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Abstract

For periodic integrands with unit period in each variable, certain error bounds for lattice rules are conveniently char-
acterised by the �gure of merit �, which was originally introduced in the context of number theoretic rules. The problem
of �nding good rules of order N (that is, having N distinct nodes) then becomes that of �nding rules with large values
of �. This paper presents e�cient search methods for the discovery of rank 1 rules, and of maximal rank rules of high
order, which possess good �gures of merit. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lattice rules are quasi-Monte Carlo multidimensional quadrature rules de�ned on the unit hyper-
cube [0; 1) s. These rules have been extensively studied in recent years, and the reader is referred to
Niederreiter [19] and Sloan and Joe [23] for the basic de�nitions and results. This paper presents
methods for �nding rank 1 lattice rules and 2s copies of rank 1 rules (which terms we de�ne later
in this section) that are optimal, in a particular sense.
It is known [24] that an s-dimensional lattice rule QL can be expressed in the form of a nonrepet-

itive sum:

QL(f) =
1
N

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

f

({
m∑
i=1

ji
ni
gi

})
; (1.1)
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where m6s, the vectors g1; : : : ; gm are �xed integral vectors called generators of the rule, N=
∏m
i=1 ni

is its order, and ni+1 | ni for i=1; : : : ; m−1; with nm¿ 1. The number m is called the rank of the rule
and n1; : : : ; nm; 1; : : : ; 1, with s−m units, are its invariants. The braces in (1.1) indicate that addition
is modulo Zs which, in the case that f is 1-periodic in each variable, is clearly equivalent to using
the usual addition operation in Rs: A rank 1 rule is simple if it has a generator with one component
that has value 1. The integration lattice L of the rule (1.1) is the set of linear combinations with
integer coe�cients of {g1=n1; : : : ; gm=nm; e1; : : : ; es}, where e1; : : : ; es are the standard Cartesian basis
vectors in Rs. Di�erent choices of generators may yield di�erent integration lattices and quadrature
rules. Where necessary we shall denote by L(g1=n1; : : : ; gm=nm) the integration lattice with generators
g1=n1; : : : ; gm=nm.
Informally, two lattice rules are geometrically equivalent if the quadrature points of one can be

transformed into those of the other by a symmetry of the cube. More formally, we may give an
operational de�nition of the notion as follows.

De�nition 1.1. Let N ¿ 1. Two s-dimensional integration lattices L1 and L2 are geometrically equiv-
alent if and only if L2 is the image of L1 under a �nite sequence of operations on Rs of the form:
S1: Ui(x) =Uix, where Ui is the identity matrix with the ith diagonal element replaced by −1, or
S2: Vij(x) = Pijx, where Pij is a permutation matrix which interchanges elements i and j of x on
premultiplication.
The lattice rules QL1 and QL2 are geometrically equivalent, denoted by QLL

g∼QL2 , if and only if
L1 and L2 are geometrically equivalent.

Geometric equivalence of rules has been investigated in previous works [10,15,25]. In [10,15] it
was noted that, for a given set of lattice rules, geometric equivalence is an equivalence relation. We
shall refer to the corresponding equivalence classes as geometry classes.
The quality of a lattice rule — in particular, its suitability for use with periodic integrands having

unit period in each variable — is often assessed by the values of

�(L) = min{r(h): h∈L⊥ − {0}}
and

P� =
∑

h∈L⊥−{0}

1
r(h)�

;

where L⊥ = {h∈Zs: ∀x ∈ L; x · h ∈ Z} is the dual of the integration lattice L and r(h) =∏s
i=1 max{1; |hi|} for h ∈ Zs. The series for P� converges for �¿ 1. The most commonly used

values of � are even positive integers, for which a closed-form expression for P� is available (see
for example [23]). Geometrically equivalent rules have equal values of � and of P�.
There have been a number of previous papers concerned with searches in dimensions exceeding

2 for lattice rules that perform well with respect to � and P�. Some early numerical results were
reported in [22], with later results in [2,5,9,18] being concerned with searches over sets of rank 1
simple rules only. Later results reported in [4,7,15–17,25] are from searches over other classes of
rules.
In all of these searches, the rules being sought are speci�ed by generator sets, either of the

integration lattice or of its dual. However, di�erent generator sets may generate the same rule, or a
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geometrically equivalent rule. If the number of such unnecessary investigations can be reduced, the
e�ciency of the search procedure may be enhanced. The results in [14,21] describe strategies for
the unique speci�cation of certain lattice rules.
For searches which use � as the �gure of merit it is also worth noting that the calculation of

�(L) for a given lattice L is relatively time consuming. Consequently, the e�ciency of the search
procedure may be enhanced by eliminating from consideration, prior to the calculation of �(L),
any rule QL such that it is known a priori that there exists a rule Q′

L of lower order satisfying
�(L)6�(L′), or of equal order satisfying �(L)¡�(L′), since in these cases Q′

L is superior to QL
with respect to �.

De�nition 1.2. We shall say that an s-dimensional lattice rule QL of order N is best� with respect
to a set S of lattice rules if, when Q′

L ∈ S:
(1) if order(Q′

L)¡N , then �(L′)¡�(L), and
(2) if order(Q′

L) = N , then �(L
′)6�(L).

Most computer searches with respect to � use a variety of strategies to eliminate inferior rules
prior to the calculation of �, as well as to reduce redundancy in the search due to the inclusion
of generator sets corresponding to the same, or geometrically equivalent, rules. In this regard the
work of Maissoneuve [18] appears to be fundamental, with both [9,2] following the previous au-
thor’s general approach. These papers are concerned exclusively with �nding rank 1 simple rules
which are best� with respect to the set of rank 1 simple rules in three, four and �ve dimen-
sions. Lyness and SHrevik [15,16] have incorporated some of the methods used by these authors
in the ‘rank 1 simple’ phase of searches for rules which are best� with respect to the sets of all
three-dimensional lattice rules and all four-dimensional lattice rules, respectively. The same authors,
in [17], develop techniques for �nding good, although not necessarily best�, rules of higher order
by scaling rules of low order along some axes and copying the scaled rules along these axes. More
recently Disney [3] has applied techniques similar to those of earlier authors in searches in dimen-
sions three to ten for rules which are best� with respect to the set of 2s copies of rank 1 simple
rules.

De�nition 1.3. The ns copy Q(n) of a quadrature rule Q is the rule obtained by subdividing the
closed unit cube [0; 1]s into ns cubes each of side n−1, and applying a properly scaled version of
the rule Q to each smaller cube.

