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Abstract

This is a survey of the origins of mathematical interpretations of modal logics, and their devel-
opment over the last century or so. It focuses on the interconnections bedlgednaic semantics
using Boolean algebras with operators agldtional semantics using structures often call&ipke
modelslt reviews the ideas of a number of people who independently contributed to the emergence
of relational semantics, and compares them with the work of Kripke. It concludes with an account of
several applications of modal model theory to mathematics and theoretical computer science.
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1. Introduction

Modal logic was originally conceived as the logicmdcessaryandpossibletruths. It
is now viewed more broadly as the study of many linguistic constructions that qualify the
truth conditions of statements, including statements concerning knowledge, belief, tempo-
ral discourse, and ethics. Most recently, modal symbolism and model theory have been put
to use in computer science, to formalise reasoning about the way programs behave and to
express dynamical properties of transitions between states.

Over a period of three decades or so from the early 1930s there evolved two kinds of
mathematical semantics for modal logidgebraicsemantics interprets modal connectives
as operators on Boolean algebrBlationalsemantics uses relational structures, often
calledKripke modelswhose elements are thought of variously as being possible worlds,
moments of time, evidential situations, or states of a computer. The two approaches are
intimately related: the subsets of a relational structure form a modal algebra (Boolean
algebra with operators), while conversely any modal algebra can be embedded into an
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algebra of subsets of a relational structure via extensions of Stone’s Boolean representation
theory. Techniques from both kinds of semantics have been used to explore the nature of
modal logic and to clarify its relationship to other formalisms, particularly first and second
order monadic predicate logic.

The aim of this article is to review these developments in a way that provides some
insight into how the present came to be as it is. The pervading theme isatiematics
underlying modal logic, and this has at least three dimensions. To begin with there are the
new mathematical ideas: when and why they were introduced, and how they interacted and
evolved. Then there is the use of methods and results from other areas of mathematical
logic, algebra and topology in the analysis of modal systems. Finally, there is the applica-
tion of modal syntax and semantics to study notions of mathematical and computational
interest.

There has been some mild controversy about priorities in the origin of relational model
theory, and space is devoted to this issue in Section 4. An attempt is made to record in one
place a sufficiently full account of what was said and done by early contributors to allow
readers to make their own assessment (although the author does give his).

Despite its length, the article does not purport to give an encyclopaedic coverage of
the field. For instance, there is much about temporal logic Gagbay et al[77]) and
logics of knowledge (seEagin et al.[64]) that is not reported here, while the surface of
modalpredicatelogic is barely scratched, and proof theory is not discussed at all. | have
not attempted to survey the work of the present younger generation of modal logicians (see
Chagrov and Zakharyasché®4], Kracht[141], andMarx and Venem#l71], for exam-
ple). There has been little by way of historical review of work on intensional semantics
over the last century, and no doubt there remains room for more.

2. Beginnings
2.1. What is a modality?

Modal logic began with Aristotle’s analysis of statements containing the words “nec-
essary” and “possible’. These are but two of a wide range wiodal connectivesor
modalitiesthat are abundant in natural and technical languages. Briefly, a modality is any
word or phrase that can be applied to a given staterfi¢ntcreate a new statement that
makes an assertion about thde of truthof S: about when, where or how is true, or
about the circumstances under whig€hmay be true. Here are some examples, grouped
according to the subject they are naturally associated with

tense logic: henceforth, eventually, hitherto, previously, now,
tomorrow, yesterday, since, until, inevitably, finally,
ultimately, endlessly, it will have been, itis being ...

1 For the early history of modal logic, including the work of Greek and medieval scholar8aeenski
1961[20] andKneale and Kneale 196[134]. The Historical Introduction to Lemmon [156] gives a brief but
informative sketch.
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deontic logic: it is obligatory/forbidden/permitted/unlawful that

epistemic logic: itis known t that, it is common knowledge that

doxastic logic: itis believed that

dynamic logic:  after the program/computation/action finishes,
the program enables, throughout the computation

geometric logic: itis locally the case that

metalogic: it is valid/satisfiable/provable/consistent that

The key to understanding thielational modal semantics is that many modalities come in
dual pairs, with one of the pair having an interpretation as a universal quantifier (“in all
...") and the other as an existential quantifier (“in some ..."). Thidlustrated by the
following interpretations, the first being famously attributed to Leibniz (see Section 4).

necessarily in all possible worlds
possibly in some possible world
henceforth at all future times
eventually at some future time

it is valid that in all models

it is satisfiable that in some model

after the program finishes after all terminating executions
the program enables there is a terminating execution such that

It is now common to use the symbil for a modality of universal character, addfor

its existential dual. In systems based on classical truth-functional lagis, equivalent

to =O—, and< to —=0—, where— is the negation connective. Thus “necessarily” means
“not possibly not”, “eventually” means “not henceforth not”, a statement is valid when its
negation is not satisfiable, etc.

Notation
Rather than trying to accommodate all the different notations used for truth-functional
connectives by different authors over the years, we will fix on the symbplg, -, —
and<> for conjunction, disjunction, negation, (material) implication, and (material) equiv-
alence. The symbol is used for a constant true formula, equivalent to any tautology,
while L is a constant false formula, equivalent+d . We also usel and L as symbols
for truth values.
The standard syntax for propositional modal logic is based on a countably infinite list
po, P1, - .. Of propositional variablesfor which we typically use the lettegs, ¢, r. Formu-
las are generated from these variables by means of the above connectives and the symbols
O and<. There are of course a number of options about which of these to take as prim-
itive symbols, and which to define in terms of primitives. When describing the work of
different authors we will sometimes use their original symbols for modalities, sugh as
for possibly L or N for necessarilyand other conventions for deontic and tense logics.
The symbol1" stands for a sequen€é]- - -1 of n copies ofC], and likewise(” for
OO -+ O (n times).
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A systematic notation will also be employed for Boolean algebras: the symthols—
denote the operations of sum (join), product (meet), and complement in a Boolean algebra,
and 0 and 1 are the greatest and least elements under the ordegingn by x < y iff
x -y =x. The supremum (sum) and infimum (product) of a Xebf elements will be
denoted)_ X and]] X (when they exist).

2.2. MacColl's iterated modalities

The first substantial algebraic analysis of modalised statements was carried out by Hugh
MacColl, in a series of papers that appearehlind between 1880 and 1906 under the title
Symbolical Reasoningas well as in other papers and his book [163] of 1906. MacColl
symbolised the conjunction of two statememendb by their concatenatiomb, useda + b
for their disjunction, and wrote : b for the statementd impliesb”, which he said could be
read “if a is true, therb must be true”, or “whenever s true,b is also true”. The equation
a = b was used for the assertion thatandb are equivalent, meaning that each implies
the other. Thus = b is itself equivalent to the “compound implicatiox¥i : b)(b : a), an
observation that was rendered symbolically by the equatieab) = (a : b)(b : a).

MacColl wrotea’ for the “denial” or “negative” of statement and stated that:’ + b)’
is equivalent tazb’. However, whilea’ + b is a “necessary consequence’aofb (written
(a:b):a +b), he argued that the two formulas are not equivalent because their denials
are not equivalent, claiming that the deniakafb “only asserts th@ossibilityof the com-
binationad’ ”, while the denial ofa’ + b “asserts theertaintyof the same combinatior?.

Boole had writteru = 1 anda = 0 for “a is true” and ‘a is false”, giving a tempo-
ral reading of these aalways trueand always falserespectively (se®oole 1854[21],
Chapter Xl). MacColl invoked the letteesandr to stand for certainty and impossibility,
initially describing them as replacements for 1 and 0, and then introduced a third ledter
denote a statement that was neither certain nor impossible, and hencewsastie (nei-
ther always true nor always false)”. He wrote the equatians ¢), (b =n) and(c = 9)
to express thai is a certaintyp is an impossibility, and is a variable. Then he changed
these to the symbols®, b, ¢/, and went on to write:* for “a is true” anda for “a is
false”, noting that a true statement is “not necessarily a certainty” and a false one is “not
necessarily impossible”. In these terms he stateddhatis equivalent both tga.»’)" (“it
is impossible that and noth”) and to (@’ + b)® (“it is certain that either nat or 5”).

Once the step to this superscript notation had been taken, it was evident that it could be
repeated, giving an easy notation for iterations of modalities. MacColl gave the example of
A€ gs “itis certain that it is certain that it is false that it is impossible tiiatbbreviated
this to “it is certain that: is certainly possible”, and observed that

2 Alisting of these papers is given in the Bibliographylafwis 1918158] and on p. 132 of Church’s bib-
liography in volume 1 ofThe Journal of Symbolic Logié\ comprehensive bibliography of MacColl’'s works is
given inAstroh and Kluwer 19983].

3 This appears to conflict with his earlier claim that the deniat’of b is equivalent ta:b’. “Actuality” may
be a better word than “certainty” to express what he meant heréisek Vol. 5, 1880, p. 54).
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Probably no reader—at least no English reader, born and brought up in England—can go through
the full unabbreviated translation of this symbolic statem&ht¢ into ordinary speech without

being forcibly reminded of a certain nursery composition, whose ever-increasing accumulation
of thatsaffords such pleasure to the infantile mind; I allude, of course, to “The House that Jack
Built”. But trivial matters in appearance often supply excellent illustrations of important general
principles‘.1

There has been a recent revival of interest in MacColl, with a special issue of the Nordic
Journal of Philosophical Logicdevoted to studies of his work. In particular the article
Read 1998213] analyses the principles of modal algebra proposed by MacColl and argues
that together they correspond to the modal logic T, later developed by Feys and von Wright,
that is described at the end of Section 2.4 below.

2.3. The Lewis systems

MacColl's papers are similar in style to earlier nineteenth century logicians. They give
a descriptive account of the meanings and properties of logical operations but, in contrast
to contemporary expectations, provide neither a formal definition of the class of formu-
las dealt with nor an axiomatisation of operations in the sense of a rigorous deduction of
theorems from a given set of principles (axioms) by means of explicitly stated rules of in-
ference. The first truly modern formal axiom systems for modal logic are due to C.I. Lewis,
who defined five different ones, S1-S5, in Appendix Il of the b8gknbolic Logi¢159] of
1932 that he wrote with C.H. Langford. Lewis had begun in a paper of 1912 [157, p. 522]
with a concern that

the expositors of the algebra of logic have not always taken pains to indicate that there is a differ-
ence between the algebraic and ordinary meanings of implication.

He observed that the algebraic meaning, as used iRtineipia Mathematicaof Russell

and Whitehead, leads to the “startling theorems” that a false proposition implies any propo-
sition, and a true proposition is implied by any proposition. These so-gadletioxes of
material implicationtake the symbolic forms

o — (¢ — B),
a — (B— ).

For Lewis the ordinary meaning of‘implies 8” is that 8 can bevalidly inferrecP from «,

or isdeduciblé from «, an interpretation that he considered was not subject to these para-
doxes. Taking & implies 8” as synonymous with “either nat-or 8", he distinguished
extensionaland intensionalmeanings of disjunction, providing two meanings for “im-
plies”. Extensional disjunction is the usual truth-functional “or”, which givesitiagerial

4 Mind (New Series), Vol. 9, 1900, p. 75.

5 Vol 3 no. 1, Dec 1998, available http://www.hf.uio.no/filosofi/njpl/vol3nol/index.html
6 [157, p. 527].

7 [159, p. 122].
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(algebraic) implication synonymous with “it is false thats true andg is false”. Inten-
sional disjunction

is such that at least one of the disjoined propositions is “necessarilystrue.

That reading produces Lewis’ “ordinary” implication, which he also dubbed “strict”, mean-
ing that “it isimpossiblg(or logically inconceivabl®) that is true ands is false”.

The system of Lewis’'s 1918 book Survey of Symbolic Log[@58] used a primitive
impossibilityoperator to define strict implication. This later became the system S3 of [159],
which introduced instead the symb®lfor possibility, but Lewis decided that he wished
S2 to be regarded as the correct system for strict implication. The systems were defined
with negation, conjunction, and possibility as their primitive connectives, but he made no
use of a symbol for the dual combinatiexd>—.10 For strict implication the symbet3 was
used, witha —3 8 being a definitional abbreviation fef(a A —8). Strict equivalence
(¢ = B) was defined aée —3 8) A (B—S ).

Here now are definitions of S1-S5 in Lewis’s style, presented both to facilitate discus-
sion of later developments and to convey some of the character of his approach. System S1
has the axioms

(p Ag)—3(q A p),

(pANg)—3p,

p—3(pAp),
(pAg@)AT)=8(pA(gAr)),
(p—8q) A(g—3r))—3(p—38r),
(pA(p—39))—3q,

wherep, g, r are propositional variables, and the following rules of inference.

o Uniform substitutiorof formulas for propositional variables.

e Substitution of strict equivalentsom (« = 8) andy infer any formula obtained from
y by substituting8 for some occurrence(s) of.

e Adjunction from « andg infera A .

e Strict detachmenfrom o anda —3 g infer .12

System S2 is obtained by adding the axiérp A ¢) —3 <O p to the basis for S1. S3is S1
plus the axiom(p —38 ¢) —3 (=< g —3 —~Op). S4is S1 plus>O p —3 O p, or equivalently
Op—800p. S5is S1 plus>p —30OCp.

8 [157, p. 523].
9 [159, p. 161].
10 The dual symball was later devised by F.B. Fitch and first appeared in print in 1946 in a paper of R. Barcan.
See footnote 425 dfiughes and Cresswdll21].
11 Originally p —8 ——p was included as an axiom, but this was shown to be redundant by McKinsey (1934).
12 | ewis used the name “Inference” for the rule of strict detachment. He also used “assert” rather than “infer”
in these rules.
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The axioms for S4 and S5 were first proposed for consideration as further postulates in
a paper of Oskar Becker in 1930 [7]. His motivation was to find axioms that reduced the
number of logically non-equivalent combinations that could be formed from the connec-
tives “not” and “impossible”. He also considered the formpta3 =-&—-< p, and called it
the “Brouwersche axiom”. The connection with Brouwer is remote: if “not” is translated to
“impossible” (—<), and “implies” to its strict version, then the intuitionistically acceptable
principle p — ——p becomes the Brouwersche axiom.

2.4. Godel on provability as a modality

Godel in [83] reviewed Becker’s article [7]. In reference to Becker’s discussion of con-
nections between modal logic and intuitionistic logic he wrote

It seems doubtful, however, that the steps here taken to deal with this problem on a formal plane
will lead to success.

He subsequently took up this problem himself with great success, and at the same time
simplified the way that modal logics are presented. The Lewis systems contain all truth-
functional tautologies as theorems, but it requires an extensive analysis to demonstrate
this13 Such effort would be unnecessary if the systems were defined by directly extending
a basis for the standard propositional calculus. That approach was first used in the 1933
note “An interpretation of the intuitionistic propositional calculus” [84], published in the
proceedings of Karl Menger’'s mathematical colloquium at the University of Vienna for
1931-32. Godel formalised assertionpafvability by a propositional connective (from
“beweisbar”), readin@@a as ‘« is provable”. He defined a system which has, in addition

to the axioms and rules of ordinary propositional calculus, the axioms

Bp — p,

Bp — (B(p = q) = Bq),

Bp — BBp,
and the inference ruldtom « infer Ba. He stated that this system is equivalent to Lewis’
S4 whenBu is translated alo.14 Then he gave the following two translations of propo-
sitional formulas

p\p p\p

—a |- Bo —a|B—Ba
o — B|Ba — BB o — B|Ba — Bf
oV B|Ba Vv BB oV B|Ba Vv BB
aABlaAB o AB|Ba A BB

and asserted that in each case the translation of any theorem of Heyting’s intuitionistic
propositional calculu$ is derivable in his system, adding that “presumably” the converse

13 seeHughes and CresswdlL21, pp. 218—223].

14 More precisely, he stated that it is equivalent to Lewis's System of Strict Implication supplemented by
Becker’'s axiomdp —3 OOp. It is unlikely that he was aware of the name “S4” at that time.

15 Heyting published this calculus in 1930.
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is true as well. He also asserted that the translatiop of—p is not derivable, and that
a formula of the formBa v Bg is derivable only when one adBa and B is derivable.
Proofs of these claims first appearedMioKinsey and TarsKil 78] (see Section 3.2).

Those familiar with later developments will recognise the pregnancy of this brief note
of scarcely more than a page. Its translations provided an important connection between
intuitionistic and modal logic that contributed to the development both of topological in-
terpretations and of Kripke semantics for intuitionistic logic. Its ideas also formed the
precursor to the substantial branch of modal logic concerned with the modality “it is prov-
able in Peano arithmetic that”. We will return to these matters below (see Section 3.2, 7.5,
7.6).

Itis now standard practice to present modal logics in the axiomatic style of Gddel. The
notion ofa logic refers to any sett of formulas that includes all truth-functional tautolo-
gies and is closed under the rules of uniform substitution for variables and detachment for
material implication. The formulas belonging tbare theA-theoremsand are also said
to be A-provable A logic is callednormalif it includes Gédel’'s second axiom, which is
usually presented (withl in place ofB) as

O(p — q) — (Qp — Og),

and has the rule oNecessitationfrom « infer Oa. S5 can be defined as the normal
logic obtained by adding the axiopn— < p to Godel's axiomatisation of S4. Following
Becker [7],p — OO p is called theBrouwerianaxiom. The smallest normal logic is com-
monly called K, in honour of Kripke. The normal logic obtained by adding the first Godel
axiomOp — p to K is known as T. That system was first defined by Béys 1937 by
dropping Godel's third axiom from S4. T is equivalent to the system MoofWright 1951
[271]. TheBrouwerian systerB is the normal logic obtained by adding the Brouwerian
axiomto T.

The first formulation of thexon-normalsystems S1-S3 in the Godel style was made
in Lemmon 1957153], which also introduced a series of systems E1-E5 designed to be
“epistemic” counterparts to S1-S5. These systems have no theorems of thedomand
in place of Necessitation they have the rfrtem o — g infer Do — 008. Lemmon sug-
gests that they capture the reading bfs “it is scientifically but not logically necessary
that”.

3. Modal algebras

Modern propositional logic began as algebra, in the thought of Boole. We have seen that
the same was true for modern modal logic, in the thought of MacCaoll. By the time that the
Lewis systems appeared, algebra was well-established as a postulational science, and the
study of the very notion on abstract algebravas being pursued s&irkhoff 1933[13]
and 1935[14]. Over the next few years, algebraic techniques were applied to the study
of modal systems, usingodal algebrasBoolean algebras with an additional operation

16 \Who called it “t".
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to interpret. During the same period, representation theories for various lattices with
operators were developed, beginning with the Stone representation of Boolean algebras
(Stone 1936239]), and these were to have a significant impact on semantical studies of
modal logic.

3.1. McKinsey and the finite model property

McKinsey in a 1941 paper [174] showed that there is an algorithm for deciding whether
any given formula is a theorem of S2, and likewise for S4. His method was to show that
if a formula is not a theorem of the logic, then it is falsified by some finite model which
satisfies the logic. This property was dubbedfihée model propertyn 1958 by Ronald
Harrop [109], who proved the general result that any finitely axiomatisable propositional
logic A with the finite model property is decidable. The gist of Harrop’s argument was that
finite axiomatisability guarantees thatis effectively enumerable, while the two properties
together guarantee the same for the complement.dy enumerating the finite models
and the formulas, and at the same time systematically testing formulas for satisfaction by
these models, a list can be effectively generated of those formulas that are falsified by
some finite model which satisfies the axiomsofBy the finite model property this is just
a listing of all the non-theorems of.

McKinsey actually showed something stronger: the size of a falsifying model for a non-
theoremx is bounded above by a number that depends computably on the sizd bfis
to decide ife is a theorem it suffices to generate all finite models up to a prescribed bound.
However this did not yield #easiblealgorithm: the proof for S2 gave an upper bound of
22"“, doubly exponential in the numberof subformulas of.

McKinsey’s construction is worth outlining, since it was an important innovation that
has been adapted numerous times to other propositional logics (as he suggested it might
be), and has been generalised to other contexts, as we shall see. He used models of the form
(K, D, —,*, ), calledmatrices where—, *, . are operations on a sét for evaluating
the connectives, ¢, and A, while D is a set ofdesignatecelements ofK. A formula
«a is satisfiedby such a matrix if every assignment of elementsofo the variables o
results ine being evaluated to a member of the suli3eThese structures abstract from the
tables of values, with designated elements, used to define propositional logics and prove
the independence of axioms. Their use as a general method for constructing logical systems
is due to Alfred Tarski’

A logic is characterisedy a matrix if the matrix satisfies the theorems of the logic and
no other formulas. Structures of this kind had been developed for S2 in 1937 by Hunt-
ington [122], who gave the concrete examplekobeing the class of “propositions” and
D the subclass of those that are “asserted” or “demonstrable”, describing this subclass as
“corresponding roughly to the Frege assertion sign”.

17 The historical origins of the “matrix method” are describedtinkasiewicz and Tarski 193[162]. See
footnotes on pages 40 and 43 of the English translation of this artidlargki 1956/250].
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A matrix is normalif

x,yeD implies x-yeD,
x,(x=>y)e D implies ye D,
(x<y)eD implies x=y,

where(x = y) = —*(x-.—y) and(x & y) = (x = y) - (y = x) are the operations
interpreting strict implication and strict equivalencekn These closure conditions dn
are intended to correspond to Lewis’ deduction rules of adjunction, strict detachment, and
substitution of strict equivalents. In a normal S2-mat(K, —, -) is a Boolean algebra in
which D is a filter. Hence the greatest element 1 is always designated. McKinsey showed
that there exists an infinité normal matrix that characterises S2, using what he described
as an unpublished method due to Lindenbaum that was explained to him by Tarski and
which applies to any propositional calculus that has the rule of uniform substitution for
variables. TakingK, —, *, -) as the algebra of formulas, witha = —¢, *a = G« and
a-f=aApB,and withD as the set of S2-theorems, gives a characteristic S2-matrix which
satisfies all but the last normality condition @n Since that condition is needed to make
the matrix into a Boolean algebra, it is imposed by identifying formala8 whenever
(¢ & B) € D. The resulting quotient matrix is the one desired, and is what is now widely
known as thé.indenbaum algebraf the logic. Its designated elements are the equivalence
classes of the theorems.

Now if « is a formula that not an S2-theorem, then there is some evaluation in this Lin-
denbaum algebra that fails to satigfylLetx1, ..., x, be the values of all the subformulas
of « in this evaluation, and lek1 be the Boolean subalgebra generated bynthel el-
ementsxy, ..., x,, *0. ThenK1 has at most 3™ members. Define an element &f;, to
be designated iff it was designated in the ambient Lindenbaum algebra. McKinsey showed
how to define an operation on K3 such that1x =* x whenever and*x are both inK1:

*1X =1_[{*y€ Ki:x<ye Kl}.

The upshot was to turk'1 into a finite S2-matrix in which the original falsifying evaluation
of @ can be reproduced.

This same construction shows that S4 has the finite model property, with the minor
simplification that the elemerfD does not have to be worried about, sifie= 0 in any
normal S4-matrix (so the computable upper bound becofigsThe Lindenbaum algebra
for S4 has only its greatest element designated, i.e-,{D}, becauséx —3 ) A (B—3 «)
is an S4-theorem wheneverand g are, putting all theorems into the same equivalence
class. This is a fact that applies to any logic that has the rule of Necessitation, and it allows
algebraic models for normal logics to be confined to those that just designate 1.

3.2. Topology for S4

Topological interpretations of modalities were given in a 1938 paper of Tang Tsao-
Chen [244], which proposed that “the algebraic postulates for the Lewis calculus of strict

18 Dugundi in 1940 [53] had proved that none of S1-S5 hfisite characteristic matrix.
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implication” be the axioms for a Boolean algebra with an additional operafidohaving
x®.x=x*and(x - y)® =x* .y, The symbolk> was used for the dual operation
Ox = —(—x)®. The notatiorn x was defined to mean thafl< x, and it was shown
that x holds whenevek is any evaluation of a theorem of S2. In effect this says that
putting D = {x: 1°° < x} turns one of these algebras into an S2-matrix. In factif2 1,

or equivalentl>0= 0, it also satisfies S4. But S4 was not mentioned in this paper.

