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Abstract We have previously described a bacterial system for
the conversion of globotriaose (Gb3) into globotetraose (Gb4)
by a metabolically engineered Escherichia coli strain expressing
the Haemophilus influenzae lgtD gene encoding b1,3-N-acety-
lgalactosaminyltransferase [Antoine, T., Bosso, C., Heyraud,
A. Samain, E. (2005) Large scale in vivo synthesis of globotriose
and globotetraose by high cell density culture of metabolically
engineered Escherichia coli. Biochimie 87, 197–203]. Here, we
found that LgtD has an additional b1,3-galactosyltransferase
activity which allows our bacterial system to be extended to
the synthesis of the carbohydrate portion of globopentaosylcera-
mide (Galb-3GalNAcb-3Gala-4Galb-4Glc) which reacts with the
monoclonal antibody defining the stage-specific embryonic anti-
gen-3. In vitro assays confirmed that LgtD had both b1,3-GalT
and b1,3-GalNAcT activities and showed that differences in the
affinity for Gb3 and Gb4 explain the specific and exclusive for-
mation of globopentaose.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The globopentaose Gb5 (Galb-3GalNAcb-3Gala-4Galb-

4Glc) is the carbohydrate moiety of the globopentaosylcera-

mide [2] which has been first identified in tetracarcinoma cells

as a structure reacting with the monoclonal antibody MC631
Abbreviations: SSEA-3, stage-specific embryonic antigen-3; Gb5,
globopentaose; Gb4, globotetraose; Gb3, globotriaose; GT, glycosyl-
transferase; GalT, galactosyltransferase; GalNAcT, N-acetylgalactos-
aminyltransferase; PCR, polymerase chain reaction; IPTG, isopropyl
1-thio-b-galactopyranoside; TLC, thin layer chromatography; UDP-
Gal, uridine diphosphate-galactose; UDP-GlcNAc, uridine diphos-
phate-N-acetylglucosamine; UDP-GalNAc, uridine diphosphate-N-
acetylgalactosamine; TFA, trifluroacetic acid; HPAEC, high pH anion
exchange chromatography; GC–MS, gas chromatography–mass spec-
trometry; ESI-MS, electrospray ionization mass spectrometry; NMR,
nuclear magnetic resonance
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that defines the stage-specific embryonic antigen-3 (SSEA-3)

and whose epitope is R-GalNAcb-3Gala-4Gal. The pentasac-

charide sequence is also found in other related glycolipids of

the globo-series reacting with the monoclonal anti-SSEA-3.

They carry an additional fucose (Globo-H) [3] or sialic acid

(SSEA-4 antigen) [2] on the terminal galactosyl residue of

Gb5. These embryonic epitopes have been identified on vari-

ous tumor cells [4] and are promising targets for the develop-

ment of anti-cancer vaccines [5].

Chemical synthesis of Gb5 was first achieved in 1988 [6] but

the high potential interest of this molecule and of its possible

derivatives for cancer immunotherapy has led several groups

to investigate different strategies to improve the synthetic

yields [7–9].

