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For classical harmonic numbers defined by
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there exist eight beautiful identities:
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Thereinto, (3)-(7) first appeared in Paule and Schneider [3]. And Chu [1] created other three ones.
For two complex numbers g and x, define g-harmonic numbers and generalized g-harmonic num-

bers respectively by

n k
Ho=0 and H,= q_’ forneN;
1—-q*
k=1
n qk
Ho(x) =0 and H”(X):Z1_qu forn e N.

k=1

When x =1, the latter reduce to the former.
Given a differentiable function f(x), define the derivative operator D by

d
Dfx) = af(X)

x=1

Then for m € N, it is not difficult to show the following two derivatives:

D@xy; Qm = —y@q@Y: DmHm(y) and D(@y/X; Pm = y(qQY: DmHm(Y)

where y is a complex number independent of x and the shifted factorial has been defined by

& Qm=1-x01—xq)---(1—xq™").

Recall Watson’s g-Whipple transformation (cf. [2, p. 43]):
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By applying the derivative operator D to this equation, g-generalizations of (1)-(8) can be derived. For
simplifying the evaluations, sometimes we shall use directly the following special case of (9a)-(9b)
(cf. [2, p. 42]):
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The main theorem can be stated as follows.
Theorem 1. Define q-binomial coefficient by [Z] = % and denote Kronecker delta by 3. Then gener-
alized versions of (1)-(8) associated with q-harmonic numbers can be displayed, respectively, as follows:
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Proof. Performing the substitutions a - q~"/x, b —> q, c - q, d - q, e — q for (9a)-(9b), we can
reformulate the resulting identity as
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Applying the derivative operator D to both sides of the last identity, we obtain (11a)-(11b) a gener-
alized version of Eq. (1) in terms of g-harmonic numbers. Other equations that appear in Theorem 1
can also be deduced in the same method. The corresponding replacements are laid out in Table 1. O

Table 1

Detailed substitutions.
Original identity Corresponding replacements Resulting identity
(9a)-(9b) a—>q"/x,b>qc—>qd—>qge—>o0 (12a)-(12b)
(10) a—>q"/x,b—q,c— o0 (13)
(10) a—>q"/x,b—>q " c—>q (14)
(10) a—>q"/x,b—>q " c—>o0 (15a)-(15b)
(10) a—>q"/x,b—>q"c—>q™" (16a)-(16b)
(9a)-(9b) a—>q"/x,b>q " c>q"d>q" e>o00 (17a)-(17b)
(9a)-(9b) a—>q"/xb—>q"c>qg"d>q"e—>q" (18a)-(18b)

We point out that these eight g-harmonic number identities displayed in Theorem 1 reduce to
(1)-(8) respectively when g — 1.
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