRACE, executed GOCE and future GRACE Follow-On
missions. At degrees 70,120 and 250, the cumulative geoid
height errors are 1.727 x 107! m, 1.839 x 107' m and
9.025 x 1072 m from the implemented CHAMP, GRACE and
GOCE missions, which basically are in agreement with the
existing Earth gravity field models EIGEN-CHAMPO3S, EIGEN-
GRACEO2S and GO_CONS_GCF_2_DIR_R1. At degree 250, the
cumulative geoid height error is 6.847 x 1072 m from the
future GRACE Follow-On mission. The statistic results of the

-
.....
------
________

Cumulative geoid height error (m)

—— CHAMP
== GRACE

~— GRACE Follow-On

1 1 1
0 50 100 150 200 250
Degree

Fig. 1 — Comparison of cumulative geoid height errors from
the implemented CHAMP, GRACE and GOCE and future
GRACE Follow-On missions.

cumulative geoid height errors from the four-stage satellite
gravity missions at every degree are listed in Table 3.

According to Fig. 1 and Table 3, the research results are
stated as follows.

(1) The utmost ability from the past CHAMP mission to
recover the global gravitational field using the SST-HL mode is
about 70 degrees. Due to the limitations regarding the orbital
altitude, instrument noises, tracking mode, etc., CHAMP sat-
ellite is only fit for measuring the Earth's long-wavelength
gravitational field. Therefore, the CHAMP mission is just an
exploratory experimentation for high-accurately determining
the Earth's gravitational field using the first-stage dedicated
gravity satellite, and makes for sufficiently improving the ac-
curacy of the earth's potential coefficients and enhancing the
dependability of the Earth gravity field model.

(2) The topmost ability from the current GRACE mission to
map the Earth's gravitational field using the SST-HL/LL mode
is approximately 120 degrees. The cognitive capability to the
Earth's gravitational field is upgraded by an unprecedented
level owing to the successful launch of the twin GRACE sat-
ellites. The new Earth gravity field model will be produced by
every 15—-30 days from the GRACE mission, and the contri-
butions to measure the high-accuracy and high-resolution
Earth's gravitational field even exceed the total of information
in the past 30 years. The twin GRACE satellites not only
include two groups of SST-HL mode, but also determine the
mutual movements of two low-orbiting satellites based on the
differential principle. Accordingly, the recovery accuracy of
the static and time-variable Earth's gravitational field from
GRACE is at lowest one order of magnitude higher than that
from CHAMP.

(3) The top-flight ability from the GOCE mission to deter-
mine the Earth's gravitational field using the SST-HL/SGG
mode is near 250 degrees. Due to the sharp signal attenuation
(Re/1)! of the Earth's gravitational field with the increase in
the orbital altitude of the satellite, the orbit perturbation
analysis is only appropriate to measure the Earth's gravita-
tional field in the medium-long wavelength band. However,
the second-order derivatives of the Earth's gravitational po-
tential can be directly determined by the satellite gravity
gradiometry technique and the spherical harmonic co-
efficients are enlarged by 1° times. Hereby, the satellite
gravity gradiometry is in favor of efficiently suppressing the
signal attenuation of the Earth's gravitational potential with
the increase in the orbital altitude and precisely determining
the Earth's gravitational field in the medium-short wave-
length range [40].

(4) The uppermost ability from the future GRACE Follow-On
mission to measure the Earth's gravitational field using the
SST-HL/LL mode is almost 250 degree. The crucial reasons
why the accuracy of the Earth's gravitational field from the
future GRACE Follow-On mission is at least 10 times higher
than that from the current GRACE mission are analyzed as
follows. Firstly, the orbital altitude of the twin GRACE Follow-
On satellites is sharply decreased, and the signal attenuation
of the Earth's gravitational field with the increase of orbital
altitude is efficiently mitigated. Secondly, the GRACE Follow-
On mission thoroughly improves the measurement accuracy
of the inter-satellite range-rate by the interferometric laser
ranging system. Finally, the twin GRACE Follow-On satellites
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Table 2 — Accuracy indexes of key payloads from the implemented CHAMP, GRACE and GOCE and future GRACE Follow-On
missions.

Measurement accuracy

Key payloads

CHAMP GRACE GOCE GRACE follow-on
GPS receiver 1x10'm 3x 102 m 1x10%?m 1x10°m
Accelerometer 3 x 107° m/s? 3 x 107 m/s? — 3 x 10~ m/s?
Inter-satellite ranging system = 1x 10 °m/s — 1x 1077 m/s
Gradiometer — — 3 x 107%/s —

Table 3 — Statistical results of the cumulative geoid height errors from the implemented CHAMP, GRACE and GOCE and

future GRACE Follow-On missions.

Cumulative geoid height errors (m)

Degrees

CHAMP GRACE GOCE GRACE Follow-On
20 3.732 x 1073 6.625 x 10°* 5.373 x 1073 1.355 x 104
50 4.226 x 1072 1.997 x 103 1.129 x 1072 1.739 x 107*
70 1.727 x 1071 8.061 x 1073 1.668 x 1072 2.317 x 1074
90 — 2.685 x 102 2.066 x 102 3.617 x 10°*
120 — 1.839 x 1071 2.392 x 1072 7.989 x 1074
200 — — 4.723 x 1072 1.072 x 1072
250 — — 9.025 x 1072 6.847 x 1072

are equipped with the drag-free control system for accurately Merit-based Scientific Research Foundation of the State Min-
compensating for the non-conservative force. istry of Human Resources and Social Security of China for
Returned Overseas Chinese Scholars (Z01101), the Open
Research Fund Program of the Key Laboratory of Geospace
Environment and Geodesy, Ministry of Education, China (11-
01-02), the Open Research Fund Program of the Key Laboratory
of Geo-Informatics of National Administration of Surveying,
Mapping and Geoinformation of China (201322), the Open
Research Fund Program of the State Key Laboratory of Geo-
information Engineering, China (SKLGIE2013-M-1-5), the Main
Direction Program of Institute of Geodesy and Geophysics,
Chinese Academy of Sciences (Y309451045), the Research
Fund Program of State Key Laboratory of Geodesy and Earth's
Dynamics, China (Y309491050), the Research Fund of the Na-
tional Civilian Space Infrastructure Project (Y419341034), and
the Research Fund of the Lu Jiaxi Young Talent and the Youth
Innovation Promotion Association of Chinese Academy of
Science (Y305171017).

4, Conclusions

This research focuses principally on demonstrating
contrastively the complementarity among the past CHAMP,
current GRACE, executed GOCE and future GRACE Follow-On
missions based on three different methods consisting of the
energy conservation principle, the semi-analytical method,
and the space-time-wise approach. Due to aiming to measure
the Earth's gravitational field in different wavelength bands,
the four-stage satellite gravity missions have different scien-
tific applications. Because the implemented CHAMP, GRACE
and GOCE and future GRACE Follow-On missions are respec-
tively sensitive to Earth's gravitational field in the long-
wavelength, medium-long-wavelength, medium-short-
wavelength and short-wavelength bands, they are not
competitive but complementary with one another. Therefore,
the combination of the four-stage satellite gravity missions is
helpful for producing the Earth gravity field model with un-
precedented accuracy and resolution.
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