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SUMMARY

Erythropoietin (EPO) is the principal cytokine regu-
lating erythropoiesis through its receptor, EPOR.
Interestingly, EPORs are also found on immune cells
with incompletely understood functions. Here, we
show that EPO inhibits the induction of proinflamma-
tory genes including tumor necrosis factor (TNF)-
a and inducible nitric oxide (NO) synthase in
activated macrophages, which is mechanistically
attributable to blockage of nuclear factor (NF)-kB
p65 activation by EPO. Accordingly, in systemic
Salmonella infection, treatment of mice with EPO
results in reduced survival and impaired pathogen
clearance because of diminished formation of anti-
microbial effector molecules such as TNF-a and
NO. However, neutralization of endogenous EPO or
genetic ablation of Epor promotes Salmonella elimi-
nation. In contrast, in chemically induced colitis,
EPO-EPOR interaction decreases the production of
NF-kB-inducible immune mediators, thus limiting
tissue damage and ameliorating disease severity.
These immune-modulatory effects of EPO may be
of therapeutic relevance in infectious and inflamma-
tory diseases.

INTRODUCTION

The renal cytokine hormone erythropoietin (EPO) regulates bone

marrow erythrocyte production by stimulating the differentiation

and inhibiting the apoptosis of erythroid progenitor cells (De

Maria et al., 1999; Liu et al., 2006). However, EPO also bears

extrahematopoietic properties that are transduced by EPO

receptors (EPORs) expressed on various nonerythroid tissues

including immune cells (Brines and Cerami, 2005; Jelkmann,

2007). The erythropoietic response is initiated upon binding of
EPO to EPOR homodimers. In nonerythroid tissues by contrast,

EPO targets a heteroreceptor complex composed of EPOR

subunits assembled with beta common receptors (ßcRs), which

are also utilized by other cytokine-specific and growth factor-

specific receptors (Brines et al., 2004). Accordingly, EPO has

been found to exert protective and antiapoptotic effects in

animal models of ischemic, traumatic, and toxic tissue damage

involving the nervous system, retina, myocardium, kidney, and

liver (Chen et al., 2008; Digicaylioglu and Lipton, 2001; Imamura

et al., 2007; Junk et al., 2002; Parsa et al., 2003; Sepodes et al.,

2006).

Engagement of EPOR by EPO in erythroid cells results in the

induction of Janus kinase-2 (JAK2)- and signal transducer and

activator of transcription-5 (STAT5)-dependent signaling

cascades (Neubauer et al., 1998; Parganas et al., 1998; Zhu

et al., 2008). However, alternative signaling pathways are pre-

dicted to exert EPO-mediated effects in nonerythroid tissues

(Zhang et al., 2009). In neurons, activation of mitogen-activated

protein (MAP) kinase and phosphatidylinositol-3 kinase (PI3K)-

Akt pathways have been linked to the antiapoptotic effects of

EPO (Sirén et al., 2001). In addition, EPO protects cultured

neurons from nitrosative stress-induced apoptosis through

activation of JAK2 and nuclear factor (NF)-kB (Digicaylioglu

and Lipton, 2001). In contrast, the interaction of EPOwith EPORs

on cancer cells promotes chemotherapy-induced apoptosis via

inhibition of NF-kB (Carvalho et al., 2005). Although contrasting,

these results are of interest given that NF-kB and Rel proteins

encompass a family of pivotal transcriptional regulators centrally

involved in the ligand-induced activation of proinflammatory

immune effector pathways in various cell types including macro-

phages (Akira et al., 2006; Karin and Delhase, 2000).

Taking into consideration the pleiotropic effects of EPO in

extraerythroid tissues, the expression of EPORs on immune

cells, and the partial similarities between EPO- and cytokine-

mediated signal transduction, we questioned whether EPO

may exert putative immune-modulatory effects, which could be

of clinical relevance in certain inflammatory diseases. We found

that EPO induces EPOR-JAK2 signal transduction in myeloid

cells thus impairing the classical NF-kB p65 activation pathway.
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Figure 1. Recombinant EPO Inhibits Proinflammatory Immune Responses in Macrophages In Vitro

(A) Thioglycolate-elicited primary peritoneal macrophages were pretreated with PBS or EPO 30 min before the addition of LPS or solvent. Supernatants were

analyzed for concentrations of nitrite and of cytokines and data from at least 3 independent experiments were compared by means of Kruskal-Wallis test. Values

are depicted as lower quartile, median and upper quartile (boxes) withminimum andmaximum ranges, and statistical significances between PBS- and EPO-treat-

ment are indicated. TNF-a and IL-6 concentrations in supernatants of solvent-treated control macrophages remained below the reported detection limits of the

corresponding ELISA kits. n.d. denotes not detectable.

(B) RAW264.7 macrophage-like cells were transiently transfected with a plasmid containing the luciferase gene under the control of the full-length murine Nos2

promoter. Relative luciferase activity is shown. Data were compared and are depicted as in Figure 1A.
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The consequent interference with innate immune response

mechanisms resulted in the deterioration of Salmonella infection

and ameliorated chemically induced experimental colitis.

RESULTS

Effects of EPO on Macrophage Immune Effector
Mechanisms In Vitro
To verify the presence of EPOR complexes, we isolated primary

macrophages from different anatomical locations. Quantitative

reverse transcription polymerase chain reaction (qRT-PCR)