It is clear (for example, see [18]) that, without loss of generality, we may restrict complete
searches of rank 1 rules to considering only rules having an ordered generator, which term we
de�ne in Section 2. Similar restrictions may be applied when searching 2s copies of rank 1 rules.
In dimension three the tables of Maisonneuve [18] and Kedem and Zaremba [9] extend to rules
of order N not exceeding 6066. In dimension four the tables of Maisonneuve [18] and Bourdeau
and Pitre [2] extend to N = 3298. In dimension �ve the latter authors reach N = 772. Lyness and
SHrevik, treating all lattice rules and not only rank 1 rules, reach N =3916 in dimension three [15]
and N = 562 in dimension four [16]. Disney [3] incorporated the techniques developed in earlier
searches into searches for 2s copies of rank 1 simple rules, producing some very good rules of orders
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ranging from approximately 100 000 in dimension three to approximately 300 000 in dimension ten.
In this paper we investigate the extension of these techniques to the case of non-simple rank 1 rules
and their 2s copies.
In Section 2 we identify a rank 1 search set, that is, a set of generators of rank 1 rules, including

non-simple rules, to be considered which contains at least one representative from each geometry
class. The set to be identi�ed is chosen to enhance the e�ciency of the search procedure. In Section
3 we extend the elimination strategy of Maisonneuve [18] to dimensions exceeding four and to
the case of non-simple rules, and in Section 4 to 2s copies of rank 1 rules. Numerical results are
presented in Sections 5 and 6.
Note. In parts of this paper we make use of the elementary theory of linear Diophantine equations.

A useful summary of the results we require is available in [20].

2. Theoretical considerations for a full rank 1 search

Following [18] we may begin the determination of a search set by restricting gi, for i∈{1; : : : ; s},
to the set {1; : : : ; N=2} since it is clear that every rank 1 rule of order N has a generator g=N with
elements in this set, or is geometrically equivalent to a rule which has such a generator. If there is
an i such that gi = 1 then the rule is simple. If for some i we have gcd(gi; N ) = 1 then there exist
integers c1, c2 such that c1gi+ c2N =1, that is, c1gi ≡ 1 (modN ), and the rule is again simple since
c1g=N (modZs) also generates QL and has 1 as its ith component. Conversely, if gcd(gi; N )¿ 1 for
every i ∈ {1; : : : ; s} then there are no integers i, c1, c2 such that c1gi + c2N = 1, and the rule is not
simple. Finally, we note that every simple rule is geometrically equivalent to a simple rule having
a generator g=N such that g1 = 1. Thus the case of simple rules may be covered by considering
generators with g1=1. For such generators it is again clear that we may restrict gi, for i ∈ {2; : : : ; s},
to the set {1; : : : ; N=2}.

De�nition 2.1. Let N be a positive integer. We shall say that a set GI (N ) of integers is exhaustive
if and only if each rank 1 rule of order N either has a generator g=N such that g1 ∈GI (N ), or is
geometrically equivalent to such a rule. We shall say that an exhaustive set is minimal if there exists
no exhaustive set with fewer elements.

We observe that, for N ¿ 1, the set

GI (N ) = {1} ∪ {m: 0¡m6N=2; gcd(m;N )¿ 1} (2.1)

is exhaustive. However it is not, in general, minimal. For example, it is an immediate corollary of
Theorem 2.5 below that, for N a prime power, the set GI (N ) = {1} is exhaustive and minimal. To
identify a minimal exhaustive set for arbitrary N we generalise the notion of ‘simple’ rules. For a
given rank 1 rule QL, the smallest positive integer component of any quadrature point must be a
divisor of the order N . Clearly, the least such value must occur in a generator — for simple rules
this value is 1, and more generally we shall call this value the simplicity of the rule.

De�nition 2.2. Let N ¿ 1 and let g=N generate the s-dimensional rule QL of order N , where gi 6= 0
for i = 1; : : : ; s. De�ne the simplicity of g with respect to N and the simplicity of QL, denoted
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respectively, by simp(g; N ) and simp(QL), by

simp(QL) = simp(g; N ) = min{gcd(gi; N ): i = 1; : : : ; s}:

It is shown in [10, Section 3:2] that simp(QL) is well de�ned, that is, it is independent of the
choice of generator for a given rule. The values assumed by simp(QL), where QL ranges over the
set of s-dimensional rank 1 rules of order N , are positive divisors of N . These values will be called
the simplicity residues of N .

De�nition 2.3. Let N ¿ 1. A point g ∈ Zs is said to be ordered with respect to N if g=N generates
an s-dimensional rank 1 rule and

16simp(g; N ) = gcd(g1; N ) = g16g26 · · ·6gs6N=2:
A rule QL(g=N ) of order N is said to be ordered if it has a generator g=N such that g is ordered
with respect to N .

De�nition 2.4. De�ne a partial order relation on a set of s-dimensional ordered generators in which
two vectors g1=N1 and g2=N2, where gi=(gi;1; : : : ; gi; s), are comparable if and only if N1=N2=N , say.
For comparable vectors we shall say that g1=N precedes g2=N , or is a precedent of g2=N (denoted
by g1=N ≺ g2=N ), if there is a j ∈ {1; : : : ; s} such that g1; i = g2; i for 16i¡ j and g1; j ¡ g2; j. We
shall say that g=N is primary in its geometry class if it has no precedents amongst the generators
of rules in the geometry class of QL(g=N ).

In [10, Section 3:2] it was shown that every rank 1 rule is geometrically equivalent to an ordered
rule with the same simplicity. From this it follows immediately that, for N ¿ 1, the simplicity
residues of N form an exhaustive set. The next result identi�es a minimal exhaustive set. The proof
is straightforward and the interested reader is referred to Langtry [10]. We note that it may also
be shown [10, Theorem 3:2:17] that we may further modify the procedure by restricting the other
components of g to be multiples of the proper divisors of N which are greater than or equal to g1.

Theorem 2.5 ([10, Theorem 3:2:18]). Let N ¿ 1 and let k be the number of positive proper divisors
of N . De�ne

GI (N ) = {mi: 16i6k;mi |N ;mi+1¿mi¿0; ∃ �m¿mi such that �m |N and gcd(mi; �m) = 1)};
(2.2)

that is; the ordered set of positive divisors of N such that; for each element of the set; there exists
a larger divisor of N to which the element is relatively prime. Then GI (N ) is a minimal exhaustive
set and is precisely the set of simplicity residues of N .

