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he literature exploring the utility of advanced echocardiographic techniques (such as deformation imaging) in the
diagnosis and prognostication of patients receiving potentially cardiotoxic cancer therapy has involved relatively
small trials in the research setting. In this systematic review of the current literature, we describe echocardiographic
myocardial deformation parameters in 1,504 patients during or after cancer chemotherapy for 3 clinically-relevant
scenarios. The systematic review was performed following the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines using the EMBASE (1974 to November 2013) and MEDLINE (1946 to
November 2013) databases. All studies of early myocardial changes with chemotherapy demonstrate that
alterations of myocardial deformation precede significant change in left ventricular ejection fraction (LVEF). Using
tissue Doppler-based strain imaging, peak systolic longitudinal strain rate has most consistently detected early
myocardial changes during therapy, whereas with speckle tracking echocardiography (STE), peak systolic global
longitudinal strain (GLS) appears to be the best measure. A 10% to 15% early reduction in GLS by STE during
therapy appears to be the most useful parameter for the prediction of cardiotoxicity, defined as a drop in LVEF
or heart failure. In late survivors of cancer, measures of global radial and circumferential strain are consistently
abnormal, even in the context of normal LVEF, but their clinical value in predicting subsequent ventricular
dysfunction or heart failure has not been explored. Thus, this systematic review confirms the value of
echocardiographic myocardial deformation parameters for the early detection of myocardial changes and prediction
of cardiotoxicity in patients receiving cancer therapy. (J Am Coll Cardiol 2014;63:2751–68) ª 2014 by the
American College of Cardiology Foundation
The mortality rate among patients with cancer has decreased
over the past 20 to 30 years (1,2). However, cardiac toxicity
(cardiotoxicity) from cancer therapy has become a leading
cause of morbidity and mortality in survivors (3,4). In
patients who develop heart failure (HF) from cancer therapy,
the mortality rate is as high as 60% by 2 years (5). Therefore,
contemporary management of patients with cancer should
include careful consideration of potential cardiotoxicity
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during therapy, with a focus on early detection and inter-
vention (6).

Historically, several definitions of cardiotoxicity have been
proposed (7). The most commonly used definition is a
�5% reduction in symptomatic patients (or �10% reduction
in asymptomatic patients) in the left ventricular ejection
fraction (LVEF) from baseline to an LVEF <55% (8).
Early detection of cardiotoxicity has predominantly relied
upon serial cardiac imaging to identify a reduction in left
ventricular (LV) function without signs or symptoms of
heart failure (stage B HF) (9). The use of LVEF has
important limitations. First, the measurement of LVEF is
subject to technique-related variability, which can be higher
than the thresholds used to define cardiotoxicity (8,10).
Second, the reduction in LVEF is often a late phenomenon,
with failure to recover systolic function in up to 58% of pa-
tients despite intervention (11–15). Hence, there has been a
growing interest in markers of early myocardial changes (i.e.,
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Figure 1 Literature Search
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changes with normal LVEF)
that may predict the development
of subsequent LVEF reduction
or the progression to HF, so
that preventive strategies with
established cardioprotective med-
ications such as beta-blockers,
angiotensin-converting enzyme
inhibitors, or dexrazoxane could
be implemented.

Myocardial deformation can
now be readily measured during
routine echocardiography, and its
value in detecting subclinical
ventricular dysfunction, as well
as its prognostic value, has been
demonstrated in several clinical
scenarios (16). A growing body
of literature supports the use of
myocardial deformation parame-
ters to detect early myocardial
injury and to forecast ventricular dysfunction (cardiotoxicity)
in patients receiving cancer therapy. This systematic review
seeks to summarize the existing data for the following
clinically relevant scenarios: 1) detection of early myocardial
changes; 2) prediction of subsequent cardiotoxicity; and 3)
detection of late consequences of therapy (>1 year post-
treatment).
Flow Diagram
Methods

Search strategy. The search method adhered to the
PRISMA (Preferred Reporting Items for Systematic Re-
views andMeta-Analyses) statement for reporting systematic
reviews (17). An EMBASE (1974 to November 7, 2013)
and MEDLINE (1946 to November 7, 2013) search was
performed by an experienced information specialist using the
terms “antineoplastic agents,” “radiotherapy,” “cardiac
toxicity,” “echocardiography,” and their variations as key
words in the OVID search engine without language or
species limitations (Fig. 1). References of all selected papers
and reviews were screened to identify additional studies.
Inclusion and exclusion criteria. Any prospective or
retrospective study of at least 10 patients that used echo-
cardiographic (echo)-based myocardial deformation param-
eters as the primary method to detect cardiotoxicity during
or after cancer therapy was included. In order to be included
in this systematic review, studies had to provide data on
changes in deformation parameters and LVEF during
therapy. Studies that did not provide data on the type of
chemotherapy or the timing of imaging were excluded.
Myocardial deformation. Echocardiographic measures of
LV strain have become a robust method to measure
myocardial deformation (16,18). Strain is a dimensionless
index reflecting the total deformation of the ventricular
myocardium during a cardiac cycle as a percentage of its initial
length (reported as percentage). Strain rate (SR) is the rate of



Figure 2
Speckle Tracking Echocardiography-Based Peak Systolic Strain Measurements in a Patient With Breast Cancer Prior
to Initiation of Cytotoxic Chemotherapy

(A) Global longitudinal strain (GLS), (B) global radial strain (GRS), and (C) global circumferential strain (GCS). The left panels show the direction (arrows demonstrate the

direction) in which various strain parameters are being measured. The middle panels demonstrate the segmental strain values (except for circumferential strain). The right

panels illustrate the regional strain curves. Circumferential strain curves in the bottom right panel highlight the segmental variability in measurements, illustrating the chal-

lenges with this specific strain measurement. Reported normal value for GLS is �19.7% (95% confidence interval [CI]: �20.4% to �18.9%), for GRS 47.3% (95% CI: 43.6% to

51.0%), and GCS �23.3% (95% CI: �24.6% to �22.1%) (68). AVC ¼ aortic valve closure.
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deformation or stretch (reported as s�1) (18). Both strain and
SR can be measured in the longitudinal, radial, and circum-
ferential directions (Fig. 2) (16,18). A key advantage of strain
or SR measurement is its ability to differentiate active versus
passive movement within a myocardial segment, allowing for
the analysis of regional myocardial deformation independent
of the translational motion of the heart. Although neither LV
strain nor SR are load independent, peak systolic SR correlates
well to load-independent indexes of contractility and, hence,
provides valuable information about intrinsic contractile
function (18,19). LV torsion is a measure of the maximum
instantaneous difference in the rotation of the base of the
heart in comparison to the apex (20). This is then followed by
untwisting contributing to ventricular filling. Peak systolic
twisting velocity measures the peak positive rate of torsional
deformation during the ejection phase, whereas peak diastolic
untwisting velocity measures the peak negative rate of tor-
sional deformation during early diastole (18,20,21). Currently
myocardial deformation can be measured using tissue
Doppler imaging (TDI) (Fig. 3) and 2- and 3-dimensional
speckle tracking echocardiography (STE) (Fig. 2) (18).
Outcomes. Outcomes of interest were absolute and per-
centage reductions in myocardial deformation parameters
during or after therapy and performance of these parameters
in predicting subsequent cardiotoxicity (defined in the pre-
ceding text).



