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The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is a potent antitumor drug that we rationally designed
to regulate the membrane lipid composition and structure. The lipid modifications caused by 2OHOA treat-
ments induce important signaling changes that end up with cell death (Terés et al., 2012 [1]). One of these
regulatory effects is restoration of sphingomyelin levels, which are markedly lower in cancer cells compared
to normal cells (Barceló‐Coblijn et al., 2011 [2]). In this study, we report another important regulatory effect
of 2OHOA on cancer cell membrane composition: a large increase in 2OHOA levels, accounting for ~15% of the
fatty acids present in membrane phospholipids, in human glioma (SF767 and U118) and lung cancer (A549)
cells. Concomitantly, we observed marked reductions in oleic acid levels and inhibition of stearoyl-CoA
desaturase. The impact of these changes on the biophysical properties of the lipid bilayer was evaluated in
liposomes reconstituted from cancer cell membrane lipid extracts. Thus, 2OHOA increased the packing of or-
dered domains and decreased the global order of the membrane. The present results further support and ex-
tend the knowledge about the mechanism of action for 2OHOA, based on the regulation of the membrane
lipid composition and structure and subsequent modulation of membrane protein-associated signaling.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In previous studies, we showed that 2-hydroxyoleic acid (2OHOA,
Minerval) exerts its anti-cancer effects by inducing first cell cycle ar-
rest [3–5], followed by apoptosis in leukemia cells [6] or differentia-
tion and autophagy in glioma cells [1]. In this context, 2OHOA is a
lipid that binds to the bilayer altering its structure and microdomain
properties and distribution [2,5]. Currently, 2OHOA is the first lipid
drug rationally designed to target lipid membranes with the aim to
interact with them and regulate the membrane lipid composition
and structure. The specificity and efficacy of 2OHOA has been recently
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acknowledged by the European Medicines Agency which has desig-
nated 2OHOA as an orphan medicinal product for the treatment of
glioma due to its high efficacy and lack of toxicity [7].

We designed 2OHOA to reproduce the antitumor effect of anthra-
cyclines via interactions with the plasma membrane and the consequent
modifications in cell signaling [8,9]. One of the events involved in the
mechanism of action of 2OHOA is the rapid and sustained activation of
sphingomyelin synthase (SMS), being the sphingomyelin (SM) produced
predominantly accumulated at the plasmamembrane [2]. Despite the im-
portance of the plasmamembrane in its anti-cancer effects, themolecular
mechanisms underlying the cellular effects of 2OHOA on cancer cells are
not fully understood.

This study was designed to investigate the effect of 2OHOA treat-
ments on the fatty acid composition and structure of cancer cell
membranes. Exogenously added fatty acids can be incorporated into
glycerolipids, either by acylation of glycerophosphate to phosphatidic
acid (via the Kennedy pathway), or by remodeling of de novo synthe-
sized glycerophospholipids via deacylation–reacylation or via the
monoacylglycerol-pathway in the case of glycerolipids. Although
well established for regular fatty acids (i.e., non-hydroxylated fatty
acids), the incorporation and metabolism of exogenous 2-hydroxy
fatty acids like 2OHOA remains poorly understood [10]. We found
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that 2OHOA treatments caused a dramatic fatty acid profile remodel-
ing in tumor cells. The most important changes were 2OHOA incorpo-
ration into different glycerolipids and a decrease in oleic acid levels,
accompanied by an increase in stearic acid levels, which was associat-
ed with inhibition of stearoyl-CoA desaturase-1 (SCD1) activity.

Finally, the impact of these changes on the biophysical properties
of model membranes was also investigated here, revealing that while
the global order of the membrane decreased, the ordered domains
became more ordered and compact. Taken together, these findings
provide new insight into the mechanism of action of 2OHOA, demon-
strating the effects of this compound on the fatty acid composition
and structure of lipid bilayer.

2. Materials and methods

2.1. Cell culture

Human glioma cells (U118 and SF767), human non-small lung
cancer cells (A549) and MRC5 human fibroblast were obtained from
the American Type Culture Collection (Manassas, VA, USA). Cells
were maintained as described previously [3].

2.2. Lipids

2OHOA (GMP quality) was obtained from Lipopharma and its pu-
rity was determined as described previously [3]. All synthetic lipids
used in this study were obtained as described previously [2]. [9,
10-3H]-2-hydroxy oleic acid ([3H]-2OHOA) was purchased from
Moravek Biochemicals Inc. (Brea, CA, USA).

2.3. Lipid analysis

After extraction with n-hexane:2-propanol (3:2, by vol) [11,12].
The individual phospholipid classes were separated by TLC as de-
scribed previously [2,13,14]. The phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) fractions were subjected to base-
catalyzed transesterification, converting the acyl chains of the phos-
pholipids to fatty acid methyl esters (FAMEs, [15]). Individual FAMEs
were separated by gas liquid chromatography using a SP-2330
column (0.32 mm ID, 30 m length: Supelco, Bellefonte, PA, USA)
and a gas chromatograph (GC5890 Agilent, USA) equipped with
dual autosamplers and dual flame ionization detectors. A 17:0 fatty
acid was used as the internal standard.