A “geometric” meaning was proposed for the new operations by takffigo be the
interior of a subset of the Euclidean plane, in which caser is thetopological closure
of x, i.e., the smallest closed supersetoif the greatest element 1 of the algebra is the
whole plane, or any open set, then in that ca%=11, but it is evident that Tang did
not intend this, since the paper has a footnote explaining that another geometric meaning
of x* can be obtained by letting®d be some subset of the plane, possibly even a one-
element subset, and defining® to bex -1°°. (This construction could be carried out in any
Boolean algebra by fixing°t arbitrarily.) It appears then that the best way to understand
Tang’s first geometric meaning is that the ambient Boolean algebra should be the powerset
algebraP(S) of all subsets of some subsgtof the Euclidean plane, with “interior” and
“closure” being taken in the subspace topologyson

Now a well-known method, due to Kuratowski, for defining a topology on an arbitrary
setS is to give aclosure operatiorX — CX on subsetX of S, i.e., an operation satisfying
Cld=0,C(XUY)=CXUCY andX CCX =CX. Then a selX is closediff CX = X,
andopeniff its complement inS is closed. Any topological space can be presented in this
way, with CX being the topological closure df.

McKinsey and Tarski’'s 1944 paper [176] undertook an abstract algebraic study of clo-
sure operations by defining @dosure algebrato be any Boolean algebra with a unary
operationC satisfying Kuratowski’s axioms. The operatiénon an S4-matrix satisfies
these axioms, and McKinsey had shown in his work [174] on S4 thaffiaitg normal
S4-matrix can be represented as the closure algebra of all subsets of some topological
space, using the representation of a finite Boolean algebra as the powerset algebra of its
set of atoms. McKinsey and Tarski now extended this representation to arbitrary closure
algebras. Combining the Stone representation of Boolean algebras with the idedjef the
operation from McKinsey'’s finite model construction they showed that any closure algebra
is isomorphic to a subalgebra of the closure algebra of subsets of some topological space.
They gave a deep algebraic analysis of the class of closure algebras, including such results
as the following.

(1) The closure algebra of any zero-dimensional dense-in-itself subspace of a Euclidean
space (e.g., Cantor’s discontinuum or the space of points with rational coordinates)
includes isomorphic copies of all finite closure algebras as subalgebras.

(2) Every finite closure algebra is isomorphic embeddable into the closure algebra of sub-
sets of somepensubset of Euclidean space.

(3) An equation that is satisfied by the closure algebra of any Euclidean space is satisfied
by every closure algebra.

(4) An equation that is satisfied by all finite closure algebras is satisfied by every closure
algebra (this is an analogue of McKinsey’s finite model property for S4).
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(5) If an equation of the fornCo - Ct = 0 is satisfied by all closure algebras, then so is
one of the equations =0 andr = 0.

The proof of result (5) involved taking the direct product of two closure algebras that
each reject one of the equatiofis= 0 andr = 0, and then embedding this direct product
into another closure algebra thatill-connectedmeaning that ifc andy are non-zero
elements, theg@x -Cy #£ 0. The resultitself is equivalent to the assertion that if the equation
lo + It =1 is satisfied by all closure algebras, then so is one of the equatient and
7 =1, wherel = —C— is the abstracinterior operator dual taC. This is an algebraic
version of one of the facts about S4 stateitdel 193384] (see later in this section).

In a sequel article of 1946 [177], McKinsey and Tarski studied the algebcioséd
(i.e., Cx = x) elements of a closure algebra. These form a sublattice with operations
x —y=C(x-—y) andox =1 — x = C—x. An axiomatisation of these algebras was
given in the form of an equational definition of cert@muwerianalgebras of the type
(K, +, -, —, 1), and a proof that every Brouwerian algebra is isomorphic to a subalgebra
of the Brouwerian algebra of closed sets of some topological space. Results were proven
for Brouwerian algebras that are analogous to results (1)—(5) above for closure algebras,
with the analogue of (5) being:

(6) If the equatiory - T =0 is satisfied by all Brouwerian algebras, then so is one of the
equationsr =0 andtr =0.

Brouwerian algebras are so named because they provide models of the intuitionistic propo-
sitional calculus IPC. This works in a way thatligalto the method that has been described

for evaluating modal formulas, in that 0 is the unique designated elemesiinterpreted

as the lattice sum/join operation; Vv is interpreted as lattice product/meet— is in-
terpreted as the operatiendefined byx — y = y — x; and— is interpreted as the unary
operationx - 1= 0Ox.

The algebra obpen(i.e., Ix = x) elements of a closure algebra also form a sublattice
that is a model of intuitionistic logic. It relates more naturally to the Boolean semantics
in that 1 is designated and andv are interpreted asand+. Implication is interpreted
by the operationr = y = I1(—x 4+ y) = —C(x - —y) and negation by-x = x = 0= 1—x.

This topological interpretation had been developed in the mid-1930’s by Tarski [245] and
Marshall Stone [240] who independently observed that the laf?ic® of open subsets of

a topological spacé is a model of IPC under the operations just described. Tarski took
this further to identify a large class of spaces, including all Euclidean spaces, for which
O(S) exactly characterises IPC.

The abstract algebra&’, 4, -, =, 0) that can be isomorphically embedded into ones
of the typeO(S) form an equationally defined class. They are commonly knovitegsing
algebras or pseudo-Boolean algebraghe relationship between Brouwerian and Heyting
algebras as models is further clarified by the description of Kripke’s semantics for IPC
given in Section 7.6.

McKinsey and Tarski applied their work on the algebra of topology to S4 and intuition-
istic logic in their 1948 paper [178], which uses closure algebras with just 1 designated
to model S4, and Brouwerian algebras in the manner just explained to model Heyting’s
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calculus. Using various of the results (1)—(4) above, it follows that S4 is characterised by
the class of (finite) closure algebras, as well as the closure algebra of any Euclidean space,
or of any zero-dimensional dense-in-itself subspace of Euclidean space. Hence in view of
result (5), the claim o6G6del 193384] follows: if O v (B is an S4-theorem, then so is

one ofa andg, therefore so is one dfle andB by the rule of Necessitation. Similarly,

result (6) gives a proof of thdisjunction propertyfor IPC: if « v 8 is a theorem, then so

is one ofa and 8. The final section of the paper uses the relationships between Brouw-
erian and closure algebras to verify the correctness of the two translations of IPC into S4
conjectured in Godél’s paper, and introduced a new one:

p|Up

—a |—o
a— Bl0@—B) (i.e.,a—3pB)
aVBlavp
aABlaAB

Itis this translation that inspired Kripke [147] to derive his semantics for intuitionistic logic
from his model theory for S4 (see Section 7.6).

Another significant result of the 1948 paper is that S5 is characterised by the class of
all closure algebras in which each closed element is also open. Structures of this kind
were later dubbethonadic algebragy Halmos in his study of the algebraic properties of
quantifiers (sed¢lalmos 1967102]). The connection is natural: the modalitigsand &
have the same formal properties in S5 as do the quantifiarsl3 in classical logic. The
polyadicalgebras of Halmos and theylindric algebras of Tarski and his co-researchers
(seeHenkin, Monk and Tarski 197[112]) have a family of pairwise commuting closure
operators for which each closed element is open.

Any Boolean algebra can be made into a monadic algebra by def@ting 0 and
otherwiseCx = 1. These are theimplé-® monadic algebras. L&, be the simple monadic
algebra defined on the finite Boolean algebra wititoms, viewed as a matrix with only 1
designated. Then S5 is characterised by the set of all tgseThis was shown by Schiller
Joe Scroggsin [219](1951), written as a Masters thesis under McKinsey’s direction, whose
analysis established that every finite monadic algebra is a direct prodfigtnfScroggs
used this to prove that each proper extension of S5 is equal to the logic characterised
by some|,,, and so has a finite characteristic matrix. By “extension” here is meant any
logic that includes all S5-theorems and is closed under the rules of uniform substitution
for variables and detachment for material implication. Scroggs was able to show from this
characterisation that any such extension of S5 is closed under the Necessitation rule as
well, and so is a normal logic.

Another notable paper on S5 algebras from this erBdsis 1954[48], based on a
1950 doctoral thesis supervised by Garrett Birkhoff. This describes the correspondence
between equivalence relations on a set and S5 operations on its powerset Boolean algebra;
a correspondence between algebras with two S5 operations apmbjbetivealgebras of
Everettt and Ulam 194§63]; and the use of several S5 operators to provide a Boolean
model of features of first-order logic.

19 |n the technical algebraic sense of having no non-trivial congruences.
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3.3. BAOs: The theory of Jénsson and Tarski

The notion of aBoolean algebra with operato(8AO) was introduced by Jonsson and
Tarskiin the 1948 abstract [127], with the details of their announced results being presented
in 1951 [128]. That work contains representations of algebras that could immediately have
been applied to give new characterisations of modal systems. But the paper was overlooked
by modal logicians, who were still publishing re-discoveries of some of its results fifteen
years later.

A unary functionf on a Boolean algebra is aperatorif it is additive, i.e.,f (x +y) =
Fx)+ f(y). f iscompletely additivef f(>_X) =>_ f(X) whenevery_ X exists, and
is normalif f(0) = 0. A function of more than one argument is an operator/is completely
additive/is normal when it is has the corresponding property separately in each argument.
A BAO is an algebr&l = (B, f;: i € I), where thef;’s are all operators on the Boolean
algebra®s.

The Extension Theorerof Jonsson and Tarski showed that any B&Ocan be em-
bedded isomorphically into a complete and atomic BAO which they called erfect
extensiorof 2. The construction built on Stone’s embedding of a Boolean alg®Bbirgto
a complete and atomic o8, with each operatoy; of 2 being extended to an operator
f£ onB7 that iscompletelyadditive, and is normal iff; is normal. The notion of perfect
extension was defined by three properties that detergtfhaniquely up to a unique iso-
morphism oveRl and give an algebraic characterisation of the structures that arise from
Stone’s topological representation theory. These properties can be stated as follows.

(i) For any distinct atoms, y of 2° there exists an elementof 2 with x < a and
y< —a.
(i) IfasubsetX of 2 has)_ X =1in%°, then some finite subs& of X has)_ Xo=1.
(i) fF)=[[{fi(y): x <yeA"} whenf; is n-ary and the terms of the-tuple x are
atoms or O.

Property (i) corresponds to the Hausdorff separation property of the Stone sp#ie of
while (ii) is an algebraic formulation of the compactness of that space. The meaning of
(iii) will be explained below.

Jénsson and Tarski showed that any equation satisfiet byl also be satisfied by
207 if it does not involve Boolean complementation (i.e., refers only-e, 0, 1 and the
operatorsf;). More generally, perfect extensions were shown to preserve any implication
of the form (r = 0 — u = v) whose terms, u, v do not involve complementation. They
then established a fundamental representation of norragy operators in terms af+ 1-
ary relations. This was based on a bijective correspondence between momyaktely
additiven-ary operatorsf on a powerset Boolean algebPS) andn + 1-ary relations
Ry C $"*1. Here

Rf(x0,...,xp-1,y) Iff ye f({xo},..., {xn-1}).

Under this bijection an arbitrarg < $"*+1 corresponds to the-ary operatorfz onP(S),
where

ye frXo,..., Xy—1) iff R(xp,...,xy—1,y) for some elements; € X;.
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Thus any relational structur® = (S, R;: i € I) whatsoever gives rise to the complete
atomic BAO

cm& = (P(S), fr:ii€l)

of all subsets ofS with the completely additive normal operatofg,. Conversely, any
complete and atomic BAO whose operators are normal and completely additive was shown
to be isomorphic t&m & for some structur& [128, Theorem 3.9]. This representation

is relevant to an understanding of ttieompletenesphenomenon to be discussed later

in Section 6.1. When applied to the perfect extensiénof a BAO %, it can be seen as
defining a relational structure on the Stone spac#.dfhis is now known as theanonical
structureof 2, denotedCst 2, and its role will be explained further in Section 6.5. The
above property (iii) expresses the fact thatst 2, if R is the relation corresponding to
somen-ary operatorf,”, then for each poing the set

{(xo, ceesXp—1)t R(x0, ..., Xp—1, y)}

is closed in the:-fold product of the Stone space topology.

Cm & is the complex algebra ab, and any subalgebra a@im & is a complex algebra
This terminology derives from an old usage of the word “complex” introduced into group
theory by Frobenius in the (pre-set-theoretic) 1880’s to mean a collection of elements in a
group. Thebinary product

HK = {hk: h € H andk € K}

of subsets (complexegdj, K of a groupG is precisely the operatofg on P(G) corre-
sponding to theernarygraph

R={(h,k, hk): h,k € G}

of the group operation.
Combining the Extension Theorem with the representation of a complete atomic algebra
(like 24?) as one of the forncm &, Jonsson and Tarski established that

every BAO with normal operators is isomorphic to a subalgebra of the complex algebra
of a relational structure.

The caser = 1 of this analysis of operators is highly germane to modal logic: the algebraic
semantics discussed so far has been based on interpfetasgan operator on a Boolean
algebra, and a normal one in the case of S4 and S5. Jénsson and Tarski observed that basic
properties of a binary relatioR C $2 correspond to simple equational properties of the
operatorfr. ThusRr is reflexive iff the BAO(P(S), fr) satisfiest < fx, and transitive iff

it satisfiesffx < x. HenceCm(S, R) is a closure algebra ifR is reflexive and transitive,

i.e., aquasi-orderimg. Since these conditions< fx and ffx < x are preserved by perfect
extensions, it followed [128, Theorem 3.14] that

every closure algebra is isomorphic to a subalgebra of the complex algebra of a quasi-
ordered set.
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This result, along with the Extension Theorem and the representation of a normal BAO as
a complex algebra, were all stated in the 1948 abstract [127].

A number of other properties at were discussed in [128], includirgymmetry This
was shown to be characterised $gif-conjugacyof fr, meaning thaCm(S, R) satis-
fies the conditionf (x) - y = 0 iff x - f(y) = 0, which can be expressed equationally, for
example byfO=0andfx -y < f(x - fy). The characterisation was used to give a rep-
resentation of certain two-dimensional cylindric algebras as complex algebras over a pair
of equivalence relations. Self-conjugacy of an operator is also equivalent to the equation
x - f— fx =0, corresponding to the Brouwerian modal axipm> (IO p. In closure alge-
bras this is equivalent to every closed element being open: a self-conjugate closure algebra
is the same thing as a monadic algebra.

As already mentioned, this study of BAOs was later overlookrdnmett and Lem-
mon 195954] makes extensive use of complex algebras over quasi-orderings in studying
extensions of S4, but makes no mention of the Jénsson—Tarski article, taking its lead in-
stead from the McKinsey—Tarski papers and a constructi@irkhoff 194816] that gives
a correspondence between partial orderings (i.e., antisymmetric quasi-orderings) and clo-
sure operations of certain topologies on a set. The same omission occurs in [155], which
re-proves the representation of a unary operator on a Boolean algebra as a complex algebra
over a binary relation, although it does extend the result by allowing the operator to be
non-normal (see Section 5.1).

3.4. Could Tarski have invented Kripke semantics?

A question like this can only remain a matter of speculation. But it is not just idle
speculation, given that Tarski had worked on modal logic during the same period, and
given his pioneering role in the development of model theory, including the formalisation
of the notions of truth and satisfaction in relational structures.

The Jénsson-Tarski work on closure algebras applies immediately to the McKinsey—
Tarski results on modal logic to show that S4 is characterised by the class of complex
algebras of quasi-orderings. It can also be applied to show that S5 is characterised by the
class of complex algebras of equivalence relations. Now the complex algebra of an equiv-
alence relatiorr is a subdirect product of the complex algebras of the equivalence classes
of R, each of which is a set on whicR is universal. Moreover, the complex algebra of a
universal relation is aimplemonadic algebra. These observations could have been used
to give a more accessible approach to the structural analysis of S5-algebras that appears in
Scroggs 1951219].

But the Jonsson—Tarski paper makes no mention of modal logic at all. J6nsson [125]
has explained that their theory evolved from Tarski’s research on the algebra of binary re-
lations, beginning with the finite axiom systemTarski 1941[246] which was designed
to formalise the calculus of binary relations that had been developed in the nineteenth cen-
tury by De Morgan, Peirce and Schroder. The primitive notions of that paper were those of
Boolean algebra together with the binary operatikan R, of relational composition, the
unary operatiorR ~ of inversion, and the distinguished constant 1’ for the identity relation.
Tarski asked whether any model of his axiom was representable as an algebra of actual
binary relations. He later gave an equational definition &flation algebraas an abstract
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BAO (%8, ; ,”, 1') that forms an involuted monoid under, °, 1’ and satisfies the condi-
tionx”; —(x; y) < —y. Concrete examples include the g4&tS x S) of all binary relations

on a setS and, more generally, the s(E) of subrelations of an equivalence relation

E on S. Any algebra isomorphic to a subalgebra of the normal B&QE), ; , ,1") is
calledrepresentableand Tarski’s representation question became the problem of whether
every abstract relation algebra is representable in this $8nse.

Late in 1946 Tarski communicated to Jénsson a proof that every relation algebra is
embeddable in a complete and atomic one. That construction became the prototype for
the Jonsson-Tarski Extension Theorem for BAOs (Baesson 1998125, Section 1.2]).

The second part of their joint work [129] is entirely devoted to relation algebras and their
representations.

It appears then that in developing his ideas on BAOs Tarski was coming from a different
direction: modal logic was not on the agenda. Accordin@tpeland[39, p. 13], Tarski
told Kripke in 1962 that he was unable to see a connection with what Kripke was then
doing.

4. Relational semantics

Leibniz had a good deal to say about possible worlds, including that the actual world is
the best of all of them. Apparently he nevierally described necessary truths as being
“true in all possible worlds”, but he did say of them that

Not only will they hold as long as the world exists, but also they would have held if God had
created the world according to a different plan.

He defined a truth as being necessary when its opposite implies a contradiction, and also
said that there are as many worlds as there are things that can be conceived without contra-
diction (seeMates 1984172, pp. 72—73, 106-107]).

This way of speaking has provided the motivation and intuitive explanation for a math-
ematical semantics of modality using relational structures that are now often Kailbe
models A formula is assigned a truth-value relative to each point of a model, and these
points are thought of as being possible worlds or states of affairs.

An account will now be given of the contribution of Saul Kripke, followed by a survey
of some of its “anticipations”.

4.1. Kripke’s relatively possible worlds

Kripke's first paper in 1959 [142] on modal logic gave a semantics for a quantificational
version of S5 that included propositional variables as the gased of n-ary predicate
variables. Acomplete assignmefur a formulacx in a non-empty seb was defined to be

20 This was answered negatively by Lyndon (1950). Work of Tarski, Monk and Jonsson eventually showed that
the representable relation algebras form an equational class that is not finitely axiomatisable, with any equational
definition of it requiring infinitely many variables.
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any function that assigns an element@fto each free individual variable im, a subset

of D" to eachn-ary predicate variable occurring in and a truth-valueT or L) to each
propositional variable o&. A modelof « in D is a pair(G, K), whereK is a set of
complete assignments that all agree on their treatment of the free individual variables of
andG is an element oK. Each membeH of K assigns a truth value to each subformula of
a, by induction on the rules of formation for formulas. The truth-functional connectives and
the quantifiers/, 3 behave as in standard predicate logic, and the key clause for modality
is that

H assignsT to (8 iff every member ofK assignsT to 8.

A formulac is true?l in a model(G, K) over D iff it is assignedT by G; valid over D iff
true in all of its models inD; anduniversally validiff valid in all non-empty sets.

An axiomatisation of the class of universally valid formulas was given, with the com-
pleteness proof employing the methodsefmantic tableauitroduced inBeth 195512].
It was then observed that for purely propositional logic this could be turned into a truth
table semantics. A complete assignment becomes just an assignment of truth values to the
variables inx, i.e., a row of a truth table, and a modél, K) is just a classical truth table
with some (but not all) of the rows omitted aiitl some designated row. Formulas is
assignedT in every row if 8 is assignedr in every row of the table; otherwise it is as-
signed_L in every row. The resulting notion of “S5-tautology” precisely characterises the
theorems of propositional S5, a result that Kripke had in fact obtained first, before, as he
explained in footnote 4,

acquaintance with Beth’s paper led me to generalize the truth tables to semantic tableaux and a
completeness theorem.

Kripke’'s informal motivation for these models was that the assigntGaefpresents the
“real” or “actual” world, and the other members &f represent worlds that are “conceiv-
able but not actual”. ThuSlg is “evaluated as true when and only whgrholds in all
conceivable worlds”. The lack of any further structure Krreflects the assumption that
“any combination of possible worlds may be associated with the real world”.

The abstract [143] appearing later in 1959 announced the availability of “appropriate
model theory” and completeness theorems for a raft of modal systems, including S2—S5,
the Feys/von Wright system T (or M), Lemmon’s E-systems, systems with the Brouw-
erian axiom, deontic systems, and others. Various extensions to quantificational logic with
identity were described, and it was stated that “the methods for S4 yields a semantical ap-
paratus for Heyting's system which simplifies that of Beth”. The details of this programme
appeared in the papers of 1963 [145,146] and 1965 [147,148].

The normal propositional logics S4, S5, T and B are the main focus of [145], which
defines anormal model structuras a triple(G, K, R) with G € K and R a reflexivebi-
nary relation onk . A modelfor a propositional formula on this structure is a function
@ (p, H) taking values i T, L}, with p ranging over variables ia and H ranging over

21 Actually “valid in a model” was used here, but changedttaé’ in the 1963 paper [145].
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K. This is extended to assign a truth vakbés, H) to each subformulg of « and each
H € K, with

@O, H)=T iff &(B,H)=Tforall H € K such that{ RH'.

« istruein the model if® (o, G) = T.

In addition to the introduction of the relatiaR, the other crucial conceptual advance
here is that the set of “possible worlds” is no longer a collection of value assignments,
but is permitted to be an arbitrary set. This allows that there can be different worlds that
assign the same truth values to atomic formulas. As to the rel&jdfripke’s intuitive
explanation is as follows [145, p. 70]:

we read ‘H1RH>" as Ho is “possible relative taH,", “possible in H," or “related to H,"; that

is to say, every proposition true iH> is to be possible inHd;. Thus the “absolute” notion of
possible world in [142] (where every world was possible relative to every other) gives way to
relative notion, of one world being possible relative to another. It is clear that every Woisd
possible relative to itself; for this simply says that every propositioe in H is possiblein H.

In accordance with this modified view of “possible worlds” we evaluate a forrdiidanecessary

in a world Hy if it is true in every world possible relative t#; .. .. Dually, A is possible inHy

iff there existsHop, possible relative tdf1, in which A is true.

Semantic tableaux methods are again used to prove completeness theorems: a formula is
true in all models iff it is a theorem of T; true in all transitive models iff it is an S4-theorem,
true in all symmetric models iff a B-theorem, and true in all transitive and symmetric
models iff an S5-theorem. The arguments also give decision procedures, and show that
attention can be restricted to models that@yanectedn the sense that eadli € K has

GR*H, whereR* is theancestralor reflexive-transitive closure at. Kripke notes that

in a connected model in whicR is an equivalence relatiomny two worlds are related. This
accounts for the adequacy, for S5, of the model theory of [142].

An illustration of the tractability of the new model theory is given by a new proof of the
deduction rule in S4 that ifJo v OB is deducible then so is one of and 8. If nei-
ther o nor B is derivable then each has a falsifying S4-model. Take the disjoint union
of these two models and add a new “real” world thaRiselated to everything. The re-
sult is an S4-model falsifyin@la v CB. This argument is much easier to follow than the
McKinsey—Tarski construction involving well-connected algebras described in Section 3.2,
and it adapts readily to other systems.

