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High-Chloride Concentrations Abolish the Binding of Adenine Nucleotides
in the Mitochondrial ADP/ATP Carrier Family
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ABSTRACT The ADP/ATP carrier (AAC) is a very effective membrane protein that mediates the exchange of ADP and ATP
across the mitochondrial membrane. In vivo transport measurements on the AAC overexpressed in Escherichia coli demonstrate
that this process can be severely inhibited by high-chloride concentrations. Molecular-dynamics simulations reveal a strong
modification of the topology of the local electric field related to the number of chloride ions inside the cavity. Halide ions are shown
to shield the positive charges lining the internal cavity of the carrier by accurate targeting of key basic residues. These specific
amino acids are highly conserved as highlighted by the analysis of multiple AAC sequences. These results strongly suggest that
the chloride concentration acts as an electrostatic lock for the mitochondrial AAC family, thereby preventing adenine nucleotides
from reaching their dedicated binding sites.

Received for publication 8 July 2009 and in final form 20 August 2009.

*Correspondence: francois.dehez@edam.uhp-nancy.fr or chipot@ks.uiuc.edu

Christophe Chipot’s present address is Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois at Urbana-Champaign,

405 North Mathews, Urbana, Illinois 61801.
ATP, the energy fuel of the cell, is synthesized from ADP in

the mitochondria, using the proton gradient created by the

respiratory chain. Alteration of the ADP and ATP exchange

across the inner mitochondrial membrane bears various path-

ological implications (1). The ADP/ATP transport is mediated

by a member of the mitochondrial carrier family, e.g., the

ADP/ATP carrier (AAC). In the absence of a membrane

potential, exchange can occur in both directions (5). The struc-

ture of the bovine-heart AAC has been solved in the presence

of the inhibitor carboxyatractyloside (6,7). It consists of six

a-helices forming a compact transmembrane domain on the

matrix side, with a cavity opened toward the intermembrane

space. Two patches of basic residues line this cavity. The

upper patch, located at the mouth of the AAC, consists of resi-

dues K91, K95, R104, K106, R187, and K198. Residues K22,

K32, R79, R137, R234, R235, and R279 form the lower basic

patch that delineates the bottom of the cavity. Noteworthily,

several of these residues are involved in carboxyatractyloside

and/or ADP3� binding (6). The latter two basic patches con-

tribute to the unique electrostatic topology of the AAC,

shaped in a funnel conducive to drive the substrate down-

wards to the bottom of the internal cavity (6,8,9). Biochemical

experiments have demonstrated that mutation of specific resi-

dues abolishes the transport activity of AAC (for a review, see

(10)). The function of the protein can also be affected by an

appropriate modification of the ionic concentration. Experi-

ments emphasize that high concentrations of either magne-

sium or chloride ions inhibit the function of the bovine-heart
AAC (11–13). Mg2þ is assumed to bind to the substrate,

which can no longer be transported in a complexed form. In

sharp contrast, chloride is believed to affect directly the prop-

erties of the membrane protein (13).

A synergistic experiment-theory study has been carried out

here to explain the effects of chloride concentrations on the

function of the overall AAC family. Transport activities were

measured for Arabidopsis thaliana AAC isoform 1 (AtAAC1)

expressed in Escherichia coli to probe how sensitive the inhibi-

tion of the AAC family is in response to high-chloride concen-

trations. Molecular-dynamics (MD) simulations of bovine-heart

AAC isoform 1 (bAAC1) were carried out concomitantly to

decipher how transport across the AAC is thwarted by chloride

concentrations. In the light of the above concerted investiga-

tions, supplemented by an evolutionary analysis, congruent

conclusions are drawn on chloride inhibition in the AAC family.