Neutral lipids were separated in petroleum ether/diethyl ether/
acetic acid (75:25:1.3 by vol) [14] and the lipid fractionswere identified
using authentic standards (Larodan, Sweden). After development, the
plates were air-dried, sprayed with 8% (w/v) H3PO4 containing 10%
(w/v) CuSO4, and charred at 180 °C for 10 min [13]. Lipids were then
quantified by photodensitometry and expressed permg of protein. Pro-
tein levels were measured using the bicinchoninic assay, according to
manufacturer's instructions (Thermo Scientific, Rockford, USA).

2.4. Determination of SCD-1 activity

The SCD-1 activity assay was adapted from Du et al. and Scaglia et
al. [16,17]. Control and treated U118 cells were steady-state labeled
for 6 h with trace amounts of [3H]-palmitic acid (0.25 μCi/60 mm
cell culture dish; stock at 1 mCi). At the end of the incubation, total
cell lipids were extracted and transesterified as described above.
The derived methyl esters were separated by argentation TLC follow-
ing the procedure described by Wilson and Sargent [18]. Lipid frac-
tions were identified using pure methyl stearic acid and methyl
oleic acid as standards (Larodan, Sweden). SFA and MUFA spots
were scraped and the radioactivity incorporated was quantified by
liquid scintillation counting. The level of [3H]-MUFA produced was
normalized to cellular protein content.
2.5. Mass spectrometry

Lipid extraction andmass spectrometry based targeted lipid analysis
was performed as described previously [19–21]. Briefly, cell pelletswere
lysed in 0.1% SDS, sonicated and aliquots corresponding to 100 μg of
total protein (BCA assay) were used for lipid extraction. Direct flow
injection was performed with a 1200 series binary pump (Agilent,
Waldbronn, Germany) coupled to a Quattro Ultima tandem mass
spectrometer (Micromass, Manchester, UK) via electrospray ionization
(ESI). Reversed phase and HILIC LC–ESI-MS/MS was performed using a
1200 series binary pump and a hybrid triple quadrupole linear ion trap
mass spectrometer API 4000 Q-Trap (Applied Biosystems, Darmstadt,
Germany). Fatty acid species were analyzed after FAME derivatization
using a Shimadzu 2010 GC–MS, quantifying fatty acids by calibrating
with the standards of naturally occurring lipid species added to the
cell homogenates or plasma. The following compoundswere used as in-
ternal standards were: PC 14:0/14:0, PC 22:0/22:0, PE 14:0/14:0, PE
20:0/20:0 (di-phytanoyl), PS 14:0/14:0, PS 20:0/20:0 (di-phytanoyl),
PG 14:0/14:0, PG 20:0/20:0 (di-phytanoyl), PI 17:0/17:0, LPC 13:0, LPC
19:0, Cer 14:0, Cer 17:0, D7-FC, CE 17:0 and CE 22:0. The calibration
lines used for quantification were generated in the matrix with the fol-
lowing species: PC 34:1, 36:2, 38:4, 40:0 and PC O 16:0/20:4; SM 16:0,
18:1, 18:0; LPC 16:0, 18:1, 18:0; PE 34:1, 36:2, 38:4, 40:6 and PE
p16:0/20:4; PS 34:1, 36:2, 38:4, 40:6; Cer 16:0, 18:0, 20:0, 24:1, 24:0;
FC, CE 16:0,18:2,18:1,18:0.
2.6. Incorporation of [3H]-2OHOA in MRC-5 and U118 cells

MRC-5 and U118 cells were pulse labeled for 1, 5, 15, 30 min, 1
and 2 h with trace amounts of [3H]-2OHOA (0.25 μCi/60 mm cell cul-
ture dish; stock at 1 mCi). After the labeling period, cells were thor-
oughly washed for three times with ice-cold PBS. Cell homogenates
were transferred into scintillation tubes and the radioactivity was
measured in a scintillation counter (Beckman, LS-6500).
2.7. Liposome preparation from lipid extracts

Lipid extracts were dissolved in chloroform/methanol (2:1) to ob-
tain a concentration of 1 μmol Pi/ml. Total lipid concentration in the
MLV suspensions was 0.2 mM in every sample, and the medium
used for suspension was sodium phosphate 10 mM, NaCl 150 mM,
EDTA 0.1 mM buffer, pH 7.4 and multilamellar vesicles (MLVs) were
prepared as described previously [22,23] and equilibrated overnight
in darkness.
2.8. Artificial liposome preparation and addition of 2OHOA

Appropriate volumes of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine, N-palmitoyl-sphingomyelin, 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine and cholesterol stock solutions in an
organic solvent were mixed to obtain the required molar lipid ratios
(Table S1) [2]. MLV were prepared as described above, without a
probe and at final lipid concentrations of 0.5 mM to ensure efficient in-
corporation of 2OHOA into the lipid bilayer. To obtain LUV,MLV suspen-
sions were extruded using an Avanti Mini-Extruder and polycarbonate
filters (100 nm pore diameter: Nuclepore, Whatman). Different ali-
quots of LUV suspension were labeled with either t-PnA or DPH added
from stock ethanol solution, and incubated for 1 h at 50 °C [24]. The
suspension was slowly brought to room temperature and allowed to
equilibrate before 2OHOA was added at a final concentration of 25 μM
(5 mol%) or 100 μM (20 mol%) at least 1 h before the fluorescence
was measured (all samples were stored in the dark). The 2OHOA/lipid
ratio in the 25 μM 2OHOA samples is similar to the estimated 2OHOA/
lipid ratio in cells treated with 200 μM of the drug.
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2.9. Fluorescence measurements and data analysis

Fluorescence was measured at 24 °C using a Horiba Jobin Yvon
FL-1057 Tau 3 spectrofluorometer as described previously [2].

