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Abstract The prevalence of antibiotic resistance has resulted in the need for new approaches to be

developed to combat the previously easily treatable infections. This work aims to evaluate the anti-

fungal and antioxidant effects of the chitosan, as a new alternative or complementary anti-fungal

drug, alone or in combination with amphotericin B against a pathogenic Candida albicans in mice.

Eighty neutropenic infected mice were randomly assigned into four main groups (20 mice/group).

The 1st group was treated with saline, neutropenic infected (NI group) (IPC group, invasive pul-

monary candidiasis), the 2nd group was treated with chitosan (ED50) (CE group), the 3rd group

was treated with amphotericin B (150 mg/kg) (AMB group) and the 4th group was treated with

chitosan plus amphotericin B (CE + AMB group). Treatment was started at 24 h after fungal inoc-

ulation and was administered for 3 consecutive days. All the previous treatments demonstrated

notable growth inhibition against a C. albicans isolate as indicated by measuring the mean diameter

of the inhibition zone. Compared with IPC group, CE, AMB, and AMB + CE-treated animals had

73%, 87%, and 90% reduction in fungal burden, respectively. Furthermore, treatment with CE

and/or AMB for 24 and 72 h significantly decreased MDA, SOD, CAT and NO levels and increased

GSH and in the lung tissues as compared with the infected untreated group. In conclusion, CE

treatment, with the combination of antifungal therapy, can alleviate oxidative stress and lung injury

associated with IPC in neutropenic mice.
ª 2015 The Egyptian German Society for Zoology. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Candida albicans (C. albicans) is an opportunistic pathogen
that causes superficial and systemic infections (Selvaraj et al.,
2014). C. albicans is a pathogenic yeast, which forms a range
of polarized and expanded cell shapes (Canonico et al.,

2014). It is the most common human fungal pathogen and
causes significant morbidity and mortality worldwide (Noble
and Johnson, 2005; Kaufman et al., 2014). It is a dimorphic

yeast capable of producing alternate morphological forms
(yeast or mycelium) in response to environmental changes
(Manavathu et al., 1996). It exists as a commensal organism

in healthy individuals by colonizing several niches of
the human body which includes skin, mucosal surfaces, oral
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cavity, vagina, and gastrointestinal tract (Larriba et al., 2000).
An altered balance between the host immunity and this oppor-
tunistic fungus, as in the case of immunocompromised

patients, is one of the leading causes of candidiasis in humans
(Bodey, 1993). After entering the blood stream, the yeast cells
can infect all internal organs and may cause life-threatening

septicemia (Karkowska-Kuleta et al., 2009). Candidiasis can
develop as superficial candidiasis (skin and mucosa) which
occurs in healthy individuals, or invasive candidiasis which is

seen in cancer patients, AIDS patients, and immunocompro-
mised individuals following transplantation (Larriba et al.,
2000).

Invasive candidiasis remains a challenging complication,

which frequently occurs in patients with one or more underly-
ing diseases or surgical interventions. In recent point prevalence
studies, a candidaemia incidence of 6.9 per 1000 ICU patients

was reported, and 7.5% of ICU patients received antifungal
therapy (Kett et al., 2011; Azoulay et al., 2012). Candidaemia
increases mortality rates in the range of 20–49%

(Gudlaugsson et al., 2003; Arendrup et al., 2011), but still there
are many open management questions. Pulmonary candida
infections may present as the manifestations of disseminated

candidiasis spread by hematogenous route or as a primary
bronchial or pulmonary process from the airways (Odds, 1988).

Highly reactive oxygen metabolites are one of the primary
effector mechanisms used by the host immune system to con-

trol or clear microbial infections (Youseff et al., 2012). Reac-
tive oxygen species (ROS) are essential components of the
defensive mechanism against fungus infection (Ibrahim-

Granet et al., 2003; Philippe et al., 2003). Initial host defenses
against fungal invaders rely on the responses of innate immune
cells, particularly macrophages, neutrophils and other phago-

cytic cells. These phagocytes generate potent reactive oxygen
and nitrogen species (ROS and RNS), which are toxic to most
fungal pathogens, causing damage to DNA, proteins and lipids

(Bogdan et al., 2000; Youseff et al., 2012). To protect against
damage, cells contain a number of defense mechanisms includ-
ing endogenous well-characterized antioxidant enzymes, such
as catalase, superoxide dismutase, nitric oxide and low molec-

ular weight antioxidant, such as glutathione (GSH) (Mates
et al., 1999). Indeed, ROS induce programmed cell death in
C. albicans (Phillips et al., 2003).