Example. For N=56=23:7 the divisors are 1, 2, 4, 7, 8, 14, 28 and the simplicity residues are 1, 2,
4, 7. For the 56-point three-dimensional rule QL(g=N ) with g=(20; 35; 14) we have gcd(20; 56)=4;
gcd(35; 56) = 7; gcd(14; 56) = 14 and so simp(QL) = 4. In fact, 20 ≡ 4× 5 (mod 56) and so QL is
also generated by 5−1g=56, where 5−1 denotes the multiplicative inverse of 5 modulo 56, that is, 45.
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In particular, we have 45g ≡ (4; 7; 14) (mod 56), which is ordered with respect to 56 and primary
in its geometry class.

3. Preliminary eliminations in a full search of rank 1 rules

In her searches over rules of increasing order N=2; 3; : : : for those which are best � with respect to
the set of rank 1 simple rules in dimensions three and four, Maisonneuve [18] developed a technique
for eliminating from the search, prior to the calculation of their � values, large numbers of rules
which could be predicted to have values of � less than the highest value found up to that point in
the search. Such rules clearly cannot be best � and, since the calculation of � is computationally
intensive, this strategy signi�cantly enhanced the e�ciency of the search procedure. Lyness and
SHrevik [15] have used this technique in their algorithm for determining rules that are best � with
respect to the set of all rules in a given dimension.
This strategy can be extended in a straightforward way to searches over rank 1 rules of all

simplicities in dimensions s¿2. For N = 2; 3; : : : ; and given �0 = �(L(g′=N ′)) achieved for some
N ′¡N , increment �0 and eliminate g such that �(L(g=N ))¡�0:
The elimination strategy we shall use consists of, for each value of g1 and for k = 2; : : : ; s;

successively identifying (k − 1)-tuples of the form (gi2 ; : : : ; gik ) such that a vector g containing such
a sub-tuple must satisfy �(L(g=N ))¡�0. Such sub-tuples we shall refer to as ‘bad’ for the given
values of N and �0. Clearly, any tuple (gi2 ; : : : ; gik ) which contains a bad sub-tuple is itself bad,
since if

g1h1 + gi2hi2 + · · ·+ gik−1hik−1 = �N and r(h1; hi2 ; : : : ; hik−1)¡�0

then

g1h1 + gi2hi2 + · · ·+ gik−1hik−1 + gik0 = �N and r(h1; hi2 ; : : : ; hik−1 ; 0)¡�0:

It follows that a good tuple can contain no bad sub-tuples. In the remainder of this section we
describe a procedure for constructing sets GT (N; �0; k) of good tuples.

Theorem 3.1. Let N; s be integers greater than 1 and let �0 be a positive integer. Then a set
GT (N; �0; s) can be explicitly constructed such that: (a) �(L(g=N ))¿�0 for all g ∈GT (N; �0; s); and
(b) for every s-dimensional rank 1 lattice rule Q′

L of order N such that �(L′)¿�0; there exists a
g ∈ GT (N; �0; s) such that Q′

L is geometrically equivalent to the rule generated by g=N .

Proof. The proof is given in three parts.
(i) Overall strategy: Given N , by Theorem 2.5 we need consider only those g with values of

g1 contained in the set GI (N ) of simplicity residues de�ned in (2.2). By De�nition 2.2 and [10,
Theorem 3:2:17], for each value of g1 we need consider only vectors g whose remaining components
gi are drawn from the set GI (N; g1) = {km: m |N; g16m; km6N=2}. To construct GT (N; �0; s) we
begin by constructing, for each g1, a set of candidate pairs GI (N; �0; g1) = {g1} × GI (N; g1) and, by
elimination from this set, a set GT (N; �0; g1; 2)⊆GI (N; �0; g1) of good pairs (g1; gi2), that is, pairs
with values of gi2 such that �(L((g1; gi2)=N ))¿�0. As we have noted, pairs with values of gi2 such
that �(L((g1; gi2)=N ))¡�0 are undesirable since if g contains such a pair then there is a nonzero
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h = (h1; 0; : : : ; 0; hi2 ; 0; : : : ; 0) ∈ L⊥(g=N ) such that r(h)¡�0, and thus �(L(g=N ))¡�0. For similar
reasons, a good point g may contain no bad k-tuples for k=2; : : : ; s. An elimination strategy for the
construction of GT (N; �0; g1; 2) is described in detail in (ii) below.
More generally, for k = 3; : : : ; s, we construct by elimination successive sets GT (N; �0; g1; k) of

good ordered k-tuples, that is, tuples (g1; gi2 ; : : : ; gik ) such that �(L((g1; gi2 : : : ; gik )=N ))¿�0. The con-
struction proceeds as follows: since no good tuple may contain a bad sub-tuple we must have
(g1; gi2 ; : : : ; gik−1), a good (k−1)-tuple. Thus we may form, for each good (k−1)-tuple (g1; gi2 ; : : : ; gik−1),
a set

GI (N; �0; g1; gi2 ; : : : ; gik−1) = {(g1; gi2 ; : : : ; gik−1 ; gik ): gik ∈ GI (N; g1); gik¿gik−1} (3.1)

of candidate k-tuples. From this set we eliminate all elements which have a bad (k − 1)-tuple,
yielding a reduced set ĜI (N; �0; g1; gi2 ; : : : ; gik−1) of candidate k-tuples having no bad sub-tuples.
This step requires the storage of all good (or alternatively, all bad) (k − 1)-tuples, that is, the set
GT (N; �0; g1; k − 1). Then we eliminate from the set ĜI (N; �0; g1; gi2 ; : : : ; gik−1) all bad k-tuples, yield-
ing a set ĜT (N; �0; g1; gi2 ; : : : ; gik−1) of good k-tuples derived from (g1; gi2 ; : : : ; gik−1). The elimination
scheme itself is described in (iii) below. The set

GT (N; �0; g1; k) =
⋃

(g1 ; gi2 ;:::; gik−1 )∈GT (N;�o; g1 ; k−1)
ĜT (N; �0; g1; gi2 ; : : : ; gik−1)

is then the set of good k-tuples. By induction it follows that GT (N; �0; g1; s) is precisely the set of
points g, with �rst component g1, that are ordered with respect to N and satisfy �(L(g=N ))¿�0.
The required set is then given by

