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Abstract

We present a model of evolution of gene trees in the context of species evolution. Its concept is similar to reconciliation models.
We assume that the gene evolution is modelled by duplications and losses. Evolution of species is modelled by speciation events.
We define an evolutionary scenario (called a DLS-tree) which can represent an evolution of genes in species. We are interested in all
scenarios for a given species tree and a given gene tree—not only parsimonious ones. We propose a rewrite system for transforming
the scenarios. We prove that the system is confluent, sound and strongly normalizing. We show that a scenario in normal form (i.e.,
non-reducible) is unique and minimal in the sense of the cost computed as the total number of gene duplications and losses (mutation
cost). We present a classification of the scenarios and analyze their hierarchy. Finally, we prove that the reconciled tree can be easily
transformed into DLS-tree in normal form. This solves some open problems for reconciled trees.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Reconstruction of species relationships from a set of gene family trees is a difficult task. Hardness of this problem is
caused by dissimilarities which usually occur between gene trees. Those inconsistencies are due to gene losses, gene
duplications, gene convergence, horizontal gene transfers or errors in sequencing. They lead to two important problems:
reconstruction of the species tree from a family of possibly different gene trees and reconciling a given gene tree with
a given species tree.

These problems have been studied by Goodman [6] and then in the nineties [4,9,12–15]. The concepts of mapping
and reconciling trees were introduced. They inspired research on duplication-loss models (we call them DL-models)
and their extensions, for instance, models with a horizontal gene transfer [3,7,10]. All DL-models are believed to be
biologically meaningful [13].

Most approaches to reconstruction of evolution history are parsimonious, that is, it is assumed that the solution with
the minimal cost is the most likely one. There are several possible cost functions: size of the reconstructed tree, or
the number of specified evolutionary events, e.g. gene duplications, or the total number of gene duplications and gene
losses. The latter measure, called mutation cost, was particularly popular among researchers [11,15]. One of the crucial
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terms in the DL-models is that of reconciled tree which represents the common evolutionary history of genes and
species. In [2], authors present several definitions of a reconciled tree which were used recently in the literature. They
prove that the definitions are equivalent and that the tree is minimal with respect to the size. Paper [2] still left open
questions: (see [16]) is the reconciled tree minimal with respect to the mutation cost or is it minimal with respect to the
total number of gene duplications (duplication cost). Also the question of uniqueness of such a tree was left open. In the
present paper, we answer all these questions. We build a formal framework of evolutionary scenarios which represents
a common history of genes and species under the assumption that only gene duplications, losses and speciations may
occur. These scenarios are called here DLS-trees. 1 We claim that a DLS-tree can be used to represent all possible
evolutionary scenarios under the above assumptions. Given a DLS-tree T , we show how to retrieve from T a gene tree
gene(T ), as well a species tree spec(T ). A DLS-tree is similar to the concept of a reconciliation (see [1]) for a given
species tree and a gene tree. Although, in the definition of a DLS-tree we do not use any particular gene or species tree.

We introduce a system of rules for transforming DLS-trees. This is a certain kind of a term rewrite system. It has
pleasing mathematical properties: soundness, 2 confluence and strong normalization. We prove that, a DLS-tree in
normal form has minimal size, minimal mutation cost, and minimal duplication cost. It follows from our theory that
for every DLS-tree T in normal form, if DT is the set of all DLS-trees which have the normal form T , then T is the
unique tree in DT among all trees in DT having the same mutation cost. We show an example that the uniqueness
property fails when mutation cost is replaced by duplication cost. We show a one-to-one correspondence between the
reconciled trees and the DLS-trees in normal form. Thus, the theory build in this paper is immediately applicable to
reconciled trees. We obtain a formula for computing the total number of duplications and losses in a reconciled tree,
as a function of a gene tree and a species tree.

A formal analysis of these formulas in the context of reconciled trees can be found in [5,17].
First we define basic terms and DLS-trees. Then we show how to extract a gene and a species tree from a DLS-tree.