2.10. Statistics

Statistical analysis was performed using GraphPad Prism 4.01
(GraphPad Software Inc., San Diego, CA). Unless otherwise indicated
the data are expressed as the mean±SEM from at least three inde-
pendent experiments (n). The statistical significance of the mean
difference was determined by the Student's t test. Asterisks indicate
a significant effect of the treatment as compared with controls
(*Pb0.05; **Pb0.01; ***Pb0.001).

3. Results

3.1. 2OHOA reduces oleic acid content in tumor cells

We recently demonstrated that tumor cell phospholipid composi-
tion is significantly modified by exposure to 2OHOA [2] and thus, we
analyzed here the effects of 2OHOA on tumor cell fatty acid composi-
tion. Human glioma (U118) cells were treated with 2OHOA (200 μM,
72 h) and after lipid extraction, their PE and PC fractions were collect-
ed from TLC plates, transesterified in basic conditions and analyzed by
gas–liquid chromatography. Exposure to 2OHOA profoundly affected
the PE and PC fatty acid composition (Table 1) and notably, oleic
acid (18:1n−9), which is structurally related to 2OHOA, was reduced
by 43% in the PC and 60% in the PE fractions. This decrease, along with
a reduction in cis-vaccenic acid (18:1n−7, decreased 23% and 40% in
PC and PE, respectively), accounted for most of the total MUFAs lost
(39% in PC and 53.5% in PE). Conversely, SFA levels increased by
45% in the PC and 53.5% in the PE fractions. Palmitic acid (16:0) and
stearic acid (18:0) SFAs increased by 40% and 58% in the PC, respec-
tively, while in the PE fraction, palmitic acid and stearic acid SFA in-
creased by 2.5-fold and 76%, respectively. In addition, total PUFA
levels increased 2.5-fold in the PC fraction while no significant change
was observed in the PE fraction. Similar changes were obtained when
data were expressed in mass (nmol FAME/mg prot, Table S2).
Table 1
Effect of 2OHOA on the fatty acid composition of individual phospholipids in human
glioma U118 cells.

FAME Phosphatidylcholine (PC) Phosphatidylethanolamine
(PE)

Control 2OHOA Control 2OHOA

16:0 31.2±0.6 43.8±1.2⁎⁎⁎ 4.4±0.4 10.8±0.1⁎⁎⁎

16:1 3.2±0.1 1.3±0.1⁎⁎⁎ 0.2±0.1 0.9±0.1⁎⁎

18:0 7.0±0.1 11.1±0.2⁎⁎⁎ 15.4±0.2 27.1±0.2⁎⁎⁎

18:1n−9 40.8±0.3 23.4±0.5⁎⁎⁎ 33.2±0.9 13.3±0.1⁎⁎⁎

18:1n−7 12.5±0.2 9.7±0.3⁎⁎⁎ 9.5±0.2 5.7±0.1⁎⁎⁎

18:2n−6 0.8±0.0 1.5±0.0⁎⁎⁎ ND ND
20:1n−9 1.1±0.1 0.6±0.2⁎ ND ND
20:3n−6 0.5±0.1 1.1±0.1⁎⁎⁎ 2.7±0.2 2.4±0.1
22:0 0.8±0.0 1.7±0.1⁎⁎⁎ 3.5±0.4 6.3±0.4⁎⁎