Amphotericin B (AMB) is a polyene antifungal antibiotic
by-product of the actinomycete bacterium Streptomyces nodo-
sus. In spite of AMB’s proven track record in the management

of serious systemic fungal infections, its well-known side
effects and toxicity will sometimes require discontinuation of
therapy despite a life-threatening systemic fungal infection.
The principal acute toxicity of AMB is nephrotoxicity (Geo

vigila and Baskaran, 2011). Clinical manifestations of AMB
nephrotoxicity include renal insufficient hypokalemia, hypo-
magnesaemia, metabolic academia, and polyuria due to neph-

rogenic diabetes insipidus (Laniado-Laborı́n and Cabrales-
Vargas, 2009). There have been an increasing number of
reports of clinically significant amphotericin B (AMB) resis-

tance in fungal pathogens, including C. albicans (Sterling and
Merz, 1998). Since many of the currently available drugs have
undesirable side effects and are ineffective against C. albicans

infection, there is now a greater interest in the next generation
of antifungal agents. Many people worldwide, including those
in developed countries, turn to complementary or alternative
medicine. Products from freshwater and marine sources have
recently become attractive as nutraceutical and functional
foods and as a source material for the development of drugs
(Koyama et al., 2006).

Chitosan is a linear polysaccharide composed of randomly
distributed b-(1–4) linked D-glucosamine (deacetylated unit)
and N-acetyl-D-glucosamine (acetylated unit). It is made by

deacetylation of chitin, the primary polysaccharide component
of crustacean shells with the alkali sodium hydroxide (Shahidi
and Synowiecki, 1991). Chitosan can be used to produce value-

added products because it is rich in protein, carotenoids and
chitin (Lertsutthiwong et al., 2002). This polysaccharide was
found to be non-toxic, biocompatible and biodegradable
(Arvanitoyannis et al., 1998). Chitosan has several applica-

tions being employed either alone or in blends with other nat-
ural polymers (starch, gelatin and alginates) in the food and
pharmaceutical industries mainly due to its high biodegrad-

ability and antimicrobial properties (Hague et al., 2005).
Microbiological activity of chitosan has been detected for
many bacteria, filamentous fungi and yeasts (Hirano and

Nagao, 1989). Data in the literature have the tendency to char-
acterize chitosan as bacteriostatic rather than bactericidal
(Coma et al., 2002), although the exact mechanism is not fully

understood and several other factors may contribute to the
antibacterial action (Raafat et al., 2008). Three models have
been proposed, the most acceptable being the interaction
between positively charged chitin/chitosan molecules and neg-

atively charged microbial cell membranes. In this model the
interaction is mediated by the electrostatic forces between the
protonated NH+3 groups and the negative residues (Tsai

and Su, 1999), presumably by competing with Ca+2 for elec-
tronegative sites on the membrane surface (Young and
Kauss, 1983). Since such mechanism is based on electrostatic

interaction, it suggests that the greater the number of cation-
ized amines, the higher will be the antimicrobial activity
(Yalpani et al., 2002; Másson et al., 2008). This suggests that

chitosan has higher activity than that found for chitin and this
has been confirmed experimentally (Tsai and Su, 1999; Másson
et al., 2008).

To improve the suboptimal therapy for many fungal infec-

tions, the efficacy of some drug combinations has been exam-
ined. Several studies involving combinations of amphotericin
B with other antimicrobial agents have been reported. Such

combinations were expected to be synergistic because ampho-
tericin B facilitated the entry of the second agent into the fun-
gal cell (Jit Sud and Feingold, 1983).