In Sections 5 and 6, we present the system of rules and prove soundness, completeness and confluence. In Section 6.7,
we present an example of a hierarchy of DLS-trees together with all their reductions (Fig. 13). In Section 7, we present
formulas for computing the tree in normal form (for a given species tree and a given gene tree) and the number of
duplications and losses. Finally, we show a one-to-one correspondence between the reconciled trees and the DLS-trees
in normal form.

2. Gene and species trees

Let I be a set of species. A gene tree is a rooted binary directed tree whose leaves are labelled by the elements from
I. The labelling need not be one to one. A species tree is a gene tree 3 whose leaves are uniquely labelled.

Let T be a gene tree. For a node v of T , by T (v) we denote the subtree of T rooted in v. For each node v of a gene tree
T , we define a multisetmT

v = {xi1
1 , x

i2
2 , . . . , x

ik
k }, where ij > 0 is the number of leaves labelled xj in T (v). Similarly,

for v, we define a cluster as a set mT
v = {x1, x2, . . . , xm}. Let MT denote the multiset {mT

v |v ∈ V }. In order to make
the notation more readable, mT

v will be denoted by x1x2 . . . xm. Note that if T is a species tree, then mT
v = mT

v . We
denote by root (T ) the root of T , and by L(T ) the set of all labels (i.e., species) in T . For example, see Fig. 1.

We use the standard nested-parenthesis notation for trees:
• The empty tree will be denoted by ∅.
• An one-element tree, whose node is labelled by a is denoted by a.
• If Tp and Tq are two non-empty trees with roots p and q, respectively, then (Tp, Tq) is a tree whose root has two

children: p and q. The trees Tp and Tq are rooted in (Tp, Tq) at the nodes p and q, respectively.

Lemma 1. If T and S are species trees and MT = MS , then T = S.

Proof. It follows easily from the definition of the species tree. �

1 DLS stands for Duplication, Loss and Speciation.
2 If T reduces to T ′ then gene(T ) = gene(T ′) and spec(T ) = spec(T ′).
3 A species tree is a special case of a gene tree in the model.
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Fig. 1. Gene tree G = ((a, a), b).

Fig. 2. Counterexample for gene trees.

Lemma 1 fails for gene trees. Fig. 2 presents the counterexample. Let T1 = (a, (a, (a, a))), T2 = ((a, a), (a, a)),
T = ((T1, T2), T2) and S = ((T2, T2), T1). We can easily check thatMT = MS = {{a1}12, {a2}5, {a3}1, {a4}3, {a8}1,

{a12}1} but the gene tree are different.
A multiset M is said to determine a species tree ifMS = M, for some species tree S. By T (M) we denote the tree

determined by M.

Theorem 2. A multiset M determines a species tree if and only if
(M1) if M is non-empty, then

⋃
M ∈ M,

(M2) for all a ∈ ⋃
M, {a} ∈ M,

(M3) for all A ∈ M such that A is not a singleton:

{X | X ∈ M and X�A}
contains exactly two maximal (in the sense of inclusion) disjoint sets.

Proof. (=>) Let us assume that T is a species tree determined by M. (M1) is satisfied by the root of T . (M2) obviously
refers to the leaves of T . The last condition is satisfied by the internal nodes of T , that is, if a and b are children of an
internal node, then a and b determine the two maximal disjoint sets.

(<=) We proceed by induction on the size of M. If M is an empty set, take the empty tree. If M = {{x}}, then
the tree is x, that is, a tree with one node labelled x. Let us assume that, for all M satisfying (M1–3) and |M| < n,
we can construct the tree T (M). Consider M such that |M| = n. We show the construction of the tree T (M). We
consider: A = ⋃

M (note that M is not a singleton). Let B and C be the two maximal disjoint sets B and C obtained
from (M3) for A. It is easy to show that B ∪ C = A. We define MB = {X | X ∈ M and X ⊆ B} and similarly MC .
{{A}, MB, MC} is a partition of M and (M1)–(M3) are satisfied for MB and MC . Now, by the induction hypothesis,
we can obtain T (MB) and T (MC). Finally, the species tree determined by M is given by (T (MB), T (MC)). �

3. DLS trees

Now, we define a crucial notion of a DLS-tree. Such a tree could be interpreted as “an evolutionary scenario
representing history of genes in the context of species evolution”.

