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Abstract

Leto = (p, b +ic, b —ic, A4, ..., Ay) bethe spectrum of an entry non-negative matrix and ¢ > 0. Laffey
[T.J. Laffey, Perturbing non-real eigenvalues of nonnegative real matrices, Electron. J. Linear Algebra 12
(2005) 73-76] has shown thato = (p +2¢t, b —t +ic, b —t —ic, A4, ..., Ay) is also the spectrum of some
non-negative matrix. Laffey (2005) has used a rank one perturbation for small ¢ and then used a compactness
argument to extend the result to all non-negative ¢. In this paper, a rank two perturbation is used to deduce
an explicit and constructive proof for all # > 0.
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1. Introduction

A matrix A = (a;j)uxn = 0ifa;; > Oforall 1 <i, j <n. Alist o of n complex numbers is
said to be realizable if o is the spectrum of a non-negative real matrix. Denote by N, the collection
of all n-tuples list, of complex numbers, which are realizable. Denote e; the ith unit vector and
I, the n x n identity matrix.
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Guo [2] (Refs. [1,4]) has given the following result:

Theorem 1.1. Let 0 = (p, A2, A3, ..., Ay) be the spectrum of a non-negative matrix A. If Ay is
real, then (p +t, ko = t, A3, ..., Ay) are realizable for all t > 0.

Laffey [3] has extended the result to

Theorem 1.2. Let A be an n x n non-negative real matrix with spectrum o and Perron root p.
Let b + ic, where b and ¢ are real and i = /—1, be a pair of non-real eigenvalues of A. Then,
forallt > 0, replacing p, b £ icino by p + 2t,b — t % ic, respectively, while keeping the other
entries of o unchanged, again yields the spectrum of an n X n non-negative matrix.

In Laffey’s paper [3], a rank one perturbation has been applied to A to first prove Theorem
1.2 for sufficiently small # > 0, and then a compactness argument is used to extend the result to
all ¢+ > 0. In this paper, we apply a rank two perturbation to A and directly prove Theorem 1.2
for all non-negative ¢. Our proof is constructive; thus one can easily find a non-negative matrix
to realize the perturbed spectrum list.

2. Proof of theorem — a rank two perturbation

Let > 0. Let A be an n x n non-negative matrix with the spectrum o = (p, b +ic, b —

ic, A4, ..., Ay), Where p is the Perron root, b and ¢ are real, and i = +/—1. We assume that ¢ > 0.
By [1] Lemma 2.2, we can assume that the Perron eigenvector of Aise = (1, 1, ..., DT, ie.,
Ae = pe. Let the Jordan canonical form of A be
0
b ¢
—c b *
A= Aa
An
and let P = (e, u, v, w4, ..., w,) be n x n non-singular real matrix such that PAP ! = A,
where
u= Ui, u, ...,un)T, v=(vy,v2,..., vn)T

be real vectors such that u & iv are eigenvectors of A corresponding to the eigenvalues b =+ ic.
Let

1 u; Vi
det@, j, k) = |1 wj vj| = —up)(vj—vp) — (v;i — V)W — ug)
1 up vy
forany 1 < i, j, k < n. Without loss of generality, we assume
A =det(1,2,3) = max det(i, j, k). 2.1)
1,<i, j,k<n
Since P is non-singular it easy to see that A4 = det(1, 2, 3) > 0.
Let

XT:(x17x2"x370""70)P=(O’t707*7""*)’
YT = (31,32, 93,0,...,00P = (0,0,1, %, ..., %),
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where
t t t
x| = Z(vz —v3), X2 = Z(v3 —v1), X3= Z(Ul —v2),
t t t
i =—Z(M2—u3), Y2=—Z(u3—u1), Y3=—Z(u1 — uz).

Then we let

w) = uix; +viyt,
wy = uzxy + V22,
w3 = U3x3 + v3y3

such that
WT = (wi, wa, w3,0,...,00P = (21, %, %, ..., %).