Therefore, this study aims to evaluate the antifungal and
antioxidant effects of the chitosan, as a new alternative or
complementary anti-fungal drug, alone or in combination with
amphotericin B against a pathogenic C. albicans in mice.
Materials and methods

Chemicals, media, and drugs

Chitosan (CAT No. 50494) and Sabouraud Dextrose Agar

(Product No. S 3181) were purchased from Sigma–Aldrich
(St Louis, MO, USA). Cyclophosphamide (Endoxan), and
Amphotericin B (supplied as Fungizone; E.R. Squibb & Sons,

Princeton, NJ) were purchased. All other chemicals were pur-
chased from local standard companies and were of reagent
grade or better.
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Preparation of C. albicans and growth condition

A registered isolate of lyophilized C. albicans (ATCC No.
10321) was obtained from ATCC (American Type Culture
Collection, National Research Center, Cairo, Egypt). The

growth is indicated by growth of white, soft, cream-colored
colonies with yeasty odor which were confirmed by gram stain-
ing reaction and germ tube test (Doughari and Peter, 2009).

Preparation of serial dilution

The yeast suspension was harvested by washing the organism
culture with sterile physiological saline. A sample was serially

diluted and plated on Sabouraud dextrose agar (SDA) to
determine the numbers of colony forming unit CFU/1 ml.
The plates were inverted and incubated at 37 �C for 18–24 h till

the required growth was obtained (Doughari and Peter, 2009)
and then the CFU was counted.

Standard in vitro agar diffusion growth inhibition

A standard in vitro agar diffusion growth inhibition assay was
used to evaluate the anti-candidal activity of chitosan, ampho-
tericin B and their combination. C. albicans isolates were cul-

tured on SDA plates. Each plate was inoculated with 50 ll
of candida isolate suspension and swabbed evenly to generate
a ‘lawn’ of yeast growth. Following inoculation and swabbing,

a cork borer of 5 mm diameters was used to create wells in
each plate with a concentration of C. albicans suspension
1 · 107 CFU/ml. Thereafter, 15 ll chitosan, amphotericin

and their combination (ratio 1:1) were pipetted into the wells.
Plates were placed in an incubator at 37 �C for 18–24 h until
colonies were formed (Doughari and Peter, 2009). After the

incubation period, zones of growth inhibition (clear zone
appeared around each well) were measured using an image
analysis software program (Quantimet 500, Windows version;
Leica). The diameter of each inhibition zone around a well

(including the diameter of the well itself) was measured and
the software automatically calculated the arithmetic mean of
4 measurements at different angles (Sitheeque et al., 2009).

Animals

Specific pathogen-free, 8–10 weeks old male Swiss mice, and

weighing 20–25 g obtained from a closed random-bred colony
at the animal house, National Research Center. Animals were
housed in polycarbonate boxes with steel-wire tops (not more
than five animals per cage) and bedded with wood shavings.

Ambient temperature was controlled at 22 ± 3 �C with a rela-
tive humidity of 50 ± 15% and a 12-h light/dark photoperiod.
Food and water were provided ad libitum.

Ethical consideration

Experimental protocols and procedures used in this study were

approved by the Cairo University, Faculty of Science, and
Institutional Animal Care and Use Committee (IACUC)
(Egypt) (CUFS/S/08/13). All the experimental procedures were

carried out in accordance with international guidelines for care
and use of laboratory animals.
Toxicity study (OECD 420)

Acute oral toxicity test was done according to the organiza-
tion for economic cooperation and development (OECD)
based on acute oral toxicity up and down procedure 425

guideline (OECD, 2001). Two groups, each of five healthy
male mice, were selected randomly and fasted overnight.
The first group was administered, via gavage, chitosan extract
(CE) powder suspension at a limit dose of 5000 mg/kg body

weight. The second group (control group) was given an equal
volume of distilled water. All animals were observed at 0,
30 min, 1, 2, 4, 6 h and thereafter every day for 14 days to

check the mortality and abnormal clinical manifestation.
The rats were sacrificed after 14 days and their liver and lung
were excised and fixed in 10% formalin for 24 h. They were

processed and stained with hematoxylin and eosin dyes for
histopathological examination. The median effective dose
(ED50) of CE was selected based on LD50 obtained from

acute toxicity study.

Immunosuppression

Neutropenia was induced by intraperitoneal (i.p) administra-

tion of 150 mg kg�1 d�1 cyclophosphamide (Sbaraglia et al.,
1984), 3 days before fungal inoculation. Animals of control
(20 mice) (injected intraperitoneally by saline, for 3 days) and
neutropenic groups (80 mice) were kept under strict hygienic

conditions and were observed on a daily basis until the end
of the study. At this time point mice were at an immunocom-
promised state, as determined by the decrease in the number of

white blood cells (WBC) and reduction in the body weight
(unpublished data).