revealed that macrophages expressed considerable quantities

of EPOR, b common receptor (ßcR) and JAK2 mRNA (Figures

S1A, S1B, and S1C available online). In comparison, CD4+

T cells and hepatocytes displayed low expression, whereas in

bone marrow erythroid cells, characterized by the presence of

the erythroid-specific cell surface marker Ter119, mainly EPOR

and JAK2 mRNA were detected. When subsequently evaluating

the impact of EPO on activated macrophages, we found that

addition of EPO to primary macrophages in culture significantly

reduced the accumulation of nitrite, the stable end-product of

the nitric oxide (NO) pathway, as well as of tumor necrosis factor

(TNF)-a and interleukin (IL)-6 in culture supernatants derived

from lipopolysaccharide (LPS)-stimulated primary peritoneal

macrophages as compared to cells treated with solvent

(Figure 1A). Moreover, we measured a reduction in interleukin-

12p70 (IL-12p70) and IL-23 concentrations under these condi-

tions, although these effects did not reach statistical significance

(Figure S1D). These observations were paralleled by reduced

mRNA amounts of inducible NO synthase (Nos2), TNF-a, and

IL-6 in response to EPO treatment (Figure S1E), whereas

mRNA amounts of IL-1b, IL-10, and IL-18 were not affected

by EPO treatment (data not shown). Similar results were

obtained when stimulating primary peritoneal macrophages or

RAW264.7 macrophage-like cells with a combination of inter-

feron-g (IFN-g) and LPS, both of which are pivotal inducers of

Nos2 expression in these cells (data not shown). These anti-
62 Immunity 34, 61–74, January 28, 2011 ª2011 Elsevier Inc.
inflammatory effects of EPO on LPS- or IFN-g and LPS-stimu-

lated macrophages were not affected by pretreatment of EPO-

exposed cells with actinomycin D or cycloheximide, suggesting

that they were not mediated via alterations of mRNA half-lives or

de novo protein synthesis, respectively (data not shown).

However, using a full-length Nos2 promoter firefly luciferase

construct in a dual reporter gene assay, we found that EPO treat-

ment resulted in a diminished transcription of the Nos2 gene in

transiently transfected macrophages (Figure 1B). These results

thus suggested that EPO reduces the production of proinflam-

matory mediators such as NO by activated macrophages by

directly inhibiting Nos2 transcription.

Effects of EPO on the Activity of Proinflammatory
Transcription Factors
Because EPO affects iron uptake via the transferrin receptor-1

(TFR1) in erythroid cells (Weiss et al., 1997) and iron inhibits

proinflammatory immune effector pathways in macrophages

(Weiss et al., 1994), we studied the putative effects of EPO on

macrophage iron homeostasis. We found that the effects of

EPO on macrophage functions were independent of a putative

modulatory effect on macrophage iron homeostasis given that

EPO did not modify mRNA or protein expression of TFR1

(Figures S2A, S2B and S2C), and the addition of a blocking

TFR1 antibody did not modify the effects of EPO toward Nos2

mRNA expression or NO generation in RAW264.7 cells (data

not shown).

As a next step, we studied the activation of several transcrip-

tion factors involved in the induction of Nos2 transcription or

implicated in signaling events downstream of EPOR. Electromo-

bility shift assays demonstrated that EPO inhibited the DNA

binding activity of NF-kB in RAW264.7 cells stimulated with

IFN-g and LPS (Figure 2A), yet did not influence binding activities

of STAT1, STAT3, and STAT5, interferon regulatory factor-1

(IRF1), or NF-IL6 (details not shown).

Quantification of the specific DNA binding activity of the NF-

kB subunit p65 revealed that pretreatment of cells with EPO
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significantly reduced LPS-induced p65 binding (Figure 2B). Simi-

larly, the effects of IFN-g and LPS on p65 binding activity were

reduced by 48%–64% in macrophages pretreated with EPO

(data not shown). Western blot experiments showed that EPO

treatment resulted in JAK2 activation, thus inhibiting the LPS-

inducible phosphorylation of inhibitor of NF-kB (IkB)-a and the

subsequent phosphorylation of the cytoplasmic p65 subunit

(Figure 2C).

In contrast, EPO did not influence the IFN-g- and LPS-induc-

ible phosphorylation of STAT1 and STAT3 (Figure S2D and S2E),

whereas STAT5 phosphorylation was substantially increased in

response to EPO in both control and IFN-g- and LPS-activated

macrophages (Figure S2F).

Diminished EPO-mediated p65 binding activity was observed

after stimulation of RAW264.7 macrophages with TNF-a, IL-1b,

and IL-17A (Figure 2D) or with several Toll-like receptor (TLR)

ligands (Figure 2E). Notably, pretreatment with the JAK2 inhibitor

AG490 abolished the inhibitory effects of EPO on macrophage

activation in response to LPS or TNF-a (Figure 2F). In contrast,

inhibition of STAT5 resulted in reduced expression of vascular

endothelial growth factor (VEGF) after EPO treatment, whereas

Nos2 and TNF-a mRNA expression was unresponsive to

STAT5 inhibition (Figures S2G, S2H, and S2I).

In RAW264.7 cells transfected with Nos2 promoter constructs

that carry mutations in one or both NF-kB binding sites (mut-kBI-

Nos2-luc and mut-kBII-Nos2-luc, or mut-kBI-mut-kBII-Nos2-

luc, respectively), the inhibitory effect of EPO on IFN-g- and

LPS-induced Nos2-promoter controlled luciferase activity was

substantially reduced in mut-kBI-Nos2-luc and mut-kBII-Nos2-

luc expressing macrophages and completely abolished in cells

transfected with the mut-kBI-mut-kBII-Nos2-luc construct (Fig-

ure 2G). Collectively, these data suggested that EPO reduces

NF-kB p65 activition in response to various stimuli by inhibiting

the phosphorylation of IkB-a in a JAK2-dependent fashion.

Effects of EPO on Salmonella Infection In Vitro
To investigate whether EPO may affect the capacity of macro-

phages to clear engulfed microbes, we infected cells with

Salmonella enterica serovar Typhimurium (S. typhimurium).

Quantification of bacterial counts after 24 hr revealed that incu-

bation of infected cells with EPO resulted in increased bacterial

loads in both RAW264.7 cells (Figure 2H) and primary peritoneal

macrophages (Figure 2I) regardless of IFN-g supplementation.

Furthermore, these increased bacterial loadswere accompanied

by decreased amounts of Nos2, TNF-a, and IL-6mRNA (data not

shown). This effect was abolished in macrophages upon phar-

macological inhibition of JAK2 with AG490 (Figure 2J) and in

peritoneal macrophages lacking EPOR (Figure 2K). Correspond-

ingly, transient transfections with NF-kB reporter constructs

showed that the negative effects of EPO on NF-kB activation

were dependent on the presence of EPOR and the functionality

of JAK2 (Figure 2L).