Other topics discussed include the presentation of models in “tree-like” form, and the
association with each model structure of a matrix, essentially the modal algebra of all
functionsp: K — {T, L}, which are callegpropositionswith the ones having(G) =T
being designated. A model can then be viewed as a device for associating a proposition
H — @(p, H) to each propositional variable. The final section of the paper raises the
possibility of defining new systems by imposing various requirementg @md concludes
that
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If we were to drop the condition tha be reflexive, this would be equivalent to abandoning the
modal axiomJA — A. In this way we could obtain systems of the type required for deontic
logic.

Non-normal logics are the subject of [148], which focuses mainly on Lewis’'s S2 and S3
and the corresponding systems E2 and EBeshmon 1957153]. The E-systems have no
theorems of the forrla, and this suggests to Kripke the idea of allowing worlds in which
any formula beginning withl is false, and hence any beginning with even<(p A —p),

is true. A model structure now becomes a quadry@lek, R, N) with N a subset oK,

to be thought of as a set obrmalworlds, andR a binary relation ork as before, but
now required to be reflexive oN only. The semantic clause fatf in a model on such a
structure is modified by stipulating that

@& (OB, H) =T iff Hisnormal,i.e..H € N,and®(B,H’) =T forall H € K such
thatHRH';

and hence

® (OB, H) =T iff H is non-normal or elseé (B8, H') = T for someH’ € K such that
HRH'.

This has the desired effect of ensuri@égd18, H) = 1L and® (¢, H) = T wheneverH
is non-normal. Thus in a non-normal world, even a contradictigogsible

These models characterise E2, and the ones in wRich transitive characterise E3.
Requiring that the “real” worldz belongs toN gives models that characterise S2 and S3
in each casé? A number of other systems are discussed and applications given, includ-
ing a proof of a long-standing conjecture that the Feys-von Wright system has no finite
axiomatisation with detachment as its sole rule of inference.

Kripke's semantics for quantificational modal logic is presented in [146]. A model
structure now has the added feature of a function assigning #(3€}J to eachH < K.
Intuitively, ¥ (H) is the set of all individuals existing i/, and it provides the range of
values for a variables when a formula beginning withx is evaluated a#{. A model
now assigns to each-ary predicate letter and eadth € K ann-ary relation on the set
U{v(H"): H' € K} of individuals that exist in any world. Axioms are given for quantifi-
cational versions of the basic modal logics and it is stated that the completeness theorems of
[145] can be extended to them. An indication of how that would work can be obtained from
Kripke’'s [147], which gives a tableaux completeness proof for his semantics for Heyting’s
intuitionistic predicate calculus.

22 A semantics for S1 was devised in 1969 by Max Cresswell, modifying Kripke's S2-models to allow some
formulas< B to be false in a non-normal world under certain restrictions, defined with the helgedgl@bourhood
relationR’ € K x P(K). See [41,44].
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4.2. So who invented relational models?

Kripke’'s abstract [143] notes that “for systems based on S4, S5, and M, similar work has
been done independently and at an earlier date by K. J. J. Hintikka”. This acknowledgement
is repeated in footnote 2 of [145], where he draws attention to prior work by a number of
researchers, including Bayart, Jonsson and Tarski, and Kanger, explaining that his own
work was done independently of all of them. He states that the 1957 modelling of Kanger
[132] “though more complex, is similar to that in the present paper”, and also records that
he discovered the Jénsson—Tarski paper when his own was almost finished.

Key ideas surrounding relational interpretations of modality had occurred to several
people. In the next few sections we survey some of this background, before expressing a
view about the relative significance of Kripke’s work.

As mathematics progresses, notions that were obscure and perplexing become clear and
straightforward, sometimes even achieving the status of “obvious”. Then hindsight can
make us all wise after the event. But we are separated from the past by our knowledge of
the present, which may draw us into “seeing” more than was really there at the time. This
should be borne in mind in reading what follows.

4.3. Carnap and Bayart on S5

A state-descriptioms defined by Rudolf Carnap in a 1946 paper [32] and a 1947 book
[33] to be set of sentences which consists of exactly one ahd —« for eachatomic
a. State-descriptions are said to “represent Leibniz’s possible worlds or Wittgenstein’s
possible states of affairs”. A sentence is callettue if it holds in every state-description,
this being “an explicatum for what Leibniz called necessary truth and Kant analytic truth”
[33, p. 8].

Of course it needs to be explained what it is to hold in a state-description. An atomic
sentence holds in a state description iff it belongs to it, the conditions for the connectives
-, A, andv are as expected, and the criterion for Carnap’s necessity connective N is that

Ne holds in every state-descriptiondfholds in every state-description; otherwisey Nolds in
no state-description

[32, D9-5i]; [33, 41-1]. His list of L-truths [32, p. 42], [33, p. 186] includes the axioms

for S5, and he also notes the similarity between N #nand betweer®> and3 under this
semantics. The 1946 paper observes that there is a procedure for deciding L-truth that is
“theoreticallyeffective”. if a sentence hasn atomic components then there afestate-
descriptions that have to be considered in evaluating it, and therefopo8sibilities for
therangeof «, which is the set of state-descriptions in whiclholds. We can examine all
possibilities to see if the range includes all state-descriptions. Carnap defines a version of
S5 which he calls MPC and proves that it is complete with respect to his semantics, by a
reduction of formulas to a normal fofhwhich also gives a decision procedure that is

23 calledmodal conjunctive normal forim Hughes and Cresswdll21], where a variant of the proof is given
onp. 116.
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practicable, i.e., sufficiently short for modal sentences of ordinary length.

He attributes the completeness result to a paper of Mordchaj Wajsberg from 1933. Footnote
8 of [32] gives a description of Wajsberg’s system and also contains the information that
Carnap constructed MPC independently in 1940 and later found that it was equivalent to
Lewis’s S5.

A contribution to possible worlds model theory that has been largely overlooked is the
work of the Belgian logician A. Bayart, whose papers of 1958 [5] and 1959 [6] gave a
semantics for a version of second order quantificational S5, and a complete axiomatisation
of it using a Gentzen-style sequent calculus. The models used allow a restricted range of
interpretation of predicate variables. This idea had been introdudddnkin 195(0111]
to give a completeness result for non-modal higher order logic, and Bayart commented [6,
p. 100] that he had just adapted Henkin’s theorem t8“Skhe other source of motivation
he gives [5, p. 28] is Leibniz’s definition of necessity as truth in all possible wéPldsd
his bibliography cites the items [32,33] of Carnap.

In Bayart's theory ainiverseU is defined to be a disjoint pait, B of sets, with mem-
bers of A calledindividualsand members oB calledworlds (“mondes”). Ann-place
intensional predicatés a function ofn 4+ 1 arguments, taking the values “true” or “false”,
having a world as its first argument, and having individuals as the remaining arguments
whenn # 0. A value systenmelative toU is a functionS assigning a member of to
each individual variable, and anplace intensional predicate to eagtplace predicate
variable. The notion of a formula being true or false for the univérsthe worldM and
the value systens—or more briefly forU M S—is defined in the expected way for the
non-modal connectives and quantifiers, including quantifiers binding predicate variables.
For modalized formula&p andMp it is declared that

LpistrueforuMs iff for everyworld M’ of U, pis true forU M'S;
Mpistrue foruMS iff for some worldM’ of U, pis true forUM’S.

A formula isvalid in the universel if it is true for UM S for every worldM and value
systemS of U.

Bayart used the notatian 1, ¢ for a Gentzen sequent, with(the antecedent) arid(the
consequent) being finite sequences of formulas,Jandeparating symbol. The sequent is
true inU M S if some member ofi is false or else some memberédfis true. He adopted
the axiom schem@g, I, p and a system of twenty-five deduction rules, showing in [5] that
all deducible sequents are valid in all universes. There are four modal rules, allowing the
introduction of the modalitied andM into antecedents and consequents:

p.d,l,é p.d, 1l é da,l, e, p da,l. e p

Lp,a,l,é Mp,a, I, é i, 1,é,Lp da, 1, é,Mp

The last two rules are subject to the restriction that any formula appearihgrig must
be “couverte”, meaning that it is formed from formulas of the tyggsand Mq using

24 «En réalité notre exposé n'est qu’une adaptation du théoréme de Henkin a la logique modale S5.”
25« ennous inspirant de la définition Leibnizienne du nécessaire, comme étant ce qui est vrai dans tous les
mondes possibles.”
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only the non-modal connectives and quantifiers. Such a formula has the same truth value
in UMS andUM’S for all worlds M, M'.

The second paper proved the completeness of this sequent system for validity in certain
guasi-universesbtained by allowing predicate variables to take values in a restricted class
of intensional predicates. From this it was shown that the first order fragment of the system
is complete for validity in all universes. The method used was subsequently generalised in
Cresswell 196T740] to obtain a completeness theorem for the relational semantics of a first
order version of the modal logic T (see Section 5.1).

It is worth recording Bayart’s explanation of why the set of worlds of a universe
U = A, B is essential to this theory. He considered the possibility of dispensingByith
requiring a value syster§ to interpret amm-place predicate variable as amtensional
predicate (i.e., a truth-valued function e¥f), and modelling the necessity modality by
declaring that

LpistrueofUS iff pistrue ofUS’ for every value systers’.

He noted that this interpretation fails to validate the formula
dy L(bx v —by)

(whereb is a unary predicate variable), a formula that is valid according to the above
semantics. His explanation of the flaw in this alternative approach is that it fjveke
same meaning as the universal closuredi.e., Vv1 - - - Vv, p, wherevs, ..., v, are the

free variables op), and confuses necessity with validity.

4.4. Meredith, Prior and Geach
Arthur Prior wrote in 1967 [209, p. 42] that

In some notes made in 1956, C.A. Meredith related modal logic to what he called the ‘property
calculus’.

This material was made available by Prior as a one-page departmental mimeograph [179]
which was published much later in the collection [38]. Its basic idea was to express modal
formulas in the first-order language of a binary predicate synbhdbeginning with the
following definitions, in whichZ. and M are connectives for necessity and possibility (but
the other notation is that of this paper rather than the original Polish):

(=p)a =—(pa),

(p = q)a=(pa) — (qa),

(Lp)a =Vb(Uab — pb),

(Mp)a = (—L—p)a =3b(Uab A pb).

Possible axioms fol/ are then listed:
1. Uab Vv Uba,

2. Uab— (Ubc— Uac),
3. Uab— (Ucb — Uac),



332 R. Goldblatt / Journal of Applied Logic 1 (2003) 309—-392

4. Uaa,
5. Uab— Uba,

and it is noted that “1 gives 4”; “3, 4 give 5”; and “3, 5 give 2”. The notes are written in
this telegraphic style with no interpretation of the symbolism, but presumalaly hay
be read & has property”.

It is stated that quantification theory alone allows the derivation of

(L(p > q)— (Lp— Lg))a,
and then formal deductions are given(éfp — p)a using 4; of(Lp — LLp)a using 2; of

(MLp — Lp)a using 2 and 5; and dfapa from (Lp)a using 1 and 5. The conclusion is
as follows:

Thus 1, or 4, gives T; 1, 2 or 4, 2 gives S4; 1, 3 or 4, 3 gives S5; and 1, 3 (but not 4, 3) gives the
equivalence of the abowd.p)a with the usual S8Lp)a, i.e.,Vapa.

Prior's 1962 article “Possible Worlds” [207] gives a fuller exposition of thisalculus
saying (p. 37) “This whole symbolism | owe to C.A. Meredith”. He applies an inter-
pretation of the predicat®, suggested to him by P.T. Geach in 158@&s a relation of
accessibility Here is Prior’s account of that interpretation.

Suppose we define a ‘possible’ state of affairs or world as one which can be reached from the
world we are actually in. What is meant by reaching or travelling to one world from another need
not here be amplified; we might reach one world from another merely in thought, or we might
reach it more concretely in some dimension-jumping vehicle dreamed up by science-fiction (the
case originally put by Geach), or we might reach it simply by the passage of time (one important
sense of ‘possible state of affairs’ is ‘possible outcome of the present state of affairs’). What |
want to amplify here is the idea (the core of Geach’s suggestion) that we may obtain different
modal systems, different versions of the logic of necessity and possibility, by making different
assumptions about ‘world-jumping’.

Prior was the founder of tense logic (also known as temporal logic). He wanted to analyse
the arguments of the Stoic logician Diodorus Chronos, who had defined a proposition to
be possibleif it either is true or will be true. Prior conceived the idea of using a logical
system with temporal operators analogous to those of modal logic, and thus introduced the
connectives

F itwill be the case that,

P it has been the case that,

G itwill always be the case that,

H it has always been the case that.

Here F and P are “diamond” type modalities, with duats and H respectively. In the
1958 paper “The Syntax of Time-Distinctions” [206] a propositional logic calledPthe

26 This date is given in [208, p. 140], where the acknowledgement of Meredith is repeated once more.
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calculusis defined?’ It is a normal logic with respect t6¢ and H, has the axiom&p —
Fp, FFp — Fp andFp — FFp, aswell as an “interaction” axiom — G Pp and aRule
of Analogyallowing that from any theorem another may be deduced by repldacing P
and vice versa.

This system is then interpreted into what Prior calls/tealculus a first-order language
whose variables, y, z range ovedates and which has a binary symbbtaking dates as
arguments, with the expressibry being read % is later thany”.28 Variablesp, ¢, r stand
for propositions considered as functions of dates, with the exprepsidreing read p at
x". The following interpretations are given of propositional formulas, using an arbitrarily
chosen date variableto represent “the date at which the proposition under consideration
is uttered”.

Fp 3x(xz A px),
Pp  Jx(zx A px),
Gp Vx(lxz— px),
Hp Vx(lzx — px).

Prior observes that the interpretations of some theorems &fRhealculus are provable in
thel-calculus just from the usual axioms and rules for quantificational logic. This applies
to anyPF-theorem derivable from the basis for normal logics together with the interaction
axiom p — G Pp and the rule of Analogy. He then states that the interpretati@npof>

Fp requires for its proof the axiod /x z (“infinite extent of the future”), and that Fp —

Fp depends similarly otransitivity: Ixy — (lyz — Ixz), while Fp — F Fp depends on

the density conditiotwz — Iy (Ixy Alyz).

The modalityM of possibility is given a temporal reading by definiMp to be an
abbreviation forp v Fp v Pp, i.e., “p is true at some time, past present or future”. This
makes the dualp equivalenttop A Gp A Fp, “at all times, p”. Prior notes that to derive
the S5-principleM—-Mp — —Mp, which is “clearly a law” under this interpretation of
M, requiregrichotomy x = y v lxy Vv lyx. His explorations here are quite tentative. For
instance he definemsymmetry/xy — —lyx, but makes no use of it, and he fails to note
that the S4-principle/ Mp — Mp also depends on trichotomy and not just transitivity.

Why did Prior give such unequivocal credit to Meredith for the 1856alculus? The
puzzle about this is that his paper on fhealculus, although published in 1958, was pre-
sented much earlier, on 27 August 1954, as his Presidential Address to the New Zealand
Philosophy Congress at the Victoria University of Wellington. Perhaps he was crediting
Meredith with the extension of the symbolismrtedallogic as he understood it, i.e., the
logic of necessity and possibility, as distinct from tense logic. [Fbalculus was intended
to describe a very specific situation: an ordered system of dates or moments in time that
forms an “infinite and continuous linear series” [206, p. 115]. In the absence of any corre-
sponding interpretation of thé-predicate, the purely formal application of the symbolism
by Meredith may have been seen by Prior as a significant advance.

Prior made much use éfandU calculi in his papers and books on tense logic. He did
not however pursue their implicit relational model theory, and would not have thought it

27 The contents of this paper are reviewedinor 1967 [209, pp. 34-41].
28 prior notes that the structure of the calculus would be unchandesleife read “is earlier than”.
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philosophically worthwhile to do so. Although he described#ualculus as “a device of
considerable metalogical utility” [206, p. 115], he went on to deny that the interpretation
of the PF-calculus within the-calculus has any metaphysical significance as an

explanation of what we mean by “is”, “has been” and “will be”.

On the contrary he proposed that what was needed was an interpretation in the reverse
direction (p. 116):

thel-calculus should be exhibited as a logical construction out oPfRealculus.

This proposal became a major programme for Prior. He used formulap like-Pp A

—Fp which can be true at only one point of the linear series of momenisstants If

M(p A—Pp A —Fp) is true at some time, the variabtemust itself be true at exactly one

instant and may be identified with that instant. Then the fornja— «) expresses that

“itis the case ap thate”, and so if p andg are both such instance-variablésp — Pqg)

asserts that it is true aitthat it has beep, i.e., p is later tharnyg, andgq is earlier tharp.
Systems having variables identified with unique instants or worlds are developed most

fully in the book [210], where Prior gives (p. 37) an emphatic statement of his metaphysical

propensity:

... Ifind myself quite unable to take ‘instants’ seriously as individuéties; | cannounderstand
‘instants’, and the earlier-than relation that is supposed to hold between them, except as logical
constructions out of tensed facts. Tense logic is for me, if | may use the phmatsphysically
fundamentaland not just an artificially torn-off fragment of the first-order theory of the earlier-
than relation.

4.5. Kanger

A semantics is given by Stig Kanger in his 1957 monograph [132] for a version of modal
predicate logic whose atomic formulas are propositional variables and expressions of the
form (x1,...,x,) ey, wheren > 1 and thex; andy are individual variables or constants.
The language included a list of modal connectives Mo, . ...

A notion of asystenis introduced as a pair, V) wherer is aframeandV aprimary
valuation Herer is a certain kind of sequence of non-empty sets whose elements provide
values of individual symbols of various typédsé.is a binary operation that assigns a truth
valueV (r, p), belonging to{0, 1}, to each propositional variabjeand framer, as well as
interpreting individual symbols and the symlaah each frame in a manner that need not
concern us. Then a “secondary” truth valuatiog, V, «) is inductively specified, allowing
each formulax to be defined to b&ue in systentr, V) iff T (r, V, @) = 1. For this purpose
each modalityM; is assumed to be associated with a clRssf quadruplesr’, V', r, V),
and it is declared that

T, V,Mija)=1 iff T(', V', a)=1foreach’ andV’ such that
Ri(r', V', r, V)
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(soM; is a “box” type of modality).

Kanger states the followingoundnessesults. The theorems of the Feys—von Wright
system T are valid (i.e., true in all systems)#f(r, V, r, V) always holds. S4 is validated
iff R;(r,V,r, V) always holds and so does the condition

Ri(r,V,r',V')andR;(r", V", r, V) implies R;(r", V", /', V').
S5 is validated iff the S4 conditions hold along with

Ri(r,V,r',V')yandR;(r",V",r', V') implies R;(r",V",r, V).
Proofs of these assertions are not provided. (In fact it is readily seen that the given condi-
tions onR; imply validity for the corresponding logics in each case, but the converses are
dubious.) A result is proved that equates the existence &;dulfilling the above defin-

ition of T'(r, V, M;) to the preservation of certain inference rules involvivig Kanger
says of this that

Similar results in the field of Boolean algebras with operators may be foul@hgson and Tarski
[128].

Completeness theorems are not proved, or even stated, for this modal semantics. But there
is a completeness proof for the non-modal fragment of the language which has a remark-
able aspect. Kanger wishes to have the symhalerpreted as the genuine set membership
relation, and he applies the (much-overused) adjectorenal to a primary valuatiorV
which does give this interpretation toin every frame. Since his language allows atomic
formulas likex ¢ x, normal systems must hamen-well-foundedets. He introduces a new
set-theoretical principle to ensure that enough such sets exist to give the completeness the-
orem with respect to normal structurés.

Different definitions ofR allow the modelling of different notions of necessity. Kanger
(p. 35) defineset-theoretical necessitg be the modality given by requiring

Ri(r',V',r, V) iff V’isnormalwith respectte.
This means thal/; gets the reading “in all normal systemg&halytic necessitis modelled
by the R; having

Ri(r',V',r,v) iff V=V,
andlogical necessitarises wherR; (', V', r, V) always holds. Thus “logically necessary”
means “true in all systems”, which is reminiscent of the modelling of the S5 necessity
connective by Carnap and Bayart (Section 4.3).

There is no doubt much scope for defining other modalities in this way, and Kanger
offers one other brief suggestion:

We may, for instance, define ‘geometrical necessity’ in the way we defined set-theoretical ne-

cessity except that (roughly speaking) shall be normal also with respect to the theoretical
constants of geometry.

29 This principle is discussed further Aczel 19841, pp. 28-31 and 108].
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The paper [131] addresses difficulties raised by Quine (in [211] and other writings) about
the possibility of satisfactorily interpreting quantificational modal logic. One such obstacle
concerns the principle &fubstitutivity of equaldormalised by the schema

xxy— (@ —ad)

wherea’ is any formula differing fromx only in having free occurrences ofin some
places wherex has free occurrences of Takinga to be the validd(x =~ x), this allows
derivation of

x~y—Ox~ry),

which is arguably invalid. For example, it is an astronomical fact that the Morning Star and
the Evening Star are the same object (Venus), but this equality ismestesssaryruth.

Kanger pointed out that his new semantics for quantification and modality made it pos-
sible to “recognize and explain the error in the Morning Star paradox”: the principle of
substitutivity of equals is not valid without restriction, but only in the weaker form

O ~y) = (@ = a).

Jaakko Hintikka [119] later expressed the opinion that this discussion by Kanger of the
Morning Star paradox will

remain a historical landmark as the first philosophical application of an explicit semantical theory
of quantified modal logic.

4.6. Montague

Kanger’s quaternary relatioR; might equally well be viewed as a binary relation
(r', V') R; (r, V) between systems. Such a notion appears in a 1960 paper by Richard Mon-
tague [187] which was originally presented to a philosophy conference at the University of
California, Los Angeles, in May of 1955. Montague did not initially plan to publish the pa-
per because “it contains no results of any great technical interest”, but eventually changed
his mind after the appearance of Kanger’s and Kripke’s ideas.

The aim of the paper is to interpret logical and physical necessity, and the deontic
modality “it is obligatory that”, and to relate these to the use of quantifiers. Tarski's model
theory for first-order languages is employed for this purpose: a model is taken to be a
structureM = (D, R, f) whereD is a domain of individualsk a function fixing an inter-
pretation of individual constants and finitary predicate®iim the now-familiar way, and
f is an assignment of values i to individual variables. Montague uses these models to
provide a semantics for formulas that are constructible from atomic first-order formulas by
using the propositional connectives aigdbut not quantifiers9 His approach is to take a
relationX between such models, and then inductively define

M satisfiesda iff for every modelM’ such thatM X M’, M’ satisfiesy.

30 Montague uses several symbols for various kinds of modality,bwtll suffice here.
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His first example shows that the Tarskian semantic¥/ffits this definition. TakingX to
be the relatiorQ, specified by

Mo.M' iff D=D', R=R andf andf’ agree except omn

gives] the interpretation “for allk”. Thus quantification could be handled by associat-
ing a modality with each variable, and Montague suggests that this should dispel Quine’s
uneasiness about combining modality with quantification.

The relation

MILM' iff D=Dandf = f’

givesCa the interpretation “it is logically necessary th&t, meaning thate holds no
matter what its individual constants and predicates denote.

To interpret physical necessity, Montague uses the idea that a statement is physically
necessary if it is deducible from some set of physical laws specified in advance. This is
formalised by fixing a sek of first-orderC]-free sentences and specifying a relatiy

MPM' it D=D', f=f andM’ isamodelofK.

Similarly, “it is obligatory thate” is taken to mean that is deducible from some set of
ethical laws specified in advance. This is formalised by fixing a dagkideal models

those in which the constants and predicates mean what they ought to according to these
laws. Montague suggests as an example fratuld be

the class of models which, in Tarski’'s sense, satisfy the ten commandments formulated as declar-
ative, rather than imperative, sentences.