Murine model of candidiasis

The standard inoculation of Candida albicans was cultured on
Sabouraud agar and washed three times in sterile normal sal-
ine and adjusted to a concentration of 1 · 107 viable cells/ml

on a hemocytometer. On day 0, all neutropenic mice were
infected intravenously with C. albicans via the lateral tail vein
(Jothy et al., 2012). Each inoculum consisted of 0.1 ml of fun-

gal suspension.

Experiment design

Eighty neutropenic infected mice were randomly assigned

into four main groups (20 mice/group). The 1st group was
treated with saline, neutropenic infected (NI group) (IPC
group, invasive pulmonary candidiasis), the 2nd group was

treated with chitosan (ED50) (CE group), the 3rd group
was treated orally with Amphotericin B (150 mg/kg) (AMB
group) and 4th group was treated with chitosan plus ampho-
tericin B (CE + AMB group). Treatment was started at 24 h

after fungal inoculation and was administered for 3 consecu-
tive days.

Sample collection for analysis

Animals were euthanized after being anesthetized with sodium
pentobarbital and sacrificed after 24 h and 72 h of treatment
after being fasted over night; blood was collected in EDTA

and centrifuge tubes for haematological and biochemical
parameters. The superior lobe of the right lung was removed
and immediately blotted using a filter paper to remove traces
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of blood and stored at �80 �C for biochemical studies. How-
ever, the inferior lobe of the right lung was suspended in
10% formal saline for fixation preparatory to histological

processing.

Sample preparation

Lung tissue homogenate preparation

The superior lobe of the right lung was homogenized (10%w/v)

in ice-cold 0.1 M phosphate buffer (pH 7.6). The homogenate
was centrifuged at 3000 rpm for 15 min at 4 �C and the
resultant supernatant was used for different oxidative stress

markers.

Histopathological preparation

The fixed inferior lobe of the right lung was sectioned

(5-micron thickness); sections were firstly stained with basic
dyes, hematoxylin and Eosin (H&E) according to the method
described by Conn (1946).

Assessment of fungal load in lung tissue

For tissue burdens, aliquots of tissue were semi-quantitatively
cultured on Sabouraud dextrose agar that was prepared as pre-

viously described using serial 10-fold colony count dilutions.
Plates were placed in an incubator at 37 �C until colonies could
be counted (Doughari and Peter, 2009). Count was expressed
as CFU/organ.
Figure 1 Photomicrographs of hematoxylin-eosin stained mice liver

(5000 mg/kg body weight) (b and d) (40·).
Oxidative stress marker assessment

Oxidative stress markers were detected in the resultant super-

natant of lung homogenate. The appropriate kits (Biodiagnos-
tic kits, Biodiagnostic Dokki, Giza, Egypt) were used for the
determination of malondialdehyde (MDA) (Ohkawa et al.,

1979), glutathione reduced (GSH) (Aykac et al., 1985), super-
oxide dismutase (SOD) (Nishikimi et al., 1972), Catalase
(Aebi, 1984) and Nitric oxide (NO) (Montgomery and

Dymock, 1961).

Statistical method

All data are expressed as means ± SEM. In general, data were

analyzed by two-way ANOVA followed by the Bonferroni test
used when only two data groups were compared with each
other. P-value of <0.05 was considered as statistically signifi-

cant. All calculations were performed using GraphPad Prism
software 5.01v (La Jolla, CA, USA).

Results

Toxicity study (OECD 420)

The oral administration of CE powder (5000 mg/kg BW)
caused neither mortality nor signs of clinical abnormality. At
necropsy, no gross pathological observation was found in the

target organs like liver and lung (Figure 1). Liver sections
of control and chitosan groups show normal histological
and lung sections of control group (a and c), and chitosan group



Figure 2 Candida albicans was examined under oil immersion at

100· magnification Gram positive oval shaped large purple cells

were identified as Candida albicans.