First, we start with some biological motivations. “Evolution” part of Fig. 3 presents all aspects of the common
evolution of genes and species under assumption that only gene duplications, gene losses or speciations are allowed.

The left tree presents an evolutionary species tree and its interpretation is clear. The rightmost tree presents an
evolution of a family of genes which are related to the three species (i.e., each name denotes a species from which the
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Fig. 3. Evolution, model and illustration of the embedding (a—ape, c—cat, d—dog).

sequence was obtained). We have four genes (called homologs related through common ancestry). We have two genes
labelled by the species cat. Both genes are currently present in cat. This situation is a consequence of the second gene
duplication. These genes are paralogs (they are most closely related through a duplication). For instance, genes labelled
by ape and dog are orthologs (they are most closely related through a speciation). We see also that some of the gene
lineages are lost. Here, we have two gene losses. Current methods of gene tree reconstruction (from gene sequences)
cannot detect this kind of losses which are shown in Fig. 3. However, if we know the species tree and the gene tree, we
can find evolutionary scenarios which explain the differences between them in terms of gene duplications and losses.
One of them is shown in the middle tree. We see the embedding of the gene tree (right) into the species tree (left). It
is should be clear that this kind of embedding is biologically correct. Note that the internal nodes of the gene tree are
related either to speciations or to gene duplications.

Our goal is to present a mathematical model of the evolutionary scenario. Let us adopt the following symbols �
(duplication), © (loss), (speciation) and • (gene).

A DLS-tree is either an empty tree, or a binary rooted tree T = (V , E) such that the elements of V are labelled by
non-empty subsets of I. For v ∈ V , let �v denote the label of v. V is divided into four disjoint sets: V•, V©, V� and
V such that 4

(D1) if v ∈ V•, then v is leaf in T labelled by a species a (v is called a gene node),
(D2) if v ∈ V©, then v is leaf in T (v is called a loss node),
(D3) if v ∈ V�, then v has two children a and b such that �a = �b = �v (v is called a duplication node),
(D4) if v ∈ V , then v has two children a and b such that �a ∪ �b = �v and �a ∩ �b = ∅ (v is called a speciation

node),
(D5) for all v, w ∈ V such that �v ∩ �w 	= ∅, we have either �v ⊆ �w or �v ⊇ �w.
By LabelsT we denote the set of all labels in T . Let �(T ) denotes the label of the root of T .

4 Sometimes we use an upper index to distinguish objects from different trees.
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Fig. 4. DLS-trees and its notation.

With a DLS-tree T we associate a cost which is the total number of gene duplications and losses in T . This cost is
known in the literature as a mutation cost [11].

In “model” part of Fig. 3 we present a DLS-tree D. Embedding is “evolutionary interpretation” of D in the context
of the species tree S. We do not define formally embeddings. It should be clear that every DLS-tree whose labels are
clusters in a species tree S can be embedded into S.

Sometimes we will use a linear (term-like) representation of DLS-trees similar to nested-parenthesis notation. The
following productions define the terms:

T → ∅ | a | A© | (T , T ) | (T , T )�,

where a ∈ I, A is non-empty set of species, and the rest of the symbols except T are terminals. The interpretation of
the terms is as follows (see Fig. 4):
• ∅ is the empty DLS-tree,
• a denotes a DLS-tree with a single gene node labelled by {a},
• A© denotes a DLS-tree with a single loss node labelled by A,
• if Tp and Tq are two non-empty DLS-trees with roots p and q, respectively, then (Tp, Tq)� is a DLS-tree whose

root is a duplication node and has two children: p and q. The trees Tp and Tq are rooted in (Tp, Tq)� at the nodes
p and q, respectively,

• (Tp, Tq) is defined analogously to the previous case (here the root is a speciation node).
For example, the tree D in Fig. 3 can be described as (a, (((d©, c) , (c, d) )�, cd©)�) .

4. Extracting evolutionary information from DLS-trees

We explain how to extract, from a given DLS-tree, a gene tree and a species tree, relying on information contained
in its labels. By DLS we denote the set of all DLS-trees.

