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Abstract 

The SCORE thermoacoustic engine (TAE) depends of an external heat source from the waste heat of wood burning 
stove or propane gas. The overall efficiency of TAE depends a lot on the efficiency of the heat transfer process from 
the cooking stove to the regenerator. It is important to supply most of the heat to the engine directly to the regenerator 
top surface for best performance of the engine. The combined and complex mode of heat transfer from the cooking 
stove to the engine makes this task extremely difficult to be achieved. In this work analytical calculations are used to 
calculate from the fundamentals the radiation heat transfer from two types of heat exchangers used by the SCORE 
project to transfer heat from the external heat source to the engine. The objective of this study is to understand and 
evaluate the proportions of heat transferred from the inner side of the external hot surface to the engine.  A detailed 
analysis of the view factors, the surface and space resistances were conducted to calculate the radiation heat transfer 
in each case at different temperatures. The results obtained showed the actual radiation performance of each part of 
the convolution and the bulge. Although the convolution performed better in terms of the total heat transfer, but the 
bulge showed higher radiation. The analytical results were compared with the published numerical results. 
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1. Introduction 

Thermoacoustic engine (TAE) is a kind of device to realize the conversion between heat and sound 
energy. When a compressible fluid is rapid ly exposed to a localized heat flux at a  solid wall, part of the 
flu id in the immediate v icin ity of the wall expands. This gives rise to a fast increase in the local pressure, 
and leads to the production of pressure waves, which are called thermoacoustic waves [1-3]. Advantages 
of thermoacoustic devices include environmental friendliness, no moving parts and reasonable efficiency. 
 

 
* Corresponding author. Tel.: +60389248143 
E-mail address: yousif.abakr@nottingham.edu.my 

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Organizing Committee of ICAE2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82645116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2014.12.049&domain=pdf


 David W.Y. Khoo et al.  /  Energy Procedia   61  ( 2014 )  2576 – 2579 2577

SCORE, one of the leading thermoacoustic research projects has designed engines powered by the 
waste heat from cooking stoves  [4]. The main concern about the designed SCORE engine is the thermal 
interaction between the bulge (or convolution) and the regenerator. The present work is a contribution to 
the study of the temperature field and radiative heat flux distribution generated in the engine analytically, 
the complete study of the total heat flow will be done on the next stage of this research and is not 
discussed in full details in  this work. With an objective to improve the performance of the current SCORE 
engine. Radiat ive heat transfer has been deemed to be of particular importance in the engine which is 
expected to have direct effect on the performance of the engine. This work discusses some important 
issues to be taken into consideration in order to maximize the amount of heat transfer to the top layer of 
the regenerator while min imizing the intrinsic losses. The results obtained were compared with the 
published numerical results and an agreement was found [4]. 

2. The challenge of heat transfer from the heating surface to the HHX in the SCORE TAE 

In idealized thermoacoustic engine, heat is supplied to the engine directly at the top layer of the 
regenerator, which is called the hot heat exchanger (HHX), and removed at the other side of the 
regenerator at the cold or ambient heat exchanger (AHX). An important feature to notice is that heat is 
supplied to the oscillating air inside the loop of the engine at a  very short length as it is crossing through 
the HHX. In this configuration heat is transferred from the HHX to the air main ly by conduction through 
the small gaps which are s maller than the thermal penetration depth. For an externally heated 
thermoacoustic engine it is difficult to design for the oscillating air to cross through the HHX. The 
external heat source in the SCORE project is burning wood or propane gas, which is difficult to 
accommodate inside the engine, the alternative is either to use a bulge  or a convolution in an alternative 
arrangement that may differ from the original concept illustrated above to transfer heat from the bulge or 
the convolution to the regenerator as depicted in figure (1). 

For this investigation the bulge and convolution dimensions are constructed in such a way that they 
possess the same volume which is 0.00123 m3  (based on real measurement of Demo 2.1 SCORE TAE) 
but their effective surface area is different. The bulge has 0.0424 m2 effective surface area whereas the 
convolution has a surface area o f 0.231 m2. The regenerator dimensions for both the bulge and 
convolution are the same; each of 200 mm length, 200 mm width and 10 mm thickness.  