Gropp et al. (13) observed the inhibitory effect of anions on

purified bAAC1 reconstituted in liposomes. To extend this

observation, functional expression of recombinant AACs in

E. coli was performed here, thereby providing a unique frame-

work for investigating in vivo the biochemical properties of

AACs. Transport of [a-32P]ATP assayed on whole E. coli
cells expressing AtAAC1 demonstrates that the carrier is

produced in a functional form in the inner membrane of
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E. coli (Fig. 1, inset). The same experiments performed at low

NaCl concentration (0.15 M) do not reveal any significant

effect on transport activity, whereas addition of 0.5 M or

0.6 M NaCl markedly reduces transport (Fig. 1). These results

are in line with measurements (13) based on bAAC1 sharing

74% of sequence homology with AtAAC1. The direct in vivo

measurements of ATP uptake inhibition reported here conse-

quently suggest that the inhibition potency of high-chloride

concentrations ought to hold for the entire mitochondrial

AAC family.

At the molecular level, chloride ions are envisioned to shield

the positive charges lining the internal cavity of the carrier

(13). On the theoretical front, the effects of chloride concentra-

tions on the transport properties of the AAC were examined

using three different salt conditions as models of low (e.g.,

0.1 M and 0.15 M Cl�) and high chloride concentrations

(e.g., 0.6 M Cl�). For each concentration, MD trajectories of

the bAAC1 embedded in a fully hydrated palmitoyloleylphos-

phatidylcholine bilayer were generated, with and without

ADP3�. All MD simulations were performed employing the

NAMD program (14) with the CHARMM27 force field

(15,16) and a revision of the latter for lipids (17).

The number of chloride ions in the cavity is a function of the

chloride concentration in the solvent (see Supporting Mate-

rial). At low NaCl concentration, the halide ions primarily

interact with residues K22, R79, and R279 of the lower basic

patch. Furthermore, a chloride ion transiently binds to R235

(0.1 M NaCl assay) and to R137 (0.15 M NaCl assay). In

both assays, no chloride ion is permanently complexed with

residues of the upper basic patch. In contrast, in the 0.6 M

NaCl assay, several chloride ions interact frequently with resi-

dues of the upper patch (i.e., K91, K95, R187, and K198).

They also interact with residues K22, R79, and R279 of the

lower patch, reminiscent of the simulations at low concentra-

tions. In addition, a chloride ion associates with R234, occu-

pying the same position for as long as 29.5 ns. The significant

persistence of this chloride ion, together with the saturation of

the two basic patches, results at a high-chloride concentration

in a less accessible binding site for ADP3�.

FIGURE 1 Inhibitory effect of NaCl on the [a-32P]ATP uptake by

AtAAC1. (Inset) Time dependence of [a-32P]ATP uptake into

intact IPTG-induced E. coli cells harboring plasmid encoding

mature AtAAC1 (squares) or the control plasmid (circles).

The data shown is the mean of four independent experiments

(SE < 10% of the mean values; see Supporting Material).
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As was highlighted previously (8,9), the protein exhibits

a funnellike electrostatic pathway. A cross-sectional view of

the three-dimensional map of the electric field (Fig. 2) indi-

cates that the distribution of chloride ions affects the electro-

static signature of the protein (see Supporting Material). At

low-salt concentration, the electrostatic funnel ends at the

bottom of the cavity, where the electric field points down-

wards. Under such circumstances, ADP3� has been shown

to reach spontaneously its dedicated binding site (8,9). At

0.6 M NaCl, the topology of the electric field differs markedly

above the region formed by the lower basic patch, where its

direction now points downwards. In this scenario, a negatively

charged substrate is prevented from reaching the bottom of the

cavity. Thus, even though an electrostatic funnel prevails at

a high-chloride concentration, it does not end as deep in the

cavity as it would at low-salt concentration.