Now we have!

PeyWT —erXT — ey p!

2t * * * *

0 -t 0 * *

0 0 —t % * .

=Plo o0 0 o0 o|P

0 0 0 O 0
Wy —uixXy —vpyr w2 —uixp —viyz  wi—uxz—vys 0 .- 0
W] —UpxXy —v2yr W2 —upxp —v2yz w3z —uxxz—uwvy3 0 .- 0
Wi — UpX] — UpYl W2 — UpX2 — UpY2 W3 —UpX3—Vpy3 0 --- 0

From (2.1), we have 4 = det(1, 2, 3) > det(i, 2, 3) and it implies

up(vy —v3) —vi(uz —u3) 2 ui(vy —v3) —vi(ua —u3), 1<i<n. (2.2)
Thusfor1 <i <n

Wl —UiX| — vy = %((ul(vz —v3) —vi(u2 — u3)) — (ui(v2 — v3) — vi(u2 —u3))) = 0.
From (2.1), we have 4 = det(1, 2, 3) > det(1, 7, 3) and it implies

ur(v3 —vi) —v2(u3 —u1) 2 wui(vz —v)) —vi(W3 —uy), 1<i<n (2.3)
Thusforl1 <i <n

ws = i =2 = (a3 = v1) — a3 — 1)) — s 03 = v1) =i 43 — ) >0,
From (2.1), we have 4 = det(1, 2, 3) > det(1, 2, i) and it implies

uz(vy —v2) —v3(ur —uz) = ui(vy —v2) — v —uz), 1<i<n. (2.4)

U the paper, e; refer to standard basis elements.
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Thusforl1 <i <n
1

W3 — U;jX3 — V;y3 = Z((Ms(vl —v2) —v3(up —uz)) — (u;j(vy —v2) — v (w1 —uz))) = 0.
So we have

PeyWT —exsXxT —esyTyp~1 > 0.
Therefore,

A =PU+ e Wl —erXT—e3sYDH P = A+ PletWT —exXT — e3Pl > 0.
It is easy to see that A(t) = P(A + Wl — e, X'T — ngT)P’1 has the spectrum (p + 2t, b —
t+ic,b —t —ic, A4, ..., Ay). So we complete the proof of Theorem 1.2.
3. Remarks

To completely extend Theorem 1.1, the following result is interesting and needs to be improved.

Proposition 3.1. Let A be ann X n non-negative real matrix with Perron root p and the spectrum
(p,b+ic,b —ic, a4, ..., Ay), where b is real and ¢ > 0. Then there is a constant C > 0 such
that the list (o + Ct, b+t +ic, b+t —ic, M4, ..., Ay) is realizable for all t > 0.

Proof. We use the same notation as in Section 2. Taking

Z1 = uzx2 + vay2 + u3x3 + v3ys,
72 = u3x3 +v3y3 +urx; + viyi,
73 = ui1x1 +v1y1 +uzxz + v2y2.

‘We have
ZT = (21,22,23,0,...,0)P = (41, %, %, ..., %).
From (2.3) and (2.4), we have
ui(vy —v3) — vi(ug —uz) = —(u2(vz — vy) — v2(uz —uy))
—(u3(v1 — v2) — v3(u1 — u2))

and this implies

21 +uixy+viyr 20, 1<i<n
Similarly, we have

22 +uixa+viy2 20, 1<i<n,
and

tuixz+vy; 20, 1<i<n
Thus,

PeiZT+eXT+esyHP 1 >0.
Therefore,

At)=PUA+e1Z" + X" +e3sYDHP ' = A+ P Z" +e2XT +es¥THP! > 0.
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The matrix P(A+e1Z" + esXT + e3YT)P~! has the spectrum (p +4t, b+t +ic,b+1t —
ic, A4, ..., Ay). So the proof is complete. [

It would be interesting to know if the constant C in Proposition 3.1 can be improved to be 1
or 2. Also further research is necessary to consider the perturbations of imaginary parts.
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