The deontic modality then corresponds to the model-relafiGuch that
MEM' iff D=D', f=f" andM’ belongstal.

If a model-relationX fulfills the conditions

for all M there existsM’ with M X M’,
MXM and M’ X M” implies M X M”,
MXM and M X M” implies M’ X M”,

(the last two mirror Kanger’s conditions) then every S5-theorem is valid, i.e., satisfied by
every model. Montague states that the converse is true, and that there is a decision method
for the class of formulas valid in this sense.

4.7. Hintikka

If M is a model for predicate logic, of the kind used by Montagueylet be the set of
all formulas that it satisfies. In Jaakko Hintikka’s approach to semantics, such retiels
are in effect replaced by the sgis, . These sets can be characterised by their syntactic
closure properties, obtained by replaciniy“satisfiese” by “«o € ua4” in the clauses of
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the inductive definition of satisfaction of formulas.rmodel sefs defined as a set of
formulas that has certain closure properties, such as

if & is atomic then not both € u and—« € u,
if a ABeu,thena e pandpg e i,
ifavBeu,thena e porpepu,
if Ixa € u, thena(y/x) € u for some variable,

that are sufficient to guarantee thatan be extended toraaximalmodel set which has
all such closure properties corresponding to the conditions for satisfaction for the truth-
functional connectives and the quantifiéts.

Hintikka's 1957 article [117] gives a definition of satisfaction for formulas of quantified
deontic logic using model sets whose conditions

may be thought of as expressing properties of the set of all statements that are true under some
particular state of affairs.

He notes (p. 10) that his treatment derives from a
new general theory of modal logics | have developed.

This general modelling of modalities was published in 1961 [118], where he views a max-
imal model set as the set of all formulas that hold in some state-description in the sense of
Carnap, and says that

a model set is the formal counterpart to a partial description of a possible state of affairs (of a
‘possible world’). (It is, however, large enough a description to make sure that the state of affairs
in question is really possible.)

The point of the last sentence is that for non-modal quantificational logic, every model
set is included inu 4 for some actual modeM. Hence a set of non-modal formulas is
satisfiable in the Tarskian sense if it is included in some model set.

The 1957 article deals with a system that has quantifiable variables ranging over in-
dividual acts, and dual modalities fobligation and permission with formulasO« and
Po being read & is obligatory” and & is permissible”, respectively. The paper makes
very interesting historical reading, especially on pages 11 and 12 where one can almost see
the notion of a binary relation between model sets quickening in the author’s mind as he
grapples with the question of what we mean by saying éhst permitted. His answer is
that

31 |n fact it is assumed that formulas are in a certain normal form, but we can overlook the technicalities
here.
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we are saying that one could have deneithout violating one’s obligations. In other words, we
are saying that a state of affairs different from the actual one is consistently thinkiabestate
of affairs in whiche is done but in which all the obligations are nevertheless fulfilled.

Thus if the actual state is (partially) represented by a modelk s#ten to represent this
different and consistently thinkable state we need

another seu* related tox in a certain way. This relation will be expressed by saying ttats
copermissible withs.

Hintikka is thus led to formulate the following rules.

If Pa € u,then there a sgt* copermissible withu such thatr € u*.
If Oa € uandifu* is copermissible withe, theno € p*.

The second rule addresses the requirement that all actual obligations be fulfilled in the state
in which a permissible act is done. Then there are two more rules:

If O € u* andif u* is copermissible with some other getthena € p*.
If Oa € andifu* is copermissible withe, thenOa € p*.

Motivation for third rule is as follows.

But not only one must be thought of ji* as fulfilling the obligations one has now. Sometimes
one is permitted to do something only at the cost of new obligations. These must be thought of as
being fulfilled in* in order to be sure that all the obligations one has really are compatible with
«'s being done.

The fourth rule is justified because

there seems to be no reason why the actually existing obligations should not also hold in the
alternative state of affairs contemplated.ifi. What is thought of as obligatory im must hence
also be obligatory in*.

Hintikka is well aware that the relation betwegnand p* cannot be functional: there
may be different acts that are each permissiblg iout cannot or must not be performed
together, hence must be done in different states copermissible:walso, ©* may have
its own formulas of the fornP«, requiring further model sets™* copermissible with.*,
and so on. The upshot s that a seif formulas is defined to bgatisfiabldff it is included

in some model set which itself belongs taa@llectionof model sets that carries a binary
relation (called the relation of copermission) obeying the closure rule® fand 0.3?

A formulaw is valid if {—a} is not satisfiable in this sense.

32 Note that the second rule is a consequence of the third and fourth.
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This approach gives a method for demonstrating satisfiability and validity, by starting
with a setA and attempting to build a suitable collection of model sets by repeatedly ap-
plying all the closure rules. New sets are added to the collection when the rukeitor
applied. The other rules enlarge existing sets. If at some point a violation of the rule of
consistency is produced, in the form of a contradictory paif« in some set, then the
original A is not satisfiable.

Hintikka gives a striking illustration of the effectiveness of this technique for analysing
the subtleties of denotic logic. He demonstrates the invalidity of the principle

Oa N (ax— 0B) — 08,

which Prior had thought was a “quite plain truth”, by observing that its negation is satisfied
in the simple collection consisting of the two model sets

{Oa, ma v OB, P—p, —al, {Oa, =B, a}.
However the principle can be turned into a valid one by making it obligatory:
O[Oa Ala— 0B) > 0,8].

Any attempt to build a satisfying structure for the negation of this formula leads to violation
of consistency. Several other applications like this are given, analysing complex principles
involving the interchange of quantifiers and deontic modalities.

With the advantage of hindsight we can see that the notion of a collection of model sets
with closure rules is reminiscent of the notion of a collection of semantic tableaux used in
Kripke’s completeness proofs. Hintikka did not however take up an axiomatic development
of his system.

The 1961 paper [118] deals with the necessky é&nd possibility §4/) modalities, and
here the description of satisfiability is essentially the same, but more crisply presented.
A model systeris defined as a paiif2, R) with R being a binary relation of “alternative-
ness” ong2, ands2 being a collection of model sets that satisfies the following conditions.

If Ma € u € §2, then there is inN2 at least one alternativeto u such thatr € v.
If Ne e u € 2, and ifv € £2 is an alternative tq, thena € v.
If Na € u € 2, thena € £2.

The first two of these are the same as the first two rulesPfend O. The third reflects
the requirement that any necessary truth be actually true. Hintikka's description of the new
alternativeness relation is thaiRv whenv is a partial description of

some other state of affairs that could have been realised instgad of

A seta of formulas issatisfiablg(as before) iff there is such a model system viith w for

someu € §2, and aformula isvalid if {—«} is not satisfiable. Hintikka states that the valid
formulas are precisely the theorems of the logic T. Restricting to transitive model systems
gives a characterisation of the theorems of S4, while the symmetric systems determine B
and the ones that are both transitive and symmetric determine S5. These assertions apply



R. Goldblatt / Journal of Applied Logic 1 (2003) 309—-392 341

to the propositional version of the logics. To prove them would require showing in each
case that a deductively consistent formula is a member of some model set that belongs to
a model system of the appropriate kind, but again the issue of axioms and proof theory is
not taken up. The paper is mainly devoted to a discussion of the problem of combining
modalities with quantifiers, and proposes various modifications on the closure properties
of 2 depending on whether it is required that whatever exists in a particular state of affairs
should do so necessarily.

4.8. The place of Kripke

The earlier efforts to develop the seminal ideas of Kripke semantics have inevitably
raised questions of priority. In fact, as the above material is intended to show, the idea of
using a binary relation to model modality occurred independently to a number of people,
and for different reasons, with Hintikka being the first to explain it in terms of conceivable
alternatives to a given state of affairs. Kanger was the first to recognise the relevance of
Jonsson and Tarski 199128] to modal logic3® and the first to apply this kind of seman-
tical theory to the resolution of philosophical questions about existence and identity.

But it is only in Kripke’s writings that we see such seminal ideas developed into an
attractive model theory of sufficient power to fully resolve the long-standing issue of a
satisfactory semantics for modality and of sufficient generality to advance the field further.
A fundamental point (mentioned in Section 4.1) is that he was the first to propose, and make
effective use ofarbitrary set-theoretic structures as models. The methods of Hintikka,
Kanger and Montague are all variations on the theme of a binary relation between models
of the non-modal fragment of the predicate languages they use. Also, they did not present
complete axiomatisations of their semantics. Kripke was the first to do this, and by allowing
R to be any relation on any sét, he opened the door to all kinds of model constructions,
which were rapidly provided by himself and then others. (His models for non-normallogics
appear to lack any historical antecedents.) It is due to his innovation that we now have a
modeltheoryfor intensional logics.

As already noted in Section 4.2, Kripke developed his ideas independently. His analysis
of S5 was initiated in 1956 when he was still at high-school (he turned 16 years old on
November 13th of that year). From the papeior 1956 [204] he learned of the axioms
for S5, and began to think of modelling that system by truth tables with missing rows (see
Section 4.1). Early in 1957 E. W. Beth sent him his papers on the method of semantic
tableaux, which provided Kripke with a technique for proving completeness theorems. By
1958 Kripke had worked out his relational semantics for modal and intuitionistic systems,
as announced in the abstract [143] which was received by the editors on 25 August 1958.
It was through exploring different conditions connecting tableaux in order to model the
different subsystems of S5 that Kripke came to the idea of using a binary relation between
worlds as the basis of a model theory.

Kripke had been introduced to Beth by Haskell B. Curry, who wrote to Beth on 24
January 1957 that

33 As Follesdal[74] emphasises.
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| have recently been in communication with a young man in Omaha Nebraska, named Saul
Kripke... . This young man is a mere boy of 16 years; yet he has read and mastered my Notre
Dame Lectures and writes me letters which would do credit to many a professional logician. | have
suggested to him that he write you for preprints of your papers which | have already mentioned.
These of course will be very difficult for him, but he appears to be a person of extraordinary
brilliance, and | have no doubt something will come o#4t.

The Notre Dame Lectures @furry 1950[45] presented a number of deductive systems of
modal logic, including one equivalent to Lewis’s S4 for which a cut elimination theorem
was demonstrated iGurry 1952[46]. Other such sources that were influential for Kripke
included the McKinsey-Tarski papers and the papereshmon 1957153] which showed
how to axiomatize the Lewis systems in the style of Godel.

In late 1958 Kripke entered Harvard University as an undergraduate, and encountered
a philosophical environment that was hostile to modal logic. He was advised to abandon
the subject and concentrate on majoring in mathematics. This caused the evident delay in
publication of his work until the appearance of the major articles of 1963 and 1965.

Looking back over the intervening decades we see the strong influence of Kripke’s
ideas on many areas of mathematical logic, ranging across the foundations of constructive
logic and set theory, substructural logics (including relevance logic, linear logic), provabil-
ity logic, the Kripke—Joyal semantics in topos theory and numerous logics of transition
systems in theoretical computer science.

A propositionis defined by Kripke in [145] to be a function from worlds to truth values,
while in [146] ann-ary predicate letter is modelled as a function from worlds{ary
relations. Those definitions formed a cornerstone of Montague’s approach to intensional
logic,®® and stimulated the substantial development of formal semantics for natural lan-
guages in the theories of Montague [190], Cresswell [42], Barwise [4] and others. Kripke's
models, and his intuitive descriptions of them, also stimulated many philosophical and
formal investigations of the nature of possible worlds, and the questions of existence and
identity that they generate (see [161]).

5. The post-Kripkean boom of the sixties

The 1960s was an extraordinary time for the introduction of new model theories. At the
beginning of the decade Abraham Robinson created nonstandard analysis by construct-
ing models of the higher-order theory of the real numbers. Then Paul Cohen’s invention
of forcing revolutionized the study of models of set theory, and freed up the log-jam of
guestions that had been building since the time of Cantor. Kripke related forcing to his
models of Heyting’s predicate calculus, and Dana Scott and Robert Solovay re-formulated
it as the technique of Boolean-valued models. Scott then replaced “Boolean-valued” by
“Heyting-valued” and extended the topological interpretation from intuitionistic predicate

34 Quoted from pp. 290-291 afe Jongh and van Ulsg#9].
35 As acknowledged in several places, e.g., footnote Mafitague 197(¢189].
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logic to intuitionistic real analysis. F. William Lawvere’s search for categorical axioms for
set theory and the foundations of mathematics culminated at the end of the decade in his
development, in collaboration with Miles Tierney, of topos theory. This encompassed, in
various ways, both classical and intuitionistic higher order logic and set theory, including
the models of Kripke, Cohen, Scott, and Solovay, as well as incorporating the sheaf theory
of the Grothendieck school of algebraic geometry. Scott’s construction of models for the
untyped lambda calculus in 1969 was to open up the discipline of denotational semantics
for programming languages, as well as stimulating new investigations in lattice theory and
topology, and further links with categorical and intuitionistic logic.

The introduction of Kripke models had a revolutionary impact on modal logic itself.
Binary relations are much easier to visualise, construct, and manipulate than operators
on Boolean algebras. They fall into many naturally definable classes that can be used to
define corresponding logics. Here then were the tools that would enable an exhaustive
investigation of the subject, and some important new ideas were developed during this
period.

5.1. The Lemmon and Scott collaboration

Pioneers in this investigation were John Lemmon and Dana Scott, who conducted an
extensive collaboration. They planned to write a book cdliéensional Logi¢for which
Lemmon had drafted some initial chapters when he died in 1966. Scott then made this ma-
terial available in a mimeographed form which was circulated informally for a number of
years, becoming known as the “Lemmon Notes”. Eventually it was edited by Scott’s stu-
dent Krister Segerberg, and published in 1977 as [156]. Scott also investigated broad issues
of intensional logic (individuals and concepts, possible worlds and indices, intensional re-
lations and operators etc.) in discussion with Montague, Kaplan and others. Some of his
ideas were presented in the article [218]. His considerable influence on the subject has been
disseminated through the publications of Lemmon and Segerberg, and is also reported in
Prior 1967[209] in relation to tense logic, and in a number of Montague’s papers.

The relationship between modal algebras and model structures was first systematically
explored in Lemmon’s two part article [154,155] from 1966. Here a model structure has the
form & = (K, R, Q), with Q playing the role of the set of non-normal (“queer”) worfs.
Notably absent is Kripke'seal world G € K. Instead a formula is said to bevalid in &
if in all models on&, « is true (i.e., assigned the valug) at all points ofK .

Associated withS is the modal algebr&™ comprising the powerset Boolean algebra
P(K) with the additive operator

f(X)={xeK:xeQordyeX(xRy)}

to interpret®. Note thatf (J) = Q, so f is anormaloperator iffK has only normal mem-
bers. Lemmon proved the result that a formula is valiiiff it is satisfied in the algebra
ST with just the element 1 K) designated. This follows from the natural correspon-
dence between mode# on & and assignments to propositional variablesit, under

36 At the time this work was done Kripke’s [148] had not appeared, but Lemmon had learned about non-normal
worlds in conversation with Kripke.
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which a variablep is assigned the s¢t: @(p,x) = T} € &*. The result itself is an elab-
oration of Kripke’s construction in [145] of the matrix of propositions associated with any
model structure. It remains true for S2-like systems if validitydins confined to truth at
normal worlds, and also all elements®f" that includek — Q are designated.

Any finite modal algebr&( = (8, f) is readily shown to be isomorphic to one of the
form &T, with & based on the set of atoms®Bf Combining that observation with McKin-
sey’s finite algebra constructions enabled Lemmon to deduce the completeness of a number
of modal logics with respect to validity in their (finite) model structures. For an arbi#tary
he gave a representation theorem, “due in essentials to Dana Scott”, that @rdsealsub-
algebra of som&™. This was done by an extension of Stone’s representation of Boolean
algebras, basin® on the setk of all ultrafilters of B, with u Rz iff {fx: x €t} Cu for
all ultrafiltersu, ¢, while Q = {x € K: f0 e x}. Eachx € 2 is represented i ™ by the
set{u € K: x € u} of ultrafilters containing, as in Stone’s theory.

Inthe Lemmon Notes there is a model-theoretic analogue of this representation of modal
algebras that has played a pivotal role ever since. Out of any normaldogiconstructed
a model

MA — (KA, RA, ¢A)
in which K4 is the set of almaximally A-consistensets of formulas, with
uRt iff {Caiact}Cu iff {o Daecu}Cr,

and®4(p,u) = T iff p € u. The key property of this construction is that an arbitrary
formulaa is true inM4 atu iff o € u. This implies thatM4 is amodel ofe, i.e.,« is true

at all points of M4, iff « is an A-theorem. Thus\4 is a single characteristic model for

A, now commonly called theanonicalA-model. Moreover, the properties of this model
are intimately connected with the proof-theory4f For example, if Do — «) is an A-
theorem for alkx, then it follows directly from properties of maximally consistent sets that
R4 is reflexive. This gives a technique for proving that various logics are characterised by
suitable conditions on models, a technique that is explored extensively in [156].

If Scott’s representation of modal algebras is applied to the Lindenbaum algebra of
A, the result is a model structure isomorphio(#6*, R4). The construction can also be
viewed as an adaptation of the method of completeness proof introduétzhkin 1949
[110], and first used for modal logic iBayart 1958[5] (see Section 4.3). There were
others who independently applied this approach to the relational semantics for modal logic,
including David Makinson [166] and Max Cresswell [40], their work being completed in
1965 in both cases. Makinson dealt with propositional systems, while Cresswell’s appears
to be the first Henkin-style construction of relational modelgjoéntificationalmodal
logic. David Kaplan outlined a proof of this kind in his 1966 review [133] of Kripke's
[145], explaining that the idea of adapting Henkin’s technique to modal systems had been
suggested to him by Dana Scott.

Another construction of lasting importance from the Lemmon Notes is a technique for
proving the finite model property by formirguotientsof the modelM~. To calculate the
truth-value of a formulax at points inM“4 we need only know the truth-values of the
finitely many subformulas of. We can regard two members 6f4 asequivalentf they
assign the same truth-values to all subformulag.df there aren such subformulas, then
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there will be at most’2resulting equivalence classes of elementstt, even though\14

itself is uncountably large. Identifying equivalent elements allow$ to be collapsed to
afinite quotient model which will falsifyx if M4 does. This process, which has become
known asfiltration,3” was first developed in a more set-theoretic way.@mmon 1966

[155, p. 209] as an alternative to McKinsey’s finite algebra construction. In its model-
theoretic form it has proven important for completeness proofs as well as for proofs of
the finite model property. Some eighteen modal logics were shown to be decidable by this
method in [156].

5.2. Bull'stense algebra

A singular contribution from the 1960s is the algebraic study by Robert Bull, a student
of Arthur Prior38 of logics characterised by linearly ordered structures. Prior had observed
that the Diodorean temporal reading@fr as ‘« is and always will be true” leads, on
intuitive grounds, to a logic that includes S4 but not S5. In his 1956 John Locke Lectures
at Oxford onTime and Modalitypublished as [205]) he attempted to give a mathematical
precision to this reading by interpreting formulas as sets of sequences of truth values. In
effect he was dealing with the complex closure algetmdw, <), wherew ={0, 1,2, ...}
is the set of natural numbers viewed as a sequence of moments of time. The question
became one of identifying the logic that is characterised by this algebra, or equivalently by
the model structuréw, <). Prior called this logic I¥°

In 1957 Lemmon observed that D includes the formula

Odp — Og) vUOOg — Op),

which arises from the intuitionisticallin valid formula(p — ¢) v (¢ — p) by apply-

ing the translation of McKinsey and Tarski [178]. Lemmon’s formula is therefore not an
S4-theorem, and when added as an axiom to S4 produces a system called S4.3. In 1958
Michael Dummett showed that the formula

O(@(p - Op) - Op) — (©Op — Up)

also belongs to D, and then Prior pointed out in [208] that this is due tdiiteetenessf
the ordering< onw: if time were a continuous ordering then Dummett’s formula would not
be valid, but Lemmon’s would. In fact the property used by Prior to invalidate Dummett’s
formula wasdensity(between any two moments there is a third) rather than continuity in
the sense of Dedekind (no “gaps”).

Kripke showed in 1963 that D is exactly the normal logic obtained by adding Dum-
mett’s formula as an axiom to S4.3. His proof, using semantic tableaux, is unpublished.

37 This term was first used iBegerberg 196820], where “canonical model” was also introduced.

38 Initially at Christchurch, New Zealand, and then at Manchester, England. Bull was one of two graduate
students from New Zealand who studied with Prior at Manchester at the beginning of the 1960s. The other was
Max Cresswell, who later became the supervisor of the present author.

39 The letter D later became a label for the system KOp — O p), or equivalently K+ & T, because of its
connection with Deontic logic.
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Dummett conjectured to Bull that taking time as “continuous” would yield a characteri-
sation of S4.39 Bull proved this in his 1965 paper [28] which, in addition to giving an
algebraic proof of Kripke’s completeness theorem for D, showed that S4.3 is characterised
by the complex algebra of the orderig™, <) of the positive real numbers. He noted
thatR™ could be replaced here by the positive rationals, or any linearly ordered set with a
subset of order type?. In particular this shows that propositional modal formulas are inca-
pable of expressing the distinction between dense and continuous time under the relational
semantics.

Bull made effective use of Birkhoff’s fundamental decomposition [15] of an abstract
algebra into a subdirect product of subdirectly irreducible algebras. Birkhoff had observed
that subdirectly irreducible closure algebraswaedl-connectedn the sense of McKinsey
and Tarski [176] (see Section 3.2). Applying this to Lindenbaum algebras shows that every
normal extension of S4 is characterised by well-connected closure algebras, and in the
case of extensions of S4.3 the closed & x) elements of a well-connected algebra are
linearly ordered. Bull used this fact, together with the strategy of McKinsey's finite alge-
bra construction, to build intricate embeddings of finite S4.3-algebra<imi@®*, <) or
Cm(w, <). He later refined this technique to establish in [29] one of the more celebrated
meta-theorems of modal logic:

every normal extension @4.3has the finite model property.

Proofs of this result using relational models were subsequently devised by Kit Fine [67]
and Hakan Franzén (see [224]). Fine gave a penetrating analysis of finite S4.3 models to
establish that there are exacty normal extension of S4.3, all of which are finitely ax-
iomatisable and hence decidable. Segerberg [225] proved that in fact every logic extending
S4.3is normal.

The indistinguishability of rational and real time is overcome by passing to the more
powerful language of Prior®F-calculus for tense logic (Section 4.4). A model structure
for this language would in principle have the fo(ik, Rp, Rr), with Rp and Rr being
binary relations orK interpreting the modalitie® and F. But for modelling tense logic,
with its interactionprinciplesp — G Pp andp — H Fp, the relationsRp andR¢ should
be mutually inverse. Thus we continue to use structgkesk) with the understanding that
what we really intend i$K, R—1, R). For linearly ordered structures, the ability of the two
modalities to capture properties “in each direction” of the ordering produces formulas that
express the Dedekind completenes®pé fact that was first realised by Montague and his
student Nino Cocchiarelf&

Bull applied his algebraic methodology in the 1968 paper [30] to give complete axioma-
tisations of the tense logics characterised by each of the strictly linearly ordered structures
(Z, <), (Q, <) and (R, <). In addition to a common set of axioms for linear orderings
without first or last element, for integer tinfehe used the special axiom

O(Gp — p) = OGp v O-Gp,

40 see Chapter Il oPrior 1967[209] as well aBull 1965[28] for this historical background.
41 see [209, pp. 57, 72].
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wherel is the S5-modality defined bylo = o A Ga A Ha. For rational timeQ) this was
replaced by thelensityaxiom Fp — F Fp. The axiomatisation of real time required the
density axiom as well as

O(Gp — PGp) — 0OGp v O-Gp.