Figure 3 Tissue Doppler-Based Strain Assessment

(Left) Tissue Doppler image of the interventricular septum and the region of interest (yellow oval) from where the strain and strain rate values were obtained. (Middle)

Longitudinal strain rate curve; and (right) longitudinal strain of the basal interventricular septum. The arrows illustrate the points on the curve where the peak systolic

longitudinal strain rate and longitudinal strain would be recorded.
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Data extraction. All relevant data were extracted using a
standard data form by one reviewer (P.T.) and verified by a
second reviewer (F.P.). All discrepancies were mutually
reviewed and resolved by consensus. Multiple authors were
contacted for clarification of data in various publications.
We excluded 2 studies without data on timing of echocar-
diography, as we were unable to make contact with the
authors for this additional data (22,23). The following data
were extracted: year of publication, number of patients,
cancer type, age, sex, chemotherapy used and doses, type and
timing of imaging, changes in deformation parameters, and
prognostic data.
Results

Detection of early myocardial changes during cancer
chemotherapy. Thirteen peer-reviewed publications, involv-
ing approximately 384 patients treated with anthracycline-
containing regimens, assessed various echo-based myocardial
deformation parameters to detect early myocardial changes
without providing data on prognosis (24–36). These were
single-center cohort studies that primarily focused on breast
and hematological malignancies. The mean age ranged from
49 to 70 years (56% to 100% female) in the adult studies, and
from 9 to 15 years (23% to 48% female) in the pediatric studies.
Earlier work used TDI-based strain, whereas the more
contemporary studies have generally used 2-dimensional (2D)
STE (Table 1). Despite heterogeneity in the data with respect
to patient age, types of cancer, strain techniques, and timing
of follow-up, the studies all uniformly demonstrate that
changes in myocardial deformation occur earlier than a change
in LVEF and at anthracycline doses lower than what was
historically thought to be cardiotoxic (e.g., 200 mg/m2 of epi-
rubicin). The degree of change in myocardial deformation
parameters amongst the studies has depended on the technique
used (2D STE vs TDI) and the type of strain measured.

2D-BASED STRAIN. In the absence of a reduction in LVEF, a
2D STE–measured reduction in peak systolic global longi-
tudinal strain (GLS) between 9% and 19% seems to be
common either during or immediately after anthracycline
therapy (Table 1). Although a reduction in peak systolic
global radial strain (GRS) of 6% to 17% (34,37–40) or peak
systolic global circumferential strain (GCS) of 11% to 16.7%
(38,40,41) may also indicate early myocardial changes, these
changes have been less consistent (30,34,41,42). An
important limitation of both GRS and GCS is the lower
reproducibility of these measurements, which makes the
identification of changes from pre- to post-chemotherapy
more challenging. Similarly, SR measurements using STE
have important technical limitations. Although rotational
myocardial deformation and early diastolic SR are potential
markers of early myocardial changes (30,33,42), neither of
these parameters are currently sufficiently feasible and reli-
able for routine clinical application.

TDI-BASED STRAIN. When using TDI-based strain, longi-
tudinal SR of the basal interventricular septum consistently
demonstrates a reduction (ranging from 9% to 20%) be-
tween pre-therapy and low doses of anthracyclines (e.g., 200
mg/m2 of epirubicin). In contrast, changes in longitudinal
strain (LS) have not been a reliable measure of early injury,
especially when measurements are obtained only from the
basal interventricular septum (25,28,29). However, when
multiple septal segments or all 18 myocardial segments are
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used, reductions in LS of 15% and 17% were seen after first
dose of anthracycline (26) and 6 cycles of liposomal doxo-
rubicin (27), respectively. Radial strain parameters are
known to be variable. However, a fall in radial SR of 13% to
28% (26,27,35,43) or radial strain of 24% to 35% of the mid
inferior-lateral walls also seems to detect early myocardial
changes, although the latter has not been consistent (43).

Changes in strain values appear to be regional, although
the segmental variation has been inconsistent among studies
(31,34). Unfortunately, although biopsy changes have been
documented with early injury, the clinical application of bi-
opsy is neither relevant nor feasible, so whether the changes
in myocardial deformation truly represent cardiac injury
cannot be proven. However, several studies have shown a
positive association between higher doses of anthracycline
(30–32) or serum markers such as reactive oxygen species
levels and troponins (25,28,29,36,40,41) and larger re-
ductions in strain or SR measurements, suggesting that
there is biological plausibility for these findings.
Prognostic value of myocardial deformation parameters
to detect cardiotoxicity. Although the early detection of
myocardial changes appears to be conceptually important,
the real value of these changes lie in their ability to prog-
nosticate clinically-relevant outcomes such as subsequent
LVEF reduction or the development of HF. The prognostic
value has been evaluated in 8 studies (Table 2) involving
approximately 452 patients (age range from 47 to 51 years,
58% to 100% women) (37–44). Published studies have
either been single-center (37–39,42,44) or multicenter
(40,41) cohort studies and, other than the 3 recent studies
(37–39), all have only included patients with breast cancer.
Most (40–44) have included patients with human epidermal
receptor 2 overexpressing breast cancers, with all patients
receiving trastuzumab and the majority receiving anthracy-
clines. However, important differences between studies
(Table 2) include differences in duration of follow-up
(6 months vs. 12 to 15 months), treatment regimens (pro-
portion receiving anthracycline and radiotherapy, cumulative
epirubicin dose, and use of taxanes), the definition of the
“baseline” echo (pre- vs. post-anthracyclines), and the
number of apical views used to measure strain (all 3 views
versus the basal and mid segments of just 2 views). The
definition of cardiotoxicity was, however, similar between
the studies and the incidence of cardiotoxicity ranged be-
tween 13% and 32%, likely relating to differences in baseline
cardiac risk factors, treatment regimens, and duration of
follow-up.