20:4n−6 0.8±0.1 1.6±0.1⁎⁎⁎ 12.6±0.1 8.7±0.1⁎⁎⁎

20:5n−3 0.3±0.1 0.4±0.0 2.9±0.2 1.3±0.1⁎⁎⁎

22:5n−3 0.5±0.1 1.8±0.2⁎⁎⁎ 8.5±0.3 11.6±0.1⁎⁎⁎

22:6n−3 0.6±0.1 2.1±0.4⁎⁎ 7.1±0.8 11.8±0.2⁎⁎⁎

SFA 39.0±0.5 56.6±0.9⁎⁎⁎ 23.3±0.3 44.3±0.4⁎⁎⁎

MUFA 57.6±0.2 35.0±0.8⁎⁎⁎ 42.9±1.0 19.9±0.2⁎⁎⁎

PUFA 3.4±0.4 8.4±0.6⁎⁎⁎ 33.9±1.2 35.8±0.6

U118 cells were incubated in the presence or absence of 2OHOA (200 μM, 72 h), and
lipids were subsequently extracted and analyzed by TLC. PC and PE fractions were
converted to FAME in basic conditions and analyzed by gas chromatography. The
values are expressed in mol% and represent the mean±SEM (n=4–5). Asterisks indi-
cate significant effects compared with controls (⁎⁎Pb0.01; ⁎⁎⁎Pb0.001).
In addition, we analyzed the effect of 2OHOA treatment on a
human non-tumor cell line (MRC-5 cells). The results showed minor
significant changes in 18:0 (decreased by 10%) and in two minor
fatty acids, 20:3n−6 (decreased by 40%) and 16:1, increased by
2.4-fold. Importantly, no changes in MUFA content were observed in
non-tumor cells (MRC5, human fibroblasts) exposed to 2OHOA
(Table S4). Because fatty acid remodeling is not a process specific
for tumor cells, we investigated if the incorporation of 2OHOA in
both tumor (U118) and non-tumor cells (MRC-5) could explain the
lack of changes in the latter. In each case the [3H]-2OHOA uptake by
these cell types was linear over the studied time frame (Fig. 1, y=
0.272x+1.1, R2=0.864 for U118 cells and y=0.075x+1.4, R2=
0.853 for MRC-5). Therefore, the results clearly showed that the
[3H]-2OHOA uptake was 3.6-fold faster in tumor cells than in non-
tumor cells.

To further evaluate the remodeling of the fatty acid profile in-
duced by 2OHOA, we analyzed the PC and PE fatty acid composition
in U118 cells treated with 200 μM 2OHOA for 12, 24, 48 and 72 h
(Fig. 2). 2OHOA provoked a significant reduction in oleic acid levels
in both phospholipid fractions at all the time points analyzed, with
a concomitant increase in stearic acid levels. Interestingly, oleic acid
levels in control (untreated) cells increased with time (from 31% at
12 h to 42% at 72 h in the PC fraction, and from 20% at 12 h to 33%
at 72 h in the PE fraction), while remaining constant in 2OHOA-
treated cells (24% in the PC and 14% in the PE fraction). Conversely,
while no changes in stearic acid levels were observed over time in
control cells (7% in the PC and 14% in the PE fraction), increases
were detected following exposure to 2OHOA (from 9% at 12 h to
11% at 72 h in the PC fraction; and from 19% at 12 h to 30% at 72 h
in the PE fraction).

To determine whether the changes in fatty acid composition ob-
served were exclusive to U118 cells, we analyzed whether 2OHOA al-
tered the fatty acid composition in human non-small lung cancer
(A549) cells and in an additional human glioma cell line (SF767,
Fig. 3). Exposure of A549 cells to 2OHOA (200 μM, 72 h) decreased
the amount of oleic acid in the PC and PE fractions by 47% and 59%,
respectively, while stearic acid levels increased 2.7-fold in the PC
and 62% in the PE fractions. Similarly, 2OHOA reduced the oleic acid
levels in SF767 cells by 17% and 40% in the PC and PE fractions, re-
spectively, while significant increases in stearic acid levels (19%)
were only observed in the PE fraction. Collectively, these results indi-
cate that the effects of 2OHOA on fatty acid composition are not de-
pendent on tumor type.
Fig. 1. Differential incorporation of [3H]-2OHOA into U118 compared to MRC-5 cells.
U118 (human glioma cells, filled circles) and MRC-5 (human lung fibroblast cells,
unfilled circles) were pulse labeled for 1, 5, 15, 30, 60 and 120 min with trace amounts
of [3H]-2OHOA (0.25 μCi/60 mm cell culture dish; stock at 1 mCi). Asterisks indicate a
significant effect when compared with controls (*Pb0.05; **Pb0.01).



Fig. 2. Time-dependent changes in fatty acid composition of 2OHOA-treated U118 cells. U118 cells were incubated in the presence or absence of 2OHOA (200 μM, 12–72 h) and
subsequently, the lipids were extracted and analyzed by TLC. PC (A and C) and PE (B and D) fractions were converted to FAME under basic conditions and analyzed by gas chro-
matography. Values are expressed as mol% and represent the mean±SEM (n=4–5). Bar graphs show oleic acid (A, D) and stearic acid (B, E) content. Asterisks indicate a significant
effect when compared with controls (*Pb0.05; ***Pb0.001).
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3.2. 2OHOA inhibits SCD1

The dramatic decrease in oleic acid together with the ob-
served increase in stearic acid (Table 1, Figs. 2 and 3), in both
the glycerophospholipid fraction and the total lipid extract (Table S3),
strongly suggests that the rate of Δ9-desaturation may be modified by
2OHOA. Hence, we evaluated the effect of 2OHOA on SCD1 activity by
measuring the conversion of exogenous [3H]-palmitic acid (16:0) to
MUFA. U118 human glioma cells were used in this experiment as no
Fig. 3. 2OHOA reduces the oleic acid content of different cancer cell lines. Different cancer ce
(200 μM, 72 h) and subsequently, the lipids were extracted and separated by TLC. The PC (A
analyzed by gas chromatography. Bar graphs show the oleic acid (A, B) and stearic acid (C, D
terisks indicate a significant effect of 2OHOA compared with controls (***Pb0.001).
changes were detected either in phospholipid or in fatty acid composi-
tion in non-tumor cells after exposure to 2OHOA (Table S4, [2]). Control
and 2OHOA-treated cells (200 μM, 48 h) were incubated with [3H]-
palmitic acid for 6 h prior to lipid extraction and the total lipid extract
was then transesterified in basic conditions, separating the resulting
fatty acid methyl esters (FAME) by argentation TLC. When the radioac-
tivity in the spot corresponding to MUFA was measured by liquid scin-
tillation counting, a 60% decrease in [3H]-MUFA was observed in
2OHOA-treated cells compared to control levels (Fig. 4), indicating
ll lines (U118, SF767 and A549) were maintained in the presence or absence of 2OHOA
and C) and PE (B and D) fractions were converted to FAME under basic conditions and
) content. Values are expressed as mol% and represent the mean±SEM (n=4–5). As-