Effects of EPO Administration on Salmonella

Infection In Vivo
For assessing the effects of EPO toward a systemic infection

in vivo, C57BL/6 mice were inoculated intraperitoneally (i.p.)

with 500 colony forming units (CFU) of S. typhimurium and

then with phosphate buffered saline (PBS) or EPO injection at
a dose of 5 U/g body weight on days 3 and 4 after infection.

Mice were sacrificed on day 5 for further analyses. Histopatho-

logical examination revealed that Salmonella-infected mice

treated with PBS had defined microabscesses in livers and

spleens (Figures 3A and 3C). In contrast, EPO-treated

Salmonella-infected mice showed hepatic macroabscesses

and scattered inflammatory foci in spleens. These observations

were likewise secondary to enhanced pathogen proliferation

given that EPO-treated mice exhibited significantly higher

numbers of bacterial colonies in both organs (Figures 3B and3D).

When investigating whether EPO treatment affects host

survival in Salmonella infection, an independent series of exper-

iments revealed that the median survival time of EPO-treated

mice was markedly reduced as compared to solvent-treated

animals (108 versus 132 hr, p < 0.001 when compared by log-

rank test; Figure 3E). The mRNA expression of critical inflamma-

tory genes was comparable in spleens and livers of infected

mice. Importantly, EPO treatment significantly reduced mRNA

expression of Nos2, TNF-a, IL-6, IL-12p35, and IL-23p19 and

to a lesser extent of IL-1b in spleens of Salmonella-infected

mice on day 5 after infection (Figure 3F and data not shown).

The reduced expression of proinflammatory cytokines in

Salmonella-infected spleens of EPO-treated animalswas accom-

panied by the reduction of serum concentrations of theses medi-

ators (Figure S3A) as well as by diminished splenic NF-kB p65

bindingactivity incomparison toPBS-treatedcontrols (Figure3G).

Notably, the treatment of infectedmicewithEPOdid not influence

themRNAexpressionofother keyThelper (Th) cell cytokinessuch

as IFN-g, IL-4, IL-13, IL-17A, and IL-17F or of the master switch

transcription factors t-bet, GATA-3, RORgt, and Foxp3 (Fig-

ure S3B and data not shown). Altogether, these results demon-

strated that EPO impairs the clearance of engulfed Salmonella

by macrophages by inhibiting the activation of NF-kB and thus

the induction of proinflammatory immune response genes.

Role of the Endogenously Produced EPO
in Salmonella typhimurium Infection
For determining whether endogenously produced EPO modifies

the course of Salmonella septicemia, groups of 4-8 C57BL/6

mice were inoculated intraperitoneally (i.p.) with 500 CFU of S.

typhimurium and treated with solvent, an isotype control anti-

body or a neutralizing EPO antibody on days 1 and 2 after infec-

tion. Treatment with the EPO antibody resulted in a significant

reduction of bacterial counts in livers (Figure 4A) and spleens

(Figure 4B) on day 4 of infection, whereas no difference in bacte-

rial numbers between animals receiving PBS or the isotype

control antibody was observed (details not shown). Accordingly,

the enhanced resistance of animals treated with the EPO

antibody was associated with increased splenic Nos2, TNF-a,

IL-6, and IL-23p19 mRNA expression (Figure 4C) and higher

NF-kB p65 binding activity (Figure 4D) as compared to iso-

type-treated controls. Of note, antibody-mediated neutralization

of EPO resulted in improved survival of Salmonella-infectedmice

(120 versus 192 hr, p < 0.001 when compared by log-rank test;

Figure 4E).

Role of EPORSignaling in SystemicSalmonella Infection
To study whether these effects can be linked to the direct inter-

action of EPO with its receptor, we infected Epor�/� mice and
Immunity 34, 61–74, January 28, 2011 ª2011 Elsevier Inc. 63



Figure 2. Recombinant EPO Impairs NF-kB Activation and Salmonella Elimination In Vitro

(A) RAW264.7 macrophage-like cells were treated with EPO, IFN-g, and LPS for the indicated time periods. NF-kB DNA binding activity in nuclear extracts was eval-

uatedbymeansofelectrophoreticmobilityshift assay (EMSA). Thespecificityofbindingwasconfirmedbycoldcompetitionwitha30-foldexcessof thesameunlabeled

oligonucleotide (far right lane)with thenuclear extractofPBS-treatedcells stimulatedwith IFN-gandLPSfor120min.Oneof three representativeexperiments isshown.

(B) Nuclear proteins were used for specific quantification of NF-kB p65 binding activity by a commercially available chemi-luminescent transcription factor assay

at the indicated time points. Data of three independent experiments are expressed as arbitrary light units and shown as means ± SEM and were compared by

means of Kruskal-Wallis test. Asterisks indicate statistically significant differences between LPS-stimulated cells pretreated with either PBS or EPO: p < 0.05.

(C) Cytoplasmic proteins from parallel experiments described in the legend for Figure 2B were used for evaluating phosphorylation of JAK2, IkB-a, and of NF-kB

p65 bymeans of western blot as described in Experimental Procedures. Total JAK2, IkB-a, and NF-kB p65 protein, respectively, served as loading controls. One

of three representative experiments is shown.
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Epor+/+ littermates with S. typhimurium and treated them with

EPO or PBS on days 3 and 4 after infection. Of relevance,

EPO-treated Epor+/+ mice displayed hepatic macroabscesses,

whereas EPO-treated Epor�/� did not (Figure 5A). Furthermore,

both solvent- and EPO-treated Epor�/� mice had reduced

bacterial colonization in livers and spleens as compared to their

Epor+/+ littermates (Figures 5B and 5C). Similarly, Epor+/+ perito-

neal macrophages isolated from EPO-treated mice were

impaired in controlling intracellular Salmonella replication (Fig-

ure 5D). In contrast, Epor�/� macrophages displayed reduced

bacterial burdens independent of preceding treatment of mice

with PBS or EPO. In parallel, we measured increased mRNA

expression of Nos2, TNF-a, IL-6, IL-12p35, and IL-23p19 in the

spleens of Epor�/�mice as compared to Epor+/+mice (Figure 5E

and data not shown). Of note, NF-kB p65 binding activity was

reduced in peritoneal macrophages isolated from Salmonella-

infected Epor+/+ mice after EPO treatment as compared to

PBS treatment, whereas this effect was not seen in Epor�/�

macrophages (Figure 5F). As revealed by two independent

experiments, in which Salmonella-infected mice were treated

with EPO or solvent every other day, the enhanced immune acti-

vation present in Salmonella-infected Epor�/� mice translated

into improved survival of these animals (113 versus 149 hr, p <

0.001 for comparison of Epor+/+ mice treated with either EPO

or PBS by log-rank test; 149 versus 206 hr, p < 0.001 for compar-

ison of PBS-treated Epor+/+ and Epor�/� mice; Figure 5G).