Binding numerical experiments, where ADP3� is initially

located at the mouth of AAC, have revealed that this substrate

binds spontaneously to the protein, independently of its start-

ing position (9,8). Simulations featuring three different

ligand-association assays carried out at 0.15 M NaCl led to

the association of ADP3� (see Supporting Material), consis-

tent with the experimental data (Fig. 1), as well as the previous

findings of Dehez et al. (9). Considering nine different starting

positions for ADP3�, association was, however, never

observed at 0.6 M NaCl (Fig. 3). Nine similar experiments

were subsequently repeated in the absence of an ionic concen-

tration, while keeping the same initial position of the

substrate. All these simulations invariably led to the associa-

tion of ADP3� (Fig. 3). Put together, these ligand-association

and transport assays remarkably illustrate the crucial role

played by chloride concentration on AAC activity.

Inhibition does not appear to be specific to bAAC1. These

experiments suggest, on the contrary, that abolition of trans-

port by chloride ions is characteristic of the AAC family.

FIGURE 2 The electric properties of apo-bAAC1 differ as a func-

tion of the salt concentration. (A) Orientation of the bAAC1. A

molecular-surface rendering and a ribbon representation are

used for regions of the protein located, respectively, behind

and in front of the plane in which the electric field is shown. The

basic patches are highlighted in cyan. The cross-sectional view

of the electric field after 30 ns differs between (B) 0.1 M and (C)

0.6 M assay. Maps of the electric field were obtained using the

PMEPot (18) module of VMD (19) and OpenDX (http://www.

opendx.org).

http://www.opendx.org
http://www.opendx.org
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Multiple-sequence alignment was, hence, carried out, based

on 74 AAC sequences. Analysis of the alignment reveals

a conservation of those residues directly involved in the

binding of halide ions (see Supporting Material). It should,

therefore, be expected that shielding of dedicated basic resi-

dues by chloride ions is a common phenomenon likely to

occur in all mitochondrial AACs. The small size of these

ions allows each single amino acid essential to the transport

to be targeted with optimal accuracy, regardless of the local

structure of the carrier.

In this work, the effect of high-chloride concentration on

the activity of the mitochondrial AAC family has been un-

raveled by combining synergistically experimental and theo-

retical investigations. Uptake experiments of radioactively

labeled ATP4� have demonstrated that transport in the plant

AtAAC1 is also inhibited at high-chloride concentrations.

Molecular detail of the inhibition is unveiled by MD simula-

tions performed on the bAAC1 structure. As a function of the

concentration, a large number of ions are prone to gush into

the internal cavity of the protein. In turn, ionic saturation of

those residues pertaining to the two basic patches of the AAC

strongly modulates the topology of the internal electric field,

thus, locking the carrier in a state unfavorable to substrate

binding. A conservation analysis performed over a large

set of AAC sequences shows that the key residues shielded

by Cl� are conserved. This observation strongly suggests

that inhibition at high-chloride concentrations can occur

independently of the AAC sequence. Chloride concentration

may, therefore, be viewed as an electrostatic lock for the

mitochondrial AAC family, preventing the adenine nucleo-

tide from reaching its target-binding site. Our results empha-

size that in the context of functional assays, particularly for

experimental nucleotide binding assays, chloride concentra-

tion constitutes an important parameter that ought to be opti-

mized carefully.

FIGURE 3 The series of ligand-association assays at 0.6 M NaCl

results in the binding of ADP3� only after removal of the ions. (A)

The different initial positions of ADP3� are depicted as colored

tubes. A molecular-surface rendering is used for the protein

(white), the upper (light-blue), and the lower patches (ice-blue).

Chloride ions are shown as green van der Waals spheres. (B)

Association experiment C. The starting position of ADP3� and its

final positions at 0.6 M NaCl and without salt are shown, respec-

tively, as van der Waals spheres, and green and orange tubes.

Image rendering using VMD (19).
SUPPORTING MATERIAL

Eleven figures and three tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(09)01430-1.
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sariat à l’Énergie Atomique, the Centre National de la Recherche Scientifique,

and the European Drug Initiative on Channels and Transporters program.

REFERENCES and FOOTNOTES

1. Dahout-Gonzalez, C., H. Nury, V. Trézéguet, G. J.-M. Lauquin, E. Pebay-
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