Figure 3 Candida albicans examined microscopically, using the

10· and 40· objective lenses. The appearance of small filaments

projecting from the cell surface confirmed formation of germ

tubes.
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structure of the central vein (cv) and surrounding hepatocytes
(h) (Figs. 1a and b). Meanwhile, the lung sections of control
and treated mice show-normal histological structure of the

bronchioles and surrounding air alveoli (a) (Figs. 1 c and d).
The LD50 of CE powder was found to be more than
5000 mg/kg BW. The median effective dose (ED50) was
selected based on the proposed LD50 obtained from the acute

toxicity study. This dose was considered one tenth of the pro-
posed LD50 (500 mg/kg body weight, P.O).

Identification of C. albicans by gram stain reaction and germ
tube

All the isolates showed Gram positive pseudohyphae or oval

shaped large purple cells after Gram staining (Fig. 2) and small
filaments projecting from the cell surface after the respective
germ tube tests (Fig. 3).

Standard in vitro agar diffusion growth inhibition

Fig. 4 shows the anti-candidal activity of chitosan extract (CE)
(500 mg/1 ml) and Amphotericin B (AMB) (150 mg/1 ml) and

their combination (CE + AMB) (1:1) against C. albicans. All
the previous treatments demonstrated notable growth inhibi-
tion against C. albicans isolate as indicated by measuring the

mean diameter of the inhibition zone (Fig. 4).

Estimation of fungal load in lung tissue

Fig. 5 shows the microbial burden in the autopsied lungs. Lung
cultures had minimal fungal load in the CE + AMB group.
Mean burden of fungal organisms in the lung (CFU/g lung tis-

sue) after 72 h of inoculation was 344 · 107 CFU/g lung tissue
(IPC group), 93 · 107 CFU/g lung tissue (CE group),
46 · 107 CFU/g lung tissue (AMB group), and 35 · 107

(CE + AMB). Compared with IPC group, the CE-treated,

AMB-treated, and AMB+ CE-treated animals had 73%,
87%, and 90% reduction in fungal burden, respectively.
Effect of the CE or/and AMB on lung oxidative stress markers

Lung malondialdehyde (MDA)

There was a significant increase (P < 0.05) in the lung MDA

level of the neutropenic infected mice after 24 and 72 h period,
as compared to control mice. Lung MDA levels of CE, AMB,
and CE + AMB groups were significantly (P < 0.05)

decreased after 24 and 72 h of treatment, as compared with
the infected untreated groups (Table 1). Meanwhile, a signifi-
cant increase (P < 0.05) was noticed in the level of lung
MDA after 24 and 72 h of CE administration as well as after

24 h of combined treatment, as compared to the corresponding
AMB groups.

Lung glutathione reduced (GSH)

Table 1 shows that Candida infection to neutropenic mice
caused a significant decrease (P < 0.05) in the lung GSH level,
as compared to control mice. On the other hand, treatment

with CE, AMB, and CE + AMB for 24 and 72 h significantly
(P< 0.05) increased the lung GSH levels, as compared with
the infected untreated groups. Additionally, a significant
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decrease was noticed in the level subsequent to administration

of CE (500 mg/kg) for 24 and 72 h. However, lung the GSH
level increased significantly (P < 0.05) after 72 h of
CE + AMB administration, as compared to the AMB group

(Table 1).

Lung superoxide dismutase (SOD)

A significant increase (P < 0.05) was noticed in the lung SOD

activity of infected untreated mice at the two selected time peri-
ods, as compared to the control group. However, lung SOD
activities of all experimental groups at the two selected time

periods were significantly (P < 0.05) lower than those of the
infected untreated group (Table 1). However, by comparing
with the AMB group, the lung SOD activity of mice treated

with CE for 24 h only and CE + AMB for 24 and 72 h were
significantly decreased (P < 0.05) (Table 1).
Table 1 Effect of chitosan extract (CE); amphotericin B (AMB) and

model of invasive pulmonary candidiasis (IPC).