Effects of EPO on the Course of Experimental Colitis
To evaluate the effects of EPO treatment in noninfectious inflam-

matory disease models, we first studied mice suffering from tri-

nitrobenzene sulfonic acid (TNBS)-induced colitis. SJL/J mice

were treated with solvent or EPO on 3 consecutive days starting

on day 2 after induction of TNBS colitis. When studying the

clinical course of the disease, EPO-treated TNBS-treated mice

presented with an improved weight gain when compared to

solvent-treated animals (Figure 6A).

Histological sections revealed no substantial disease activity

in solvent-treated control mice (sections not shown), whereas

in TNBS-treated animals, severe inflammation could be detected

(Figures 6B, 6C, and 6D). Of note, the histopathological disease

score was significantly reduced in TNBS-treated mice receiving

EPO treatment as compared to PBS (Figure 6B).

Correspondingly, we found that in inflamed colons of TNBS-

treated mice, EPO treatment significantly reduced the mRNA

expression of Nos2, TNF-a, IL-6, IL-12p35, and IL-23p19 (Fig-

ure 6E) without affecting the mRNA expression of several other
(D–F) RAW 264.7 cells were pretreated with PBS or EPO as above and subsequ

RAW cells were treated with EPO and the Toll-like receptor (TLR) ligands LPS,

LPS or TNF-a after preincubation with the specific JAK2 inhibitor AG490 (F). Nucl

by a commercially available chemi-luminescent transcription factor assay after

units and shown as means ± SEM.

(G) RAW264.7 cells were transiently transfected with murine Nos2 promoter co

(mut-kBI-Nos2-luc and mut-kBII-Nos2-luc or mut-kBI-mut-kBII-Nos2-luc, respe

preincubation with EPO or solvent. Luciferase activity was measured in a chemi

(H–K) RAW264.7 macrophage-like cells (H) or primary peritoneal macrophages (

were treated with EPO, IFN-g, AG490 or solvent and incubated for a total of 24

enumerated by plating serial dilutions of cell lysates.

(L) Primary peritoneal macrophages from Epor+/+ and Epor�/� mice were treated

five independent experiments are depicted.
anti-inflammatory and cytoprotective cytokines such as IL-10

and IL-22 (data not shown). Accordingly, supernatants of

primary colonic organ cultures obtained from EPO treated

TNBS-exposedmice contained significantly reduced concentra-

tions of nitrite, TNF-a, IL-6, IL-12p70, and IL-23 (data not shown)

as compared to colonic supernatants of solvent-treated TNBS-

exposed mice. Relevantly, the binding of NF-kB p65 to its

consensus sequence was significantly lower in colonic extracts

from EPO-treated than from solvent-treated TNBS-exposed

mice (Figure 6F). Isolation of lamina propria cells revealed that

EPO predominately influenced effector functions of CD11b+

myeloid cells resulting in reduced expression of Nos2, TNF-a,

IL-6, IL-12p35, and IL-23p19 along with diminished p65 binding

activity (Figure S4A). In contrast, no significant effects of EPO on

cytokine expression in CD4+ T cells were observed (Figure S4B).

Moreover, treatment of purified CD4+ T cells with EPO had no

pronounced effect on cytokine production after in vitro stimula-

tion of cells with either phorbol myristate acetate (PMA) and ion-

omycin or antibodies against CD3 and CD28 (Figure S4C and

data not shown).

To confirm the specificity and relevance of EPO-EPOR

signaling in experimental colitis, we next subjected Epor�/�

mice and Epor+/+ littermates to oral dextran sulfate sodium

(DSS) treatment for 7 consecutive days and followed them up

for another 7 days. Body weight determinations and histological

scoring on day 14 revealed that EPO was able to reduce the

severity of DSS-induced colitis selectively in Epor+/+ mice,

whereas Epor�/� mice did not benefit from EPO administration

(Figures 7A and 7B). Furthermore, DSS-treated Epor+/+ dis-

played reduced colonic mRNA amounts of Nos2, TNF-a, and

IL-6 and IL-12 and IL-23 subunits in response to EPO treatment

(Figure 7C). In contrast, all DSS-fed Epor�/� mice as well as

PBS-treated Epor+/+mice presented with high expression of

these proinflammatory genes along with high p65 binding activ-

ities (Figure 7D). Taken together, these data convincingly show

that EPO inhibits NF-kB activation and proinflammatory gene

expression in lamina propria myeloid cells thus reducing the

severity of chemically induced experimental colitis.

DISCUSSION

Herein, we have provided evidence that EPO acts as a potent

anti-inflammatory immune modulator by specifically targeting

NF-kB p65-driven inflammatory effector pathways. This

evidence is based on in vitro data using both primary and cell

line macrophages as well as on in vivo observations obtained
ently stimulated with LPS or recombinant murine cytokines (D). Alternatively,

PAM2Cys, PAM3Cys, Poly(I:C), or MALP-2 (E). RAW cells were treated with

ear proteins were used for specific quantification of NF-kB p65 binding activity

120 min. Data of five independent experiments are depicted as arbitrary light

nstructs carrying site-specific mutations in one or both NF-kB binding sites

ctively). Thereafter, macrophages were stimulated with IFN-g and LPS after

-luminometer and is shown as arbitrary light units.