4.1. Extracting gene trees

We start with the gene tree. For a set of leaves L in T , let T L be the smallest subtree of T containing L as its set of
leaves. The homomorphic tree T |L of T induced by L is the tree obtained from T L by contracting all nodes of degree
2 except for its root (i.e., for each such a node x: create an edge connecting the parent of x with the child of x; remove
x and all edges incident on it) [2,12]. Now, we can use the homomorphic tree to get the gene tree from a DLS-tree. Let
T be a DLS-tree. We set gene(T ) to be the gene tree defined by T |V• . The labels of leaves in gene(T ) are inherited
from T . One can easily check that for the trees in Fig. 3, we have gene(D) = G.

This operation could be also defined equivalently by structural induction:
(1) gene(∅) = ∅,
(2) gene(a) = a,
(3) gene(A©) = ∅,

(4) gene((T1, T2)∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if gene(T1) = ∅ = gene(T2),

gene(T1) if gene(T1) 	= ∅ = gene(T2),

gene(T2) if gene(T1) = ∅ 	= gene(T2),

(gene(T1), gene(T2)) otherwise,
where ∗ ∈ { ,�}.
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Fig. 5. Incomplete DLS-tree D.

Fig. 6. A complete DLS-tree D and extracted gene and species trees. The cost equals 9.

It can be shown that L(gene(D)) = {�v | v ∈ V D• } for D a DLS-tree. We omit the easy proof. For example, see
Fig. 6.

4.2. Extracting species trees

In this section, we present the extraction of the species tree. The natural question is whether the setLabels determines
a species tree. Fig. 5 presents a DLS-tree which does not satisfy this property. We see that the tree contains an incomplete
information on a species relationship due to the loss nodes.

To solve this problem we have to identify species for which the reconstruction (from labels) will give a species tree.
We call a species s lost in T , if s occurs only in loss nodes of T . Formally, the set of lost species can be defined by

lostT = �(T ) \ ⋃{�T
v | v ∈ V T• }. (1)

For example, see Figs. 5 and 6. We claim that if we remove lost species from all labels of a DLS-tree, then we will
be able to reconstruct the species tree.

Lemma 3. Let T be a DLS-tree. Then

{�v \ lostT | v ∈ T } \ {∅} (2)

determines a species tree.

Proof. Let M be the set defined in (2). We prove that M satisfies the properties (M1–3) from Theorem 2.
(M1) Let us assume that M is non-empty. It should be noted that

⋃
LabelsT is the label of the root of T (i.e., �(T )).

Thus,
⋃

M = (
⋃ {�v | v ∈ T }) \ lostT = �(T ) \ lostT ∈ M.

(M2) Let a ∈ ⋃
M. Then a ∈ �(T ) \ lostT . Thus, from the definition of lostT (see (1)), there exists a gene node in

T labelled by {a}. Finally, we obtain {a} = {a} \ lostT ∈ M.
(M3) Let A ∈ M, not a singleton. Let Ã be the least set in the sense of inclusion such that there exists a node v in T

such that Ã = �v and

A = �v \ lostT . (3)

Since A ∈ M there exists at least one node in T which satisfies (3). If v and v′ satisfy (3), then by (D5) we have
�v ⊆ �v′ or �v ⊇ �v′ . Hence Ã exists and is well defined.
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Ã does not contain only lost species. Thus, from (D3–5), we conclude that, for each a ∈ A, there exists a path in T

whose labels can be presented as a sequence Ã ⊃ P a
1 ⊃ P a

2 ⊃ · · · ⊇ {a}. Let us consider P = {P a
1 }a∈A. By (D4) and

(D5), P contains two disjoint elements B̃ and C̃ such that B̃ ∪ C̃ = Ã. Thus, we proved that the set

{�v | v ∈ T , �v ⊂ Ã}
contains two maximal sets in the sense of inclusion (i.e., B̃ and C̃).

Let B = B̃ \ lostT and C = C̃ \ lostT . This is obvious from the construction that A and B are non-empty. Having
this, we conclude that B and C are the two maximal sets in

{�v \ lostT | v ∈ T , �v \ lostT ⊂ A} \ {∅}.
Note that the above set is the set considered in (M3). �

We denote the species tree determined by (2) by spec(T ). Let us notice that, for a DLS tree T , L(gene(T )) =
L(spec(T )).