3. View factor calculations for the convolution and the regenerator integrity 

The view factor (configuration factor) for diffuse surfaces is a pure geometrical property and has 
nothing to do with the surface emissivity. The view factor F12 is defined as the fraction of the radiat ion 
leaving surface 1 that will reach surface 2. A simple analysis can be done by dividing t he convolution 
channel into smaller sections A, B, and C. Two virtual p lanes 2 and 4 which  have flat surfaces are created 
as shown in figure (1). The calculations are performed with the aid of the view factor formulas [5]. 

 

 
 

 
 

Fig. 1: (a) External heating of the thermoacoustic engine through Bulge; (b) Divisions of one convolution element for the view 
factor calculations (all the dimensions are shown in mm, not to scale).  
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By neglecting  the radiat ion between surface 1 and 5, the rad iation resistance network can be  produced. 
The surface resistance of any surface is given by Ri = (1-εi)/(Ai-εi) and the space resistance between any 
two surfaces is given by Rij = 1/(AiFij), stainless steel emissivity ε can be taken  as 0.78. The list of the 
view factors, the surfaces resistances and the space resistances are illustrated in table (1) below: 

Table 1: Summary of radiation parameters of the convolution sections.  

 

View factors - 
F13 0.576 
F16 0.0493 
F36 0.0815 
F53 0.107 
F56 0.754 

 

 

Space Resistance K/W 
R13 691 
R16 8075 
R36 959 
R53 3720 
R56 528 

 

 

Surface Resistance K/W 
R1 70.3 
R3 13.8 
R5 70.3 
R6 34.7 

 

3.1 The radiation analysis for the bulge 

The bulge analysis is less complicated because it consists of only two surfaces as shown in figure (2).  
 
 
 
 

Fig. 2: (a) Radiation heat transfer between the bulge (1) and the regenerator (2); (b) Radiation thermal resistance network between 
the bulge and the regenerator; (c) Surface and space resistance of the bulge and the regenerator.  

4. Results and analysis 

The comparison of the convolution radiation to the regenerator surface and the bulge radiation to the 
regenerator surface indicate that the bulge is radiat ing more heat at the same temperature.  The amount of 
heat radiated from the bulge is found to be around three times the amount of heat rad iated from the 
convolution at the same temperature conditions. Figure (3) shows the radiation heat transfer from the 
convolution and from the bulge to the regenerator. The bulge has a deeper volume resulting in b igger 
distance between the hot surface of the bulge and the regenerator, this feature may result in reducing the 
effect of having the hot surface of the bulge inside the engine as the air is oscillating away from this 
surface in comparison to the convolution in which the air is oscillating inside the convolution as it is 
representing part of the HHX. A CFD simulation for the two cases was conducted as a separate study 
including different types of the shapes for the heat exchanger [4]. It is found that the results obtained by 
the CFD simulation and the analytical calculat ions are in good agreement.  As an extension to this 
investigation an engine operating with a convolution heat exchanger will be equipped with a bulge instead 
of the convolution to verify and validate the conclusions of this study.  
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Fig. 3: Radiation heat transfer from the convolution and from the bulge to the regenerator, with the comparison to the CFD 
simulation results. 

6. Conclusion 

An analytical approach was taken to study the radiation heat transfer between the convolution  (or the 
bulge) and the regenerator, the results obtained revealed that the bulge is better in radiation heat transfer 
compared to the convolution. Convection need to be reduced to improve the performance of the 
thermoacoustic engine. Despite the CFD results agree with the analytical results , an experimental 
investigation is advised to validate against the actual performance of the HHX and the regenerator 
integrity. However, the convolution and the bulge were considered as isothermal surfaces, assuming that 
they are made from good conducting material. Other modes of heat transfer should also be considered. 
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