image of Fig.�2
image of Fig.�3
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that SCD1was inhibited by 2OHOA. Importantly, a similar decrease was
observed when cells were exposed to lower (50 and 100 μM) or higher
concentrations (300 μM) of 2OHOA. In addition, while oleic acid
(150 μM), a known inhibitor of SCD1, reduced [3H]-MUFA levels by
70%, no changes were observed after cell exposure to elaidic acid
(200 μM).

3.3. 2OHOA is incorporated into phospholipids

TLC analysis of lipid extracts allowed the detection of free 2OHOA
in treated U118 cells (Fig. S1) showing a retention factor (Rf) consid-
erably different to that for non-hydroxylated free fatty acids. Further
mass spectrometry (MS) analysis revealed that 2OHOA was incorpo-
rated into the glycerolipids triacylglycerol (TAG) and diacylglycerol
(DAG) and the glycerophospholipid fractions (Figs. 5 and S2). We fur-
ther investigated the presence of 2OHOA in lipids by exposing U118
cells to this fatty acid (200 μM) for different periods of time (0.5 to
72 h). We observed a clear time-dependent accumulation of 2OHOA
into the glycerophospholipid fraction, with the strongest incorpora-
tion into PC (30.1%) and PE (29.0%) after 72 h (Fig. 5). In a similar pe-
riod 2OHOA was incorporated into phosphatidylserine (PS, 11.7%)
and phosphatidylinositol (PI, 13.4%) to a lesser extent. Consistent
with our findings in total lipid extracts (Fig. S1), significant amounts
of 2OHOA were incorporated into PC after only 0.5 h, whereas similar
effects were observed in PE after a 6 h exposure. In PS and PI, signif-
icant 2OHOA incorporationwas observed after a 24 h exposure. These
results indicate that 2OHOA replaces its analog, oleic acid, confirming
that the kinetics of fatty acid remodeling depend on the type of
glycerophospholipids [25,26].

3.4. 2OHOA induced TAG accumulation

As 2OHOA was also incorporated into TAG (Fig. S2), we used
HPTLC to study the effect of 2OHOA on this lipid fraction in extracts
from control and 2OHOA-treated (200 μM) U118 cells. Although
TAG levels increased following exposure to 2OHOA at all the times
studied, these changes followed a cyclic pattern (Fig. 6). Accordingly,
the increases in TAG peaked after a 12 h and 48 h exposure (6.7- and
8.5-fold, respectively), while more modest increases were observed
after 24 h and 72 h (2.6- and 2.4-fold, respectively). The fatty acid
analysis by GC showed that the exposure to 2OHOA affected TAG
fatty acid composition (Table 2). Thus, while oleic acid (18:1n−9)
and cis-vaccenic acid (18:1n−7) accounted for most of the reduction
Fig. 4. 2OHOA inhibits SCD1. U118 cells maintained in the presence or absence of
2OHOA (50, 100, 200 and 300 μM), oleic acid (OA, 150 μM) and elaidic acid (EA,
200 μM) for 48 h were labeled for 6 h with [3H]-palmitic acid (0.25 μCi/60 mm Petri
dish). Conversion of [3H]-palmitic acid to [3H]-MUFA was measured by following the
separation of FAME on TLC plates impregnated with silver nitrate. Radioactivity was
measured as indicated in the Materials and methods section. The values represent
the mean±SEM (n=3–4) and the asterisks indicate significant effects compared
with controls (*Pb0.05; **Pb0.01).
in MUFA levels (ca. 24%), palmitic acid level (16:0) increased by
1.6-fold, accounting for most of the increase in SFA (1.4-fold). Consis-
tently, similar results were obtained when total fatty acids were ana-
lyzed (Table S3): oleic acid and cis-vaccenic acid were reduced ca.
53%, and 33% respectively, while palmitic acid increased ca. 1.3-fold.

3.5. Effect of 2OHOA on the biophysical properties of cell membranes

We previously reported that exposure to 2OHOA (200 μM, 24 h)
increases the lateral packing of ordered domains (lo) and the global
membrane order in artificial liposomes, mimicking the phospholipid
composition of cells exposed to this agent [2]. Hence, we assessed
the effect of the changes in the phospholipid fatty acid composition
induced by 2OHOA on the structural properties of cell membranes
by analyzing the biophysical properties of liposomes reconstituted
from lipids extracted from untreated and 2OHOA-treated cells. It is
worth mentioning that using this system changes in both fatty acid
and phospholipid composition were taken into account. To simplify
the description of the results, liposomes reconstituted from lipid ex-
tracts from control or 2OHOA-treated cells will be referred to as CL
and TL, respectively. These liposomes were labeled with one of two
membrane probes, DPH (diphenyl hexatriene) or t-PnA (trans-
parinaric acid), to provide a broad overview of the changes induced
by 2OHOA [27].