An alternative to these very demanding chemical syntheses is

the enzymatic approach which has been successfully applied to

the synthesis of globotriaose (Gb3) [10] and globotetraose

(Gb4) [11] using Neisseria meningitidis a1,4-galactosyltransfer-

ase (LgtC) and b1,3-N-acetylgalactosaminyltransferase from

Haemophilus influenzae strain Rd (LgtD) [12]. In addition,

large-scale enzymatic synthesis of oligosaccharides can be con-

veniently achieved in whole bacterial cells [13] and we have re-

cently designed a bacterial system for the production of Gb4

by taking advantage of the fact that living Escherichia coli cells

can actively internalize Gb3 [1]. As shown in Fig. 1, this system

could be extended to the synthesis of Gb5 if the suitable b1,3-

galactosyltransferase could be found. Up to now the only

enzyme reported to direct the synthesis of the globopentaosyl-

ceramide has been the human b1,3-galactosyltransferase V

[14]. However, the use of this enzyme for the production of

Gb5 in metabolically engineered E. coli cells could be seriously

hampered by the fact that mammalian glycosyltransferase

genes are generally badly expressed in bacteria. Another

b1,3-galactosyltransferase candidate is the CgtB protein from

Campylobacter jejuni, which add a galactosyl residue on a N-

acetylgalactosaminyl b1,4-linked motif [15]. The initial goal

of this study was thus to investigate the production of Gb5

by an E. coli strain coexpressing lgtD and one of these above

mentioned b1,3-galactosyltransferase genes. However, in the

course of these investigations, we surprisingly found that

E. coli cells expressing lgtD alone converted Gb4, which was

produced from Gb3, into Gb5. We now present evidence that

the LgtD protein from H. influenzae, which normally acts as a

b1,3-N-acetylgalactosaminyltransferase in presence of Gb3,

has an additional b1,3-galactosyltransferase activity in pres-

ence of Gb4 as the acceptor.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Metabolically engineered pathway for globopentaose (Gb5)
production from exogenous globotriaose (Gb3) in Escherichia coli K
12. Gb3 is internalized by the b-galactoside permease LacY and cannot
be degraded because the DM strain is a lacZ melA mutant devoid of a-
and b-galactosidase activities. The expression of Pseudomonas aeru-
ginosa wbpP or Campylobacter jejuni gne enables the epimerization of
UDP-GlcNAc into UDP-GalNAc. The Gb3 acceptor is converted into
Gb4 by b1,3-GalNAcT encoded by Haemophilus influenzae LgtD. The
subsequent conversion of Gb4 into Gb5 requires the expression of
b1,3-GalT.
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2. Materials and methods

2.1. Bacterial strains, plasmids and cloning procedures
To construct the pBS-lgtD plasmid, the H. influenzae lgtD gene was

subcloned from pBluescript-lgtDC [1] into the SalI–PstI sites of pBlue-
script II KS. The C. jejuni gne gene was amplified by polymerase chain
reaction (PCR) from the genomic DNA of the NCTC 11168 strain
using the following primers 5 0-AGGAGGATTATTGATGAAA-
ATTCTTATTAGCGGTG and 5 0-AGAGCTCGCCAAAGTGATA-
AAAGGCATTA. The PCR product was cloned into pCR4Blunt-
TOPO and subcloned into the XhoI–EcoRI sites of the pBBR1-
MCS3 vector [16] to yield pBBR-gne and into the PstI–SacI sites of
pBS-lgtD to yield pBS-lgtD-gne.

The DM strain was constructed from the DC strain [17] by inactivat-
ing the melA gene encoding a-galactosidase activity as previously de-
scribed in [18]. MR13, MR14 and MR15 strains were obtained by
transforming the DC strain with the plasmids pBS-lgtD, pBBR-gne
and pBS-lgtD-gne, respectively.

2.2. Production of oligosaccharides in high cell density culture
High cell density cultures were carried out at 34 �C and pH 6.8 in 2-

liter reactors containing mineral culture medium (1 l) as previously de-
scribed [19]. They consisted of three phases: an exponential-growth
phase, which started with inoculation of the fermenter and lasted until
exhaustion of the initially added glycerol (17.5 g/l), a 5 h fed-batch
phase with a high substrate-feeding rate (4.5 g/l/h) and a 19 h fed-batch
phase with a lower feeding rate (2.4 g/l/h). The acceptor (Gb3, 3 g/l)
and the inducer (IPTG, 50 mg) were added at the end of the exponen-
tial phase. Culture samples were prepared and analyzed by thin layer
chromatography (TLC) as previously described [1].