An early fall in GLS by STE between 10% and 15%
predicts subsequent cardiotoxicity (including both asymp-
tomatic and symptomatic LV dysfunction) (37,39–42,44)
(Fig. 4, Online Videos 1, 2, and 3). The 95% confidence
interval for the optimal GLS cutoff extends from 8.3% to
14.6% (42). The reported sensitivity and specificity of GLS
to predict cardiotoxicity (Table 3) is likely optimistic, given
the small sample sizes and few cardiotoxicity events. In
patients where a relative change in GLS was unavailable,
absolute levels of GLS >�19% and �20.5% early during
therapy have been associated with cardiotoxicity (40,42). In
contrast, GRS was not predictive of cardiotoxicity in the 2
larger studies (40,42), whereas GCS was not predictive in
any studies. However, a combined parameter of GLS and
LV twist (GLS � LV twist) appears to be the best pre-
dictor of subsequent cardiotoxicity, with test characteristics
superior to even GLS (Table 3) (39). This latter parameter
provides a combined assessment of LV subendocardial
function (GLS) and subepicardial function (LV twist),
potentially providing a more sensitive measure of early
myocardial changes, although this needs confirmation in
other studies. A summary of myocardial strain and SR
cutoff values to predict cardiotoxicity from the preceding
studies is provided in Table 3.
Detection of late subclinical consequences of cancer
therapy. After chemotherapy regimens are completed,
there are limited recommendations as to appropriate follow-
up (Online Table A). However, specifically with anthracy-
clines, cardiotoxicity can be first detected several years after
therapy (45,46). Hence, there has been a growing interest in
detecting subclinical cardiotoxicity in survivors using
myocardial deformation parameters with the hope of iden-
tifying high-risk patients and providing targeted therapy
with cardioprotective medications to ultimately prevent
further LV remodeling and progression to HF syndrome.

There are 9 published case-control studies that have used
various myocardial deformation parameters to detect late
subclinical cardiac injury, consisting of approximately 436
patients (median age 12.7 years, 30% to 100% women)
(21,47–54), but none have provided data on prediction of
subsequent cardiac events (Table 4). The only study in adult
breast cancer survivors (49) showed a 7.7% reduction in
GLS in patients compared with controls when imaged
between 3.1 and 4.2 years post-therapy, with lower GLS
values with adjuvant trastuzumab use. All other studies
have been in survivors of various pediatric cancers treated
with anthracyclines (21,47,48,50–54). The time between
completion of therapy to cardiac imaging ranged from
8 months to 29.2 years. All studies have compared findings
in patients with controls, with none comparing identified
abnormalities to pre-therapy imaging. Therefore, it is un-
known whether some of these patients had pre-therapy
ventricular dysfunction. Two studies using TDI-based
strain (48,52) have demonstrated a reduction in LS and
longitudinal SR of the interventricular septum, LV lateral
wall, and right ventricular free wall. Despite a difference
in cumulative anthracycline doses between the studies
(<300 mg/m2 vs. >350 mg/m2), both illustrated re-
ductions in strain values, emphasizing that myocardial
injury can occur at lower anthracycline doses as well. This
variability in doses may also explain variations in the inci-
dence of LV dysfunction of between 5% and 16%. Both
studies have shown that anthracyclines can also affect right
ventricular function, a concept that has not been adequately
explored.

http://jaccjacc.cardiosource.com/videos/2014/5625-VID1.avi
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Table 1 Summary of Studies That Have Used Advanced Myocardial Mechanics to Illustrate Early Myocardial Injury During Cancer Chemotherapy

First Author,
Year (Ref. #) Method Cancer n Age, yrs Women, % Treatment

Echo
Timing Pre-Echo Post-Echo

Vendor,
Reproducibility

Stoodley et al.
2013 (32)*

STE Breast 78 52 � 10 98.7 Doxorubicin 81%,
epirubicin 19%

Pre- and 1-week
post-anthracycline,
then at 6 and
12 months

GLS �18.6 � 2.4% GLS �17.0 � 2.2%
(post-
anthracycline)

GE, interobserver
GLS COV 9.0%,
intraobserver 9.9%

Stoodley et al.
2013 (33)*

STE Breast 52 49 � 9 100 Doxorubicin 77%
epirubicin in 23%

Pre- and 1-week
post-anthracycline

e-SR 1.0 � 0.2/s e-SR 0.9 � 0.2/s GE, interobserver and
intraobserver as
mean difference
(SD) for early 0.08
(0.12/s) and 0.01
(0.05/s) and late
diastolic SR 0.06
(0.12/s) and 0.01
(0.08/s), GLS
�1.73 (1.0%) and
�0.86 (0.59%)

Zhang et al.
2012 (36)

TDI Breast 60 54 � 12 100 Epirubicin Pre-treatment and
at 7 days (post
reaching 100,
200, 300, and
400 mg/m2)

LSR �1.69 � 0.64/s LSR
�1.35 � 0.36/s
(at 200 mg/m2)

Philips, interobserver
and intraobserver
of LSR as
percentage of
mean of 2
repeated
measures: 10 �
4% and 11� 3%.

Motoki et al.
2012 (30)

STE NHL, AML,
ALL

25 58 � 11 56 Anthracyclines Pre-treatment and
at 1 and 3 months

No values provided Reduced torsion,
twisting and
untwisting rate,
and GLS by
1 month

GE, interobserver and
intraobserver
variability as bias
�1.96 (SD) for LV
torsion were
�0.26� (1.59) and
�0.21� (1.39).

Stoodley et al.
2011 (34)*

STE Breast 52 49 � 9 100 Doxorubicin and
epirubicin

Pre- and 1-week
post-anthracycline

GLS �17.8 � 2.1%
GRS 40.5 � 11.4%

GLS �16.3 � 2.0%
GRS 34.3 � 11.4%

GE, mean (SD)
interobserver and
intraobserver for
GLS �1.73 (1.0%)
and �0.86
(0.59%). GRS 5.0
(7.8%) and 3.4
(12.4%). GCS 1.48
(1.24%) and 1.62
(1.10%)

Cadeddu et al.
2010 (25)

TDI Multiple 49 56 � 13 76 Epirubicin Pre-treatment and
at 7 days (post
100, 200, 300,
and 400 mg/m2)

LSR �1.78 � 0.24/s LSR �1.41 � 0.31/s
(by 200 mg/m2)

Toshiba, no data
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Table 1 Continued

First Author,

Year (Ref. #) Method Cancer n Age, yrs Women, % Treatment
Echo
Timing Pre-Echo Post-Echo

Vendor,
Reproducibility

Wildiers et al.
2008 (35)y

TDI Breast 16 Median 69
(range 65–74)

100 Liposomal
doxorubicin

Pre-treatment,
before 4th cycle,
after 6th cycle

RS 50 � 12%
RSR 4.6 � 1.2/s

RS 33 � 8%
RSR 3.3 � 1.0/s
after 6th cycle

GE, no data

Mantovani et al.
2008 (28)z

TDI Multiple 31 59 � 14 74 Epirubicin Pre-treatment, at
7 days post 100,
200, 300, and 400
mg/m2, and at
3, 6, 12, and
18 months

LSR �1.79 � 0.06/s LSR �1.45 � 0.15/s
(at 200 mg/m2)