DPH is a fluorophore that binds to the lipid bilayer and intercalates
parallel to the acyl chains of the phospholipids, showing no prefer-
ence for liquid disordered (ld) or liquid ordered (lo) phases. Thus,
the steady-state fluorescence anisotropy of DPH (DPH br>) reflects
the global order of the acyl chains within the lipid bilayer [28,29].
Contrary to our observations in artificial membranes [2], DPH br>
values for TL were lower than those for CL at all treatment times, indi-
cating a general decrease in global membrane order (Fig. 7A).

Conversely, t-PnA is a fluorophore that is preferentially incorpo-
rated into lo domains, where its fluorescence quantum yield increases
[30]. In accordance with our observations in artificial liposomes [2],
the changes in lipid composition induced by 2OHOA increased the
t-PnA long lifetime component (τlong), indicating that the ordered do-
mains became more ordered and more compact (Fig. 7B). Indeed,
while the t-PnA τlong for CL was generally below 30 ns, suggesting
the presence of sphingolipid–cholesterol enriched domains (lipid
rafts), it was always considerably greater than 30 ns in TL, indicating
the possible formation of a sphingolipid-enriched gel-like phase [30].
These results are consistent with the accumulation of SM and other
sphingolipids observed in 2OHOA-treated cells [2]. Moreover, the
mean fluorescence lifetime of t-PnA (τ) paralleled the long lifetime
component, indicating that the tighter lipid packing in the lo domains
is the primary factor affecting t-PnA fluorescence lifetime (see Fig.
S2).

We investigated whether partition of free 2OHOA into membranes
could explain the observed differences in DPH br> between artificial
membranes and lipid extracts. Large unilamellar vesicles (LUVs) that
mimicked the composition of cells maintained in the presence or ab-
sence of 2OHOA for 24 h treatment [2] were prepared with commer-
cial lipids (Table S1) and they were exposed to 2OHOA (5 or 20 mol%)
for 1 h (5 mol% represents 200 μM, the concentration of 2OHOAmost
frequently used in this study). In these experiments, model mem-
branes mimicking the composition of control (CMM) cells that were
incubated with 2OHOA (C+5 or 20 mol% 2OHOA), reflect the initial
stages of exposure, when 2OHOA first comes into contact with the
cell, while model membranes mimicking the treated cells (TMM) incu-
bated with 2OHOA (5 or 20 mol%), reflect the lipid composition of ex-
tracts at the end of the 24 h treatment.

Consistent with our previous findings in artificial liposomes, the
DPH br> of TMMwas higher than that of CMM (Fig. 7C) and after incuba-
tion with 5 mol% 2OHOA, the DPH br> only decreased in TMM

(T+5 mol% 2OHOA). This reduction in DPH br>wasmore pronounced

image of Fig.�4


Fig. 5. 2OHOA is partially incorporated into the phospholipid fraction in treated U118 cells. U118 cells were maintained in the presence or absence of 2OHOA (200 μM, 0.5–72 h)
and subsequently, their lipids were extracted and analyzed by LC/MS. The values are expressed as the percentage of total fatty acids and represent the mean±SEM (n=3–4).
Graphs show the content of the OH-species PC (A), PE (B), PS (C) and PI (D) fractions and the asterisks indicate significant effects compared with controls (*Pb0.05; **Pb0.01;
***Pb0.001).
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when TMM were exposed to 20 mol% of 2OHOA (T+20 mol% 2OHOA,
Fig. 7C). Hence, the partition of free 2OHOA appears to decrease the
global order of model membranes. Nonetheless, the partition of free
2OHOA into membranes only partially explains the effect observed in
lipid extracts, in which the decrease in DPH br> wasmore pronounced,
and this partition did not compensate for the difference in phospholipid
composition between control and treated cells (Fig. 7A).

Based on the findings in artificial liposomes [2] and as expected, the
t-PnA τlong increased in TMMwith respect to CMM (Fig. 7D and F, T vs. C).
The addition of 5% 2OHOA slightly diminished the t-PnA τlong in CMM

alone (Fig. 7D), an effect that was enhanced at higher 2OHOA concen-
trations (20%). However, despite the observed decrease in t-PnA τlong
in TMM (T vs. T+20% 2OHOA), 2OHOA failed to counteract the ordering
effect induced by the increase in SM (C vs. T+20% 2OHOA). This de-
crease in t-PnA τlong indicates that 2OHOA was partitioned into both
the ld and lo domains, as partitioning of 2OHOA into ld domains only
should not affect t-PnA τlong (which is only associated with changes in
lo domains). In addition, the mean fluorescence lifetime of t-PnA (τ)
Fig. 6. Effect of 2OHOA treatment on TAG levels in U118 cells. U118 cells were exposed
to 2OHOA (200 μM) for different times. Lipids were extracted and neutral lipids were
analyzed by HPTLC. Results are means±SEM, n=3. The asterisks indicate a significant
effect of the treatment as compared with the control (**Pb0.01).
paralleled the long lifetime component (Fig. S3), indicating that the in-
creased compactness of lo domains is the main factor affecting the life-
time of t-PnA fluorescence, as described above in the CL and TL samples.
The contrasting t-PnA τlong and DPH br> values also demonstrate the
differential effect of 2OHOA on lo and ld. As neither changes in phospho-
lipid composition nor the partitioning of free 2OHOA into the mem-
branes can explain the disordering effects of 2OHOA treatment on ld
domains in reconstituted liposomes, we propose that this effect is asso-
ciated with the changes in fatty composition described above.