2.3. Assay for b1,3-GalNAcT and b1,3-GalT activities
For protein expression, cell extracts of DM, MR13 and MR14

strains were prepared as previously described [20]. The enzymatic as-
says were performed at 30 �C for 2 h in a final volume (100 ll) contain-
ing 50 mM Tris–HCl (pH 7.0), 10 mM MnCl2, l% BSA, 3 mM
acceptor (Gb3 or Gb4) and 10 ll of protein extract from DM and
MR13 strains. For the b1,3-GalT assay, 0.3 mM uridine diphos-
phate-galactose (UDP-Gal) and 1.68 lM 14C-UDP-Gal (Amersham,
2.5 lCi) were used as donors while 0.3 mM uridine diphosphate-
N-acetylglucosamine (UDP-GlcNAc) and 2.12 lM 14C-UDP-GlcNAc
(Amersham, 10 lCi) were used as donors for the b1,3-GalNAcT assay.
In the latter assay, the mixture was incubated at 30 �C for 1 h with pro-
tein extract from the MR14 strain to provide uridine diphosphate-
N-acetylgalactosamine (UDP-GalNAc) before adding the MR13
strain. Reactions were stopped by adding Dowex 1 · 8-400 chloride
anion-exchange resin (500 ll, 0.25 g/ml in water). After centrifugation,
the supernatant was added to liquid scintillation cocktail (4 ml, Amer-
sham) to quantify the incorporated radioactivity.

2.4. Purification of oligosaccharides
At the end of the fermentation period, bacterial cells were recovered

by centrifugation (7000·g, 30 min), and the supernatant was desig-
nated the extracellular fraction. The cells contained in the pellet were
resuspended in water, and permeabilized by autoclaving at 100 �C
for 50 min. After an additional identical centrifugation, the intracellu-
lar oligosaccharides were found in the supernatant. They were ad-
sorbed on activated charcoal/celite (1:1) and eluted with 50%
aqueous ethanol. Finally, they were separated by size-exclusion chro-
matography on a Biogel P2 column (200 · 1.5 cm) at 60 �C, with water
as the mobile phase and at a flow rate of 35 ml/h.

2.5. Carbohydrate structural analysis
Glycosyl composition analysis. Three milligrams of pentasaccharide

were hydrolyzed in 500 ll, 2 M trifluoroacetic acid (TFA) containing
m-inositol (0.964 mg/ml) at 100�C for 4 h. TFA was removed by re-
peated evaporations with distilled water to obtain a neutral pH. The
resulting sample was analyzed by high pH anion exchange chromatog-
raphy (HPAEC) with pulsed amperometric detection (PAD) on a Dio-
nex CarboPac PA-10 column (250 · 4 mm) [21].

Alditol acetates of the monosaccharides were obtained after reduc-
tion (NaBH4 at 37 � for 4 h) and acetylation (acetic anhydride/pyridine
(1/1, v:v) at room temperature for 20 h). They were analyzed on a HP
5890 gas chromatograph (Hewlett–Packard, France) fitted with a
flame-ionization detector with a SP-2380 column (30 m · 0.53 mm),
using He as the carrier gas.

GC–MS. Reduced pentasaccharide (3 mg) was dissolved in dimethyl-
sulfoxide (200 ll), methylsulfinyl carbanion (200 ll) was added and the
mixture was flushed with N2 overnight. Methyl iodide (200 ll) was
added gradually. The methylated sample was extracted three times with
chloroform, washed with distilled water and dried with Na2SO4. After
evaporation, 500 ll of 90% formic acid was added and heated under re-
flux for 1 h. A second hydrolysis was performed with 2 M TFA at
100 �C for 2 h. After evaporation, the resulting monosaccharides were
reduced with NaBD4 and acetylated. The resulting partially methylated
alditol acetates were analyzed by GC–MS as previously described [22].

Electrospray ionization mass spectrometry (ESI-MS) and nuclear
magnetic resonance (NMR). ESI mass spectra were recorded on a
ZQ Waters micromass spectrometer (capillary 3.5 kV, cone voltage
80 V). 1H and 13C NMR spectra were performed with a 300 MHz Bru-
ker AVANCE spectrometer.