GT (N; �0; s) =
⋃

g1∈GI (N )

GT (N; �0; g1; s):

(ii) Construction of GT (N; �0; g1; 2): From the set

GI (N; �0; g1) = {g1} × GI (N; g1) (3.2)

we wish to eliminate 2-tuples (g1; gi2) with values of gi2 such that �(L(g=N ))¡�0, in particular,
values for which there exist integers h1; hi2 , not both zero, and � satisfying both

g1h1 + gi2hi2 = �N (3.3)

and

r(h1; hi2) = �h1 �hi2¡�0; (3.4)

where �hi =max(1; |hi|).
Since h ∈ L⊥ if and only if −h ∈ L⊥ and r(h) = r(−h), it follows that we may arbitrarily �x the

sign of one component of h. We shall require hi2¿0. In this case it is clear that if relations (3.3)
and (3.4) are satis�ed for a particular gi2 , then 0¡ �hi2¡�0 and hence

06|h1|¡ �0
�hi2
: (3.5)

Combining (3.3) and (3.5) yields

|g1h1|= |�N − gi2hi2 |¡
g1�0
�hi2
: (3.6)
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The values of gi2 which satisfy both this bound and Eq. (3.3) for suitable � and hi2 are bad for
the given g1 and may be found by enumeration over hi2 and �. However, bounds on � that are
independent of gi2 are required for the enumeration. Solving the inequality in (3.6) for � we obtain

1
N

(
gi2hi2 −

g1�0
�hi2

)
¡�¡

1
N

(
gi2hi2 +

g1�0
�hi2

)
:

Together with the observation that gi2 ∈ GI (N; g1), this yields

1
N

(
hi2 min(GI (N; g1))−

g1�0
�hi2

)
¡�¡

1
N

(
hi2 max(GI (N; g1)) +

g1�0
�hi2

)
: (3.7)

If the set GI (N; g1) is held in storage then the minimum and maximum values which appear in this
relation are easily determined and (3.7) gives the bounds on � required for the enumeration. For each
value of hi2 and �, then, the values of gi2 to be eliminated are those for which there exists an h1 ∈ Z
satisfying (3.3). Now, if hi2 = 0 then (3.3) reduces to g1h1 = �N, yielding no information about gi2
and hence no eliminations from GI (N; �0; g1). If on the other hand hi2 6= 0, let d=gcd(g1; hi2). Then
there exists a value of h1 which satis�es (3.3) if and only if d|�N . In this case we observe from
(3.3) that we can �nd x0 ∈ {0; : : : ; hi2 − 1} such that g1x0 ≡ �N (mod hi2). Let y0 = (�N − g1x0)=hi2 ;
then values of h1 and gi2 which satisfy (3.3) are of the form

h1 = x0 +
hi2
d
t; gi2 = y0 −

g1
d
t

for t ∈ Z. Enumerating over those values of t such that |h1|¡�0= �hi2 , that is, since hi2¿ 0,

− d
hi2

(
x0 +

�0
hi2

)
¡t¡

d
hi2

(
−x0 + �0

hi2

)
;

now yields precisely the pairs (g1; gi2) to be eliminated from GI (N; �0; g1) in order to obtain GT (N; �0;
g1; 2).
(iii) The general case. Construction of ĜT (N; �0; g1; gi2 ; : : : ; gik−1), for k¿3. Given GI (N; �0; g1;

gi2 ; : : : ; gik−1) as de�ned in (3.1), with g1; gi2 ; : : : ; gik−1 known, we �rst eliminate k-tuples containing
known bad (k − 1)-tuples to obtain the set ĜI (N; �0; g1; gi2 ; : : : ; gik−1). We then seek to eliminate
k-tuples (g1; gi2 ; : : : ; gik ) such that there exist integers �; h1; hi2 ; : : : ; hik , all nonzero except possibly for
� and h1, satisfying both

g1h1 + gi2hi2 + · · ·+ gik hik = �N (3.8)

and

�h1 �hi2 · · · �hik ¡�0: (3.9)

The assumption that hij is nonzero, for j ∈ {2; : : : ; k}, is justi�ed by the observation that tuples
which would be eliminated were this was not the case would already have been eliminated during
an iteration with a smaller value of k (in the case that this value is 2, by using the procedure
described in (ii) above). The value of h1 may, however, be zero. Again we may arbitrarily �x the
sign of one component of h, and in particular, we shall require that hik ¿ 0. From (3.8) we have

|g1h1|= |�N − (gi2hi2 + · · ·+ gik hik )| (3.10)
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and from (3.9) it follows that we may require

0 ¡ hik ¡ �0;

0 ¡ |hik−1 | ¡
�0
hik
;

...

0 ¡ |hi2 | ¡
�0

|hi3 · · · hik |
|h1| ¡

�0
|hi2 · · · hik |

:

(3.11)

Combining (3.10) and the �nal inequality of (3.11) yields

|g1h1|= |�N − (gi2hi2 + · · ·+ gik hik )|¡
g1�0

|hi2 · · · hik |
: (3.12)

In a similar fashion to the derivation of (3.7) we then obtain the following bounds on �:

1
N

(
gi2hi2 + · · ·+ gmink hik −

g1�0
|hi2 · · · hik |

)
¡�

¡
1
N

(
gi2hi2 + · · ·+ gmaxk hik +

g1�0
|hi2 : : : hik |

)
; (3.13)

where gmink and gmaxk are, respectively, the minimum and maximum of the set

{gik : (g1; gi2 ; : : : ; gik ) ∈ GI (N; �0; g1; gi2 ; : : : ; gik−1)}:
Enumeration over values of hi2 ; : : : ; hik and � satisfying (3.11) and (3.13) respectively yields the

tuples to be eliminated from ĜI (N; �0; g1; gi2 ; : : : ; gik−1). These are the tuples for which, for given
hi2 ; : : : ; hik and �, there exists h1 ∈ Z satisfying (3.8). Let

g1h1 + gik hik = �N − gi2hi2 − · · · − gik−1hik−1 =M; (3.14)

say, and let d = gcd(g1; hik ). Then d¿ 0 and as in (ii) above, provided that d |M , we may �nd
x0 ∈ {0; : : : ; hik − 1} such that g1x0 ≡ M (mod hik ): Let y0 = (M − g1x0)=hik : The solutions h1 and
gik to (3.14) yield the tuples (g1; gi2 ; : : : ; gik ) to be eliminated from ĜI (N; �0; g1; gi2 ; : : : ; gik−1). These
solutions are of the form

h1 = x0 +
hik
d
t; gik = y0 −

g1
d
t;

where t ∈ Z. Enumeration over the values of t such that |h1|¡�0=|hi2 · · · hik |, that is, since d; hik ¿ 0,