(The reader may find it instructive to verify that validity of this last formula in any model
on (R, <) depends on the fact that there are no unfilled Dedekind cuts in the real line.)
Bull also established that the tense logics of rational and real time have the finite model
property, but that the logic of integer time does fiot.

This is not quite the end of the story about Diodorean modality. Prior made an inter-
esting observation in [209, p. 203] about the (non-linear) temporal ordering of locations
in relativistic spacetime. In the Minkowskian spacetimespécialrelativity theory, this
ordering isdirected for any two locations, y there is a third that is in the future of both
x andy. This is because any two future light-cones eventually intersect (but not so in
generalrelativity, where the effect of gravitation can prevent light-cones overlapping). Di-
rectedness causes the Diodorean interpretatidhtofvalidate the formuleOp — OO p,
which is itself equivalent in the field of S4 to the formula-Cp v OCOp that arises
by the McKinsey—Tarski translation of the intuitionistically invaktép v ——p. Adding
OOp — OO p to S4 gives the logic S4.2. Both S4.2 and S4.3 were introducBdimmett
and Lemmon 195@4], and shown to have the finite model propertyinll 1964[27].

In Goldblatt 1980[89] a completeness proof is given to show that S4.2 is exactly the
Diodorean logic ofz-dimensional Minkowski spacetime for all > 2, as well as being
the logic of the product structul®, <) x (R, <).*3 But the problem of axiomatising the
PF-calculi characterised by these spacetimes remains open.

5.3. Segerberg’s essay

Krister Segerberg’s dissertatioin Essay in Classical Modal Log[@23], provided a
comprehensive semantic analysis of whole families of modal logics, as well as developing
important new concepts, some of which had been announced in his papers of 1968 [220]
and 1970 [222]. These works established some notational and terminological conventions
that have been lasting. For instance the térame was used in place ahodel struc-
ture, and the Lemmon-Scott satisfaction notati:egﬁ" a was used throughout in place of
Kripke's @ («a, x) = T, whereM = (&, @). Later authors have tended to reduce the use
of superscripts and writd1 =, « instead oﬂ:){"I a. M = «a then means that is true in
M, i.e., true at all points oM, andS = « means thai is valid in the frameS.

The weakest system discussed in Bssayis E, the smallest logic that is closed under
the rulefrom o < B8 infer Ja <> (JB. An algebraic semantics for this logic would employ
algebragl = (B, f) havingf as a unary function o satisfying no particular conditions.

The corresponding “relational” models useighbourhood semanticthe idea of which is
attributed to Montague [188] and Scott [218]. Segerberg presents this by the device of

42 An error in the proof for rational time is corrected in [31].
43 The latter result was obtained independently by Shehtman [229].
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a neighbourhood framé& = (K, N), whereN, the neighbourhood systens a function
assigning to each € K a collectionN, of subsets ofk, calledneighbourhoods af .44
Writing M (a) for the “truth set’{y € K: M |=, o} interpretinge in M, the satisfaction
clause forJ in a modelM on such a framé is

M, Oa iff M) € Ny.

Atopology onK has a naturally associated neighbourhood system in whiehV, iff x is
interior to X, i.e.,x € U € X for some open sdt . In this caseM (C) is the topological
interior of M(«), and the result is an S4-model. But different logics can be characterised
by validity in frames with weaker conditions imposed on their neighbourhoods. A rela-
tional frame(K, R) is equivalent to the neighbourhood frar¥, N) havingU € N, iff
{y:xRy}cU.

Any neighbourhood framék, N) has an associated algelf@(K), /), where the
operationf ", interpreting] on the powerset algebfa(K), is given by

N(X)={xeK: X €N,}.

Inversely, any functiory: P(K) — P(K) induces the neighbourhood syste¥d on K,
where

XeN! iff xefx).

Thus, whereas Jénsson and Tarski's analysis shows that relational semantics corresponds
to completely additive and normaperators on powerset algebras (see Section 3.3), neigh-
bourhood systems can be used to represent arbitrary operations on such algebras. The
relationship between neighbourhood frames and modal algebras has been systematically
investigated by Kosta DoSen [52].

Filtration (see Section 5.1) was used extensively by Segerberg to prove completeness
theorems. This technique can be effective in dealing with logics whose canonical model
does not satisfy some desired property, and comes into its own when seeking to axiomatise
logics defined by some condition dimite frames. For example, Segerberg showed [223,

p. 68] that the normal logic K4W, with axioms

4:Up—0O0p
W:O0p — p) — Up,

is characterised by the class of finite frani&s R) in which R is transitive and irreflexive,

i.e., a strict ordering. (This logic later proved important in studies of the provability inter-
pretation of modality. See Section 7.5.) The basic method was to obtain a falsifying model
for a given non-theorem by filtration of the canonical model, and then to “deform” this
into a model of the desired kind without affecting the truth value of the formula concerned.
This involved an analysis of the way a transitive relations presents itself as an ordered set
of connected components, callellisters The method was applied in thiessayand the

1970 paper [222] to axiomatise a whole range of logics, including those characterised by
the classes of finite partial orderings, finite linear orderings (both irreflexive and reflexive),

44 Some authors use a relatidghc K x P(K) in place of N, wherexRU iff U € N,.
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and the modal and tense logics of the struct@fesR) wherek is any ofw, Z, Q, andR,
while R is any of<, >, <, and>.

The logic characterised by the class of all finite partial orderings is particularly signif-
icant. Segerberg proved [223, p. 101] that it is S4Grz, the normal logic axiomatised by
adding to S4 the axiom

GI’Z:D(D(p — p) — p) — p.

He named this for Andrzej Grzegorczyk whose 1967 paper [101] added a further insight
to the relationship between intuitionistic and modal logic. Grzegorczyk showed that the
formula

[((p—SDq)—SDq) A ((—-p—SDq)—SDq)]—SDq

is not a theorem of S4 (nor indeed of S5), and when added to S4 gives a system into which
the intuitionistic logic IPC can be translated by the Gédel-McKinsey—Tarski procedures.
The translation of a propositional formula is an S4-theorem iff it is a theorem of Grzegor-
czyk’s stronger logic, which is deductively equivalent to S4Grz.

Segerberg initiated the use of truth-preserving maps between relational models and
frames in [220]. Given modeld/1 and M’ on framesS = (K, R) and &’ = (K', R')
respectively, a functiop from K onto K’ was called gpseudo-epimorphisifinom M to
M'if

(i) xRy impliesp(x)R'¢(y),
(i) o(x)R'¢(y) implies3z € K(xRz & ¢(z) = ¢(y)), and
(i) My piff M’ Fowx) p-

For such a function every formudahasM = « iff M’ =4y @, S0 if M is a model oty,
then M’ will be also. From this it can be shown thatifis valid in G, then the existence
of a function fromk onto K’ satisfying (i) and (ii) implies that is valid in &’ as well#®

The name “pseudo-epimorphism”was shortened to “p-morphism”in [222,223] and this
uninformative term has been very widely adopted, even for functions that are not surjective
but, in place of (ii), satisfy

(i") (x)R'wimplies3z € K(xRz & ¢(z) = w).

The notion was generalised by Johan van Benthem [263] to that of a “p-relation” between
models, which is itself intimately related to the concept disimulation relatiorthat has
been fundamental to the study of computational processes (see Section 7.2).

There is another explanation of why functions of this type are natural and important in
the modal context. Any functiop: K — K’ induces the functiop™ : P(K’') — P(K) in
the reverse direction, taking each subkeif K’ to its inverse imagé¢x € K: ¢(x) € X}.

45 A surjection between partial orderings that satisfies (i) and (i) was definedstdmgly isotonen de Jongh
and Troelstra 196450], where the notion was used to demonstrate connections between partial orderings and
certain algebraic models for intuitionistic propositional logic.
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This ¢+ is a Boolean algebra homomorphism. The conditions (i) anp&ie precisely
what is required for it to preserve the operatggsand fz/, and hence be a homomorphism
between themodal algebrasCm(K’, R’) andCm(K, R). If ¢ is surjective, thenp™ is
injective and so makesm &’ isomorphic to a subalgebra a@m &. Hence all modal-
algebraic equations satisfied kgm & will be satisfied byCm &’. But a propositional
modal formulax can be viewed as germ in the language of the algeb@m &, with

a being valid in the frameS precisely when the algebraic equatian~ 1” is satisfied

by Cm &. This gives another perspective on why validity is preserved by surjective p-
morphisms.

Of equal importance is the validity-preserving notionsobframe This originated in
Kripke’s definition in [146] of a model structurg’, K, R) as beingconnectedvhenK =
{H: GR*H}, whereR* is the reflexive-transitive closure @&. Lemmon adapted this in
[155] to the notion of theonnected model structu®, generated fron® by an element
x, which is the substructure & based oriy: x R*y}. He observed that a formula falsified
by Cm & must be falsified bycm &, for somex. Segerberg showed in [223, p. 36] that
a modelM on & can be restricted to a modah, on &, (the submodel off generated
by x) in such a way that in generd, =, « iff M =, «. From this it follows that any
formula valid in & will be valid in &, and conversely a formula valid i&, for all x
in & will be valid in & itself (as essentially observed by Lemmon). This notiopaifit-
generatedsubstructure turned out to be the relational analogue of the notisubafirectly
irreducible algebra. Indeed the algeb@an & is subdirectly irreducible ifiS is equal to
&, for somex, a fact that was first demonstrated by Wim Blok [18, p. 12], [19, Lemma
4.1].

A frame & is asubframeof frame &’ if it is a substructure o5’ that is closed under
R',i.e. ifx € K, then{y € K’: xR'y} C K (some authors call this a “generated” sub-
frame even though there is no longer any generator involved). Then the inclusion function
¢:K < K’ is a p-morphism inducing™ as asurjectivehomomorphism froncm &’
to Cm &. Since equations are preserved by surjective homomorphisms, modal-validity is
preserved in passing fro@’ to the subframe>.

The disjoint unior] [, &; of a collection{G ;: j € J} of frames also preserves validity.
The construction was first applied to modal model theor@aidblatt 197485] andFine
1975[70]. [ [, &, is simply the union of a collection of pairwise disjoint copies of @gs.
Eachg; is isomorphic to a subframe ¢f ; & ;, and so the above properties of subframes
guarantee that a formula is valid jij ; & iff it is valid in every & ;.

These observations about morphisms, subframes and disjoint unions form the basis of a
theory ofduality between frames and modal algebras that is discussed in Section 6.5.

6. Metatheory of the seventiesand beyond

The semantic analysis of particular logics eventually gave way to investigations of the
nature of the relational semantics itself: the strengths and limitations of its techniques,
and its relationship to other formalisms, particularly first-order and monadic second-order
predicate logic. Some of the questions raised have yet to be answered.

Throughout Section 6 the term “logic” will always meanarmallogic.
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6.1. Incompleteness

A logic A is soundwith respect to a classS of frames if every member of is a A-
frame i.e, validates allA-theorems. By definitiomd is sound with respect to the class
Fr(A) of all A-frames. In the converse direction, is completewith respect taC if any
formula that is valid in all members @fis a A-theorem. For example, every normal logic
is complete with respect 6 = {&4}, where&4 = (K4, R4) is thecanonical frameof
A as defined in Section 5.1. For if a formula is valid@r', then it is true in the canonical
model M4 on &4, and so is aA-theorem. Whether or not is sound with respect t64
is an important issue that will be discussed in Section 6.6.

Alogic A is characteriseddy a clasg if it is both sound and complete with respect to
C. Aiscompleteper se if it is complete with respect to some cléds¥ A-frames in which
case it is characterised by thatas well as by the claga (A) of all A-frames. It is im-
portant to recognise that a given logic may be characterised by many different classes. For
example, S4 is characterised by each of the class of all quasi-orderings, the class of finite
qguasi-orderings, and the class of all partial-orderings (but nofitiite partial-orderings,
which characterise S4Grz as we saw in Section 5.3).

Lemmon was sufficiently taken with the power of Kripke semantics to conjecture that
every normal logic is characterised by some class of relational frames [156, p. 74]. It turned
out that this was as far from the truth as it could be. Wim Blok showed that, in a manner
which will be explained below, “most” logict are not characterised by any class of
frames, and hence aicompleten the sense that there exist formulas that are valid in all
A-frames but are nati-theorems.

The first example of an incomplete logic was devised by Steve Thomason [253], and is
a readily described tense logic in Prié?E-language. In addition to a set of postulates for
linearly-ordered frames it has the axioms

Gp— Fp,
Pp— P(pA—Pp),
GFp— FGp.

The first of these is valid in a fram&, R) only if the “endless time” conditioMx3y (x Ry)
is satisfied. The second axiom is equivalentto0Hp — p) — Hp, which is Segerberg’s
axiom W for the past modality?. Its validity entails thatr is irreflexive. Thus ifxg is
a point in any frame validating the first two axion{s, xoRy} is an irreflexive linear
ordering with no last element. Interpretipgas a set such that both it and its complement
are unbounded ifly: xoRy} then gives a model on the frame that falsifies the third axiom
atxo. In this model the truth-value qf alternates forever over time.

Thus Thomason’s logic is not valid on any frame whatsoever! In other words it is indis-
tinguishable in terms of frame-validity from thieconsistentogic in which all formulas
are theorems. But it is not itself inconsistent, because it is satisfied by the algebra which
consists of all the finite and cofinite subsets of the strucfure<). In this algebra the
interpretation of each formula is constrained to cease changing with time.

It proved more difficult to devise incomplefé-logics, i.e., propositional logics in a
language with just one modality. Unlike tense logic, any consistent nornadlogic is
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validated by some frame, and in fact by some one-element frame. There are two such
structures:S, is the one consisting of a single reflexive point, whitg consists of a
single irreflexive point&, characterises the normal logit, = K + (Op <> p) and &,
characterisest, = K + ., both of which aremaximallogics in the sense of having no
proper consistent extensions. Makinson [169] proved that every consistent nodogitc

is either valid in&,, or valid in &, and so is a sublogic of one of, and A,.

The first incompletél-logics were found by Thomason [254] and Kit Fine [68], who
independently constructed some rather complicated examples. Later van Benthem [265,
266] found some simpler ones. The simplest unearthed to date is the normal logic with
axiom

Udp < p) — Up.

Lon Berk showed that any frame validating this formula also validates Segerberg’s axiom
W, while Roberto Magari showed that W is not a theorem of the logic. Proofs of these
results are presented Boolos and Sambin 19434].

Thedegree of incompletenes$a logic A was defined by Fine [68] as the number of
logics that are valid in exactly the same frames thas. For any clasg, the setA¢s =
{a: C = «a} of all formulas validated by is, by definition, characterised . If some
other logic A is valid in all members of and no other frames, them must be a proper
sublogic of A, with both having degree of incompletengs®. The logic K has degree
1: it is the only logic valid in all frames whatsoever. Any that has degree 1 must be
complete, since it must be equal #yr where(C is the class of allA-frames. Fine asked
which cardinals can occur as the degree of incompleteness of some logic, and whether
there are any logics other than K that are “intrinsically complete” in the sense of having
degree 1.

Those questions were resolved in a remarkable way by Blok, who proved that any logic
A containing the axionfilp — p must have degree of incompletene88, 2o that there
are uncountably many different logics which are indistinguishable froby the Kripke
relational semantics. The same applies whengveontains the axiori)” p <> [1"+1p for
some natural number. As just one illustration of this situation, consider the caseigf
itself. The only connected .-frame is the one-element reflexive frai®e (and any other
A,-frame is just a disjoint union of copies @f,). But there are uncountably many other
(incomplete) logics whose only connected validating frame is &lso

These results were obtained in 1976-1977, and published in [19]. The report [18] then
gave the following complete answer to Fine’s two questions: every normal logic is either
of degree 1 or of degre€*®, and there are™® logics of degree 1. The degree 1 logics
all have the finite model property. Moreover Blok provided a semantic characterisation of
these degree 1 logics, using the notion afpditting logic. This is a logicA; for which
there is some other logid such that every logicl has eitherd; € A or A € A}, but
not both. Thus the collection of all normal logics is split into the two disjoint collections
{A: A; € A} and{A: A C AL}, A simple example is given by putting, =K + T and
A=A, =K+0OL.If AZ A,, then by the maximality oft,, CJL cannot be consistently
added toA, hence its negatio® T is a A-theorem, showing K- CT C A.

Let A/S be the intersection of all logics that are not validated by fragnerhen a
logic is a splitting logic iff it is equal to the logiai/& for some finite frameS that is
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generated from a point and h&s= 1" L for somen. The last condition holds for a finite
G iff & is circuit-freg, i.e., it includes no sequence of the foxaRx; - - - Rx; Rx1 for any
k. If A, = A/ is a splitting logic, then the correspondintj is the logic{e: & = «}
characterised bg.

Every splitting logic is of degree 1, and is finitely axiomatisable. A lagits of degree
1if and only if it is ajoin of splitting logics i.e., is equal to the least logic that includes the
splitting logicsA /& for all & in some collectior® of finite generated circuit-free frames.

This is the same as requiring thatbe the least logic not validated by any membe€ of

Blok used algebraic methods, studyiagrieties or equationally defined classes, of
modal algebras rather than normal logics directly. He applied some powerful new tech-
niques, including the splitting notion that had been developed in lattice theory by Ralph
McKenzie [173], and an important lemma of Jonsson [124] characterising subdirectly ir-
reducible algebras in congruence distributive varieties.

Blok’s resolution of the issue of incompleteness for Kripke semantics was announced in
his abstract [17], but his report [18] giving the detailed proofs was not published. Model-
theoretic accounts of the results may be found in [34, Chapter 10] and [141, Chapter 7].

The issue of the adequacy of neighbourhood semantics (see Section 5.3) was investi-
gated in a series of papers by Martin Gerson [79-81], who showed that the two logics of
Thomason [254] and Fine [68], which are not characterised by their relational frames, are
also incomplete with respect to their neighbourhood frames. He then gave examples of nor-
mal logics that are complete under the neighbourhood semantics but not complete for any
class of relational frames. These possibilities can also be revealingly expressed in terms
of algebraic semantics, beginning with the observation that complete and atomic Boolean
algebras are, up to isomorphism, the same thing as powerset algebras. As we observed
in Section 5.3, relational frames correspond to completely additive and normal operators
on powerset algebras, while neighbourhood frames represent arbitrary operations on such
algebras. Thus a logic that is incomplete for the relational semantics is one that is not
characterised by those of its complete and atomic algebras whose operators are completely
additive and normal; while a logic that is incomplete for the neighbourhood semantics is
one that is not characterised by complete and atomic algebras at all.

6.2. Decidability and complexity

The finite model property does not give a universal method for proving the decidability
of modal logics. Although every finitely axiomatisable logic with the finite model property
is decidable, the converse is not true. This was shown by Dov Gabbay, building on some
earlier work ofMakinson 1969167] which had exhibited the first example of a normal
logic that lacked the finite model property. Makinson’s example is a proper sublogic of S4,
but all of its finite algebras satisfy S4 as well.

Gabbay’s 1972 paper [75] extended Makinson'’s idea to produce finitely axiomatisable
modal and tense logics that lacked the finite model property, but could still be shown to
be decidable by appealing to a powerful result of Michael Rabin [212]. This concerns
the decidability of monadic second-order theories of successor functions, and has many
applications. For each ordinalwith 2 < n < w, consider the structure

6n = (Tnv{sm: m <n}a gv #)a
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where T,, is the n-ary branching tree of all finite sequences of elements of the set
[n) = {m € w: m < n}, s, is the successor function— xm on the tree< is the “ini-

tial segment” ordering of sequences, ards their lexicographical ordering induced by
the natural ordering: on[n). Rabin proved that the monadic second-order theary of

the structures,, is decidable. To do this he developed a theory of finite-state automata that
process infinite labelled trees, and established the decidability eftipéiness problerof
whether any given automaton accepts at least one tree. The decidab#ins afas then
reduced to this emptiness problem. It was later shown that the decision probl&msSfor

is intractable: Albert Meyer [180] proved that no algorithm for deciding if a sentence is in
SnS can runin elementary time, i.e., time bounded by some fixed number of compositions
of exponential functions.

Gabbay developed a method of coding Kripke models into the struétyi@nd thereby
reducing the decidability problem for certain logics to Rabin’s decidability results#st
The technique is explained in Part 5 of the bda@abbay 197476], where it is used to
establish decidability results for many modal systems.

Gabbay’s method was later used by Cresswell [43]in adapting an incomplete logic from
van Benthem 197[R66] to construct a decidable modal logic that is finitely axiomatisable
but incomplete with respect to Kripke frames (and hence lacks the finite model property).
Cresswell's example is a proper sublogic of the logic characterised by the class of finite
strict linear orderings, but the two logics are validated by exactly the same frames.

For any logicA, the problem of deciding if a given formula is-provable is the same
as theA-validity problemof deciding if a given formula is true in all modelst such that
M = A. The A-satisfiability problemof whether a given formula is true at some point
of someA-model is equivalent to the validity problem in the sense thit A-satisfiable
iff its negation—« is not A-valid. Thus a deterministic algorithm that solved the validity
problem could be used to solve the satisfiability problem, and vice versa. But if nondeter-
ministic algorithms are considered, the two problems may differ as to their computational
complexity. The classic example of this concerns the set of non-modal propositional for-
mulas. Satisfiability of any of these can be tested in nondeterministic polynomial time. But
the same is not known for validity: to test the validity of a formula withariables appears
to require examination of all"2ruth-value assignments to these variables.

To discuss this further, recall that NPTIME, or more briefly NP, is (informally) the class
of all problems that are solvable by a nondeterministic algorithm whose running time for
any execution is bounded above by some polynomial function of the length of the input.
co-NP is the class of problems whose complement is in NP.A4satisfiability problem
is in NP iff the A-validity problem is in co-NP. The satisfiability of non-modal formulas is
NP-hard, meaning that any problem in NP has a polynomial-time reduction to this problem
Cook 197137]. The A-satisfiability problem for any consistent modal logids therefore
also NP-hard. Since non-modal satisfiability itself belongs to NP, it is said to be an NP-
completeproblem.

PSPACE is the class of problems solvable by a deterministic algorithm using an amount
of space that is polynomially bounded by the length of the input. PSPACE includes
NPTIME and is closed under complementation. It is also known thahangeterministic
polynomially space-bounded algorithm is equivalent to a deterministic®atth 1970
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[217]). Thus
NP C PSPACE= co-PSPACE= NPSPACE

It is not known if the stated inclusion is proper, but it is widely believed that PSPACE-
complete problems are not in NP.

Richard Ladner [150] applied these concepts to determine computational complexities
of some of the basic normal modal logics. He showed that the satisfiability problem for
each of the logics K, T, and S4 is in PSPACE, by optimising the space requirements of the
decision procedures from Kripke’'s [145]. Hence the provability problems for these logics
is in PSPACE as well. He proved further that any problem in PSPACE has a polynomial
time reductiofi® to the provability problem of any normal sublogic of S4. Thus provability
for any of these logics is PSPACE-hard, and for K, T, and S4 it is PSPACE-complete. The
method used was to reduceAoprovability a known PSPACE-complete problem, namely
the validity of quantified non-modal propositional formulas.

The logic S5 is more tractable than the sublogics of S4. Ladner showed that S5-
satisfiability is in NP, and therefore is NP-complete. The key to this result is that S5 has
the poly-size model propertyany non-theorem is falsifiable in a model whose size is a
polynomial in the size of the formula. Edith Spaan [236] extended this to prove that every
one of the R many) extensions of the logic S4.3 has the poly-size model property and
has an NP-complete satisfiability problem. On the other hand Joseph Halpern and Yoram
Moses [103,104] showed that satisfiability for any logic having at least two S5-modalities
is PSPACE-hard.

As to undecidability, there must be undecidable logics because there are uncountably
many logics altogether but only countably many algorithms. In Thomason'’s [258] an unde-
cidable modal logic is exhibited that is finitely axiomatisable, and so cannot have the finite
model property. This was produced by encoding a presentation of a recursive function with
undecidable range into a model of a logic with a large number of temporal modalities, and
then reducing this to a logic with one modality by methods that are described below in
Section 6.4.