I-K) were infected with S. typhimurium (S. Tm.) at a MOI of 10. After 1 hr, cells

hr. Thereafter, macrophages were lysed and intramacrophage bacteria were

as above after transient transfection with a NF-kB reporter construct. Data of

Immunity 34, 61–74, January 28, 2011 ª2011 Elsevier Inc. 65



Figure 3. EPO Administration Impairs Pathogen Clearance in Salmonella Infection In Vivo

(A and C) C57BL/6 mice were infected i.p. with 500 CFU of S. typhimurium and treated with PBS or EPO on days 3 and 4 after infection. Livers (A) and spleens (C)

were removed and formalin-fixed samples were further processed for HE staining. Whereas PBS-treated Salmonella-infected (S. Tm.) animals had microab-

scesses in livers (indicated by arrowheads) and preserved splenic organ architecture, EPO-treated Salmonella-infected mice presented with macroabscesses

in livers (indicated by an arrow) and scattered inflammatory foci in the spleens due to multiple microabscesses. No signs of thrombo-embolic events were

observed in either group. Scale bars represent 200 mm.

(B and D) Bacterial loads were determined in livers (B) and spleens (D) on day 5 after infection. Data were combined from three independent experiments with

similar results. Values from 11 or 12 mice per group were log-transformed and compared by means of Student’s t test. Individual values and means are depicted

and statistical significances between PBS- and EPO-treatment are indicated.
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from mouse models of Salmonella septicemia and experimental

colitis, respectively. Our data concerning the effects of antibody-

mediated neutralization of circulating EPO in systemic

Salmonella infection and the results obtained from Epor�/�

mice further support the idea that EPO-EPOR-JAK2 signaling

crucially regulates macrophage effector functions. We observed

that EPO subverted cell-mediated immune responses in

Salmonella-infected macrophages by impairing the production

of several macrophage-derived inflammatory mediators such

as NO, TNF-a, and IL-6 both in vitro and in vivo. Accordingly,

EPO decreased disease activity in chemically induced colitis.

In contrast, the elimination of S. typhimurium, a facultatively

intracellular bacterium controlled by macrophage immune

effector mechanisms (Mastroeni et al., 2000; Valdez et al.,

2009), was impaired upon EPO treatment. The observed effects

were specific for the interaction of EPO with the EPOR as

demonstrated by enhanced NF-kB p65 binding activity and

improved control of bacterial replication in Epor�/� macro-

phages, in which exogenous EPO administration had no regula-

tory effects. Moreover, experiments with pharmacological inhib-

itors revealed that the anti-inflammatory effects of EPOobserved

were strictly dependent on JAK2 phosphorylation, whereas

interactions of JAK2 with STAT5 were dispensable for EPO to

exert its inhibitory functions onmacrophages. In contrast, induc-

tion of VEGF in response to EPO treatment required STAT5

activity, implying that at least two signaling pathways down-

stream of EPOR and JAK2 are functional in macrophages. Inhi-

bition of PI3K or MEK1 and MEK2 did not affect Nos2 mRNA

expression after EPO treatment, suggesting that these kinases

were not involved in the inhibitory EPO-EPOR signaling cascade

(data not shown). Furthermore, the fact that a TRAF-6 inhibitory

peptide did not alter the effects of EPO on stimulated macro-

phages suggested that the link between EPOR signaling and

p65 activation may not directly involve TRAF-6 (data not shown).

From a molecular perspective, the immune-modulatory

effects of EPO could be traced back to inhibition of NF-kB

p65-mediated transcription of inflammatory target genes in

macrophages. The activation of NF-kB proteins involves the

phosphorylation and proteasomal degradation of IkBs via the

IkB kinase (IKK) complex, which results in the release and

nuclear translocation of active NF-kB homo- and heterodimers

consisting of various combinations of p65, c-Rel, RelB, p50,

and p52 subunits (Karin and Ben-Neriah, 2000). Specifically,

EPO inhibited the phosphorylation of IkB-a and subsequently

the phosphorylation and activation of p65. Genes known to be

trans-activated by phosphorylated p65 dimers include proin-

flammatory cytokines, chemokines, and inflammatory enzymes

including Nos2 (Pasparakis, 2009). The linkage of EPO-EPOR-

JAK2 signaling to NF-kB activation appears to be of clinical rele-

vance given that NF-kB functionality is essential for adequate

host defense in a variety of infectious diseases, whereas in

immune-mediated conditions including inflammatory colitis,
(E) C57BL/6mice were infected i.p. with 500 CFU of S. typhimurium and treated w

16 per group). Time points of EPO (or PBS) applications are indicated by arrows. S

survival was analyzed by the log-rank test: p < 0.001 for the comparison of the t

(F) Spleen samples were subjected to RNA preparation and quantitative determ

group are shown as relative abundance of target gene expression in relation to t

(G) Spleen samples (n = 8–12 per group) were used for the preparation of nuclea
the activation of NF-kB transcription factors withinmacrophages

is a major component of immune-driven tissue damage (Asquith

et al., 2010; Bouma and Strober, 2003; Karin and Ben-Neriah,

2000; Kaser et al., 2010; Pasparakis, 2009). This assumption is

substantiated by the data provided herein that demonstrated

deterioration of Salmonella septicemia and improvement of

experimental colitis after EPO treatment. Although epithelial

NF-kB is essential for mucosal tissue homeostasis and regener-

ation, genetic ablation or pharmacological inhibition of IKK-

dependent p65 activation inmyeloid cells limits disease progres-

sion in experimental colitis (Greten et al., 2004; Lawrance et al.,

2003; Neurath et al., 1996).

Recombinant EPO is widely used for the treatment of various

types of anemia including chemotherapy-induced anemia,

anemia of end-stage renal disease and anemia of inflammation

(AI) (Weiss and Goodnough, 2005). Although recombinant EPO

substitutes the lack of endogenously produced EPO in renal

anemia, its mode of action in AI is less clear given that patients

suffering from this condition are able to generate even higher

amounts of EPO than nonanemic controls (Theurl et al., 2006).

According to the data presented here, administration of EPO

may reduce this proinflammatory immune status thus promoting

erythroid progenitor cell proliferation.