− d
hik

(
x0 +

�0
|hi2 · · · hik |

)
¡t¡

d
hik

(
−x0 + �0

|hi2 · · · hik |
)
;

gives precisely the tuples to be eliminated from ĜI (N; �0; g1; gi2 ; : : : ; gik−1) to yield
ĜT (N; �0; g1; : : : ; gik−1).
As a �nal remark on the elimination scheme we note that, at the conclusion of the preliminary

eliminations, any vector g such that gcd(g1; : : : ; gs; N )¿ 1 should be eliminated since the correspond-
ing rules are clearly of order N=gcd(g1; : : : ; gs; N ) ¡N:
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In practice, during a search �0 usually exceeds by 1 the highest value of � achieved for a lower
value of N . If, for a given N , the set GT (N; �0; s) is empty then we may immediately increment N
and repeat the search procedure with the current value of �0. Otherwise, the set contains at least
one vector which is best � with respect to the search set. In practice, the set is usually empty, or
contains only a small number of elements, in which case the best � elements may be identi�ed by
direct evaluation of � as described, for example, in [18]. The values of N and �0 are then updated
and the search procedure repeated with the new value of �0.

4. Searches for 2s copies of rank 1 rules

In a number of previous searches the class of rules to be considered has been restricted in various
ways, thereby allowing higher orders of rules to be reached in the search. These searches include
those of Korobov-type rank 1 rules reported by Maisonneuve [18], the sample rank 1 and rank 2
searches of Sloan and Walsh [25], the sample searches of 2s copies of rank 1 simple rules reported
by Disney and Sloan [4], and of intermediate rank rules reported by Joe and Disney [7], and the
searches of rules formed by component scaling reported by Lyness and SHrevik [17]. A comparison
of the numerical results obtained in these searches suggests that certain sets of higher rank rules
contain rules which are at least competitive with the best known rank 1 rules of similar orders (see,
for example, the tables of best � rules in [15,16] and the comparison of the results of Sloan and
Walsh [25] with those of Disney and Sloan presented in [4]). This suggestion is in fact due to Disney
and Sloan [4], and is in accord with the theoretical results concerning copy rules and intermediate
rank rules presented in [4,7]. These authors point out that, in practice, information about certain
higher rank rules of relatively large orders can be ascertained more e�ciently by examining related
rank 1 rules of smaller orders, and in particular that searches of sets of these higher rank rules can
be carried out by searching for rank 1 rules of relatively low order that perform well with respect
to slightly modi�ed �gures of merit. Disney and Sloan [4] note that if a rule Q has lattice L then
Q(n) — that is, the ns copy of Q — has lattice (1=n)L and dual lattice nL⊥. Hence they show
that

P�(Q(n)) = P�;n(Q) = Q(f�;n)− 1;
where

f�;n(x) =
∑
h∈Zs

1
r(nh)�

ei2�h·x:

They point out that, for � an even positive integer, an explicit expression can be obtained for
the function f�;n in terms of the Bernoulli polynomials. In fact, these expressions are given by Joe
and Sloan [8, Eqs. (5.6)–(5.8)] and the recurrence relation for the Bernoulli polynomials Bn(x); n=
1; 2; : : : ; is given in [28, p. 60, 6, Lemma 6:6]. Maisonneuve [18, p. 124] gives explicit expressions
for B2 and B4.
In later work Disney [3] has extended the work of Maisonneuve [18] and Lyness and Sorevik

[15] to produce an e�cient search algorithm for rules that are best � with respect to the set of 2s

copies of rank 1 simple rules. The 2s copy Q(2) of a rank 1 rule with generator g=Ñ has N = 2sÑ
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points and is given by

1
2sÑ

1∑
j1=0

· · ·
1∑

js=0

Ñ−1∑
i=0

f
({

i
2Ñ
g +

(j1; : : : ; js)
2

})
:

The search procedure in [3] also relies on the preliminary elimination, from a set of candidate
generators g=Ñ of rank 1 rules, of those generators for which there exists an h ∈ L⊥(g=Ñ ) and an
integer � such that, for some k6s,

(i) hi2 ; : : : ; hik are non zero,
(ii) 2h1 + gi22hi2 + · · ·+ gik2hik = �2sÑ , and
(iii) 2 �h1 · · · 2 �hik ¡�0, where �0 is the current target value for �.
Clearly, the method of preliminary eliminations for exhaustive rank 1 searches described in Section

3, which is based directly on the method of Maisonneuve [18], may be similarly extended to searches
for best � 2s copies of rank 1 rules of all simplicities.

Theorem 4.1. Let n¿ 1 and Q(n)LL and Q
(n)
L2 be the n

s copies of QLL and QL2 ; respectively. Then QLL
is geometrically equivalent to QL2 if and only if Q

(n)
LL is geometrically equivalent to Q

(n)
L2 .

Proof. Assume that QLL
g∼QL2 . Then clearly these rules are of equal order say Ñ , and there exists a

�nite composition T=Tt ◦ · · · ◦T1 of operations, of the forms Ui ;Vij described in De�nition 1.1,
such that L2 =T(L1). Let L

(n)
1 and L(n)2 be the integration lattices corresponding to Q(n)LL and Q

(n)
L2 ,

respectively. Clearly, if L3 =Ui(L1) then

L(n)3 = n−1L3 = n−1Ui(L1) =Ui(n−1L1) =Ui(L
(n)
1 ):

Similarly, if L3 =Vij(L1) then L
(n)
3 =Vij(L

(n)
1 ) and it follows that L

(n)
2 is geometrically equivalent to

L(n)1 . The converse is established by a similar argument.

Together with [10, Theorem 3:2:17] and the observation that every geometry class of rank 1 rules
of order Ñ ¿ 1 has a unique primary ordered rule, Theorem 4.1 yields the following corollaries.

Corollary 4.2. The ns copy of a rank 1 rule of order Ñ ¿ 1 is geometrically equivalent to the ns

copy of a unique primary ordered rank 1 rule.