The question of how undecidable a logic can be was answered by Alasdair Urquhart
[261] who showed that for any sét of natural numbers there exists a normal modal logic
Ax such that the decision problem far is reducible to that ofAx. Urquhart used this
to construct a logic with the finite model property that has a decidable set of axioms but
is undecidable. Spaan [236] showed that there are (uncountably many) undecidable logics
that have the poly-size model property.

Undecidability of quantificational modal logic was considered by Kripke [144] in an
early application of his model theory from [142]. Whereas the first-order calculus of
monadic predicates is decidable, the modal monadic calculus turns out to be undecidable.
Kripke showed that the decision problem for provability of non-modal first-order formulas
in a binary predicat&, which is known to be undecidable, is reducible to that of modal

46 Actually he showed that these reductions are in “log-space”: they have a space requirement bounded by a
logarithmic function of the length of the input. This implies a polynomial time-bound. Ladner originally proved
the reduction result for T and for S4, and subsequently used an argument of S.K. Thomason to extend it to all
normal sublogics of S4.
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formulas in two monadic predicatdsand Q, by replacingR (x, y) by C(P(x) A Q(»)).

This applies to any modal system which is a sublogic of the quantificational version of S5
of [142] and which obeys certain general rules satisfied by all then known systems and
“probably by the vast majority of those that will be proposed in the future”.

6.3. First-order definability

Validity of a modal formulax in a relational frameS = (K, R) is an intrinsically
second-ordeconceptu is valid when true at all points in all models @éh Since a model
interprets each propositional varialjein « as a subset ok, this amounts to treating
as a set variable, orraonadic predicatgariable. Meredith’d/-calculus associates with
a formula(a)x in the first-order language @, with x as its sole free individual variable.

If the propositional variables af are ps, ..., pk, then regarding these as set variables we
have thatr is valid in G iff & is a model of the sentence

Vp1---VpiVx (@)x

of the monadic second-order language of a binary predicate, i.e., the second-order language
in which all the second-order variables are monadic. This is a simple kind of second-order
sentence, technically known ﬂ;ll with all its second-order quantifiers being universal

and at the front.

Some modal formulas express properties that are well-recognised as being second-order
in nature. For example, Segerberg’s axiom W is validiiff R~ is transitive andvell-
founded(seeBoolos 197922, p. 82]). However, a substantial reason for the great success
of the relational semantics is that many logics were shown to be to be characterised by
frames satisfying simplérst-order conditions onR, like reflexivity, transitivity, linearity
etc. To consider this phenomenon, recall that a class of relational frames iselalteeh-
tary if it is definable in first-order logic, i.e., if it is the class of all models of some set of
sentences in the first-order language of a binary predigai basic elementarglass is
one that is defined by a single first-order sentetic&.modal logic is pasig elementary
if it is characterised by some (basic) elementary class of frames.

The Lemmon Notes provided many examples of basic elementary logics, and formu-
lated a conjecture about the situation, which will now be briefly described. First we say
that a modal formula ipositiveif it can be built from propositional variables using only
the connectives,, v, <, andl. If 8 is any positive formula with variables, .. ., pr and
m = (m1,...,my) andn = (n1, ..., ng) are anyk-tuples of natural numbers, consider the
formula

B MO py A AT pp — B

Associated withg" is a certain first-order conditioRg" on binary relations, which can
be read off from the formation o) itself. The conjecture was that the normal logic
axiomatised by adding," to K is characterised by the basic elementary class of frames

47 Some authors useA-elementary” in place of “elementary”, and “elementary” in place of “basic elemen-
tary”.
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satisfying Rp))" (see [156, p. 78]). This was confirmed independently by the present au-
thor and Henrik Sahlqvist in 1973 (see [85,87] and [215]), but Sahlgvist generalised the
result considerably to consider any formula of the tyf¢« — 8) wheren > 0, g is pos-
itive, and« is constructed from propositional variables and/or their negations using only
the connectives, v, ¢, [0 in such a way that no positive occurrence of a variable is in a
subformula that has, v, or & within the scope of &1. He proved that the class of frames
validating such a formula is definable by an explicit first-order sentence, and that this ba-
sic elementary class characterises the normal logic axiomatised by adding the formula to
K. The result has been extensively analysed and extended to “polymodal” logics and to
equational classes of BAOs in general: see [51,82,126,216].

The simplest formula not covered by Sahlqgvist's scheme is

M:OCp — SOUp,

commonly known as thBlcKinsey axiont® This is the(J-version of the formula& Fp —

FGp thatfigures as an axiom in Thomason's incomplete tense logic. In the Lemmon Notes
a proof was given that the normal logic $4M is characterised by the elementary class of

all quasi-ordered frames satisfying the condition

Viny(ny AVZ(yRz — y = Z)).

Segerberg [220] then showed that this logic has the finite model property and is charac-
terised by the finite quasi-orders satisfying this condition. But the status of the log K
remained unresolved.

It turned out that the class of all frames validating the McKinsey axiom is not ele-
mentary, let alone basic elementary. This was provegatublatt 1974[85] (Section 17),
which showed further that no elementary class can characterise the legdit, Knd indeed
any class that does characterise this logic must fail to be closed under ultraproducts. van
Benthem [262] gave a LOwenheim—Skolem argument to show that the class of all frames
validating M is not even closed under elementary equivaléh&n the other hand Fine
[69] proved that the logic K+ M is in some respects quite well-behaved: it has the finite
model property, so is decidable and is characterised by its (finite) validating frames.

From such examples the question naturally arises of when the colleétion =
{&: & =«} of all frames validating the formula is an elementary class. To answer this,
note first that the complement Bf (@) is always closed under ultraproducts. That can be
shown directly, or by observing that the complemenkiix) is defined by an existential
second-order sentence

dp1---3Apedx —(@)x

48 This something of a misnomer. The systenHSAIC p A OOGg —3 O(p A ) was investigated by McKinsey
[175], who called it S4.1. Sobdtski [234] showed that it is the same as-84<Cp — OOp), and renamed it
K1, since it is not a subsystem of S4.2.

49 Two structures are elementarily equivalent when they satisfy the same first-order sentences.
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of the kind (211) that is always preserved by ultraprodutdssrom this it follows by the
Keisler-Shelah characterisation of elementary cl@$gbst Fr(«) is elementary iff it is
basic elementary iff it is closed under ultraprodyas deduced by this author in [85,86].
But then van Benthem discovered a striking strengthening of the result:

Fr(a) is basic elementary iff it is closed under elementary equivalence

This means that any class of the foRm«) is quite special: if it is closed under ulfrawers

then it must be closed under ultraproducts. van Benthem’s proof was an interesting model-
theoretic compactness arguméftut in his published version [264] he used instead a
subsequent argument of the present author, namely that there is an injective p-morphism

(1) —(L1e)

of any ultraproduct of frame&; into the associated ultrapower of their disjoint union
1, &,, and this maps the ultraproduct isomorphically ongubframeof the ultrapower.
SinceFr(«) is invariably closed under disjoint unions, subframes and isomorphism, the
desired result follows immediately from this embedding. But the argument also works for
the clasg-r(A) of all frames validating aet A of formulas, to show that

Fr(A) is elementary iff it is closed under elementary equivalence.

The study of the definability of modal formulas in predicate logic was duldmtespon-
dence Theorpy van Benthem in his thesis [263], who gave further expositions of this
theory in his works of [268] and [269].

6.4. Thomason'’s second-order reduction

A deep investigation of the expressive power of modal semantics was made by Steve
Thomason in a series of papers [255,257-259] reporting work, carried out in 1973, that
constitutes a tour de force of model-theoretical analysis in combination with coding tech-
nigues of the kind used in recursion theory. This confirmed his belief, expressed earlier in
[252], that

propositional modal logic (with the usual relational semantics) must be understood as a rather
strong fragment of (classical) second-order predicate logic.

A “logic” is taken to consist of a symbolic language together with a semantic interpretation
specifying when a formula igalid in a structure M is the logic given by the language of
propositional modal logic with the semantics based on fragkesR) as structures, while

T is the propositional tense logic of PrioPF-language with structure’, R—1, R). Each

logic determines #ogical consequenceelationI” = o between sets of formula8 and

50 Chang and Keislef35, Corollary 4.1.14].
51 |bid., Corollary 6.1.16.
52 A discussion of van Benthems original proof is presente@afdblatt 199997].
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formulasa, meaning tha& is valid in every structure in which all membersBGfare valid.
Thomason proved in [252] that the Compactness Theorem faldar this relation: there
is a case of an which is a logical consequence of some Bdiut not of any finite subset of
I'. Inthe paper [257] he showed that there Is®rmulay whose setx: y = o} of logical
consequences is not effectively enumerable, and has a high degree of undecidability—
technically what is known as mpleteHl1 set Moreovery is categoricalin the sense
that all its connected validating structures are isomorphic. In addition, $om0< » + w
there is a categorical formula, whose unique validating structure has skzg, where
Jo = NRo, It = 2727, and3, = lim{3,,: m < w}. The formulay describes a structure
which encodes presentations of certain recursive functions that define a com'ﬂalet&.
The formulasy,, describe structures that encode copies of the iterated powexseiw),
P(P(w)), .... The proofs of these facts are reminiscent of the arithmetisation procedures
and expressibility results involved in Godel’'s incompleteness theorems, and graphically
illustrate the expressive power ©f The facts themselves are quite contrary to the situation
in first-order logic, where the logical consequences of a given sentence are effectively
enumerable, and no sentence with an infinite model is categorical.

A logic L1 is said to bereducibleto a logicL; if there exists an.>-formulaé and an
effective transformationy of Li-formulas toL>-formulas such that for every collection
I U {«} of L1-formulas,

Fea it {SlUWG)y el Ev@.

This definition captures the idea that can be regarded as a fragment of the logi¢c
and is motivated by a notion of interpretation of one first-order theory in another that ap-
pears inShoenfield 196[230]. Heres may be thought of as describing a certain structure,
with v (y) asserting thay is valid in that structure. In [255] it is shown that tense logic
T is reducible to modal logis. The formulas used for this has the property that for any
T-structure® = (K, R~1, R) there is anM-structure&’ that contains within it definable
copies of(K, R) and (K, R~1) in such a way that P” statements abou® can be inter-
preted as ©” statements abou®’. Applying this reduction to the results abouifrom
[257], Thomason concludes that there isiifiormula whose set of logical consequences
is a completdT! set.

The full monadic second-order thea®yof a binary predicate is shown to be reducible
to M in [258]. For this purpose the logit;, of n temporal orderings is introduced. It has
pairs of modalitiesPs, Fi, ..., Py, F,, and structures having binary relations and their
inverses to interpret these connectives. It is shown that ferl, T, is reducible tor,,_;.
Since reducibility is a transitive relation, it follows that eahis reducible tor (= T1),
and hence reducible td. This is then applied to prove the reducibility®f The argument
involves defining a1s-formulas with the property that for each frang® = (K, R) there
is a model ofs with 15 temporal orderings that includes within it definable copie® pf
the powersefP(K); the membership relation fromil to P(K); the set of all (codes for)
S-formulas, the set of all assignmentskhand(K) to the individual and set variables
of S; and the satisfaction relation betweg+iormulas and assignments @& as a second-
order model. This leads to a reduction®fo T15, which can then be combined with the
reduction ofT15 to M to give the desired result. Thomason concludes that
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the logical consequence relation of propositional modal logic (with the Kripke relational seman-
tics) is as complex as it could possibly be.

6.5. Duality and the calculus of class operations

The keystone constructions in the general theory of algebras are homomorphic images,
subalgebras, and direct products. The famous Variety Theorem due to Garrett Birkhoff
1935 [14] states that a class of abstract algebrasésiaty, i.e., is definable by equations,
iff it is closed under these three constructions. The standard convention in this subject is
to use the lettersi, S andP for the operations that assign to each class of algebras its
closure under homomorphic images, subalgebras, and direct products, respectively. Thus
Birkhoff’s theorem states that a clagsof algebras is a variety if and only#f A € 4 and
SAC AandP A C A. Arefinement due to Tarski [247,248] is that for each cldssf
algebrasH S P A is the smallest variety that includes HenceH S P A is known as the
varietygeneratedy A.

The corresponding constructions for relational modal semantics are subframes, p-
morphic images, and disjoint unions. As explained in Section 5.3, a p-morpghigh—

&' induces an algebraic homomorphigm :Cm &’ — Cm &, allowing us to show that

if & is (isomorphic to) a subframe @’ thenCm & is a homomorphic image @m &',

and if & is a p-morphic image o thenCm &' is (isomorphic to) a subalgebra®om &.
Disjoint unions of structures correspond naturally to direct products of algebras via an
isomorphism

cm][e;=]]cms; (1)
J J

between the complex algebra of a disjoint union and the direct product of the complex
algebras of its factors.

The assignment® — Cm & andg — ¢ form a contravariant functor from the cate-
gory Frm of frames and p-morphisms to the categbtslg of normal modal algebras and
homomorphisms. In the reverse direction there is a construction that assigns to each nor-
mal BAO 2l a certain relational structuf@st 2, called thecanonical structuref [, whose
points are the ultrafilters 1. The complex algebream 2l = Cm Cst 2 of this structure is
the canonical embedding algeb 2(, and is isomorphic to the perfect extensiyh, as
described in Section 3.3. The Jénsson—Tarski representatraofounts to the fact that
there is an injective homomorphisth— Em .

When applied to modal algebras, the assignment Cst 2l gives rise to a contravari-
ant functor fromMalg to Frm that takes each homomorphigm2l — 21’ to a p-morphism
Cst 2/ — Cst 2 which maps each ultrafilter oll’ to its 9-inverse image irRl. These
functors provide aluality between frames and modal algebras. It is not however a dual
equivalencebecause we do not in general ha&eésomorphic toCst Cm &, or 2 isomor-
phic toCm Cst 2: the assignmen® — Cm & increases cardinality, as dogis— Cst 2
for infinite 2A.

The categoryFrm is dually equivalent to the category cbmplete and atomimodal
algebras with)_-preserving homomorphisms (Thomason [256]). To obtain a category of
structures equivalent thlalg it is necessary to modify the notion of “frame”. A first at-
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tempt at this was made by Makinson [168] who defingdlational modelas a structure

(K, R, H), whereH is a collection of truth-valuation® on (K, R) in Kripkes sense that
satisfies certain closure properties. That did not produce a full equivalence between alge-
bras and models. A language independent-approach was taken by Thomason [253] who
defined a “first-order semantics” using structu@s= (K, R, P), where P is a collec-

tion of subsets oK that forms a subalgebra of the full complex algeBra(K, R). This
subalgebra is taken in place @m(K, R) as the algebra assigned @ Validity in &

is defined as truth in all model§1 = (&, @) on G satisfying the constraint that the set
M(p) ={x: ®(p,x) =T} belongs toP for all variablesp.

By imposing suitable restrictions ab, essentially set-theoretic versions of the condi-
tions (i)—(iii) of Section 3.3 that defined the Jénsson-Tarski perfect extensions, a notion
of “descriptive” frame(K, R, P) is arrived at. This theory was developed@oldblatt
1974[85], where the descriptive frames were shown to form a category dually equivalent
to Malg. A topological approach to duality for closure algebras and quasi-orderings was
independently investigated by Leo Esakia [62].

Connections between relational structures and algebras can be conveniently expressed
in the “calculus” of class operations. We use the symBql&l, andUd for the operations
of closing a class of structures under subframes, p-morphic images, and disjoint unions,
respectivelyPu andPw are used for closure under ultraproducts and ultrapowers, while

CmC={: A=Cm & for someS € C}

is the class of all (isomorphic copies of) complex algebras of structures in theclasen
the isomorphism (1) above implies tham Ud C = P Cm C for any clasC of frames.
Similarly, the representation

<]:[6j>/F—><]7[6j>J/F

from Section 6.3 of an ultraproduct of frames as a subframe of an ultrapower of a disjoint
union yields the conclusion that in general

PuC CcSPwUdC.

There are numerous properties that can be express in this way using class operations, for
example

SHC <€ LSC, SCmHC =scmC,
SUdC=UdSC, PuSHC < HSPuC.

An inventory of such facts may be found in [96,98].

Dual to the formation of the algebiam 2 = Cm Cst 2 is the association with any
structure® of its canonical extensiofix & = Cst Cm &, a structure whose points are
the ultrafilters on the underlying set & (henceEx G is sometimes called thatrafilter
extensiorof G). There is a p-morphism

&' /F »Ex &
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from a suitably chosen ultrapower of any given fra@@ntoEx &, yielding the observa-
tion that in general

ExC C HPwC. )

The proof of this requires the choice of a sufficiently saturated ultrapower (@ee [92,
Section 3.6]) and is motivated by a model construction of Fine [70] that is discussed further
in the next section.

Duality can be used to bring methods of universal algebra to bear on relational seman-
tics. A notable example is the problem of characterising classes of theRam), the
class of all frames validating a sdt of modal formulas. The question of whé&n(A) is
elementary was discussed in Section 6.3. It is natural to ask, conversely, for conditions
under which a given elementary class of frames is equal to the El&gs for someA.
The following answer was given iGoldblatt and Thomason 197%00], where theEx
construction was first introduced (see also [95, 20.6], [92, 3.7.6(2)]).

If C is an elementary class of frames, thers equal to F(A) for some sett of modal

formulas if, and only if

(i) Cis closed under disjoint unions, p-morphic images and subframes; and

(i) the complement af is closed under canonical extensions,,ilex S € C implies
GelC.

The proof applies the Birkhoff-Tarski analysis of varieties to the variety generated by
CmC, and uses the construction for (2) above to show thétig elementary and closed
under p-morphic images then it is closed under canonical extensions.

Duality theory has been developed by this author for arbitrary relational structures and
BAOs by using suitable generalisations of p-morphisms and subframes, called “bound-
ed” morphisms and “inner” substructures [92,96]. This provides algebraic and relational
semantics fompolymodallanguages having-ary connectives which generate formulas
O(aq, ..., a,) for n > 1. Most of the ideas and results we have discussed about com-
pleteness, canonicity, elementarity, class operations etc. carry over to this broader context
and apply to cylindric algebras, relation algebras and other kinds of BAOs in addition to
modal algebras. This reveals that, mathematically, much of modal semantics is just the
casen = 1 of a broader structural theory of finitary operators on lattices. A survey of this
general theory is given in [98].

If Aisanormallogic,thenthe cla3qA) of modal algebras that satisfy alltheorems
is a variety. Algebraic constructions In(A) provide tools for studying metalogical ques-
tions aboutA, such as whether it fulfills analogues of the Beth Definability Theorem and
the Craig Interpolation Theorem. This is related to amalgamation properties of algebras in
V(A), as has been shown by Larisa Maksimova, whose article [170] gives an account of
the subject and further references to the literature.

6.6. Canonicity

A logic is calledcanonicalif it is valid in its canonical frames4, in which case it is
characterised by this frame, and so is complete. Almost all proofs that a particular logic is
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elementanhave consisted of a demonstration t&t satisfies some first-order conditions
that imply validity of A. Such a proof establishes also this canonical, a conclusion that
is inescapable in view of the following profound results of Kit Fine [70], proven in 1973.

(i) If the class F(A) of all A-frames is closed under elementary equivalence and char-
acterisesA (i.e., A is completg then A is canonical.

(i) If A is elementary(i.e., characterised by some elementary cjatisen A is canoni-
cal >3

In fact something much stronger was proved. We have been using a language for propo-
sitional modal logic that is based on a countably infinite set of variables, but we could
consider larger languages by assuming we have available a vapalite each ordinal

&. Then for a given ordinah we can generate the sebrm(n) of modal formulas hav-

ing variables from the sdps: £ < n}. A logic A as originally conceived is a subset of
Form(w), but it has a manifestation, € Form(n) for eachn, obtained by closingi un-

der uniform substitution ifform(n) whenw < 5, and by puttingd,, = A N Form(n) when

n < w. Then we can define a canonical frar@g‘ for eachn, based on the maximally

Ap-consistent subsets &brm(n). Gn" is of cardinality 22%. If it validates A,,, we say
that A is n-canonical

Fine proved that under each of the hypotheses given in (i) andA(iis n-canonical
for all ordinalsyn. He also gave an example of a logic thatjiganonical for allp, and
is elementary, but for whickr(A) is not closed under elementary equivalence. Thus the
converse of (i) is false.

The idea of the proof of (i) was to use disjoint unions to obtain a single mbdtéhat
characterisedi,, and was based on4,-frame, then to view\ as a first-order model and
take asaturatedelementary extension of it that could be mapped onto the canonical frame
Gn" by a p-morphism. This was the first application of saturated models to modal logic,
and it motivated the construction for result (2) of the previous section. The proof of (ii)
combined it with an additional ultraproduct construction.

Canonicity of a logicA is intimately connected with the question of whether satisfac-
tion of A is preserved by perfect extensiobis 2l = Cm Cst 2 of algebras or canonical
extensiongEx & = Cst Cm & of frames. van Benthem [267] refined the proof of Fine’s
result (ii) above to show that

if a logic A is elementary, then the class(i#) of all A-frames is closed under canon-
ical extensions, i.e© = A impliesEx & = A.

Another way to describe this conclusion is to say thall§(A) is the variety (equa-
tional class) of all modal algebras satisfyidg then in generaCm & € Alg(A) implies
CmEx & € Alg(A). ButCmEx G = EmCm &, so the conclusion says thatg(A) con-

53 Atthe time, (i) was not recognised as a consequence of (ii). However, as explained at the end of Section 6.3, it
was later discovered that closurefof A) under elementary equivalence implies the ostensibly stronger assertion
thatFr(A) is elementary. So (ii) does imply (i).
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tains the canonical embedding algebras of all its full complex algebras. This can then be
strengthened, by applying duality theory, to show thiag A) contains the algebram
for any of its memberg( [92, Theorem 3.5.5]). Actually, to conclude th&lg(A) is closed
under canonical embedding algebras it is enough to knowAhatvalid in the canonical
frame &2 for all infinite cardinalsc. This follows by duality from the fact tha®? is
isomorphic to the canonical structu@sst 2., wherefl, is the free algebra iklg(A) on
k-many generators, together with the fact that each membigoft) is a homomorphic
image of some such free algebra.

Ultimately this analysis can be generalised to any kind of Boolean algebra with opera-
tors, to yield the following result:

if C is any class of relational structures of the same type that is closed under ultraprod-
ucts, then the variety of BAOs generated by the class of alg€hras is closed under
canonical embedding algebras.

This theorem was first formulated i@oldblatt 1989[92, Theorem 3.6.7], with a proof

that used the important result of Jonsson [124] on subdirectly irreducible algebras in
congruence-distributive varieties and an obscure diagonal construction on ultraproducts.
An entirely different argument was given in [94] and analysed further in [96]. It used the
fact (2) from the previous section, i.&x C € HPw C, and another formula,

CstHSPCmC C SLUdPuC,

which shows how the canonical structures of algebras from the variety generated®y
can themselves be built from membergofVhenC is closed under ultraproducts, so that
PuC =, this takes the form

AeHSPCmC implies Cst2l e SLUdC,

showing how canonical structures mediate between the dual operations on algebras and
structures. This result in turn depends on another fundamental fact,

PuUbC CUbPulC,

which states that the ultraproduct operation commutes dtimdedunions. A structure
G is the bounded union of a collectid® ;: j € J} if the & ;s are all inner substructures
(subframes) o6 and their union is5 itself. This notion is dual to that ;fubdirectproduct,
and indeed in the situation just described there is a subdirect product representation

cmé —[[cme;
J
of Cm & induced by the surjectiorBm & —» Cm & (see [98, Section 4.5]).
The first example of non-canonicity in the modal context occut§ripke 1967[149],
where it is stated that Dummett’s Diodorean axiom

D(D(p —Up) — Dp) — (OUp —Up)

is not preserved by the Jénsson—-Tarski representation of modal algebras. The McKinsey
axiomJ<® p — OOp was shown not to be canonical@voldblatt 1991[93].
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The formulas of Sahlqvist (see Section 6.3) define logider which the clas$r(A)
is elementary and includes all the canonical frar@%‘s These formulas have been gen-
eralized by Maarten de Rijke and Yde Venema [51], who defBaklqvist equationfor
any type of BAO and showed that the structu@svhose complex algebr&am & satisfy
such an equation form a basic elementary class. Jénsson [126] has refined the techniques
of [128] to develop an elegant algebraic proof that varieties of BAOs defined by Sahlqgvist
equations are closed under canonical embedding algebras.