Toshiba, no data

Jurcut et al.
2008 (27)y

TDI Breast 16 69.8 � 3.1 100 Liposomal
doxorubicin

Pre-treatment and
within 7–14 days
after 3rd and
6th cycles

RS 50.1 � 11.6%
RSR 4.57 � 1.18/s
GLS �22.7 � 2.8%

RS 37.7 � 10.2%
RSR 3.64 � 1.52/s
(after 3 cycles)

GLS �18.8 � 2.8%
(after 6 cycles)

GE, mean relative
intraobserver
variability was
8.3% of strain and
9.1% for strain rate

Mercuro et al.
2007 (29)z

TDI Multiple 16 56 � 3 81 Epirubicin Pre-therapy and after
200, 300, and
400 mg/m2

LSR �1.82 � 0.57/s LSR �1.45 � 0.44/s
(after 200 mg/m2)

Toshiba, no data

Poterucha et al.
2012 (31)

STE Various
pediatric

19, 19 controls 15.3 � 3 37 Doxorubicin (89%),
idarubicin (32%),
danorubicin (5%)

Before and 4 and
8 months after
starting
anthracycline

GLS �19.9 � 2.1% GLS �18.1 � 2.5%
(by 4 months)

GE, GLS, COV
interobserver 7.2%,
intraobserver 10%

Al-Biltagi et al.
2012 (24)

STE ALL 25, 30 controls 9 � 2.6 48 Doxorubicin Pre-treatment and
within 1 week
of starting

GLS �18.7 � 4.5% GLS �15.1 � 2.5% GE, no data

Ganame et al.
2007 (26)

TDI Multiple 13 10.7 � 3.8 23 Danorubicin,
doxorubicin,
idarubicin

Before first dose,
then after 1st,
2nd, and 3rd
doses

LS �27 � 5%
LSR �2.2 � 0.4%
RS 74 � 14%
RSR 5.4 � 0.9/s

LS �23 � 7%
LSR �2.0 � 0.4%
RS 56 � 11%
RSR 4.6 � 0.8/s
(after first dose)

GE, mean difference
(95% CI): intra/
interobserver LS
2.67 (3.69%)/5.14
(3.73%), LSR 0.13
(0.13/s)/0.44
(0.41/s), RS 2.03
(2.81%)/6.44
(8.98%), RSR 0.44
(0.36/s)/0.50
(0.33/s)

Studies in adult patients are presented first, followed by studies in pediatric patients. Details in Online Table A. The word global was used for all STE-based strain as multiple segments were used; for TDI strain, unless multiple segments were used, the character G is removed to
illustrate that this is not “global” strain. *zStudy from same group with likely overlap in the patients. yStudy of the same patients. Please see Online Table B for further study details.
ALL ¼ acute lymphoblastic leukemia, AML ¼ acute myelogenous leukemia; CI ¼ confidence interval; COV ¼ coefficient of variance; e-SR ¼ early diastolic strain rate; GCS ¼ global circumferential strain; GCSR ¼ global circumferential strain rate; GE ¼ General Electric; GLS ¼

global longitudinal strain; GLSR ¼ global longitudinal strain rate; GRS ¼ global radial strain; GRSR¼ global radial strain rate; IVS¼ interventricular septum; LS¼ longitudinal strain; LSR¼ longitudinal strain rate; NHL ¼ non-Hodgkin’s lymphoma; RS¼ radial strain; RSR¼ radial
strain rate; SAX ¼ short axis; SR ¼ strain rate; STE ¼ speckle-tracking echocardiography; TDI ¼ tissue Doppler imaging.
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Table 2 Summary of Studies That Have Used Early Changes in Advanced Myocardial Mechanics to Predict Subsequent Cardiotoxicity

Study First Author,
Year (Ref. #) Method Cancer n

Age,
yrs

Women,
% Treatment

Echo
Timing Pre-Echo Post-Echo

Cardiotoxicity
Rate (%)

Thresholds
for Toxicity
Prediction

Vendor,
Reproducibility

Mornos et al.

2013 (39)

STE Breast lymphoma,

ALL, AML,
osteosarcoma

74 & 37

controls

51 � 11 58 Anthracyclines Pre, post, and 6,

12, 24, and
52 weeks

GLS -21$2 � 2$5%

GRS 47$8 � 5.3%

GLS -19$0 � 2$4%

GRS 41$1 � 5$4%
(6 weeks)

13 DGLS 2.8%

(13$1%
relative),
sensitivity 79%

and specificity
73% at 6
weeks for

toxicity at 24
�52 weeks

GE, intraobserver

ICC for GLS
0.95,
interobserver

0.91

Negishi et al.
2013 (42)

STE Breast 81 50 � 11 100 Trastuzumab,
doxorubicin

46%, RT 62%

Pre-trastuzumab,
and 6 and 12

months later

GLS -20.7 � 2.6%
GLSR �1.17 �

0.24/s
GLSR-E 1.36 �

0.28/s

GLS �18.3 � 2.1%
GLSR �1.00 � 0.15/s

GLSR-E 1.20 � 0.28/s
(at 6 months in
patients who later

had toxicity)

30 GLS change
�11% between

pre-treatment
and 6 months,
sensitivity 65%,

spec 95% or
absolute GLS
>�20.5 at 6

months,
sensitivity 96%,
spec 66% for

toxicity at 12
months

GE, intraobserver
ICC (95% CI) for

GLS 0.85
(0.54%–0.96%),
GLSR 0.91

(0.70–0.98/s),
GLSR-E 0.90
(0.66–0.97/s).

Interobserver
0.71 (0.23%–

0.92%), 0.85

(0.28–0.97/s),
0.87 (0.56–0.97/s)

Baratta et al.
2013 (37)

STE Breast 36 47 � 16 58 Doxorubicin 58%
trastuzumab

22%

Pre- and 2,3,4,
and 6 months

after start of
therapy

GLS �20.3 � 2.7%
GRS 53.1 � 4%

GLS �18.9 � 2.5%
(3 months)

GRS 50 � 3.9%
(4 months)

19.4 GLS fall �15% at
3 months,

sensitivity 86%,
spec 86%. GRS
fall �10% at 4

months,
sensitivity 86%
spec 69%

GE, mean (SD)
absolute

difference
inter/
intraobserver

GLS 0.6
(1.4%)/0.2
(1.1%), GRS 3.4

(7.1%)/3.2 (6.6%)

Sawaya et al.

2012 (40)

STE Breast 81 50 � 10 100 Doxorubicin,

epirubicin,
trastuzumab,

RT 60%

Pre-anthracycline

and at 3, 6, 9,
12, and 15

months

GLS �21 � 2%

GRS 53 � 15%
GCS �18 � 4%

GLS �19 � 2%

GRS 50 � 17%
GCS �16 � 4%

At 3 months

32 Absolute GLS <

�19% at 3
months,

sensitivity 74%,
spec 73% for
subsequent

toxicity

GE, same

variability as in
previous study

(41)

Sawaya et al.