4. Discussion

In contrast with most anticancer drugs, 2OHOA is targeted at the
plasma membrane, where it regulates the composition and structure
of the lipid bilayer. The present study shows the marked remodeling
of the fatty acid profile of tumor cells upon exposure to 2OHOA. The
relevant regulatory effects exerted by this lipid on the glioma cell
Table 2
Effect of 2OHOA on the fatty acid composition of TAG in human glioma U118 cells.

FAME Control 2OHOA

16:0 16.8±0.7 27.2±1.0⁎⁎⁎

16:1 1.4±0.9 1.5±0.6
18:0 12.6±1.1 14.7±0.6
18:1n−9 34.1±1.7 24.4±2.6⁎

18:1n−7 15.9±0.4 11.8±0.6⁎⁎⁎

18:2n−6 6.3±0.7 2.5±0.7⁎⁎

20:1n−9 3.3±1.1 2.2±1.0
22:0 9.8±1.3 11.9±0.7
SFA 39.2±1.7 53.8±0.8⁎⁎⁎

MUFA 54.6±2.2 41.7±1.1⁎⁎⁎

PUFA 6.3±0.7 4.4±1.6

U118 cells were incubated in the presence or absence of 2OHOA (200 μM, 72 h), and
lipids were subsequently extracted and analyzed by TLC. TAG fraction was converted
to FAME in basic conditions and analyzed by gas chromatography. The values are
expressed in mol% and represent the mean±SEM (n=4–5). Asterisks indicate signif-
icant effects compared with controls (⁎⁎Pb0.01; ⁎⁎⁎Pb0.001).
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Fig. 7. Biophysical studies to evaluate the role of fatty acid remodeling in the antitumor effects of 2OHOA. Analyses of reconstituted liposomes revealed that 2OHOA induced a de-
crease in global membrane order, while increasing the order of lo domains. (A) DPH anisotropy (br>) and (B) t-PnA long lifetime component (τlong) in lipid extracts from control
and 2OHOA-treated cells (200 μM; 24, 48 and 72 h) reconstituted into liposomes. Studies in model membranes indicated that the partition of free 2OHOA partially explains its ef-
fects on the biophysical properties of the membrane. (C, E) DPH anisotropy (br>) and (D, F) t-PnA long lifetime component (τlong) of LUV mimicking the 24 h lipid composition of
control (C) and 2OHOA-treated (T) cells (5 mol%, C and D; or 20 mol%, E and F) at 24 °C. Asterisks indicate significant effects compared with controls (*Pb0.05; **Pb0.01;
***Pb0.001) and § indicates a significant effect of added 2OHOA (T+2OHOA) as compared with treated cells (T) (§Pb0.05; §§§Pb0.001). Values represent the mean±SEM
(n=3).
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membrane lipid composition and structure in part explain the previ-
ously demonstrated changes in the localization and activity of pivotal
signaling proteins (e.g., PKC, Ras) and the concomitant changes in cell
signaling that justify the pharmacological effects of 2OHOA against
cancer [1,3,5,6]. Oleic acid, a structural analog of 2OHOA, was the nat-
ural fatty acid most affected, decreasing by 20–50% in PC and 40–60%
in PE in response to 2OHOA treatment, depending on the cell line.
This decrease was most likely mediated by the substitution of oleic
acid synthesis by 2OHOA and partly to the inhibition of its synthesis,
and represents a dramatic effect given that oleic acid is the most
abundant fatty acid in these cell lines.

MS analysis of the glycerophospholipid fraction revealed that when
U118 cells are exposed to 2OHOA itmay account for approximately 15%
of their total fatty acid composition [2], becoming one of themost abun-
dantmembrane fatty acids in these cells. Interestingly, 2OHOAwas also
incorporated into the neutral lipid fractions, TAG and DAG, yet not into
sphingolipids. This latter finding was somewhat unexpected as endog-
enous hydroxy fatty acids occur almost exclusively as N-acyl chains
within the ceramide moiety of a variety of sphingolipids [31]. This dif-
ference may reflect the exogenous nature of 2OHOA, which after
conversion to 2OHOA-CoA [10] could be involved in the rapid turnover
of the acyl moiety of phospholipids [32,33] or enter the Kennedy-
pathway after incorporation into DAG [34]. Taken together, the present
findings provide the first evidence of hydroxy fatty acid incorporation
into glycerolipids.