Gb5: ESI-MS: m/z 892 [M+Na+]; 1H NMR (D2O, 303 and 323 K):
d = 5.23 (H-1a, d, J = 3.4 Hz, 1H), 4.93 (H-100, d, J = 2.7 Hz, 1H),
4.72 (H-1000, d, J = 7.15 Hz, 1H), 4.66 (H-1b, d, J = 10 Hz, 1H), 4.52
(H-1 0, d, J = 7.5 Hz, 1H), 4.46 (H-10000, d, J = 7.6 Hz, 1H), 4.38(H-500,
t, J = 6.4 Hz, 1H), 4.26 (H-400, d, J = 4.2 Hz, 1H), 4.18 (H-4000, s, 1H),
3.64 (H-2b, t, J = 8 Hz, 0.6H), 2.04 (Ac, s, 3H); 13C NMR (D2O) :
d = 175.78 (CO), 105.6 (C-10000), 104.12 (C-1 0), 103.76 (C-1000),
101.29 (C-100), 96.61 (C-1b), 92.68 (C-1a), 80.44 (C-3000), 79.74 (C-300),
61.89 - 60.9 (all C-6), 52.41 (C-2000), 23.22 (CH3).
3. Results

3.1. Globopentaose production by metabolically engineered

E. coli cells

In our previously published system for Gb4 production with

the TA21 strain [1], the lgtD and wbpP genes were placed on

two separate plasmids, pACT3-lgtD and pBBR-wbpP. In order
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to reduce the number of plasmids and to optimize Gb4 pro-

duction, the wbpP gene was replaced by the C. jejuni gne gene,

which has been shown to encode a more active UDP-GlcNAc

C4-epimerase, and both gne and lgtD genes were cloned to-

gether on the high copy number pBluescript plasmid to yield

pBS-lgtD-gne. Prior to investigating the production of Gb5

by expressing an additional gene for b1,3-galactosyltransfer-

ase, the control MR15 strain carrying the pBS-lgtD-gne plas-

mid was examined for Gb4 production. TLC analysis of the

intracellular oligosaccharide content of the MR15 strain indi-

cated that Gb4 production rates were significantly improved

when compared with the results of the TA21 strain. Gb3

(3 g/l) was entirely converted into Gb4 within 4 h of incubation

with the MR15 strain, whereas it took 6 h for the TA21 strain

to convert only 1 g/l. TLC analysis of the intracellular fraction

of the MR15 strain (Fig. 2) also clearly revealed the presence

of an unidentified compound which started to be formed after

the complete exhaustion of Gb3 (4 h). After 20 h of incuba-

tion, Gb4 had almost entirely disappeared and the unidentified

compound had become the major detectable product. Its full

characterization showed that it was Gb5 (see Section 3.2). A

mixture of oligosaccharides (2.7 g) was isolated from the cell

medium and purification on a Biogel P2 column showed that

it was composed of a mixture of Gb5, Gb4 and Gb3 in a ratio

of 85/5/10.