The converse of Fine's theorem (ii) is a perplexing open question. If true, it would
provide a satisfactory explanation of the observed connections between intensional and
first-order logic. But it is not known whether a logic thatdscanonical, om-canonical
for all », must be elementary. No counter-example has been found among the numerous
canonically closed varieties of modal algebras, cylindric algebras and relation algebras
that have been investigated over the years. If it should turn out that @veayonical logic
is elementary, then it would follow from Fine’s work that evesycanonical logic isg-
canonical for ally > w. This is not known. All that is known is that there are logics that
aren-canonical for ally < w, but notw-canonical.

One approach to the problem would be to show that i§ valid in G4, then it is valid
in every structure elementarily equivalentd , which would imply that it is characterised
by the elementary class of all models of the first-order theo@gf The appropriateness
of that approach is demonstrated by the following result from of this author [95, (11.3.1)]
and [96, (4.15)]:

if a logic A is characterised by some elementary class, then it is characterised by the
elementary class of structures elementarily equivaleigfo

This is a strengthening of Fine’s theorem. There are further strengthenings available in
the references just cited, and also some results in [99] about the first-order equivalence
of the various canonical structur&‘;‘, but the full relationship between canonicity and
elementarity remains a matter of conjecture.

7. Some mathematical modalities

The seed of relational semantics sown in the 1950s has grown into a tree with many
branches. The most notable new dimension of activity beyond that already described has
been the application of relational modal semantics to a range of formalisms of computa-
tional and mathematical interest. This final section will briefly survey some studies of this
kind, providing a sketch of the key ideas and a guide to the literature.

7.1. Dynamic logic of programs

Dynamiclogic was invented by Vaughan Pratt, who described its origins in [201] as
follows.
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In the spring of 1974 | was teaching a class on the semantics and axiomatics of programming
languages. At the suggestion of one of the students, R. Moore, | considered applying modal
logic to a formal treatment of a construct due to C.A.R. Hoaggal}q”, which expresses the

notion that if p holds before executing program theng holds afterwards. Although | was
skeptical at first, a weekend with Hughes and Cresswell convinced me that a most harmonious
union between modal logic and programs was possible. The union promised to be of interest
to computer scientists because of the power and mathematical elegance of the treatment. It also
seemed likely to interest modal logicians because it made a well-motivated and potentially very
fruitful connection between modal logic and Tarski’s calculus of binary relafiBns.

Pratt’'s idea was to assign a box-modality] to each programr, with the formulalx ]«
being read “aftetr, «”. Then Hoare’s construet p{r}q can be defined ap — [r]qg,
but more complex assertions about program correctness and termination can be formalised
by combining[s] with other connectives, including modalities for other programs. The
connectivg ] is interpreted, not as an accessibility relation between possible worlds, but
as a transition relatio®, between “possible execution states”, witR, y when there is
an execution ofr that starts in state and terminates in state The dual modality)«,
definable as-[7]—«, asserts that there is an executionrathat terminates witlx true. In
particular,(r) T asserts that there exists a terminating execution of program

Pratt’s first paper in 1976 [199] describes a predicate language with modalities for a
class of programs generated from basic assignments and tests by a number of operations,
including alternation U 7’ and compositionr; . The interpreting relations for pro-
grams satisfy appropriate conditions, includiRg ,» = Ry U R,y andR;.,» = Ry o Ry.
A complete axiomatisation was presented for the language of these “loop-free” programs,
and then the class eégular programs was defined by adding titeration constructr*,
with interpretation R+ = reflexive transitive closure ak,. The universal quantifievx
was identified with a modalityx <~ RANDOM] corresponding to a random assignment
to the variablex.

The purely propositional fragment of this language was isolated by Michael Fischer
and Richard Ladner [71,72] who defined the system PDpropositional dynamic logic
of regular programslts programs are generated from some set of atomic commands by
the operations of alternation, composition and iteration. A Kripke model for PDL assigns a
binary relation to each atomic program, and then interprets complex programs by the above
conditions onR;, Ry, andRy+. Fischer and Ladner proved that this semantically de-
fined logic has the finite model property by a version of the filtration construction. That
method produces a falsifying model for a given non-theosewhose size is exponential
in the length ofx. The result was used to establish an upper boumiboéieterministic ex-
ponential timefor the complexity of the satisfiability problem: there is a nondeterministic
algorithm for deciding PDL-satisfiability that runs in a time bounded above by an exponen-
tial functionc” of the lengthn of the formula concerned (for some constantThey also
gave a lower bound adeterministicexponential time for the complexity of this problem:

54 The “weekend” reference is of course to the classic text of Hughes and Cresswell [121].
55 SeeHoare 1969120].



R. Goldblatt / Journal of Applied Logic 1 (2003) 309—-392 367

there is a constant > 1 such that no deterministic algorithm can decide the satisfiabil-
ity question for all formulas in time less thatt. The technique used was to construct a
PDL-formula that encodes the computations of a certain kind of Turing machine that was
known to require exponential running time. The gap between these upper and lower bounds
was closed by Pratt [202], who used Hintikkas model sets and tableaux methods to give a
deterministic exponential time algorithm for deciding satisfiability/validity in PDL.

A finite axiomatisation of PDL was proposed$egerberg 197[226], the most notable
feature being thenductionaxiom

p— (I7*1(p — [x1p) — [7*1p).

The first proof of completeness for PDL was published by Rohit Parikh [193], with other
proofs being attributed to Gabbay, Segerberg [227] and B @tie first extensive study of
guantificational dynamic logic was made in David Harel's 1978 dissertation under Pratt's
supervision, published as [105].

Many variants of dynamic logic have been studied by varying the modelling, the set of
formulas, and the set of programs having associated modalteterministicprograms
are modelled by requiring, to be a functional relation. Program predicates may be used
to express computational behaviour of particular programs, suldopr ), meaning that
some execution of fails to terminate, andepeat(sr), meaning thatr can be repeatedly
executed infinitely many times. PDL programs can be viewed as regular sets of sequences
of basic commands, but allowirgpntext-freesets of sequences as programs results in a
stronger logic that isﬂll-complete and hence highly undecidable [108].

Dynamicalgebraswere introduced by Dexter Kozen and Pratt in 1979 and their struc-
ture and representations investigated in a number of papdisey comprise a “Kleene
algebra” that abstracts the algebra of regular expressions and acts as a collection of op-
erators on a Boolean algebra. Concrete models are provided by the complex algebras of
Kripke models for PDL. But the relationship between the operators interpretargd  *
in the algebra of a Kripke model is not equationally expressible, and there are dynamic
algebras that belong to the equational class generated by the algebras of Kripke models but
are not themselves representable in such models.

Process logiavas introduced irPratt 1979[200] by interpreting a program, not as a
relation between states, but as the set of possible state-sequences that can be generated by
executing the program. In addition to “after”, he proposed the following modalities

throughoutr, «: « holds at every state of any sequence generated in exeatting
duringz, @: everym-computation hag true at some point.
7T preservesy: in everym-computation, once becomes true it remains so thereafter.

Parikh [194] developed a decidable system of second-order process logic that subsumed
Pratt’s, and allowed quantification over states and state-sequences. Then Nishimura [191]
combined PDL with some temporal connectives to devise a system extending Parikh’s.

56 More background on the beginnings of dynamic logic is provide@atdblatt 1986[91].
57 SeeKozen and Tiuryn 199[140] for references.
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All of these were subsumed by the powerful system of process logic of Harel, Kozen and
Parikh [107] which was shown to be decidable by reduction to the second-order decidabil-
ity results of Rabin [212].

The 1984 article [106] surveys the first decade of dynamic logic, and there is a further
review in the 1990 book [140].

7.2. Hennessy—Milner logic

Matthew Hennessy and Robin Milner [114,115] applied modal logiproxess alge-
brain a manner that is reminiscent of the Kripke modelling of PDL. They used a modal
language to express assertions about transitions between processes in such a way that two
processes prove to be “observationally equivalent” just when they satisfy the same modal
properties.

A processs viewed as an agent that interacts with its environment by performing ob-
servable actions which cause it to change its state. Processes are identified with their states,
so an observation changes a process into a new process. The ngtatidne R; means
that procesg can become’ by performing, or participating in, the observatiomhusRr;
is a binary relation on a given s@tof processes, and we envisage a collecfi®n i € I}
of such observation relations corresponding to d s#t‘types of observation”. A particu-
lar pair{p, p’) € R; represents a singler observation, and is also viewed as an “experiment”

performed by the observer on procgsgIn subsequent literature the notatipnl—> p’ be-
came standard in place ¢p, p’) € R;.)

The Hennessy—Milner modal language has no propositional variables, but constructs
formulas from the constant by the truth-functional connectives and the modalities
for i € 1. The box modality{i ] is defined to be-(i)—. The relationp = «, meaning
“processp satisfies formula”, is defined inductively, with

pE={i)a iff forsomei-experimentp, p), p' =o.

Two processes are regarded as equivalent if there is no observable action that either can
perform to distinguish them. Informally this means that to each observable action that one
can perform there is an action that the other can perform which leads to an equivalent
outcome, so each process can “simulate” the other. Spelling this out,

pis equivalent tgg if, and only if,

(i) for every resultp’ of an experiment oip, there is an equivalent resuit of an experiment og;
and
(i) for every resulty” of an experiment op, there is an equivalent resyit of an experiment omp

(Milner 1980[182], p, 41). As a definition of equivalence this appears to be circular, since
the word “equivalence” occurs on both sides of the “if and only if”. To formalise the idea,
a sequence of equivalence relations for n > 0 is defined onP. For each relatior§ C

P x P, define a relatiorE (S) by putting(p, g) € E(S) if for everyi e I,

(1) (p, p') € R; implies, for some;’, {(q,q’) € R; and{p’, q’) € §; and
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(2) (g.q’) € R; implies, for somey’, (p, p’) € R; and{p’,q’) € S.

Put p ~g ¢ for all p,q € P, and inductivelyp ~,+1 ¢q if {p,q) € E(~,). Thenp andq
are defined to bebservationally equivalenwritten p ~ g, if p ~, g for everyn.

Now a relationkR € P x P is image-finitef the set{p’: (p, p’) € R} is finite for each
p € P. Hennessy and Milner gave a logical characterisation of observational equivalence
by showing that if eacl®; is image-finite, two processes are equivalent iff they satisfy the
same formulas:

p~gq iff forallformulase, pEao iff g Ea. (%)

Note that the operatoE on relations isnonotonic R C S implies E(R) C E(S). This
property implies, by induction, that, 1 € ~,, and so iteration of' generates decreas-
ing chain of relations

~gD~1 D~ DD~y D

Let~, =[{~x: n > 0} be the intersection of the chain. Then in the image-finite cage,
is thelargest fixed poinbf the operatok, i.e., puttingS = ~,, gives the largest solution to
the equatiors = E(S) (see [115, Theorem 2.1]). In that cage q) € S iff (p,q) € E(S),
legitimizing the circular definition of equivalence.

The monotonicity ofE alone is enough to guarantee thathas a largest fixed point
(see Section 7.4), but in the absence of image-finiteness this fixed point need not be the
relation~,,. It may be a proper subrelation &f, that can only be reached by iteratifg
transfinitely often. Consequently this largest fixed point has become the general definition
of the observational-equivalence relation and it is only in the image-finite case that
is identified with~,.

This analysis indicates that standard induction on natural numb@ysplied to the re-
lations~,,) may not be effective as a method for proving equivalence of processes. Instead,
as was first realised by David Patka new kind of proof rule is called for, based on the
notion of abisimulation This is a relatiors C P x P satisfyingS C E(S), i.e.,(p,g) € S
implies (1) and (2) hold. The union of any collection of bisimulations is a bisimulation,
and so there is a largest bisimulation—the union of all of them—which turns out to be
the same as the largest fixed pointlf In other words, the observational relatienis
the largest bisimulation on any structur®, {R;: i € I}). It is an equivalence relation in
the mathematical sense (reflexive, symmetric and transitive) and is kndvisimsilation
equivalencer bisimilarity (Milner 1989[184]). It

admits an elegant proof technique; to shpw~ ¢, it is necessary and sufficient to find some
bisimulation containing the paip, ¢)

(Milner 1983[183], p. 283). In the general setting, whenis not equal to~,,, the same
modal-logical characterisation of bisimilarity as) @bove can be obtained by expanding

58 Information from Robin Milner, personal communication.
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the class of formulas to allow formation of the conjunctifyn. , «; for any sefe;: j € J}
(possibly infinite) of formulas.

The term “bisimulation” was first used Park 1981[196] for a relation of mutual simu-
lation between states of two automata, with motivation from an earlier notion of simulation
of programs fromMilner 1971[181]. Park showed that if two deterministic automata are
related by a bisimulation, then they accept the same set of inputs. The concept and its use
was systematically developed Milner 1983[183]. It is closely related to the notion of
“p-relation” of van Benthem [263] mentioned in Section 5.3. Segerberg’s p-morphisms are
essentially bisimulations (between Kripke models) that are total and functional.

Process algebra is now a substantial field, with many concepts and constructions for
building processes, and many important variations on the notion of observational equiv-
alence or bisimilarity (see [11]). For any given family of transition systems, i.e., systems
of observation relations, we can seek to devise modalities that generate formulas giving a
logical characterisation of the bisimilarity relations for those systems in the manngr of (
This programme has been carried out for many cases. Logics for more recently developed
theories of “mobile” and “message-passing” processes are discussidén et al. 1993
[185] andHennessy and Liu 1998.13]. They provide modalities that formalise complex
structural assertions, for example the forml& ) expressing “it is possible to output
some value on channet and thereby evolve to a state in whiefv/x] is true”.

Axiomatisations of various modal process logics may be found, inter aligfiiting
1987 [237] andLarsen 199(151]. Other work on modal aspects of process algebra is
collected in [198].

7.3. Temporal logic for concurrency

In 1977 Amir Pnueli proposed to use temporal logic to formalising reasoning about the
behaviour ofconcurrentprograms involving a number of processors acting in parallel and
sharing a memory environment, so that each can alter the values of variables used by the
others (see [197]). This is particularly relevant to the specification and analysiaative
programs, like operating systems and systems for airline reservation or process control,
that repeatedly interact with their environment and are not expected to terminate. As such
a program runs, each success state is obtained by one processor being chosen to execute
one instruction. Thus from an initial state, many different sequences, x1,. .. of states
may be generated depending on which processors get chosen to act at each step.

Pnueli observed that temporal modalities could be used to formulate computationally
significant properties of execution sequences, sudhiascheduling(no processor is de-
layed forever), freedom frordeadlock(when none can act), and many others. He used
Prior’s future-tense modalit§ (and its dualF’), but with the Diodorean reading of “at all
future states including the present”, as well as a connektivéh the reading “at the next
state”. The latter had first been introduced to tense logic for discrete time by Dana Scott
(seePrior 1967 [209, p. 66]. Programs do not appear in the syntax in this approach. In-
stead, temporal formulas describe properties of a particular execution sequence of a single
(concurrent) program.

The papeGabbay, Pneuli, Shelah and Stavi 1988] added a binary connectivé to
this formalism, witha UB meaning & until 87, i.e., “g will be true, andx will be true at
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all timesuntil g is”. This connective and its past-tense versiosinces had been studied

by Hans Kamp in his 1968 thesis [130]. He showed that they forexaressively complete

set of connectives in the sense that for models in which time is a complete linear ordering,
all tense-logical connectives can be defined in terms of them. Gabbay et al. adapted this to
show thatU by itself plays a similar role for the future-tense logic of state sequences. They
gave an axiomatisation for this extended logic, which they called DUX, and proved that it
is decidable. By way of illustration of the expressive completenegs,dhey noted that

Fa can be defined a$ U«, and thenGa as—F —«, while Xa can be defined as Uaw.

DUX is now more commonly known as PLTL (propositional linear temporal logic).

Since there are many different execution sequences with a given starting state any par-
ticular sequence is just one “branch” or “path” of the “tree” of all possible future states.
Considering the tree as a whole gives rise to some interesting new modalities that can for-
malise reasoning about future behaviour. This line was pursued by Mordechai Ben-Avi,
Armir Pnueli and Zohar Manna [9], defining a systéff8 (the unifiedsystem ofbranch-
ing time), which combineds; andX with the symbolsv, 3 for quantification over paths to
produce the following modal forms:

VGa: along all future pathsy is true at all states.
dGa: along some pathy is true at all states.
VXa: along all pathsy is true at the next state.

Dual modalities were defined by writiri’ for =vG—, VF for =-3G—, and3aX for =vX—.

The logict/B was shown to be finitely axiomatisable and have the finite model property,
using semantic tableaux methods. It was also stated that, in contrast to PLTL, no tempo-
ral language for branching time with a finite number of modalities could be expressively
complete, this theorem being credited to Gabbay.

Theuntil connectivel was added t&/8 by Edmund Clarke and Allen Emerson [36] to
define the system CTL of Computation Tree Logic, which was axiomatised and shown to
have the finite model property by Emerson and Joseph Halpern [58]. CTL has the limitation
that the path quantifierg and3 are tied to a single linear-time state quantifier (modality)
as in the form&/G, 3F, or a single instance dff as in3(« UB) etc. It does not allow a
combination like3G F«, expressing “there is a path along whiglis true infinitely often”,

a property of relevance to fair scheduling conditions. Emerson and Halpern [57,59] devised
a new system CTLthat allows such formations. It distinguishes betwstate formulas

which are true or false at each state, gradh formulas which are true or false of each

path. The path formulas include the state formulas and both categories are closed under
the truth-functional connectives.df 8 are path formulas thewU S, Ga andXa are path
formulas, whileVa and3a are state formulasia (respectivelydw) is true at state iff «

is true of all (respectively some) paths that start.at

In addition to being more expressive than CTL, CTit more complex. Whereas CTL
and PDL are decidable by algorithms that run in deterministic exponential time, the com-
plexity of CTL" is that of deterministicloubly exponential time. The lower bound here
was established by Moshe Vardi and Larry Stockmeyer [270], and the upper bound by
Emerson and Charanjit Jutla [60,61]. Methods from tree automata theory are used to prove
decidability results in this context. Models can be viewed as infinite branching trees, or at
least can be “unravelled” into such tree structures. Associated with each fosnisikan
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automatond,, that accepts a tree model iff it satisfiesat its root. Thus the satisfiability
problem for many logics can be reduced to émeptinesproblem for automata on infinite
trees that was shown to be decidabl®abin 1969212] (see Section 6.2). This technique
was first developed in the 1980 Masters thesis of Robert Streett (see [241]) who used it to
prove the decidability of PDL with theepeat construct.

The logic CTL was defined semantically, and a sound and complete axiomatisation of
it was hard to find. Eventually one was provided by Mark Reynolds [214].

A property of paths not expressible in linear time logic, or even in GTi& that a
formula be true at evemgvenstate along the path (and possibly at others). Sets of sequences
that have this property can be generated by formal grammars, or characterised by finite-
state automata that process infinite strings. Pierre Wolper [275] showed that any regular
grammar gives rise to a temporal connective creating formulas that are true just of paths
generated by that grammar in a certain way. He also showed that the linear time connectives
G, F, X andU can each be expressed by such a grammar, and dubbed this formalism ETL
for “extendedemporal logic”. The idea can be applied to branching time systems, and
leads to a logic ECTLinto which CTL" can be translated (s@&omas 198@251]).

Surveys of computational temporal logic, and its various applications to reasoning about
programs, are given in [55] and [238].

A different kind of use of modalities of the branching-time type was made by Glynn
Winskel [274] in constructingowerdomainsThese structures arise in the denotational se-
mantics of programs, and are intended to proved domain-theoretic analogues of powersets.
In dynamic logic a non-deterministic program is modelled as a binary transition reRtion
on a setS of possible program states. Alternatively this can be viewed as a function from
S to its powersefP(S), taking each state € S to the set{y: xRy} of states that can be
reached by different possible executions of the program. Analogously, given a ddmain
a non-deterministic program may be modelled as a function ffoim its powerdomain.

There are several different powerdomain constructions, and Winskel shows how to build
them out of formulas of some modal languages associatedfvitthis involves tree-like
models of the languages that represent certain computations. For the “Smyth” powerdo-
main a modality] is used that it read “inevitably'Tla has the same meaning in these
models as the CTL-modalityF«, i.e., along every future path there is a state at which
a holds. The construction of the “Hoare” powerdomain usedor “possibly”, with o
meaning that there is a future path withtrue somewhere, i.e3F«. For the “Plotkin”
powerdomain, both of these modalities are involved.

7.4. The modajl.-calculus

Mathematics and computer science abound with concepts and objects that are defined
recursively, or self-referentially. Many of these have an elegant formulation as sipeziial
pointsof certain operations. The-calculusL,, of Kozen [136,137] admits formulas that
are interpreted as fixed points, and is expressively more powerful than any of the modal
program logics considered above.

Let ®:P(S) — P(S) be an operation on the powerset of a Seffarski applied the
term “fixpoint’ to any subsef of S such thato (T) =T. If ® is monotonidn the sense
thatT C T’ implies®(T) € ©(T’), then® has deastfixpoint u® and agreatesfixpoint
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v®, given by
nwo=\{rcs: omcri,
e, =U{T ST SO}

The fact that® has a fixpoint was first shown by Tarski and B. Knaster in 1927. In 1939
Tarski generalised this to any monotonic function on a complete lattice, showing that its
fixpoints also form a complete lattice, with greatest and least elements specified by the lat-
tice versions of the definitions just given (SEsrski[249] for this historical background).

Pratt [203] introduced the idea of using a “minimisation” operator in a PDL-like context,
but interpreteq. as aleast rootoperator rather than a least fixpoint one. He developed a
language of terms intended to denote elements of a Boolean algebra, with a term of the
form 1 Q.7(Q) interpreted as the least solution of the equatiet®) = 0”. A syntactic
restriction was imposed on to ensure that at least one solution exists. A translation of
PDL into the resulting calculus was given, and the system was shown to have the finite
model property by a refinement of the McKinsey method. A deterministic exponential
time algorithm was given for the problem of deciding satisfiability terms.

Pratt’s work provided the inspiration for Kozen’s development of the calciilus
whose language is generated from some colledfiaf atomic programs (or action labels)
. Lu-formulas are constructed from propositional variables using the truth-functional
connectives, the modalitigs ] and () for = € IT, and the constructionsp.« andvp.«,
where p is a propositional variable and is a formula. The operationsp andvp func-
tion like quantifiers, binding occurrences pfin «. up.« andvp.a are only allowed to
be formed whenv is positivein the sense that all free occurrencespoin « are within
the scope of amvennumber of negations.. This condition is satisfied for instance by
any formula constructed from variables using only L, A, v, [x], (7)), up andvp. The
“binder” v is definable in terms of. by takingvp.a as—up.—a(—p/p). Vice versa,u
could be defined in terms of

An Ly modelM = (S, {1>: m € IT}, @) is just like a Kripke model for dynamic logic,
or a labelled transition system for Hennessy—Milner logic augmented by a valu@tion
to interpret the variablep. M gives each formula the interpretationM («) = {x €
S: M k&, a}. If a contains the variablg, then varying the interpretation gf causes the
interpretation ofx to vary, and in this waw induces an operation gR(S). To make this
precise, forT C S let M ,._7 be the model that is identical td1 except in interpreting
asT,i.e.,M,._r(p)=T. Then the operation induced kyon P(S) relative toM is the
function

OM:T — Mp_r(a).