Groups MDA (nmole/g tissue) GSH (mg

24 h 72 h 24 h

Control 3.69 ± 0.14 90 ± 2.80 36.46 ± 5

Infected untreated 29.51 ± 1.00a 19.92 ± 0.55a 55.52 ± 1

AMB 6.64 ± 0.14 b 3.88 ± 0.15 b 96.60 ± 1

CE 7.32 ± 0.19bc 4.96 ± 0.08bc 88.80 ± 0

CE+ AMB 8.00 ± 0.29bc 3.76 ± 0.09b 97 ± 0

Data are presented as mean ± SEM (n= 5 in each group).
a Significantly different from control group at P < 0.05.
b Significantly different from infected untreated group at P < 0.05.
c Significantly different from AMB treated group at P < 0.05.
Lung catalase (CAT)

Table 2 shows that lung CAT activity significantly increased

(P < 0.05) after 24 and 72 h of infection, as compared to con-
trol mice. A significant decrease (P < 0.05) was noticed in the
lung catalase activity of mice receiving chitosan extract

(500 mg/kg) or Amphotericin B (150 mg/kg) and their combi-
nation (CE + AMB) for 24 and 72 h, as compared to the
infected untreated group (Table 2). However, lung catalase

activity of mice significantly decreased (P < 0.05) after the
administration of CE (500 mg/kg) and also increased signifi-
cantly (P < 0.05) (CE + AMB) for 24 and 72 h, as compared
to the corresponding AMB group.

Lung nitric oxide (NO)

Lung nitric oxide level increased significantly (P < 0.05) after

24 and 72 h of infection, as compared to control mice. A sig-
nificant decrease (P < 0.05) in lung nitric oxide (NO) concen-
tration was recorded after the administration of chitosan
extract (500 mg/kg body weight) and Amphotericin B

(150 mg/kg body weight) and their combination for 24 and
72 h as compared to the infected group (Table 2). On the other
hand, a significant increase (P < 0.05) was noticed in the NO

level subsequent to chitosan administration (500 g/kg body
weight) for 24 h. However, treatment with CE + AMB for
24 and 72 h caused a significant decrease (P < 0.05) in the

level of lung nitric oxide, as compared to the AMB group
(Table 2).

Discussion

Infection with pathogenic fungi increased dramatically over
the past two decades (Kupfahl et al., 2007). Although bacteria

are the causative organisms of most of the infectious episodes,
fungi, particularly C. albicans (which causes >80% of all fun-
gal infections) and account for >20% of the fatal infections in
patients with leukemia and for 13% of those in patients with

lymphoma (Lopez-Berestein et al., 1983). C. albicans an impor-
tant aerobic eukaryotic pathogen causes the majority of
human fungal infections. These infections range from thrush

in immunocompetent colonized hosts to life-threatening sys-
temic infections in immunocompromised individuals such as
patients with cancer (Martchenko et al., 2004).

The search for new antimicrobial agents is of great
concern today, because of the increasing development of drug
their combination on some lung oxidative stress markers in mice

/g tissue) SOD (U/g tissue)

72 h 24 h 72 h

.44

.06a 74.51 ± 1.05a 133.44 ± 4.54a 206.04 ± 2.00a

.320b 115.48 ± 1.04b 52.08 ± 6.80b 30.34 ± 1.28b

.680bc 113.80 ± 0.86bc 35.14 ± 2.47bc 31.08 ± 4.33b

.70b 125.96 ± 0.89bc 23.29 ± 3.34bc 17.85 ± 2.63bc



Table 2 Effect of chitosan extract (CE); amphotericin B (AMB) and their combination on some lung oxidative stress markers in mice

model of invasive pulmonary candidiasis (IPC).

Groups CAT (U/min) NO (lmol/g tissue)

24 h 72 h 24 h 72 h

Control 5.16 ± 0.42 20.42 ± 0.7

Infected untreated 12.77 ± 0.70a 14.01 ± 0.50a 162.72 ± 7.89a 70.9 ± 3.90a

AMB 6.80 ± 0.66b 7.70 ± 0.45b 62.18 ± 1.132b 41.82 ± 0.52b

CE 4.2 ± 0.21bc 5.5 ± 0.36bc 68.48 ± 0.687bc 44.02 ± 3.37b

CE + AMB 8.6 ± 0.40bc 9.1 ± 0.38bc 33.36 ± 0.591bc 19.46 ± 0.41bc

Data are presented as mean ± SEM (n= 5 in each group).
a Significantly different from control group at P < 0.05.
b Significantly different from infected untreated group at P < 0.05.
c Significantly different from AMB treated group at P< 0.05.
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resistance to human pathogens and the appearance of undesir-
able effects of certain antifungal agents (Phongpaichit et al.,

2005). A multidisciplinary approach to drug discovery, involv-
ing the generation of truly novel molecular diversity from nat-
ural product sources, providing the best solution to the current

productivity problems in the scientific society involved in drug
discovery and development (Newman and Cragg, 2007).