3.2. Characterization

At the end of the MR15 strain fermentation, the major prod-

uct was first characterized by ESI mass spectrometry. Its ESI+

mass spectrum showed the presence of a quasi molecular ion

[M+Na]+ at m/z 892, which could have originated from a pen-

tasaccharide having 4 hexoses and one N-acetylhexosaminyl

residue. The determination of the monomeric sugar composi-

tion by HPAEC-PAD analysis after acid hydrolysis indicated

that this pentasaccharide was composed of Glc, Gal and Gal-

NAc monomers in a ratio of 1/3/1. This strongly suggested that

the pentasaccharide was formed by the transfer of one galacto-

syl unit onto a molecule of Gb4. The linkage position of the

additional galactose was determined by gas chromatogra-

phy–mass spectrometry (GC–MS) analysis after methylation,

acid-hydrolysis, reduction and acetylation of the pentasaccha-

ride. The presence of fragment ions at m/z 261 and 161 derived

from the N-acetylgalactosaminyl residue unambiguously dem-
Fig. 2. TLC plate analysis of the oligosaccharide content in extracel-
lular (lanes 2–6) and intracellular (lanes 8–12) fractions of samples
withdrawn from the culture of the globopentaose-producing MR15
strain. Standards are in lane 1 (lactose, lacto-N-neotetraose, lacto-N-
neohexaose) and lane 7 (Gb4 and Gb5).
onstrated that the linkage was at the third position. Compared

with the 13C NMR spectrum of Gb4, the spectrum of the pen-

tasaccharide showed an additional signal at 105.6 ppm indicat-

ing that the third galactosyl residue was attached to the

GalNAc unit with a b linkage. These results showed that the

pentasaccharide produced by the MR15 strain from Gb3 has

the structure of Gb5. This identification was confirmed by

the overall 1H and 13C NMR data that agreed closely with val-

ues previously published for 3-aminopropyl galactosylglobo-

side [23].

3.3. Specificity of LgtD

Enzymatic assays showed that crude extracts from the

MR13 strain expressing the LgtD protein had both b1,3-

GalNAcT and b1,3-GalT activities in the presence of Gb3 or

Gb4 as acceptors (Table 1). Control experiments with extracts

from the DM strain showed no detectable activity indicating

that both glycosyltransferase activities resulted from the

expression of LgtD. The maximum velocities of the two glyco-

syltransferases (GT) were in the same range regardless of the

acceptor and sugar donor used. However large differences in

the affinity of the enzyme for UDP-Gal or UDP-GalNAc were

observed as a function of the acceptor used. When Gb3 was

the acceptor, the Km was 6 times lower for UDP-GalNAc than

for UDP-Gal, indicating that LgtD acted primarily as a Gal-

NAc-transferase, converting Gb3 into Gb4. When Gb3 was re-

placed by Gb4 as the acceptor, there was a 20-fold increase in

the Km for UDP-GalNAc but, on the other hand, in a 3.5-fold

decrease in the Km for UDP-Gal. In the presence of Gb4 as the

acceptor, the enzyme, which had an 11-fold greater affinity for

UDP-Gal than for UDP-GalNAc, can thus be regarded as a

galactosyltransferase which specifically directs the synthesis

of Gb5.

3.4. Sequence analysis

The lgtD gene encodes a polypeptide of 323 aminoacids.

Protein sequence analysis revealed the presence of the N-termi-

nal domain which comprises residues [1–240] corresponding to

the catalytic domain. It shows a strong level of sequence sim-

ilarity (60–70% identity) to a number of bacterial GTs involved

in lipopolysaccharide biosynthesis, which belong to the large

CAZY GT2 family (http://afmb.cnrs-mrs.fr/CAZY/). This do-

main is assumed to adopt the mixed a/b GT-A fold first ob-

served in the inverting GT SpsA [24]. An Â00Asp-X-AspÂ00

motif (where X is any amino acid) implicated in divalent metal

ion binding is formed by Asp92 and Asp94. The size of the cat-

alytic domain is indicative of a classical monofunctional en-

zyme belonging to the GT-A family and only one catalytic

center is clearly identified using fold recognition methods

[25]. Therefore the dual enzyme activity (b1,3-GalT/b1,3-
Table 1
Kinetic parameters for the b1,3-GalNAcT and b1,3-GalT activities of
LgtD

Donornacceptor Globotriaose (Gb3) Globotetraose (Gb4)

Km
a Vmax

(pmol/min)
Km

a Vmax

(pmol/min)

UDP-GalNAc 0.81 21.27 16.66 10.00
UDP-Gal 5.00 15.15 1.42 16.60

aKm (mM) is the Michaelis–Menten constant for the Gb3 and Gb4
acceptors with concentrations covering the range 0.5–20 mM.