If « is positive, then®,, is monotonic. Assuming inductively th&, has been specified,
M (up.) and M (vp.«) are defined to be the least and greatest fixpging"! andveM
given by the Tarski-Knaster Theorem.

The meaning ofup.o andvp.« for particulare can be hard to fathom, but it helps to
think of them as solutions of the equatiop = «” and repeatedly replace by « in «
itself. It turns out thapp.(« Vv () p) has the same interpretation in a model as the PDL-
formula(z*)a, whilevp.(x A []p) has the same meaning[as‘]a. Also up.(r) p is true
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at xg iff there is aninfinite sequenceg = X1 X ...in M, which is the condition for truth
of the formularepeat(r). Using these observations it can be shown that the logic PDL
with therepeat construct has a simple translation into firealculus.

A CTL-model can be viewed as dru-model with a single transition relatio®, and
with a path being a sequencey = x1 = --- in the model. CTL translates intb,, by
translatingd(a UB) asup.B Vv (@ A (m)p) andV(ae UB) asup.B V (@ A [w]p A () T).
The L, -formulavp.a A [][7]p means “along all paths; is true at every even state”, a
property expressible in ECTLbut not CTL'. Mads Dam [47] has constructed algorithms
for translating both CTLand ECTL into L.

Kozen proposed a finite axiomatisation bf which, for the binden:, has the axiom
schema

a(up.a/p) — pup.a
and the inference rule:

froma(8/p) — B infer (up.a) — B if pis not freeing.

Validity of the axiom follows from the fact thaf = x©®M is a solution of the “inequal-

ity” @(T) < T, and soundness of the rule is dueit®,"* being the least such solution.
Kozen was able to prove the completeness of a limited fragmehf, dbr which he also
showed the finite model property and an exponential time decision procedure. Thg full
was proved decidable by Kosen and Parikh [139] by reduction to RahifisStreett and
Emerson [242,243] used tree automata to improve this to a deterministic triple-exponential
time decision algorithm and establish the full finite model property. Emerson and Jutla
[60,61] sharpened the complexity result further to a deterministic exponential time algo-
rithm, which is the best possible result since it is the lower bound for PDL and therefore
for the u-calculus. Kozen [138] gave a different proof of the finite model property using
techniques from the theory of well-quasi orders, and proved a completeness theorem for
L,, using an infinitary rule of inference.

The problem of whethek , is complete for Kozen'’s originally proposed axiomatisation
proved challenging, and remained open for some time. It was eventually solved in the
affirmative by Igor Walukiewicz [272,273].

The formalism of theu-calculus originates in some unpublished notes of Jaco de Bakker
and Dana Scott from 1969. Kozen'’s inference rule derives from the Fixpoint Induction rule
of Park 1969195]. Another early independent formulation of a modal program logic with
a greatest and least fixpoint operators appeatnerson and Clarke 198[®6]. For a
recent survey of the field of modalcalculi, seeBradfield and Stirlind26].

7.5. Solovay on provability in arithmetic as a modality

Let PA be the first-order system of Peano Arithmetic that is the subject of Gddels in-
completeness theorems, and R&+ o signify that sentence is provable inPA. Géodel
showed that this notion can be “arithmetised” and expressed in the languBgeteélf.
There is @PA-formulaBew(v) with one free variable such that in gener&®At- o iff the
sentencBew(" o ) is true (i.e., true of the standa@dA-model(w, +, -, 0, 1)). Here" o™
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is the numeral for the Godel number®f Now all PA-provable sentences are true, so for
everyo the sentence

Bew( o) - o

is true. But it is not alway®A-provable a fact which is a manifestation of the first in-
completeness theorem. Godel gave an example of this in 1933 [84] in observing that if the
modality “provable” is taken to mean provable A then some principles of S4 do not
hold:

For exampleB(Bp — p) never holds for that notion, that is it holds for no syst&mhat contains
arithmetic. For otherwise, for exampl8(0 # 0) — 0z 0 and therefore alseB(0 # 0) would
be provable inS, that is, the consistency ¢fwould be provable ir§.

Provability in S of the consistency af would contradict the second incompleteness theo-
rem.

The question therefore arises as to which modal principles do hblddfread as PA-
provable”. To make this precise, defineealisationto be a functionp assigning to each
propositional variabley somePA-sentencg?. This extends inductively to all modal for-
mulas by takingT® to be (0 = 0), realising the non-modal connectives as themselves, and
defining

(Da)¢ = BGV\(’_a¢ —').

A modal formulax is PA-validif PAF «? for every realisationp. The question becomes
that of determining which modal formulas dpé-valid.
The set of allPA-valid formulas is a normal logic, known as G (for G6d®)To show
that it is normal it is necessary to verify that the following hold in general:
PAFBew o — ¢'7) — Bewo ') — Bew(o"7);
If PAF o, thenPAFBew("o 7).

These results were distilled by Martin L6b in 1955 [160] from propertieBesiithat were
established imilbert and Bernays 193pL16]. L6b then proved

PAFBew("o ) — Bew("Bew("o 7)),
which shows thalp — OO p is PA-valid and hence a G-theorem. However the other S4-
axiomOp — p is notPA-valid, and indeed not even the formllaL. — L is aG-theorem,
since(dL — L)?is

Bew("0#£0") — 00,

which is notPA-provable by Gddels reasoning above.
Robert Solovay [235] demonstrated that G is identical to Segerbergs logic K4W, dis-
cussed in Section 5.3, which is characterised by the class of finite strictly ordered (i.e.,

59 Also known as GL for Godel-Lab.
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transitive and irreflexive) Kripke framé8.The validity of the axiom W, i.e.,
U@p — p) - Up,

follows from an answer given in [160] to a question raised by Leon Henkin in 1952 about
the status of sentences that assert their own provability. Pd&jormula F (v) hasfixed
points sentences for which

PAF o < F(’_oj)
(this is usually called thBiagonalisation Lemmjg A fixed point ofBew(v) has
PAF o < Be\l\('_a—‘)

so is equivalent to the assertion of its own provability. Must it in fact be provéblasb
answered this in the affirmative by proving that

if PAF BGV\(’_Jj) — o, thenPAlo.

Equivalently, ifBew("Bew ¢ ) — ¢ ) is true then so iBew(" ¢ ), i.e., the sentence
Bew(Bew("¢ ") - o) — Bew( o)

is true. But more strongly it can be shown that this sentend&iprovable for anyo,
includingo = a?, giving thePA-validity of W.

Solovay’s completeness theorem for G is a remarkable application of the machinery of
arithmetisation and recursive functions to show that any finite strictly ordered fr&m®)
can be “embedded into Peano Arithmetic”. A recursive functio® — K is defined that
is in fact constant, but which cannot be proven to be constaPhirEach element of K
is represented by a sentengeexpressing “lim_. . #(n) = x". This sentence is consistent
with PA i.e.,PA¥ —a,. The construction has a flavour of self-referential paradox similar
to that of Godels incompleteness proof, because the sentepca® used to define the
function itself. But that is resolved by some version of diagonalisatfofihe structure
of the orderingR is represented iRA by the fact that ifc Ry then

PAFo, — —-Bev\(’_—-oy—‘),
and if notx Ry then
PAF o, — Bew( =0, 7).
Any model M on this frame determines a realisatipioy putting

P =\{ox: M= p).

Then the truth conditions iM are PA-representable by the fact that for any modal for-
mulac,

60 The axiom 4:0p — Op is not needed in formulating this logic. It is deducible from W, as was shown
independently by several people, including de Jongh, Kripke and Sambin.

61 Thisis a generalisation of Henkin’s question: Sreoryiski 1991[233] for discussion.

62 Solovays argument used Kleene’s Recursion Theorem on fixed points in the enumeration of partial recursive
functions.
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if M =y o thenPAF oy — af; while
if M b, o thenPAF oy — —a® and soPAF a? — —o,.

SincePA¥ —oy,, the last case giveBA¥ «?, showinga is not PA-valid. Therefore any
PA-valid formula must be true in all models on finite strictly ordered frames, and therefore
be a G-theorem.
A modal formulax is calledw-valid if «? is truefor all realisationsp. The set G* of alll
w-valid formulas is a logic that includes G, but also includgs— p, sinceBew( o) —
o is always true. However Godels example shows Beat("Bew(” L¢7) — 1% 7) is not
true, so G* does not contain(Clp — p), and therefore is not a normal logic. Solovay
extended his analysis of G to prove that G* can be axiomatised by taking all theorems of
G and instances d@fle — « as axioms, and detachment as the only rule of inference.
Another natural reading dfl in this context is “true and provable”, formalised by mod-
ifying the definition of realisation to

Oa)? :=a? A Be\l\('—a‘pj).

The fact that “provable” implies “true” might make it seem that “true and provable” has the
same status as “provable”, but this is not so because of the existence of true but unprovable
sentences oPA. In generalBew(" ¢ ) is PA-provable iffc A Bew("o ") is PA-provable,

and the two are equivalent in the sense that

Be\l\('_a—‘) <o A Be\l\('_a—‘)

is true, but this equivalence is not itséA-provableunlesss is, by Lobs theorem.

The modal logic of formulaBA-valid under this modified realisation turns out to be the
system S4Grz characterised by finite partial orderings (see Section 5.3). This was proved in
Goldblatt 197g88] by showing that replacingle by o A O« gives a proof-invariant trans-
lation of S4Grz into G, and then applying Solovays theorem 6% Since the intuitionistic
propositional calculus IPC can be translated into S4Grz (by the result of Grzegorczyk men-
tioned in Section 5.3), these translations can be composed to obtain a translatior
of propositional formulas into modal formulas such thats provable in IPC iffa” is
PA-valid. In facta® is PA-valid iff it is w-valid [88, Theorem 5].

Research into the modal logic of provability since the 1970s has contributed much to
our understanding of the phenomena of self-reference and diagonalisation that underly the
incompleteness dPA and other systems. An account of the origins of the subject has been
given by George Boolos and Giovanni Sambin [25], and extensive expositions are provided
in the books of Boolos [22,23] and Craig Smbski [232]. The most recent survey is that
of Giorgi Japaridze and Dick de Jongh [123].

7.6. Grothendieck topology as intuitionistic modality

By composing his semantic analysis of S4 with the McKinsey—Tarski translation of IPC
into S4, Kripke [147] derived a relational model theory for intuitionistic logic based on

63 The result was independently found by A. Kuznetsov and A. Muzavitsliis{racts of Reports of the Fourth
All-Union Conference on Mathematical Logiishiniev, 1976, p. 73, in Russian).
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structuresS = (K, R) in which R is a quasi-ordering, i.e., reflexive and transitive. He in-
terpreted the members &f informally as “evidential situations” temporally ordered By

His paper presented a semanticsgagdicatelogic, proving completeness by the method

of tableauf?. It also showed that attention can be confined to structures that are partially
ordered, i.e., antisymmetric as well. By identifying elements € K whenever Ry and

yRx we pass to a partially ordered quoti€bitwhich validates the same intuitionistic for-
mulas as5. More strongly, any model o& has an equivalent model @. This contrasts

with the modal semantics on these structures: it can happersthedlidates the modal
axiom Grz while& does not (see Section 5.3).

Segerberg [221] studied the propositional fragment of this model theory, using only
partially ordered frames from the outset. He constructed canonical models and applied
the filtration method to prove the finite model property for a number of logics, including
some that are weaker than or independent of IPC. The fact that IPC is characterised by the
finite partially ordered frames, which also characterise S4Grz under the modal semantics,
provides a clear picture of why IPC translates into S4Grz and not just S4.

Here is a brief description of the relational models for IPC. Given a partial ordering
G = (K, <), asubseX of K will be calledincreasingif it is closed “upwards” under the
ordering, i.e., whenever € X andx < y, theny € X. The definition of a modeM =
(6, @) requires that the sdtx € K: @(p,x) = T} be increasing for all propositional
variablesp. Formally this requirement is dictated by the modal translatiop afsCp,
while informally it conveys the idea that ongeis established as true in a given evidential
situation then it remains true in the future. The truth conditions for implication and negation
are

MEca— g iff forall y>x, if M, athenM [, B,
M, ~o iff forall y>x, notM =, a.

The modelling ofA andv is as for classical logic. By induction it is demonstrable that for
each formular the setM («) = {x € K: M =, a} is increasing.

The topological and algebraic modellings of IPC from Section 3.2 are in evidence here.
The increasing sets form a topology &n and the associated Heyting algebra of open sets
satisfies a formula iff « is valid in G, i.e., iff M(«) = K for all modelsM on &. At
the same timer is valid in & iff it is satisfied by the Brouwerian algebra cbsedsubsets
of this space, with the least eleménof the algebra being designated. This follows from
properties of the set

M) ={x € K: notM =, o}

of points at whichx fails to hold in modelM. M(«) is closed, being the complement of

the open setM («), and takes the designated valtidf « is true in the modeM. These
“falsity sets” can be reconstructed by applying the Brouwerian operations that correspond
to the propositional connectives:

Ma A B) = M(a) UM(B)
64 An extension of intuitionistic predicate logic that is incomplete for Kripke's semantics was found by Hi-

roakira Ono [192], and an incomplete extension of intuitionistic propositional logic was obtained by Valentin
Shehtman [228].
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M(a v B) = M(a) N M(B)
M(a — B) = M(a) ~ M(B)
M(—a) = M(a) = K.

This analysis accounts for the dual nature of the Brouwerian algebraic semantics.

Modal systems based on intuitionistic logic typically takeand & as independent
connectives that are not interdefinable ustag_ogics of this kind, using one or both of
0 and <, have been studied by a number of authors, for a variety of philosophical and
technical motivations, beginning with a paper published by F.B. Fitch in 1948 [73]. The
history of much of this work is reviewed in the 1994 dissertation of Alex Simpson [231,
Section 3.3]. Here we will consider another system which has a particular mathematical
significance associated with topos theory.

A topos is a category that may be thought of, roughly speaking, as a model of intu-
itionistic higher order logic or set theory. It includes a special edBfytheobject of truth
values with morphisms

nU, =02 x 2—> £, -2 -2 3

satisfying categorical formulations of the laws of Heyting algebra. A “global element” of
£2 is a morphism of the form & 2, where 1 is the terminal object &f. In the category

Set of all sets and functions 1 is a one-element set and morphismsXL correspond
precisely to actual elements of the sét Thus global elements a® in a topos are also
calledtruth values The morphisms (3) induce operations on the collecfigh £2) of truth
values that make it into a Heyting algebra, which is just the two-element Boolean algebra
in the case ofet. But for each topological spacethere exists a topos in whid(1, £2)

is (isomorphic to) the Heyting algeb€a(S) of open subsets f.

Grothendieck generalised the notion of a topology on a set to that of a topology on a
category, by generalising the notion of an open covering of a set. He used this as a basis
on which to formulate sheaf theory. Lawvere and Tierney showed that the theory could be
developed axiomatically by starting with a topp$iaving a morphisnj : 2 — £2, called
atopology on€, satisfying properties that allow the construction of a certain sub-topos of
“ j-sheaves”. The pai€, j) will be called asite The axioms forj are categorical versions
of the requirement that an operation on a lattice be

multiplicative: j(x -y)=jx-jy,
idempotent: j(jx) = jx, and
inflationary: x < jx.

In the 1970 address at which he first announced this new theory Lawvere [152] stated that

A Grothendieck “topology” appears most naturally as a modal operator of the nature “it is locally
the case that”.

Intuitively, a property holddocally at a pointx of a topological space if it holds at all
points “near” tax, or throughout some neighbourhoodwfAlternatively, a property holds
locally of an object if it is covered by open sets for each of which the property holds. For
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example a locally constant function is one whose domain is covered by open sets on each
of which the function is constant.

Define alocal operatof® on a Heyting algebra to be any operationi that is multi-
plicative, idempotent and inflationary, and call the pgalie (9, j) alocal algebra The
general theory of these algebras has been studied by Donald Macnab [164,165], who
showed that local operators can be alternatively defined by the single equation

x=jy)=0x=jy).

Any local algebra is a candidate for modelling a modal logic based on the intuitionistic
calculus IPC. Sincg is multiplicative and hag1 = 1, this will be anormallogic whend
is interpreted ag, but there has been some uncertainty as to whether a modality modelled
by j is of universal or existential character. Note that a local operator has a mixture of
the properties of topological interior and closure operators. It fulfills all of the axioms of
an interior operator exceft < x, satisfying instead the inflationary condition which is
possessed by closure operators. But topological closure operators are additivey() =
Cx + Cy), a property not required gf.

Let 7 be the set of all modal propositional formulas satisfied by all local algebras with
1 designated. The proof theory and semantics (algebraic, relational, neighbourhood, topos-
theoretic) of this logic was investigated @Goldblatt 1981[90] where the symboV was
used in place of]. It was shown that/ can be axiomatised by adding to the axioms and
rules for IPC the three axioms

Vip—q)— (Vp— Vq),

VVp— Vp,

p— Vp.
The last axiom allows derivation of the ruiem « infer Va. There are a number of alter-
native axiomatisations Qf , one of which is to add to IPC the axioms

(p—q9)— (Vp—Vg),

VVp— Vp,

VT.

As Macnab’s characterisation of local operators suggestsan also be specified by the
single axiom

(p—>Vg) < (Vp— Vg).

In the presence of classical Boolean logic, the middle axovip — V p in the first group

is deducible from the other two, and the logic becomes the rather uninteresting system
K+(p — Vp) whose only connected validating frames are the two one-element frames
&, andG, (see Section 6.1). But in the absence of the law of excluded middle we have a
modal logic with many interesting models. In particular it has relational models based on

65 Also known in the literature as a “nucleus”.



R. Goldblatt / Journal of Applied Logic 1 (2003) 309—-392 381

structuresS = (K, <, <) which refine the Kripke semantics for IPC. Hegeis a partial
ordering of K and < is a binary relation interpretin§y as a universal quantifier in the
familiar way:

M Va iff M=, aforall y suchthate < y.

To ensure that\(Va) is <-increasing it is required that < y < z impliesx < z. The
logic J is characterised by the class of such frames in whicls a subrelation ok
that isdensein the sense that < y implies3z(x < z < y). There is a canonical frame
&7 of this kind that characteriseg, and the logic also has the finite model property
with respect to such frames. In addition there is a characterisatignbgfneighbourhood
frames(K, <, N) (see Section 5.3), wher¥, is a filter in the lattice of<-increasing
subsets oK, and the following conditions hold:

x < yimpliesN, C Ny,
{y: x<y}eN,
{y: U eN,}e N, impliesU € N.

If Va is definedto be the formula-—«, then the axioms off become theorems of IPC.
Lawvere [152] observed that

There is a standard Grothendieck topology on any topos, namely double negation, which is more
appropriately put into words as “it is cofinally the case that”.

Now if Y andZ are subsets of a partially ordered $&t, <), thenZ is cofinal withY if
every element of has an element df greater thaniit, i.e.,

VyeY3dzeZ y<z.
The Kripke modelling of IPC has

M, ——a iff  M(a) is cofinal with{y: x < y},

which explains Lawvere’s interpretation of double negation as a modality. On the alge-
braic level, puttingj (x) = ——x in a Heyting algebra& defines a local operator whose set
{x: ——x = x} of fixpoints is aBooleansubalgebra ofy. On the categorical level, putting
Jj = — o — defines a topology on any topésfor which the associated subtopés- of
sheaves is a model of classical Boolean logic. These constructions are mathematical man-
ifestations of thalouble-negation translatioaf classical propositional calculus into IPC,
originating in a 1925 paper of Kolmogorov [135], which works by insertirgin front of
each subformula.

For any partially-ordered s& = (K, <) there is a topog€s whose objects are cer-
tain “set-valued functorstP, <) — Set, and whose algebrés (1, £2) of truth values is
isomorphic to the Heyting algebra of all increasing subset$ .dih the case thab is an
appropriate set of “forcing conditions”, the top@Ss)-— of “double-negation sheaves”
becomes a model showing that the continuum hypothesis (for example) is independent of
the axioms for topos theory including classical logic ($egney 1974260]).
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If j:2 — £2 is a Lawvere—Tierney topology on topés then the sitg &, j) can be
used to interpret modal formulas as truth values X2 in £. The morphismj induces a
local operatorf — j o f on the Heyting algebré&(1, £2) of truth valuesire. If a formula
is satisfied by the resulting local algebra then it is said teddi in the site(&, j).

The modal formulas that are valid in all sites are precisely fhtheorems. This is
shown inGoldblatt 1981[90] by the construction out of any-frame& = (P, <, <) of a
particular site(£s, jo) that validates exactly the same modal formulas as ¢beSs is
the topos of functorsP, <) — Set as above. The relatior is used to defingg . Applying
this construction to the canonical frange” produces aanonical sitethat characterises
the logicJ.

It is possible to study topoi from a logical perspective, building these categories out of
the syntactic and proof-theoretic machinery of formal languages of types. By including
a J-style modality in these languages the Lawvere—Tierney sheaf categories can be con-
structed in such a way. This approach to the theory of sheaves and topoi has been developed
by John Bell [8].

There have been several independently motivated introductions of versions of the sys-
tem 7. A Gentzen-style calculus studied by Haskell Curry in 1952 [46] for proof-theoretic
purposes has rules for a possibility modatitythat gives a variant off when< is identi-
fied with V. Recently the logic has re-emerged in a different guise as the Propositional Lax
Logic (PLL) of Matt Fairtlough and Michael Mendler [65,66]. This is a system based on
intuitionistic logic that is intended to formalise reasoning about the behaviour of hardware
devices, like circuits, subject to certain “constraints”. A moddlijys used, withDa hav-
ing the intuitive interpretation “ for some constraintr holds under”. This appears to be
an existentialreading of the modality, but the authors suggest fhathas a flavour both
of possibility and necessity”. Their proposed axioms are

(p—q)—> (Or— O9),
OOp—Ops
p— Op,
showing that the system is indeed a versionofwith O in place of V. They give a

relational semantics for PLL using structuk@s, <, R) with R being a quasi-ordered sub-
relation of<. The connective) is interpreted by theniversal-existentiatlause

M=, Qa iff forall y > x there existg such thatyRz and M =, «.

It is shown that(K, <, R) validates the same formulas as theighbourhood7-frame
(K, < N) of the above kind, where &-increasing seU is a neighbourhood of (i.e.,
U € N,) iff

for all y > x there existg such thatyRz andz € U.

In other wordsUJ € Ny iff U is R-cofinal with{y: x < y}.

Yet another manifestation qf is the CL-logic of Nick Benton, Gavin Bierman and
Valeria de Paiva [10]. This is designed to analyse a typed lambda calculus, due to Eugenio
Moggi [186], which gives a denotational semantics for programs using a constfictor
that produces #&pe of computationsThe denotation of a program computing values of
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type A is itself an element of the typBA. The CL-logic is an intuitionistic propositional
calculus corresponding to this type system, and has a “curious possibility-like modality
corresponding to the type construcfor The axioms given fo> are

Op = ((p— Cq) —> COq),
p— <p,

again equivalent to the axiomatisation@fwhen< is identified withVv.

Double negation constitutes just one way of combining non-modal connectives to define
a modality fulfilling the7 axioms. Other possibilities are to defiWe: to be any of8 v «,
B — «a, or (B — a) —> «, whereg is some fixed (but arbitrary) formula. Peter Aczel [2]
has studied the interpretation@é as the second-order formua ((« — p) — p), where
the variablep ranges over all propositions. He calls this the “Russell-Prawitz modality”
because of its relevance to certain definitions of the connectiyeg —, 3 in terms of
— andV that were introduced by Bertrand Russell and later shown by Dag Prawitz to be
derivable as equivalences in second-order intuitionistic logic.
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