2011 (41)

STE Breast 43 49 � 10 100 Doxorubicin,

epirubicin,
trastuzumab,
RT 11.6%

Pre-anthracycline

and at 3 and
6 months

GLS �20.5 � 2.2%

GCS 18 � 4%

GLS �19.3 � 2.4%

GCS 15 � 4%

21 GLS fall >10% at

3 months,
sensitivity 78%,
spec 79% for

toxicity at 6
months

GE, intraobserver

as absolute
mean error
(SD) GLS �0.14

(1.1%),
interobserver 0.5

(1.5%)

Continued on the next page
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Table 2 Continued

Study First Author,

Year (Ref. #) Method Cancer n
Age,
yrs

Women,
% Treatment

Echo
Timing Pre-Echo Post-Echo

Cardiotoxicity
Rate (%)

Thresholds
for Toxicity
Prediction

Vendor,
Reproducibility

Fallah-Rad et al.
2011 (44)

STE Breast 42 47 � 9 100 Epirubicin,
doxorubicin,
trastuzumab,

RT 98%

Pre-anthracycline,
Pre-trastuzumab
and at 3, 6, 9,

and 12 months

GLS �19.8 � 1.8%
GRS 41.4 � 15.2%

GLS �16.4 � 1.1%
GRS 34.5 � 15.2%
(3 months into

trastuzumab)

24 Absolute GLS fall
of 2.0%,
sensitivity 79%,

spec 82%.
Absolute GRS
fall of 0.8%,

sensitivity 86%,
spec 81% for
subsequent

toxicity

GE, intraobserver
as ICC (COV)
GLS 0.94

(3.5%), GRS
0.91 (3.2%).
Interobserver

0.90 (5.2%),
0.82 (5.4%)

Hare et al.
2009 (43)

TDI and
STE

Breast 35 51 � 8 100 Doxorubicin,
epirubicin,
trastuzumab,

RT 77%

Pre- and/or
post-
anthracycline

and at 3-month
intervals

STE GLSR �1.30
� 0.21/s

STE RSR 2.02 �
0.61/s

STE GLSR �1.24 �
0.18/s
(by 3 months)

STE RSR 1.75 � 0.41/s
(by 6–9 months)

14 A >1 SD drop in
GLSR (toxicity
at mean follow-

up of 22 � 6
months)

GE, intra/
interobserver
as ICC for 2D

GLS 0.94/0.91,
GLSR 0.94/
0.91, GRS

0.86/0.50,
GRSR 0.83/
0.65

Mavinkurve-
Groothuis

et al.
2013 (38)

STE ALL 60, 60
controls

6 (2.2–
15.4)

38 Anthracycline,
RT 100%

Pre-anthracycline,
10 weeks, and

12 months

GLS �18.2 � 3.1%
GLSR �1.44 �

0.3/s
GRS 66.8 � 1%

GCS �19.4 � 4.3

GLS �16.7 � 5.2%
GLSR �1.20 � 0.4/s

GRS 55.2 � 16%
GCS �16.9 � 3.1%

(by 12 months)

0 Strain values were
not predictive

of decrease in
LV fractional

shortening

GE, no data

Studies in adult patients are presented first followed by studies in pediatric patients. Details are in Online Table B. Please see Online Table C for further study details.
4CH ¼ 4-chamber; GLSR-E ¼ early diastolic global longitudinal strain rate; ICC ¼ intraclass correlation coefficient; LV ¼ left ventricular; RT ¼ radiotherapy; other abbreviations as in Table 1.
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Figure 4 The Utility of Early Strain Changes to Predict Subsequent Cardiotoxicity

The images demonstrate a “bull’s eye” plot of strain values for each of the 17 myocardial segments. A patient receiving cytotoxic chemotherapy had normal baseline strain and

left ventricular (LV) ejection fraction (EF) (left). Six months into therapy, the LVEF dropped by 6% but did not meet criteria for cardiotoxicity. However, the peak systolic global

longitudinal strain (GLS) fell by 15.4% (a significant change based on the literature). Then, by 12 months there was a clinically significant fall in LVEF meeting the criteria for

cardiotoxicity. See Online Videos 1, 2, and 3 for 4-chamber movie images demonstrating the changes in function. LVEF was calculated using the Biplane Simpson’s method.

6M ¼ 6 months; 12M ¼ 12 months.
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The remaining 6 pediatric studies have used STE-based
strain, but with significant heterogeneity with respect to the
types of cancers, time of imaging, cumulative anthracycline
Table 3 Early Predictors of Cardiotoxicity

Studies/First Author (Ref. #) Sensitivity

Fallah-Rad et al. (44)*

2% absolute (10.1% relative) decrease in LS 79%

0.8% decrease in RS 86%

Sawaya et al. (41)y
10% decrease in GLS 78%

Elevated hsTnI 67%

10% decrease in GLS and elevated hsTnI 55%

10% decrease in GLS or elevated hsTnI 89%

Sawaya et al. (40)y
GLS <19% 74%

hsTnI >30 pg/ml 48%

LS <19% and usTnI >30 pg/ml 35%

LS <19% or usTnI >30 pg/ml 87%

Negishi et al. (42)z
11% reduction in global GLS 65%

3.6% reduction in global GLSR early diastole 82%

6.4% reduction in global GLSR 73%

Absolute GLS at 6 months <�20.5% 96%

Mornos et al. (39)x
71% � � reduction in GLS � LV twist 90%

2.77% absolute (w13% relative) reduction in GLS 79%

1.75� absolute reduction in apical rotation 70%

Baratta et al. (37)k
�15% decrease in GLS 86%

�10% decrease in GRS 86%

�15% decrease in GLS AND �10% decrease in GRS 71%

*Difference between patients with cardiomyopathy versus without cardiomyopathy at 3 months after tra
therapy at 3 months, before trastuzumab initiation. zDifference between baseline and at 6 months afte
anthracyclines and 6 weeks into anthracycline therapy. kDifference between pre-anthracyclines and 3 mo
GLS ¼ global longitudinal strain; hsTnI ¼ high-sensitivity troponin I; NPV¼ negative predictive value; PPV

as in Tables 1 and 2.
dose, and the type of strain measurements. However,
in anthracycline-treated survivors, a reduction was reported
in most strain and SR parameters, ranging from 6.6%
Specificity PPV NPV