Corollary 4.3. The ns copy of a rank 1 rule of order Ñ ¿ 1 is geometrically equivalent to the ns

copy of a rank 1 ordered rule with generator g=Ñ such that g is ordered with respect to Ñ ; and
the components of g are multiples of proper divisors of Ñ and satisfy simp(g; Ñ )6gj6Ñ =2.

The next result now justi�es the adaptation of the construction of Theorem 3.1 to searches over
ns-copies of rank 1 rules.

Theorem 4.4. Let Ñ ; n; s be integers greater than 1 and let �0 be a positive integer. Denote by
L(n) the integration lattice corresponding to the ns copy of the rank 1 lattice rule with integration
lattice L. Then a set G(n)T (Ñ ; �0; s) can be explicitly constructed such that: (a) �(L(n)(g=Ñ ))¿�0 for
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all g ∈ G(n)T (Ñ ; �0; s); and (b) if Q
′(n)
L is the ns copy of an s-dimensional rank 1 lattice rule Q′

L of
order Ñ such that �(L′(n))¿�0; then there exists a g ∈ G(n)T (Ñ ; �0; s) such that Q

′(n)
L is geometrically

equivalent to the ns copy of the rank 1 rule generated by g=Ñ .

Proof. By Theorem 4.1, ns copies of rank 1 rules are geometrically equivalent if and only if the
uncopied rank 1 rules are geometrically equivalent. Also,

�(L(n)(g=Ñ )) = �n(L(g=Ñ )) = min




s∏
j=1

max{1; |nhj|}: h ∈ L⊥ − {0}



and so G(n)T (Ñ ; �0; s) can be constructed by the elimination procedure used in the proof of
Theorem 3.1, with the exception that we use �n as our �gure of merit for the rank 1 rules in
place of �, and

0 ¡ hik ¡
�0
n
;

0 ¡ |hik−1 | ¡
�0
n2hik

;

...

0 ¡ |hi2 | ¡
�0

nk−1|hi3 · · · hik |
|h1| ¡

�0
nk |hi2 · · · hik |

as the bounds on h1; hi2 ; : : : ; hik during the enumeration, where now �0 is the current target value of
�n.

5. Numerical results for rank 1 rules

Preliminary searches were conducted for rank 1 simple rules in dimensions 3–5 terminating at
N =6066; 3298 and 1000, respectively. The full results of these searches are presented in the tables
of Langtry [10]. All searches were conducted on a Silicon Graphics Datastation 4D=25 workstation
running the Unix System V.3 operating system.
Comparing the results with those obtained by previous authors, we note that the omission reported

in [2] of the three-dimensional rule QL((1; 293; 517)=1199) from Table 9 of Maisonneuve [18] is not
signi�cant, since this rule is geometrically equivalent to QL((1; 121; 311)=1199), which does appear
in the table. In R5 we note that there are two omissions from Table 2 of Bourdeau and Pitre [2]
— in particular, there is a second ordered rule QL((1; 36; 79; 84; 94)=275) of order 275, with � value
equal to that of the rule reported in [2], and with better P2 and P4 values (3.53 and 4:63 × 10−2,
respectively); also, the rule QLL = QL((1; 154; 170; 230; 256)=772) listed in this table is not, in fact,
best �, since �(QLL)=10 whereas our search produced a rule of lower order (N=770) and the same �
value and with P2=8:71×10−1 and P4=2:78×10−3, namely QL((1; 72; 96; 112; 332)=770). Our search
also produced a best � �ve-dimensional rule QL((1; 38; 194; 276; 338)=862), with � = 12; P2 = 0:76
and P4 = 2:07× 10−3, that has not been previously reported, to the best of our knowledge.
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Table 1
Best � 23 copies of rank 1 rules over all simplicities

Ñ N = 2sÑ � zs P2 P4 g

2 16 4 6.93e−01 2.13e+00 7.43e−02 1 1 1
7 56 8 5.75e−01 3.87e−01 2.68e−03 1 2 3
14 112 12 5.06e−01 1.46e−01 4.46e−04 1 3 5
18 144 16 5.52e−01 9.59e−02 1.58e−04 1 5 7
29 232 20 4.70e−01 4.82e−02 4.61e−05 1 5 13
32 256 24 5.20e−01 4.26e−02 3.60e−05 1 6 9
38 304 28 5.27e−01 3.22e−02 1.93e−05 1 7 11
48 384 32 4.96e−01 2.24e−02 8.44e−06 1 9 14

2.28e−02 9.69e−06 1 17 21
51 408 36 5.30e−01 1.90e−02 5.63e−06 1 11 16
57 456 40 5.37e−01 1.63e−02 4.54e−06 1 10 25
61 488 48 6.09e−01 1.40e−02 2.68e−06 1 13 19
84 672 56 5.43e−01 9.09e−03 1.29e−06 1 15 26
93 744 60 5.33e−01 7.89e−03 1.03e−06 1 15 25
105 840 64 5.13e−01 6.07e−03 5.86e−07 1 16 38
107 856 72 5.68e−01 5.60e−03 4.26e−07 1 19 47
128 1024 76 5.14e−01 5.06e−03 3.64e−07 1 22 34
134 1072 92 5.99e−01 3.83e−03 1.83e−07 1 23 59
154 1232 96 5.55e−01 3.14e−03 1.35e−07 1 25 69
155 1240 112 6.43e−01 2.93e−03 9.30e−08 1 36 56
181 1448 120 6.03e−01 2.40e−03 7.22e−08 1 31 48
196 1568 144 6.76e−01 2.01e−03 4.53e−08 1 37 57
209 1672 160 7.10e−01 1.81e−03 3.49e−08 1 45 65
287 2296 180 6.07e−01 1.14e−03 1.79e−08 1 45 127
302 2416 200 6.45e−01 9.44e−04 8.49e−09 1 65 94
364 2912 220 6.03e−1 7.95e−04 8.96e−09 1 75 165
392 3136 260 6.67e−01 7.09e−04 4.74e−09 1 74 114
476 3808 264 5.72e−01 4.96e−04 3.20e−09 1 90 125
477 3816 272 5.88e−01 4.90e−04 2.92e−09 1 105 139
494 3952 288 6.04e−01 4.34e−04 2.15e−09 1 88 151

4.34e−04 2.04e−09 1 107 154
508 4064 304 6.22e−01 4.37e−04 2.39e−09 1 147 235
537 4296 320 6.23e−01 3.82e−04 1.50e−09 1 99 164
566 4528 344 6.40e−01 3.56e−04 1.40e−09 1 109 158
624 4992 352 6.00e−01 3.39e−04 1.22e−09 1 94 166
638 5104 360 6.02e−01 2.89e−04 9.55e−10 1 96 167
645 5160 384 6.36e−01 2.65e−04 6.88e−10 1 119 197