Chitosan (CE) exhibits various potential biological activi-

ties, such as antitumor, immunostimulatory, antibacterial
and antifungal properties (Chung et al., 2011). To improve
the suboptimal therapy for many fungal infections, the efficacy
of some drug combinations has been examined. Several studies

involving combinations of amphotericin B with other antimi-
crobial agents have been reported. Such combinations were
expected to be synergistic because amphotericin B facilitated

the entry of the second agent into the fungal cell (Graybill
et al., 1980; Sud and Feingold, 1983). The current study
revealed that the synergism of amphotericin B with the CE

has shown in the standard in vitro agar diffusion growth inhi-
bition test. The mean inhibition zone was the largest in the
CE + AMB group. In addition, the estimation of fungal bur-
den in lung tissue revealed that the administration of

CE + AMB has the highest percentage in the reduction of fun-
gal load in the infected lung. These aforementioned effects may
be due to the chitosan’s immuno-enhancing effect which has a

satisfactory stimulatory effect on macrophages and its inter-
nalization was mediated by a specific receptor on macrophages
(Feng et al., 2004).

The virulence of C. albicans seems to be multifactorial
(Chauhan et al., 2003), but the ability of this fungus to mount
stress responses is an important aspect, as this promotes sur-

vival in the host during systemic infections (d’Enfert and
Hube, 2007). It was demonstrated that a large proportion of
C. albicans cell surface antigens related to acute candidemia
are involved in oxidative stress (Mochon et al., 2010). Lung

is remarkably vulnerable to injury induced by candidiasis as
a result of the reactive oxygen species (ROS).

The lipid peroxidation was assessed on the basis of mal-

ondialdehyde (MDA) estimation. Lung MDA level of neutro-
penic infected mice with C. albicans increased significantly with
a peak at 24 h post infection. The results of Zgai and Chhibber

(2010) and Mahmoud et al. (2011) are consistent with the pres-
ent finding. It has been reported that the increase in the MDA
level enhances the lipid peroxidation leading to tissue damage
and failure of antioxidant defense mechanism to prevent
formation of excessive free radical (Park et al., 2010). The
decreased level of lung MDA of treated mice with CE alone

or in combination with AMB may be due to the scavenging
effect of CE on hydroxyl radicals which inhibits lipid peroxida-
tion of phosphatidyl choline and linoleate liposomes (Ozcelik

et al., 2014).
Glutathione reduced (GSH) is the most abundant non-pro-

tein thiol compound present in mammalian cells and serves

many physiological roles, particularly as cellular antiperoxida-
tion in peripheral tissue (Liu and Gaston Pravia, 2010). It acts
as an electron donor in the glutathione peroxidase catalyzed
reactions of organic and hydrogen peroxide. The decreased

GSH contents indicate increased oxidative stress. The sus-
tained oxidative challenge to the lung results in depletion of
lung GSH (El-Sayed and Rizk, 2009). Furthermore, the lung

GSH levels of all treated mice in the present study increased
with specific improvement in the combination groups. Such
combinations were expected to be synergistic because ampho-

tericin B facilitated the entry of the second agent into the fun-
gal cell (Jit Sud and Feingold, 1983).

Aerobic eukaryotic pathogens as C. albicans can encounter
superoxide radicals (O2

�) generated from several sources. These

sources can be internal or external. An important internal
source is the mitochondrial respiratory chain (Casteilla et al.,
2001; Lenaz, 2001), and thus the rate of respiration can have

a significant impact on the reactive oxygen species (ROS) pro-
duction. A key external source of ROS encountered by patho-
gens is from phagocytes. The superoxide radical is the first

intermediate in the oxidative burst generated in the phago-
some, and this burst is thought to be involved in pathogen kill-
ing (Reeves et al., 2002). The superoxide radicals are known to

inactivate [4Fe-4S] cluster-containing enzymes by oxidizing
one iron and releasing it from the cluster (Liochev and
Fridovich, 1994; Fridovich, 1995). Free iron can react with
hydrogen peroxide to generate toxic hydroxyl radicals (OH�)

by Fenton chemistry (Meneghini, 1997). The hydroxyl and
superoxide radicals react with cellular components, resulting
in oxidation of proteins and nucleic acids as well as lipid per-