82% 60% 92%

81% 60% 95%

79% 50% 93%

82% 50% 90%

97% 83% 89%

65% 40% 97%

73% 53% 87%

73% 44% 77%

93% 67% 77%

53% 43% 91%

95% d d

67% d d

67% d d

66% d d

82% d d

73% d d

78% d d

86% d d

69% d d

97% d d

stuzumab initiation following AC therapy. yDifference between baseline and after completion of AC
r trastuzumab initiation (� AC therapy) in patients with cardiomyopathy. xDifference between pre-
nths into anthracycline therapy for GLS, 4 months for GRS, and 4 months for the combined change.
¼ positive predictive value; RS ¼ radial strain; usTnI ¼ ultrasensitive troponin I; other abbreviations

http://jaccjacc.cardiosource.com/videos/2014/5625-VID1.avi
http://jaccjacc.cardiosource.com/videos/2014/5625-VID2.avi
http://jaccjacc.cardiosource.com/videos/2014/5625-VID3.avi
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to 29.6% compared with controls (21,47,50,51,53,54).
Possible reasons for this variation could include differences in
follow-up duration, maximal dose of anthracyclines, and
radiotherapy, and inclusion of patients with overt LV systolic
dysfunction. There appears to be a discrepancy amongst
studies with respect to the value of longitudinal deformation
parameters in survivors, although radial and circumferential
strain appear to be consistently abnormal. Similar to studies
during therapy, the change in mechanics is regional, with the
interventricular septum being the most consistently affected
(47,51,53).

Rotational deformation parameters have also been
assessed in survivors by the same group in 3 publications
(21,53,54). Although there were differences in types of
cancers, all of the included patients received similar
anthracycline doses and were imaged at similar time points
post-therapy. At a segmental level, the apical rather than
basal rotational deformation appears to be consistently
affected. Furthermore, a reduction in left ventricular peak
torsion has been described (21). In layer-specific strain
analysis, the changes in rotational parameters seem to vary
across myocardial layers (53). With 3-dimensional (3D)
echocardiography, global 3D systolic strain, twist, and tor-
sion are reported to be reduced compared with controls (54).
Detection of myocardial injury from radiotherapy. There
is limited literature on the detection of early myocardial
changes from radiotherapy (RT) (Table 5), with data on
approximately 232 patients (age 48 to 51 years, 40% to 100%
of women). Two studies (55,56) in patients with breast
cancer illustrated a relative fall in GLS of 9.8% to 10.2% and
GLSR of 12.8% immediately after RT when compared with
pre-therapy using TDI-based strain. The mean LV specific
dose in these 2 studies ranged from 6.7 to 9.0 Gy. The strain
drop was only seen in women with left-sided breast cancer
(and not in those with right-sided cancer) and was only
limited to the anterior LV myocardial segments, which
received the highest radiation doses. Patients in both studies
also received anthracycline and some received trastuzumab,
making it difficult to differentiate the effect of RT from
chemotherapy. This is important as the effects of RT and
chemotherapy are likely additive (57). In patients with
Hodgkin’s lymphoma treated with RT with or without
doxorubicin 22 years previously, the reduction in STE-based
GLS was highest in patients who had RT with doxorubicin
(21%) and less in those who only had RT (14%), compared
with controls. In 2 older studies (58,59), in patients with
various cancers, a reduction in longitudinal systolic and
diastolic strain was only present after 50 Gy of thoracic RT
in patients not exposed to chemotherapy. However, the
impact of radiation on measures of myocardial deformation
has not been consistent with 3 other studies, which focused
primarily on the toxicity of chemotherapy, not identifying an
interaction between radiotherapy and strain (32,43,49).
However, none of these latter studies provided data on
radiation dose or the side of radiotherapy, both of which
are important in the development of cardiac injury.
Discussion

There are several key messages in this review. Reductions
in echocardiographic measures of myocardial deformation
parameters are a sign of subclinical myocardial changes from
cancer therapy and occur prior to any change in LVEF
as assessed by conventional 2D echocardiography. Impor-
tantly, early reduction in myocardial deformation appears
to forecast the development of subsequent cardiotoxicity,
with STE measured GLS being the most consistent
parameter. The thresholds of change in GLS to predict
cardiotoxicity have ranged from 10% to 15% using STE.
These thresholds generally have better negative predictive
value than positive predictive value, probably reflecting the
low prevalence of cardiotoxicity in the patients studied. Un-
fortunately, in survivors, although deformation parameters
appear to detect subclinical myocardial changes, the value of
these changes in predicting subsequent LV dysfunction or
heart failure is unknown. Finally, RT also affects myocardial
deformation, with changes occurring predominantly in those
receiving therapy to the left chest and to myocardial segments
receiving the highest radiation doses.

Cardiovascular complications of cancer therapy. Many of
the chemotherapeutic agents in use today can have associ-
ated cardiovascular side effects, the most common of which
are cardiomyopathy and HF (45,60). Amongst the various
medications, the anthracycline class of drugs (e.g., doxoru-
bicin and epirubicin) and the human epidermal growth
factor receptor type 2 (HER 2) monoclonal antibody, tras-
tuzumab, have been most commonly implicated and best
studied. A recent meta-analysis of 55 published randomized
controlled trials showed that the use of anthracycline-based
versus nonanthracycline-based regimens were associated
with a significantly increased risk of both clinical (odds ratio:
5.43) and subclinical (odds ratio: 6.25) cardiotoxicity (61).
Despite this toxicity, anthracyclines remain the cornerstone
of treatment in many malignancies, including lymphomas,
leukemias, and sarcomas, and are still widely used in both
advanced and early-stage breast cancer (60). Combined
therapy generally increases the incidence of cardiotoxicity
(62). This has been best demonstrated in women with HER
2–positive breast cancers treated with anthracycline followed
by trastuzumab, in whom the incidence of cardiotoxicity has
been reported to be as high as 41.9% in older women during
long-term follow-up (46). Two types of cardiomyopathy
have been defined to distinguish anthracycline-induced
myocardial damage (type I) from trastuzumab-induced
myocardial dysfunction (type II). Type I cardiomyopathy is
related to the cumulative dose, is largely irreversible, and
results from free radical formation and mitochondrial
dysfunction ultimately leading to myofibrillar disarray and
necrosis (63). In contrast, type II cardiomyopathy is not
dose-related, may be reversible, and results in no apparent
ultrastructural changes (63).