2.77e−04 8.21e−10 1 148 226
739 5912 400 5.88e−01 2.15e−04 4.84e−10 1 126 196
763 6104 424 6.05e−01 2.04e−04 4.37e−10 1 144 222
776 6208 432 6.08e−01 2.00e−04 4.27e−10 1 201 306
795 6360 440 6.06e−01 1.98e−04 4.20e−10 1 169 366
811 6488 468 6.33e−01 1.92e−04 4.07e−10 1 140 215
862 6896 472 6.05e−01 1.77e−04 3.59e−10 1 165 224
874 6992 480 6.08e−01 1.68e−04 3.22e−10 1 229 338
887 7096 488 6.10e−01 1.64e−04 3.03e−10 1 134 195
906 7248 512 6.28e−01 1.52e−04 2.16e−10 1 208 381
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932 7456 560 6.70e−01 1.47e−04 2.17e−10 1 193 431
943 7544 572 6.77e−01 1.38e−04 1.70e−10 1 168 291
1102 8816 576 5.94e−01 1.15e−04 1.39e−10 1 161 265
1126 9008 600 6.07e−01 1.15e−04 1.53e−10 1 164 255
1175 9400 640 6.23e−01 9.70e−05 9.14e−11 1 209 304
1220 9760 864 8.13e−01 8.08e−05 4.36e−11 1 319 501
1703 13 624 880 6.15e−01 5.11e−05 2.49e−11 1 328 474
1735 13 880 896 6.16e−01 5.23e−05 2.81e−11 1 262 381
1742 13 936 920 6.30e−01 5.12e−05 2.66e−11 1 241 412
1758 14 064 936 6.36e−01 5.06e−05 2.59e−11 1 238 539
1793 14 344 944 6.30e−01 4.90e−05 2.54e−11 1 274 463
1840 14 720 952 6.21e−01 4.73e−05 2.30e−11 1 439 578
1855 14 840 984 6.37e−01 4.73e−05 2.30e−11 1 246 836
1879 15 032 1008 6.45e−01 4.33e−05 1.85e−11 1 400 589
1935 15 480 1056 6.58e−01 4.07e−05 1.51e−11 1 268 458

The results of rank 1 searches including non-simple rules in dimensions 3–5 are presented in [10,
Appendix B]. These searches were terminated at N = 4358; 1169 and 587, respectively, and the
results establish that there are nonsimple rank 1 rules which are better with respect to � than some
of the best � rank 1 simple rules listed in [18,9,2]. Those nonsimple rank 1 rules of order exceeding
3916 in R3 are in fact better with respect to �; P2 and P4 than any previously published rules of
similar orders, although the results of Disney and Sloan [4] and Lyness and SHrevik [17] suggest
that higher rank rules may exist that have similar orders and better � values. We note, however,
that the computational cost of the search procedure is higher in the full rank 1 case than in the case
of rank 1 simple rules.

6. Numerical results for 2s copies of rank 1 rules

Of greater signi�cance is the possibility of conducting e�cient searches for ns copy rules of high
order, based on the elimination strategy suggested in the proofs of Theorems 3.1 and 4.4. The results
of searches of this type in dimensions three to �ve for best � 2s copies, with orders up to 16 000,
of rank 1 rules are presented in Tables 1–3. These searches reach rules of this order at a fraction
of the cost of searches for best � rank 1 rules of the same order. Tables extending these results to
larger orders and dimensions are available over the Internet in [13].
Comparison of these results with those obtained for rank 1 rules suggests that the best copy rules

are generally at least comparable with the best rank 1 rules of similar orders, and often (but not
always) better, at least with respect to the criterion �. The parameter zs = �N−1(logN ) s−2 gives an
indication of how ‘good’ a particular value of � is, relative to the order N of the rule — the higher
the value of zs, the better the rule is with respect to �. One may also compare, for dimensions three
to �ve, the orders and P2 values for the best 2s copy rules found in Tables 3 and 4 of Disney and
Sloan [4] with the orders and P2 values for the rules of nearest order in Tables 1–3. The results
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Table 2
Best � 24 copies of rank 1 rules over all simplicities

Ñ N = 2sÑ � zs P2 P4 g

2 32 4 1.50e+00 4.58e+00 1.33e−01 1 1 1 1
9 144 6 1.03e+00 7.59e−01 5.52e−03 1 2 3 4
10 160 8 1.29e+00 6.78e−01 4.21e−03 1 2 3 4
16 256 12 1.44e+00 3.41e−01 8.64e−04 1 3 5 7
24 384 16 1.48e+00 2.00e−01 3.35e−04 1 5 7 11
48 768 24 1.38e+00 7.90e−02 4.93e−05 1 7 10 22
58 928 32 1.61e+00 5.76e−02 2.17e−05 1 17 22 26
101 1616 36 1.22e+00 2.80e−02 7.49e−06 1 9 14 40
103 1648 40 1.33e+00 2.71e−02 6.71e−06 1 11 25 30
112 1792 48 1.50e+00 2.40e−02 5.14e−06 1 13 19 29

2.30e−02 4.46e−06 1 13 23 41
2.29e−02 3.68e−06 1 34 41 50

135 2160 56 1.53e+00 1.67e−02 1.75e−06 1 16 28 37
145 2320 64 1.66e+00 1.56e−02 1.68e−06 1 17 28 41
193 3088 80 1.67e+00 9.89e−03 6.23e−07 1 21 36 81
237 3792 88 1.58e+00 7.24e−03 3.43e−07 1 29 41 107
243 3888 96 1.69e+00 7.53e−03 3.98e−07 1 24 68 101
318 5088 108 1.55e+00 4.71e−03 1.38e−07 1 35 55 135
336 5376 112 1.54e+00 4.59e−03 1.32e−07 1 41 93 117
353 5648 120 1.59e+00 4.08e−03 1.15e−07 1 34 131 146
369 5904 128 1.63e+00 3.79e−03 8.22e−08 1 39 88 150
432 6912 144 1.63e+00 2.96e−03 5.23e−08 1 49 131 158
449 7184 160 1.76e+00 2.75e−03 4.35e−08 1 67 92 122
525 8400 184 1.79e+00 2.14e−03 2.56e−08 1 118 218 251
549 8784 188 1.76e+00 2.11e−03 2.73e−08 1 47 74 245
562 8992 212 1.95e+00 1.85e−03 1.58e−08 1 53 89 221
709 11 344 216 1.66e+00 1.32e−03 9.90e−09 1 69 96 243
730 11 680 224 1.68e+00 1.32e−03 1.02e−08 1 67 98 345
775 12 400 256 1.83e+00 1.14e−03 6.32e−09 1 89 249 314
952 15 232 336 2.05e+00 8.06e−04 2.99e−09 1 117 257 307