oxidation. These effects can lead to inactivation of enzymes,
disruption of membranes, mutations, and ultimately cell death
(Halliwell and Gutteridge, 1990, 1999). To reduce the harmful

effects of superoxide radicals, cells express detoxifying
enzymes. Superoxide dismutase (SOD) is an antioxidant
enzyme involved in the elimination of superoxide anions; it
catalyzes the reaction: O2�+ O2�+ 2H+ fi H2O2 + O2.
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Normally, H2O2 is still toxic to the cell; therefore, another
enzyme, catalase, converts it to water (Martchenko et al.,
2004). So, this describes why the lung SOD activity signifi-

cantly increased in the infected untreated mice and returned
toward normality in the treated mice groups of the present
study. This increase of SOD activity may be a response of

the antioxidant system to high superoxide radicals produced
via infection.

Catalase plays a key role as an antioxidant, protecting aer-

obic organisms from the toxic effects of hydrogen peroxide
(Wysong et al., 1998). This shows the primary importance of
oxidative fungicidal mechanisms by human neutrophils (poly-
morphonuclear leukocytes [PMNs]) and monocytes. These

mechanisms largely depend on the ability of PMNs to synthe-
size potent oxidants primarily derived from hydrogen perox-
ide, including H2O2 itself, as well as hydroxyl radical,

hypochlorous acid, and chloramines (Diamond et al., 1980).
Thus, treatment with CE, AMB and (CE + AMB) has a sig-
nificant decrease in the lung catalase level as compared to

the infected group. This crucial role of oxidant-mediated fun-
gicidal effects dictates a need to define fungal antioxidant
defenses because exogenous antioxidants, including catalase,

impair killing of C. albicans hyphae by PMNs (Diamond
et al., 1980; Wagner et al., 1986) and the production of H2O2

by PMNs correlates directly with fungicidal catalase activity
presumed to be an important antioxidant defense in C. albi-

cans. Therefore, the role of catalase in resistance of the fungus
to leukocyte-mediated killing was investigated. Since-H2O2 is
highly diffusible across cell walls, catalases provide essential

intracellular antioxidant activity for many organisms, includ-
ing Saccharomyces cerevisiae and other fungi (Cohen et al.,
1988; Ueda et al., 1990; Kawasaki et al., 1997). Again, the

present data confirmed the result of Qiao et al. (2011).
One of the other cytokines involved in the pathogenesis of

Candidiasis is the endogenous nitric oxide (NO) produced by

inducible nitric oxide synthase (iNOS). NO is primarily
produced in the lungs by the epithelial cells in the airways,
endothelial cells of vessels and neurons (Dweik, 2001). Once
produced, it freely diffuses and enters target cells where it acti-

vates guanylate cyclase to produce cyclic guanosine mono-
phosphate, which promotes smooth muscle relaxation
(Ozkan and Dweik, 2001). NO plays a central role in regulat-

ing airway blood flow in lungs. The role of altered NO homeo-
stasis in asthma has been extensively studied. NO strongly
promotes chemotaxis of inflammatory cells in the lung. In

asthmatics, NO production is greatly enhanced due to the
induction of iNOS by pro-inflammatory cytokines leading to
elevated levels of exhaled NO (Pendharkar and Mehta,
2008). In Candidiasis, the production of NO is greatly

increased due to the induction of iNOS by pro-inflammatory
cytokines leading to elevated levels of exhaled NO (Karaman
et al., 2011). NO is an antimicrobial factor generated by NO

synthase in activated macrophage and plays a role in the kill-
ing of bacteria, protozoa and fungi (Alspaugh and Granger,
1991; Chan et al., 1992). In our study, we could investigate

the increased lung NO levels in the infected neutropenic mice
and the recovery effect of CE and their combination with
AMB by decreasing NO levels. It may be hypothesized that

alterations of the NO levels may lie behind the antiasthmatic
effect of chitosan (Chung et al., 2012).

In conclusion, CE has a significant anticandidal activity
in vitro and in vivo. The combination of both CE + AMB
can be used to dampen the toxic effect of AMB. Such combi-
nations were expected to be synergistic because amphotericin B
facilitated the entry of CE into the fungal cell as manifested by

the results of both the in vitro and in vivo.
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