Detection of cardiotoxicity. The current recommendations
for pre-treatment cardiac evaluation and monitoring of



Table 4
Summary of Studies That Have Used Advanced Myocardial Mechanics Parameters to Demonstrate Subclinical Myocardial Injury in Patients Who Previously
Received Cancer Chemotherapy

First Author,
Year (Ref. #) Method Cancer n Age, yrs Women, % Treatmen Echo Timing Con train Patients Strain

Vendor,
Reproducibility

Ho et al.
2010 (49)

STE Breast 70, 50 controls 54 � 8 100 Anthracycline
trastuzuma
RT 80%

Mean 4.2 � 1.8
yrs post-
anthracycline
or 3.1� 1.9
yrs post-
trastuzumab

GLS �1 � 1.8% GLS �18.1 �
2.2%

GE, intraobserver/
interobserver as
ICC (COV) GLS
0.97 (3.1%)/
0.95 (4.8%),
GRS 0.97
(2.9%)/0.97
(5.0%)

Yu et al.
2013 (54),*

3D STE Multiple
pediatric

53, 38 controls 18.6 � 5.1 30 Anthracycline Median of 7.2 yrs
(2.4–16.4 yrs)
post

3D LV g l strain
44.6 8%

3D LV global
strain 35.4 �
7.5%

Toshiba, intra/
interobserver
as COV 3D strain
7.3%/8.2%

Yu et al.
2013 (53),*

STE - Multiple
pediatric

32, 28 controls 19.3 � 5.4 34 Anthracycline Median of 6.9
years
(2.2–14.4 yrs)
post

Versus ol
GRS ced at
multi evels
and l
betw 1.6%–

20.6% ansmural
GCS ent by
9.9% 2%. Apical
trans l rotation
gradi y 41.3%y

Toshiba,
Interobserver
and intraobserver
reported as
COV for all
parameters.
Intraobserver
ranged from
2.49%–6.29%,
and interobserver
from 2.86%–

13.35%

Yagci-Kupeli
et al.
2012 (52)

TDI Multiple
pediatric

19, 17 controls Median age 14 32 Doxorubicin,
danorubici or
epirubicin,
RT 10.5%

Median of 67
months
(range 8–142
months) post

LS and were
signifi ly lower
in the al RV,
LV se lateral,
and i or walls.
No va .

GE, no data

Continued on the next page
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Table 4 Continued

First Author,

Year (Ref. #) Method Cancer n Age, yrs Women, % Treatment Echo Timing Control Strain Patients Strain
Vendor,

Reproducibility

Cheung et al.
2011 (21)

STE ALL (childhood
survivors)

36, 20 controls 15.6 � 5.5 47 Doxorubicin or
danorubicin

Median of 7 yrs
(3.1–24.3 yrs)
post

Peak LV torsion
11.8 � 4.5�

Systolic twisting
velocity
91.0 � 22.3�/s

Diastolic untwisting
velocity
�109.6 � 33.4�/s

Peak LV torsion
8.0 � 4.1�

Systolic twisting
velocity
68.1 � 20.3�/s

Diastolic
untwisting
velocity �90.1
� 34.3�/s

GE, intra/
interobserver
as mean (SD)
difference for LV
torsion 0.9�

(5.0)/4.0� (7.1),
peak systolic
twisting velocity
0.0�/s (9.5)/
�2.1�/s (10.8),
peak diastolic
untwisting
velocity
�1.7�/s (11.2)/
�2.0 �/s (14.4)

Cheung et al.
2010 (47)

STE ALL 45, 44 controls 15.3 � 5.8 38 Doxorubicin or
danorubicin
RT 0%

Median 6.3 yrs
(2.7–19.8 yrs)
post

LS �19.0 � 2.2%
CS �17.4 � 4.3%
RS 50.0 � 16.4%
CSR 1.06 � 0.28/s

LS �17.6 � 3.0%
CS �14.5 �

2.9%
RS 40.1 � 15.6%
CSR 0.90 �

0.21/s

GE, no data

Mavinkurve-
Groothuis
et al.
2010 (50)

STE Multiple
pediatric

111, 107
controls

20 (5.6-37.4) 49 Doxorubicin,
danorubicin,
RT 6.3%

Median of 13.2
yrs
(5.0–29.2 yrs
post)

GLS �21.2 � 1.6%
GLSR �1.40 �
0.08/s

GRS 57 � 5%
GRSR 3.43 � 0.36/s
GCS �22.6 � 2.1%
GCSR �1.83 �
0.17/s

GLS �19.8 �
2.6%

GLSR �1.22 �
0.19/s

GRS 49 � 12%
GRSR 1.75 �

0.35/s
GCS �15.9 �

6.7%
GCSR �1.48 �

0.42/s

GE, no data

Continued on the next page
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Table 4 Continued

First Author,

Year (Ref. #) Method Cancer n Age, yrs Women, % Treatment Echo Timing Control Strain Patients Strain
Vendor,

Reproducibility

Park et al.
2009 (51)

STE –V V I Multiple
pediatric

14, 14 controls 6 to 17 50 Anthracyclines >3 yrs post-
therapy

Longitudinal peak
systolic
strain rate
�1.89 � 0.63/s

Diastolic strain
2.96 � 1.26%
(septum only)

Longitudinal peak
systolic strain
rate �1.66 �
0.27/s

Diastolic strain
2.38 � 0.77%

Siemens,
intraobserver as
mean absolute
difference (95%
CI) GLS 0.99
(4.08%), GLSR
0.13 (0.53/s),
diastolic strain
rate 0.18
(0.72/s)

Ganame et al.
2007 (48)

TDI Pediatric, ALL,
lymphoma,
solid tumor,
or AML

56, 32 controls 12.7 (4–28) 61 Doxorubicin,
danorubicin,
or idarubicin

Median 5.2 yrs
(2.0–15.2 yrs)
post

Basal RV LS
�40 � 16%

Basal RV strain
�33 � 13%

Reduced RS and
RSR by
w15%–20%
(no numbers)

GE, intra/
interobserver as
absolute mean
difference (95%
CI) LS 2.56
(3.72%)/3.48
(3.89%), LSR
0.11 (0.12/s)/
0.41 (0.42/s),
RS 2.79
(2.91%)/6.03
(8.57%), RSR
0.52 (0.47/s),
0.53 (0.59/s)

Studies in adult patients are presented first followed by studies in pediatric patients. Details in Online Table D. *Study from same group with likely overlap in the patients. yDue to the large amount of data only summary changes are provided.
GPI ¼ global performance index (global 3-dimensional strain � torsion/systolic dyssynchrony index); V V I ¼ vector velocity imaging; other abbreviations as in Tables 1 and 2.
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Table 5 Summary of Studies That Used Advanced Myocardial Mechanics to Detect Early Myocardial Injury From Radiation Therapy

First Author,
Year (Ref. #) Method Cancer n Age, yrs Women, % Cancer Side Treatment Echo Timing Strain Pre Strain Post

Vendor,
Reproducibility

Erven et al.
2013 (55)

TDI Breast 75 d 100 51 left,
24 right

Doxorubicin or
epirubicin, RT
(50 Gy) mean
heart and LV
doses 9 � 4
Gy for left-
sided cancer
and 4 � 4 Gy
and 1 � 0.4
Gy for right-
sided

Before RT,
immediately
after 50 Gy,
and at 8 and
14 months

GLS �19.4 �
2.4%

Strain rate �1.4
� 0.26/s

GLS �17.5 �
1.9%
(immediately
post), lowest at
8 months

�16.6 � 1.4%
Strain rate
�1.22 �
0.15/s
immediately
post

GE, no data

Erven et al.
2011 (56)

TDI Breast 30 d 100 20 left
10 right

Epirubicin, RT
(50 Gy) mean
LV dose was
6.7 � 6 Gy for
left-sided RT
and 0.6 � 0.1
Gy for right-
sided RT

Before RT,
immediately
after 50Gy,
and at 2
months

GLS �19.5 �
2.1%

GLS �17.6 �
1.5%, left side
RT patients
immediately
post

GE, no data

Tsai et al.
2011 (57)

STE Hodgkin’s 47, 20
controls

51 � 9 66 d RT (mean 41 Gy)
with (n ¼ 27)
and without
doxorubicin
(n ¼ 20).