In human glioma cells, it has been found that SCD1 activity de-
creased by ~40–60% upon exposure to 2OHOA, suggesting that SCD1 in-
hibition may also contribute to the antitumor effect of this fatty acid. A
key hallmark of cancer cells is the constitutive activation of fatty acid
biosynthesis to sustain the increasing demand for new membrane
phospholipids with an appropriate acyl composition. Stearoyl-CoA
desaturases are key regulators of such processes [35] and accordingly,
SCD1 activity has been strongly associated with membrane lipid syn-
thesis in neoplastic cells [36,37]. Moreover, the induction of apoptosis
downregulates SCD1 activity and expression, in conjunction with
lower oleic acid and higher stearic acid levels [36,38,39]. Consistently,
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2OHOA induces cell cycle arrest in tumor cells, followed by differentia-
tion and autophagy in the case of human glioma cells, or apoptosis in
human leukemia cells [1–3,5,6]. The inhibition of SCD1 by 2OHOA
may be due to its strong structural similarity to oleic acid, whereby
2OHOA may be recognized by SCD1 as an end product, consequently
inhibiting its activity. Alternatively, SCD1 may be inhibited by the
oleic acid released when it is substituted by 2OHOA, as oleyl-CoA is a
strong competitive inhibitor of the desaturase enzyme [40].

We demonstrated that the profound fatty acid remodeling induced
by 2OHOA affects the biophysical properties of cell membranes. In a pre-
vious study, we usedmodelmembranes to demonstrate that a robust in-
crease in SM augments the global membrane order and concomitantly,
the lipid raft order [2]. Here, we used liposomes reconstituted from cell
lipid extracts to evaluate how fatty acid remodeling after vehicle or
2OHOA treatments affected the biophysical properties of themembrane.
Consistentwith our previous results, exposure to 2OHOA increased the lo
domain order, although this effect was accompanied by a decrease in the
global order of the membrane, the latter in part explained by the pres-
ence of 2OHOA in membranes. In our previous study [2], we could not
observe the important decrease in global membrane order shown here.
This fact could be due to differences in the fatty acid composition be-
tween themodel membranes systems used there (commercial synthetic
phospholipids) and the reconstituted liposomes used here (from cancer
membrane lipids). In that study, the synthetic lipids used mimicked the
composition of 2OHOA-treated and -untreated cancer cells in terms of
major phospholipid species but there were differences in the type and
abundance of fatty acyl moieties and other lipid species present in cell
lipid extracts. In addition, another difference between the previous and
the present study was the presence of 2OHOA in its free fatty acid form
[2] or incorporated into glycerophospholipids, respectively.

The observed changes in membranes levels of SM from 2OHOA-
treated cells could account for the increased order of the lo domains.
However, these changes do not explain the increased disorder of ld
domains, which must therefore be due to the alterations in the lipids
acyl chain composition of such domains shown in the present study.
In agreement with our previous studies showing the effect of hydrox-
ylated glycerophospholipids on the biophysical properties of mem-
branes [41], 2-hydroxylation of the fatty acyl chain of sphingolipids
in Saccharomyces cerevisiae cells significantly reduces acyl chain pack-
ing of their sphingolipid-enriched domains [42]. Thus, the decrease in
global membrane order could be attributed to 2OHOA incorporation
into the membrane and to the additional changes observed in fatty
acid composition, whereas the marked accumulation of SM in mem-
branes of 2OHOA-treated cells could account for the increased pack-
ing of lo domains [2].

The present results explain in part and are in agreement with previ-
ous data suggesting a dual-mode mechanism of action for the antican-
cer drug 2OHOA [1,5]. On the one hand, 2OHOA treatments induce
dramatic and selective increases in membrane SM levels only in cancer
cells by activating SMS, ultimately increasing the order of lo domains [2].
This modification to the properties of lipid rafts may contribute to the
specific effects already demonstrated of 2OHOA in cancer cells [2], pro-
voking capping of the death receptor FasR and subsequent apoptosis of
human leukemia (Jurkat) cells [6] or Ras translocation from the mem-
brane to the cytosol and autophagy of human glioma (SF767) cells [1].
On the other hand, the large incorporation of 2OHOA into phospho-
lipids, and to a lesser degree its membrane binding as free fatty acid, in-
creases the global membrane disorder. Because lo domains become
more compact upon exposure to 2OHOA, a decrease in global order
probably reflects a decreased order of ld domains. This disordering ef-
fect, associated with reduction in the surface lateral pressure of the
lipid bilayer and the presence of 2OHOA inmembranes have previously
been shown to induce translocation of PKC to the membrane [1,5,41].
The latter effect was associated with the overexpression of CDK inhibi-
tors, such as p21Cip1, the inactivation of different cdks (cdk2, cdk4 and
cdk6) and cyclins (A, B, D), and the hypophosphorylation of the
retinoblastoma protein, which prevents its dissociation from E2F-1, a
pivotal transcription factor in cell cycle progression [4,5]. The final out-
come of these molecular processes is cell growth inhibition.

In summary, this is the first report to show the incorporation of
2OHOA in membrane phospholipids, an important aspect of its metab-
olism in human brain cancer cells. In addition, it has been shown here
that treatments with 2OHOA caused a marked remodeling of cancer
cell membrane fatty acid composition, in which SCD1 inhibition
appears to be a key player. These changes caused an important modu-
lation of the cell membrane microdomain structural features that are
associated with regulation of the interaction of peripheral proteins
with membranes. Finally, the large changes observed in lipid
membranes justify the marked signaling changes that specifically
occur in cancer but not normal cells [1].
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