The immune-modulatory effects of EPO may raise the ques-

tion of whether or not the therapeutic administration of EPO for

the treatment of anemia could impact on the course of the

diseases underlying AI such as cancer, infection, or autoimmune

disorders. These concerns go along with EPOR expression on

cancer cells (Jelkmann, 2007) and reduced survival rates in

certain cancer patients receiving recombinant EPO (Bohlius

et al., 2009); however, no such life-shortening effect has been

observed in a meta-analysis of chemotherapy-induced anemia

treated with recombinant EPO (Ludwig et al., 2009). An

increased incidence of thrombo-embolic events or the induction

of tumor growth by EPO treatment as well as the addition of iron

rather than EPO administration are hypothesized to cause

adverse outcomes in some patients (Bohlius et al., 2009; Pfeffer

et al., 2009; Weiss andGoodnough, 2005). Our data on the inhib-

itory effects of EPO on NF-kB-driven macrophage functions

disclose the additional possibility that EPO may directly impair

immune responses directed against neoplastic cells.

Currently, little information is available on putative effects of

EPO therapy on the clinical course of infections. In intensive

care unit patients including individuals with pneumonia or sepsis

receiving appropriate antimicrobial therapy, the administration

of EPO appears to be safe (Corwin et al., 2007). Nevertheless,

our data suggested that EPO impairs clearance of living patho-

gens, which are controlled by proinflammatory macrophage

effector pathways including intracellular pathogens such as

Salmonella spp. or Mycobacterium spp. (Schaible and Kauf-

mann, 2004). This may be of relevance in patients not receiving

appropriate antibiotic therapy or suffering from chronic or latent
ith PBS or EPO every second day starting on day 1 (24 hr) after infection (n = 14–

urvival was monitored during an observation period of 7 days. The cumulative

wo groups.

ination of immune gene expression by RT-PCR. Data from 8–12 samples per

he house-keeping gene hypoxanthin phospho-ribosyl transferase (Hprt).

r extracts and NF-kB p65 binding activity was measured.
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Figure 4. Neutralization of Endogenous

EPO Reduces Bacterial Loads and

Stimulates Antibacterial Immune Effector

Pathways

(A and B) C57BL/6mice were infected i.p. with 500

CFU of S. typhimurium and treated with a neutral-

izing EPO antibody (a-EPO) or isotype control on

days 1 and 2 after infection. Bacterial loads were

determined in livers (A) and spleens (B) on day

4 after infection.

Spleen samples of PBS-treated controls (n = 4-6

per group) and of Salmonella-infected mice (n =

10 per group) were used to study the expression

of immune response genes (C) and NF-kB p65

binding activity (D).

(E) For analysis of survival, C57BL/6 mice were

infected i.p. with 500 CFU of S. typhimurium and

treated with a neutralizing EPO antibody (or iso-

type control) every other day starting 2 days after

infection as indicated by arrows.
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Figure 5. EPOR Functionality on Nonerythroid Cells Regulates Immune Response and Outcome in Salmonella Infection

(A) Epor+/+ and Epor�/� C57BL/6 mice were infected i.p. with 500 CFU of S. typhimurium and treated with PBS or EPO (5 U/g body weight) on days 3 and 4 after

infection. Liver histology showed macroabscesses (indicated by an arrow) in EPO-treated Epor+/+ mice and micro-abscesses (indicated by arrowheads) in

animals assigned to the other three treatment groups (A). Scale bars represent 200 mm.

(B and C) Bacterial loads were determined in livers (B) and spleens (C) on day 5 after infection.
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infections such as tuberculosis. On the basis of our results, the

inhibitory effect of EPO toward the formation of NO and of proin-

flammatory cytokines may thus be problematic in the presence

of viable bacteria. In contrast, by inhibiting an overwhelming

proinflammatory immune response induced by circulating LPS

or bacterial superantigens, EPOmay beneficially affect outcome

after the bacteria have been killed by appropriate antibiotic treat-

ment (Aoshiba et al., 2009). Thus, the net clinical effect of EPO

administration in bacterial septicemia and in the setting of

chronic or latent infections has to be carefully evaluated

prospectively.

In patients with rheumatoid arthritis, treatment with recombi-

nant EPO not only resulted in amelioration of anemia but also

improved disease activity (Kaltwasser et al., 2001). This clinical

observation goes along with our results that demonstrated

improved disease control in murine experimental colitis, which

could be attributed to inhibitory effects of EPO toward NF-kB-

driven immune effector pathways. The potential therapeutic

benefits of high-dose EPO therapy in humans, however, may

be outweighed by its primary effect of expanding the erythrocyte

mass with a subsequent increase in the risk for thrombo-embolic

complications (Ehrenreich et al., 2002). Of interest, EPO deriva-

tives without erythropoietic effects have been developed (Adem-

bri et al., 2008; Bunn, 2007; Erbayraktar et al., 2006; Imamura

et al., 2007; Leist et al., 2004), which could serve as valuable

therapeutic tools in the treatment of pathologic inflammation.

EXPERIMENTAL PROCEDURES

Cell Isolation and Culture

Primary peritoneal macrophages were harvested and cultured as described in

detail in Supplemental Experimental Procedures. Cells were incubated with

5 U/mL EPO diluted in PBS or PBS alone. After another 30 min, macrophages

were stimulated with 200 ng/mL LPS (Escherichia coli 055:B5; obtained from

Sigma) and/or 50 U/mL recombinant murine IFN-g (rmuIFN-g; purchased

from R&D) for 6 or 24 hr. Control samples were treated with PBS. Thereafter,

supernatants were harvested and macrophages were subjected to RNA

preparation.

RAW264.7 murine macrophage-like cells were maintained in complete

DMEM containing 10% heat-inactivated fetal calf serum (FCS; purchased

from PAA), 100 U/mL penicillin, and 0.1 mg/mL streptomycin (Biochrom AG)

at 37�C in humidified air containing 5% CO2. Cells were pretreated with 5 U/

mL EPO or PBS for 30 min and subsequently stimulated with 50 U/mL

rmuIFN-g and/or 100 ng/mL LPS.

Salmonella Infection In Vitro

Primary peritoneal macrophages and RAW264.7 cells were used for in vitro

infection assays generating comparable results. Prior to in vitro infection,

macrophages were incubated in complete medium without antibiotics. Wild-

type Salmonella enterica serovar Typhimurium (S. typhimurium) strain

ATCC14028 was used for all experiments and grown under sterile conditions

in LB broth (Sigma) to late-logarithmic phase. Macrophages were infected with

S. typhimurium at a multiplicity of infection (MOI) of 10 and harvested as

described (Nairz et al., 2009a).
(D) Peritoneal macrophages of these mice were seeded in gentamicin-containin

compared by Kruskal-Wallis test and statistical significances are indicated.