22 � 2 yrs post Controls:
GLS �20.4 �
1.7%

Patients:
GLS �16.1 �
1.9 in RT with
doxorubicin,
17.5 � 1.7 RT
no doxorubicin

GE, intraobserver
and interobserver
Cronbach a were
0.98 and 0.97

Chang et al.
2009 (58)

TDI Lung, breast 40 48.7 � 3.2 40 d RT only (30–60
Gy)

1–2 days pre-RT,
and after
weeks 3 (30
Gy), 4 (40 Gy),
5 (50 Gy), or
6 (60 Gy)

Strain reduced at 50 and 60 Gy vs. those
imaged pre-therapy. At 60 Gy,
reduction in systolic strain ranged
from 27.4%–39.5%, and diastolic
strain from 31.8%–37.9%.

Philips, no data

Wang et al.
2006 (59)

TDI Lung,
esophageal,
thymic,
lymphoma

40 48 � 3.2 55 d RT only (26–60
Gy).

1–3 days before
RT and after
2.5–3 weeks
(26–30 Gy) or
5–6 weeks
(50–60 Gy)

Strain reduced at 50–60 Gy vs. those
pre-therapy. Systolic strain rate
reduction ranged from 30.3%–42.5%
and diastolic strain rate between
32.9%–44.0%.

Philips, no data

Please see Online Table E for further study details.
Abbreviations as in Tables 1 and 2.

JACC
Vol.63,No.25,2014

Thavendiranathan
et

al.
July1,2014:2751–68

Strain
to

Detect
Chem

otherapy
Cardiotoxicity

2765



Thavendiranathan et al. JACC Vol. 63, No. 25, 2014
Strain to Detect Chemotherapy Cardiotoxicity July 1, 2014:2751–68

2766
patients receiving cancer therapy are not specific and vary
among the different guidelines by cardiovascular and
oncology societies. A summary of the core recommendations
from the major guidelines is summarized in Online Table A
(60,64–67). The European Society for Medical Oncology
has provided the most comprehensive recommendations
for monitoring during and after chemotherapy, based on
clinical risk factors and cumulative dose (64). The American
Society of Echocardiography, in collaboration with the
European Association of Cardiovascular Imaging have
created an Expert Consensus Document on the evaluation
of adult patients during and after cancer therapy that will
soon be published. Although several imaging modalities
such as cardiac magnetic resonance imaging or multigated
acquisition scans can be employed in the evaluation of
cardiotoxicity, the benefit of echocardiography comes from
its versatility, lower cost, ability to assess more than ven-
tricular function, and avoidance of repeated radiation
exposure.

Diastolic function has also been explored as a marker of
early cardiotoxicity in several studies, but the best diastolic
parameter to follow is not clear. Also, no echocardiography
studies to date have demonstrated that an early subclinical
drop in LVEF or changes in diastolic parameters can predict
subsequent cardiotoxicity. Furthermore, although contro-
versial, several studies show that systolic strain changes occur
prior to or in the absence of changes in traditional diastolic
parameters (21,28,29,41,47,49,56,57). The strength of
echo-measured myocardial deformation parameters therefore
includes the ability to more readily detect regional abnor-
malities in LV function along with improved measure-
ment reproducibility due to the semiautomated nature of
the measurements, and the ability to forecast subsequent
LV dysfunction. The reproducibility data for strain mea-
surements presented in each study are summarized in
Tables 1, 2, 4, and 5.

Tissue Doppler and STE-based strain have been used to
detect early myocardial changes in patients receiving
chemotherapy. With TDI, interventricular septal longitu-
dinal SR appears to be most consistently reduced during
therapy. However, the most clinically relevant data on pre-
dicting cardiotoxicity have been based on STE-based strain.
Also, TDI-based strain analysis requires data acquisition for
each myocardial segment with careful attention to frame
rates as well as alignment of the walls with the Doppler
beam (18). The measurements of strain and SR can be noisy,
and significant expertise is required for proper interpretation
(18). This makes clinical application more challenging as
compared with STE-based strain, which can be obtained at
lower frame rates using standard 2D images and has a more
streamlined post-processing (18). In addition to easily
measuring GLS from all 18 myocardial segments, STE al-
lows measurement of radial and circumferential strain in
multiple segments, as well as rotational parameters. Also, the
reproducibility of STE-based strain analysis is superior to
TDI-based analysis (18).
Normal ranges for GLS defined in a recent meta-analysis
(mean GLS �19.7%; 95% confidence interval: �20.4%
to �18.9%) (68) underpin the use of a normal cutoff
exceeding �19%. However, because of baseline variability in
strain values between different patients, within-patient
change may be a more reliable parameter compared with a
population-derived absolute cut-off value. The threshold for
change in GLS to predict cardiotoxicity is not clear,
although between 10% and 15% appears to have the best
specificity. The observer variability of the GLS measure-
ments based on the summarized studies is within the sug-
gested threshold to predict cardiotoxicity.
Future directions. Much remains to be understood about
the role of cardiovascular imaging in the identification and
management of cardiotoxicity from cancer chemotherapy.
Whether strain-based approaches could be reliably imple-
mented in multiple centers, including nonacademic settings,
needs to be studied. The ability of strain changes to predict
subsequent cardiotoxicity needs to be examined in larger
multicenter studies and in cancers other than breast cancer,
where treatment with potentially cardiotoxic regimens is pro-
vided. Whether strain measurements are required at multiple
time-points or a single selected time-point has to be deter-
mined. An approach that uses strain as the primary marker of
cardiotoxicity to initiate cardioprotective therapy needs to be
compared with a traditional LVEF-based approach. The
long-term effect of strain changes that occur during therapy
needs to be understood. The use of vendor-neutral methods to
measure strain and their ability to predict cardiotoxicity also
need to be explored for this technique to be more widely
applied. Finally, the prognostic significance of strain abnor-
malities in survivors of cancer and those receiving radiation
therapy has to be understood along with whether intervention
would change the natural course of the cardiac disease.
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