of Disney and Sloan [4] were found by searches over small samples of 2s copy rules with orders
in three ‘windows’ (approximately 103; 104 and 105 points) for those with good P2 (rather than �)
values. Nevertheless, the performances of the two groups of rules are roughly comparable: the P2
values of the rules from Disney and Sloan [4] are lower in three out of six cases than those from
Tables 1–3, equal (in the �rst two digits) in one case, and higher in two cases, although their orders
are higher in �ve out of six cases.
Lyness and SHrevik [15–17] report good rules of intermediate rank as well as of ranks 1 and

s. In dimensions exceeding 3, these rules are predominantly of rank higher than 1. It is important
to distinguish between the results reported in [15,16] and those reported in [17]. The former are
obtained by searching for best � rules over the complete population of lattice rules in a given
dimension up to a certain order: in [15] the search is in dimension three over orders up to 3916,
and in [16] it is in dimension four over orders up to 562. It is clear that better lattice rules (with
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Table 3
Best � 25 copies of rank 1 rules over all simplicities

Ñ N = 2sÑ � zs P2 P4 g

2 64 4 4.50e+00 9.09e+00 2.09e−01 1 1 1 1 1
11 352 8 4.58e+00 1.31e+00 6.52e−03 1 2 3 4 5
22 704 12 4.80e+00 5.68e−01 1.24e−03 1 3 5 7 9
25 800 16 5.97e+00 4.75e−01 7.64e−04 1 4 6 9 11
71 2272 20 4.06e+00 1.39e−01 1.16e−04 1 5 14 17 25
78 2496 24 4.60e+00 1.15e−01 5.77e−05 1 7 10 25 37
85 2720 28 5.09e+00 1.01e−01 4.03e−05 1 7 16 27 40
90 2880 32 5.62e+00 9.38e−02 3.05e−05 2 5 21 38 39
153 4896 34 4.26e+00 5.00e−02 1.15e−05 1 9 14 39 59
160 5120 40 4.87e+00 4.58e−02 8.45e−06 1 11 18 42 56
164 5248 48 5.75e+00 4.32e−02 7.93e−06 1 23 31 37 57
244 7808 56 5.16e+00 2.45e−02 2.51e−06 1 19 26 91 106
252 8064 64 5.78e+00 2.51e−02 2.49e−06 1 16 53 62 88
376 12 032 80 5.51e+00 1.39e−02 7.57e−07 1 21 49 80 155
427 13 664 96 6.07e+00 1.11e−02 4.25e−07 1 37 66 117 172

respect to �) than those in these papers cannot be found in these sets. In [17] the results presented
are mostly constructed by the process of component scaling described in that paper, and are not
necessarily optimal with respect to �. We compare �rstly the rules presented in [15,16] with those
in Tables 1 and 2 that are of the same dimension and of comparable order.
The table in [15] lists 68 rules for 59 distinct orders in the range 16¡N ¡ 3916, of which 28

are rank 1 rules that appear in earlier publications [18,9]. Table 1 lists 29 maximal rank rules of 28
distinct orders in this range, of which six are equivalent (in the sense of having the same orders and
� values) to rules which appear in the table of Lyness and SHrevik [15]. In dimension four, Table 2
of Lyness and SHrevik [16] lists 23 best � rules of 11 distinct orders in the range 32¡N ¡ 562,
of which three are rank 1 rules that appear in [18]. Table 2 lists �ve maximal rank rules of distinct
orders in this range, of which four are equivalent to rules which appear in [16].
Best � results over all ranks are not available for orders exceeding 3916 in dimension three, 562

in dimension four and 2 in dimensions �ve and above. Consequently, it is possible that searches over
restricted classes of rules may give useful results. In particular, the tables of Lyness and SHrevik [17]
(particularly Tables 1, 2 and 8) provide many good rules in these ranges — mostly of rank greater
than 1. The �rst two of these tables contain the best rules reported in that paper for dimensions three
and four, respectively. Table 8 of Lyness and SHrevik [17] contains the only �ve-dimensional rules
reported in that paper. Rules equivalent to some of those listed in [17] also appear in Tables 1–3. In
dimension three, Table 1 contains three rules in the range 3917¡N ¡ 16 000 that are equivalent to
rules listed in Tables 1 and 5 of Lyness and SHrevik [17]. In dimension four, Table 2 contains three
rules in the range 563¡N ¡ 16 000) that are equivalent to rules appearing in Tables 2, 6 and 7
of Lyness and SHrevik [17]. In dimension �ve, Table 8 of Lyness and SHrevik [17] lists 34 rules of
25 distinct orders, of which 8 are rank 1 rules that appear also in [2] and one is of maximal rank
and appears also in Table 3.
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7. Concluding remarks

As an alternative to using searches to discover good rules, there have been a number of construc-
tions of sequences of rules which are good with respect to some �gure of merit, typically zs or P�
(for example, [1,6,11,26,27,29]. In high dimensions these �gures of merit may be preferable to �
since lists of best � rules tend to become increasingly sparse as the dimension increases. The con-
structions of particular rules of which the author is aware are mostly of rules of rank 1 [1,6,11,27,29]
and ranks 2, s − 1 and s [26]. At least for dimensions exceeding three, these yield rules that do
not appear to be competitive (with respect to P�) with the best higher rank rules discovered by the
techniques of Disney and Sloan [4], Joe and Disney [7] and Lyness and SHrevik [17]. Nevertheless,
an understanding of the characteristics that are likely to be shared by good rank 1 constructions are
of interest, and have been applied in [12] to the construction of good higher rank rules that appear
to be comparable with those in the latter works.
The results of this paper demonstrate that good 2s copies of rank 1 rules may be found by adapting

search techniques used in the rank 1 case for s¿3. Related work by Disney [3] considers searches
for 2s copies of rank 1 simple rules in the context of dual lattices, and greatly extends the numerical
results presented in this paper.
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