(E and F) Spleen samples of these mice (n = 6–12 per group) were used to measur

(F). Statistical significant differences between Epor+/+ treated with either PBS or

(G) For comparison of survival, Epor+/+ and Epor�/�C57BL/6mice were infected i.

weight (or PBS) every other day starting 1 day after infection as indicated by arrow

comparison of Epor+/+ treated mice with either PBS or EPO; p < 0.001 for the co
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Salmonella Infection In Vivo

All animal experiments were performed according to the guidelines of the

Medical University of Innsbruck and the Austrian Ministry for Science and

Education based on the Austrian Animal Testing Act of 1988 (BMWF-66.011/

0008-II/10b/2008, BMWF-66.011/0084-II/10b/2008, and BMWF-66.011/

0157-II/10b/2009). C57BL/6 mice were housed under specific pathogen-free

conditions at the central animal facilities of theMedical University of Innsbruck.

Male mice were used at 8–10 weeks of age and infected i.p. with 500 CFU of

S. typhimurium diluted in 200 ml of PBS. Mice were monitored twice daily for

signs of illness.

In one series of experiments, mice received recombinant human EPO

(rhuEPO) i.p. (5 U/g body weight) diluted in 200 ml PBS on days 3 and 4 after

the experimental infection. Infected control mice received 200 ml PBS. Animals

were sacrificed on day 5 of infection. For survival studies, infection was

performed as above and EPO or PBS was administered on days 1, 3, and

5 of infection. In independent experiments, Epor�/�
rescued mice (Suzuki

et al., 2002) (herein termed Epor�/� mice), generated as described in Supple-

mental Experimental Procedures were used for in vivo infections.

In an additional series of experiments, mice were infected as above and

injected i.p. with 200 mg of a monoclonal EPO antibody or the identical amount

of an isotype control antibody (from R&D) as indicated. Mice were then sacri-

ficed on day 4 or 14 of infection. We determined the bacterial load of organs by

plating serial dilutions of organ homogenates on LB agar (Sigma) under sterile

conditions and calculated the number of bacteria per gram of tissue.
Establishment of TNBS-Colitis

Male SJL/J mice were used for experiments at the age of 6–8 weeks. Colitis

was induced by rectal administration of 1 mg of 2,4,6-trinitrobenzene

sulfonic-acid (TNBS; purchased from Sigma) in 50% ethanol after cutaneous

presensitization 7 days before rectal challenge as described in Supplemental

Experimental Procedures. Mice were monitored daily for body weight and

signs of illness. On days 2, 3, and 4 after the rectal administration of TNBS,

mice were administered rhuEPO (5 U/g body weight) or PBS as a control.

Animals were killed on day 5 after administration of TNBS.
Establishment of DSS-Colitis

DSS-colitis was induced in male C57BL/6 Epor+/+ and Epor�/� age-matched

littermates (10–14 weeks) with 3% dextran sulfate sodium (DSS; from MP

Biomedicals) in accordance with an established protocol with modifications

as described in Supplemental Experimental Procedures.
RNA Extraction and Quantitative Reverse Transcription

Polymerase Chain Reaction

Preparation of total RNA and quantification of mRNA expression by quantita-

tive reverse transcription polymerase chain reaction (qRT-PCR) was per-

formed exactly as described (see Supplemental Experimental Procedures)

(Nairz et al., 2009a).
Western Blot Analysis

Protein extracts were prepared with cytoplasmic lysis buffer (25 mM Tris-HCl

[pH 7.4], 40 mM KCl, and 1% Triton X-100) supplemented with 1 mg/mL apro-

tinin and 1 mg/mL leupeptin (all from Sigma). Ten to twenty micrograms of total

protein were run on 10%–15%SDS-polyacrylamide gels, and western blotting

was performed exactly as described (Theurl et al., 2006) with the antibodies

listed in Supplemental Experimental Procedures.
g RPMI and intracellular bacterial loads were evaluated after 1 hr. Data were

e the expression of immune response genes (E) and NF-kB p65 binding activity

EPO and between Epor+/+ and Epor�/� treated with PBS are indicated.

p. with 500 CFU of S. typhimurium and treatedwith EPO at a dose of 5 U/g body

s. The cumulative survival was analyzed by the log-rank test: p < 0.001 for the

mparison of Epor+/+ and Epor�/� mice treated with PBS.



Figure 6. EPO Treatment Downregulates Proinflammatory Immune Pathways and Improves Disease Activity in TNBS-Induced Colitis

(A) SJL/J mice were subjected to cutaneous immunization of TNBS diluted in EtOH and then to intrarectal administration of TNBS diluted in EtOH; control

mice were treated with PBS diluted in EtOH. Subsequently, mice were injected with EPO (or PBS) on days 2, 3, and 4 after induction of colitis as indi-

cated by arrows. The change in weight is expressed as percentage of body weight from day 0, and data are shown as means ± SEM for 10 mice per

group.

(B) Histopathological colitis scores for EtOH-instilled and TNBS-treated mice described in the legend to Figure 5A (n = 10 per group). Each point repre-

sents an individual mouse. Values are depicted as lower quartile, median, and upper quartile (boxes) with minimum and maximum ranges, and statistically

significant differences between means of TNBS mice treated with either PBS or EPO are indicated.
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Transcription Factor Assays

Nuclear protein extracts were prepared with the Nuclear and Cytoplasmic

Extraction Reagent (Pierce). Oligonucleotide sequences and EMSA conditions

are detailed in Supplemental Experimental Procedures. NF-kB p65 binding

activity of nuclear extracts was assessed with a commercially available

chemi-luminescent transcription factor assay kit in exact accordance with

the manufacturer’s instructions (Pierce).