http://afmb.cnrs-mrs.fr/CAZY/
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GalNAcT) can be attributed to a marked plasticity in donor

sugar specificity that appears to be dictated by the acceptor

molecule. In contrast, the C-terminal region which comprises

residues [21–323] does not match any known GT catalytic do-

main. It is only observed in a small subset of closely related

LgtD protein sequences and is predicted to adopt an a-helical

fold. It is currently not known if this region is required for

the catalytic activity of LgtD but it can be suggested that

this C-terminal region may be involved in protein oligomeriza-

tion as was recently proposed for a mannosylglycerate syn-

thase that also displayed an extra C-terminal a-helical

domain [26].
4. Discussion

There is no endogenous b1,3-galactosyltransferase in E. coli

and the formation of Gb5 using the MR15 strain expressing

the lgtD gene clearly results from a galactosyltransferase activ-

ity of the LgtD protein. It is not surprising that LgtD could act

as a galactosyltransferase because it has already been shown

that this enzyme can use UDP-Gal with a low efficiency with

Gb3 as the acceptor [27]. In addition, there are several reports

of GalNAc-transferases that have a side galactosyltransferase

activity [28] and the blood groups A and B glycosyltransferases

are known to differ only by a few amino acids [29]. What is

quite remarkable in Gb5 production by the MR15 strain is

the fact that LgtD specifically adds a galactosyl residue onto

Gb4 but does not galactosylate Gb3 to produce the globotet-

raose analog Galb-3Gala-4Galb-4Glc. It is also notable that

LgtD does not produce the globopentaose analog GalNAcb-

3GalNAcb-3Gala-4Galb-4Glc from Gb4 in vivo. This very

high specificity could be explained by the presence of two sep-

arate active sites, as was demonstrated in other GTs such as

hyaluronan synthase [30] and chondroitin synthase [31] which

catalyze the successive transfer of two distinct sugars. How-

ever, LgtD is a relatively small protein of only 323 aminoacids

and its sequence analysis reveals only one putative catalytic

site. The presence of only one active site is also consistent with

the in vitro assay results which showed that the two activities

were observed with both Gb3 and Gb4 as acceptors. The

explanation for the unusual specificity of LgtD probably lies

in the difference in affinity for UDP-GalNAc and UDP-Gal

that was observed as a function of the acceptor. In the presence

of Gb3, LgtD acts as a N-acetylgalactosaminyltransferase be-

cause it has a high affinity for UDP-GalNAc and a low affinity

for UDP-Gal. Conversely in the presence of Gb4, LgtD acts as

a galactosyltransferase because it has a higher affinity for

UDP-Gal than for UDP-GalNAc. In this hypothesis, the

mechanism by which the acceptor can modulate the affinity

for the sugar donor remains to be established.

An important question raised by these results is whether the

double specificity of LgtD is fortuitous or has a real physiolog-

ical significance. LgtD is involved in the synthesis of the Gb4

epitope in the lipopolysaccharide of H. influenzae [32]. The

expression of the globoside mimics is believed to contribute

to pathogenicity by allowing the bacteria to evade the host im-

mune response. In this respect it could be interesting to deter-

mine if Gb5 is expressed on the H. influenzae cell surface as a

result of the galactosyltransferase activity of LgtD.

Regardless of its biological meaning, the b1,3-galactosyl-

transferase activity of LgtD is of great biotechnological impor-
tance and LgtD is the first reported enzyme that can be used

for the practical enzymatic synthesis of Gb5. Furthermore

the expression of LgtD in the metabolically engineered

E. coli strain is a very efficient method to produce large quan-

tities of Gb5. Since we have shown that it is possible to synthe-

size fucosyl a1,2-linked [20] and sialyl a2,3-linked

oligosaccharides [33] in E. coli, it should certainly be possible

in the future to extend the method to the production of Glo-

bo-H and SSEA-4 antigens.
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