Transient Transfections

Transient transfections of RAW264.7 macrophages or primary peritoneal

macrophages were performed by electroporation following protocols opti-

mized by the manufacturer (Amaxa). Nos2 promoter or NF-kB activities were

determined by the Dual Luciferase system (Promega) in accordance with the

manufacturer’s instructions. Firefly luciferase activity was corrected by co-

transfection of cells with the constitutively expressed Renilla luciferase vector

pRL-SV40. Reporter constructs are described in further detail in Supplemental

Experimental Procedures.

Detection of Cytokines and Reactive Species

Determination of cytokines in culture supernatants and sera, respectively, was

performed with ELISA kits for TNF-a, IL-1b, IL-6, IL-10, IL-12p70, and IFN-g

(BD PharMingen), for IL-23 (eBioscience), and for IL-17A (from R&D). Determi-

nation of nitrite, the stable oxidation product of nitric oxide (NO), was carried

out with the Griess-Ilosvay’s nitrite reagent (Merck) as described (Nairz

et al., 2009b).

Statistical Analysis

Statistical analysis was carried out with a SPSS statistical package. We deter-

mined significance by unpaired two-tailed Student’s t tests or by Mann-Whit-

ney U test to assess data where only two groups existed. Analysis of variance

combined with Bonferroni correction or Kruskall-Wallis test, as appropriate,

was used for all other experiments. Unless otherwise specified, data are

depicted as lower quartile, median and upper quartile (boxes) with minimum

and maximum ranges. Survival was compared by log-rank test. For the

comparison of organ bacterial loads, data were log-transformed prior to

Student’s t test or analysis of variance. Individual values and means of log-

transformed values are depicted. Generally, P values less than 0.05 were

considered significant in any test.

Additional Experimental Procedures

Detailedmethodology is described in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures can be found with this article online at doi:10.1016/j.

immuni.2011.01.002.
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Figure 7. EPO Treatment Downregulates Proinflammatory Immune Pathways and Improves Disease Activity in DSS-Induced Colitis

Epor�/� mice and Epor+/+ littermates on a C57BL/6 background were administered 3% DSS dissolved in water or water alone (controls) for 7 consecutive days.

Thereafter, DSSwas replaced by drinking water and all animals were followed up for another 7 days. Subsequently, mice were injected with EPO (or PBS) on days

7, 8, and 9 after induction of colitis as indicated by arrows.

(A) Changes in body weight as combined from two independent experiments and 5–14 DSS-treated mice per group are presented and were compared as

detailed in the legend to Figure 6. Data of mice receiving drinking water are not depicted. Statistical significant differences between DSS-treated Epor+/+

mice receiving either PBS or EPO are indicated.

(B) Histopathological colitis scores for mice administered either water or DSS (n = 5–14 per group) with each point representing an individual mouse.

(C and D) qRT-PCR analysis of immune response genes (C) and NF-kB p65 binding activity (D) in colons of these mice (n = 5–14 per group).
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Effect of recombinant human erythropoietin and intravenous iron on anemia

and disease activity in rheumatoid arthritis. J. Rheumatol. 28, 2430–2436.

Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination:

The control of NF-[kappa]B activity. Annu. Rev. Immunol. 18, 621–663.

Karin, M., and Delhase, M. (2000). The I kappa B kinase (IKK) and NF-kappa B:

Key elements of proinflammatory signalling. Semin. Immunol. 12, 85–98.

Kaser, A., Zeissig, S., and Blumberg, R.S. (2010). Inflammatory bowel disease.

Annu. Rev. Immunol. 28, 573–621.

Lawrance, I.C., Wu, F., Leite, A.Z., Willis, J., West, G.A., Fiocchi, C., and

Chakravarti, S. (2003). A murine model of chronic inflammation-induced intes-

tinal fibrosis down-regulated by antisense NF-kappa B. Gastroenterology 125,

1750–1761.

Leist, M., Ghezzi, P., Grasso, G., Bianchi, R., Villa, P., Fratelli, M., Savino, C.,

Bianchi, M., Nielsen, J., Gerwien, J., et al. (2004). Derivatives of erythropoietin

that are tissue protective but not erythropoietic. Science 305, 239–242.

Liu, Y., Pop, R., Sadegh, C., Brugnara, C., Haase, V.H., and Socolovsky, M.

(2006). Suppression of Fas-FasL coexpression by erythropoietin mediates

erythroblast expansion during the erythropoietic stress response in vivo.

Blood 108, 123–133.

Ludwig, H., Crawford, J., Osterborg, A., Vansteenkiste, J., Henry, D.H.,

Fleishman, A., Bridges, K., and Glaspy, J.A. (2009). Pooled analysis of

individual patient-level data from all randomized, double-blind, placebo-

controlled trials of darbepoetin alfa in the treatment of patients with chemo-

therapy-induced anemia. J. Clin. Oncol. 27, 2838–2847.

Mastroeni, P., Vazquez-Torres, A., Fang, F.C., Xu, Y., Khan, S., Hormaeche,

C.E., and Dougan, G. (2000). Antimicrobial actions of the NADPH phagocyte

oxidase and inducible nitric oxide synthase in experimental salmonellosis. II.

Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192,

237–248.

Nairz, M., Fritsche, G., Crouch, M.L., Barton, H.C., Fang, F.C., and Weiss, G.

(2009a). Slc11a1 limits intracellular growth of Salmonella enterica sv.

Typhimurium by promoting macrophage immune effector functions and

impairing bacterial iron acquisition. Cell. Microbiol. 11, 1365–1381.

Nairz, M., Theurl, I., Schroll, A., Theurl, M., Fritsche, G., Lindner, E., Seifert, M.,

Crouch, M.L., Hantke, K., Akira, S., et al. (2009b). Absence of functional Hfe

protects mice from invasive Salmonella enterica serovar Typhimurium

infection via induction of lipocalin-2. Blood 114, 3642–3651.

Neubauer, H., Cumano, A., Müller, M., Wu, H., Huffstadt, U., and Pfeffer, K.

(1998). Jak2 deficiency defines an essential developmental checkpoint in

definitive hematopoiesis. Cell 93, 397–409.
74 Immunity 34, 61–74, January 28, 2011 ª2011 Elsevier Inc.
Neurath, M.F., Pettersson, S., Meyer zumBüschenfelde, K.H., and Strober, W.
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