The species tree for the incomplete DLS-tree D is presented in Fig. 5. Another example is presented in Fig. 7
(tree T ).

We call a DLS-tree complete, if it has no lost species. Fig. 6 presents an example of a complete DLS-tree.

4.3. Completion of DLS-trees

In this subsection we show how to transform an incomplete DLS-tree into a complete one. Informally, this transfor-
mation gives the largest complete DLS-tree which is included (as a subtree) in a given DLS-tree.

First, we define a mapping cmplX : DLS → DLS for X ⊆ I:
(1) cmplX(∅) = ∅,

(2) cmplX(a) =
{ ∅ if a ∈ X,

a otherwise.

(3) cmplX(A©) =
{ ∅ if A ⊆ X,

(A \ X)© otherwise.

(4) cmplX((T1, T2)∗) =

⎧⎪⎪⎨
⎪⎪⎩

∅ if cmplX(T1) = ∅ = cmplX(T2),

cmplX(T1) if cmplX(T1) 	= ∅ = cmplX(T2),

cmplX(T2) if cmplX(T1) = ∅ 	= cmplX(T2),

(cmplX(T1), cmplX(T2))∗ otherwise,
where ∗ ∈ { ,�}.

Lemma 4. Let T ∈ DLS and X ⊆ I. Then cmplX(T ) is a DLS-tree, and if this tree is non-empty, then the label of its
root is �(T ) \ X.

Proof. We proceed by induction on the structure of T . It is clear that the properties hold for the empty and one-element
trees. We assume that the properties are satisfied for the trees of the size less than n. Now, we prove the thesis for the
trees of the size n. It is sufficient to consider the last case of fourth item in the definition of cmpl. The rest is clear.

First, we show that (D3)–(D5) are satisfied.
(D5) is satisfied for cmplX(T1) and cmplX(T2), separately, by the induction hypothesis. For i = 1, 2, let vi be a

node in cmplX(Ti). Then, by the induction hypothesis, there exists a node wi in Ti such that

�Ti
wi

\ X = �cmplX(Ti )
vi

.

Let us assume that �cmplX(T1)
v1 ∩ �cmplX(T2)

v2 	= ∅. Without loss of generality, by (D5) for T , we may assume that

�T1
w1

⊆ �T2
w2

.
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Thus, we have

�T1
w1

\ X ⊆ �T2
w2

\ X.

This proves (D5), for all nodes in cmplX(T ) except its root. Note that from (D3) and (D4) we have

�(cmplX(T )) = �(cmplX(T1)) ∪ �(cmplX(T2))

and, for all nodes, the condition (D5) is satisfied.
Let us assume that ∗ = �. We show that (D3) holds for the root of cmplX(T ):

�(cmplX(T1)) = �(T1) \ X by the induction hypothesis
= �(T2) \ X by (D3) for T

= �(cmplX(T2)) by the induction hypothesis.

Finally, we have �(cmplX(T1)) = �(cmplX(T )). It is also clear that the label of the root of cmplX(T ) equals �(T )\X.

Now, we consider the second case, that is, ∗ = . We show that (D4) holds for the root of cmplX(T ). We need to
prove that

�(cmplX(T1)) ∩ �(cmplX(T2)) = ∅.

The left side of the above equation gives

(�(T1) \ X) ∩ (�(T2) \ X) = (�(T1) ∩ �(T2)) \ X.

By (D4) for T , this is ∅. Finally, for the speciation case we have

�(T ) \ X = (�(T1) ∪ �(T2)) \ X by (D4) for T

= (�(T1) \ X) ∪ (�(T2) \ X)

= �(cmplX(T1)) ∪ �(cmplX(T2)) by the induction hypothesis
= �(cmplX(T )). �

Note that if T is a DLS-tree, then cmpl∅(T ) = T . Now, we define the operation cmpl : DLS → DLS. For a
DLS-tree T , let cmpl(T ) = cmpl

lostT
(T ). The most important property of this function is stated below:

Proposition 5. If T is a DLS-tree, then cmpl(T ) is a complete DLS-tree.

Proof. We need to prove lostcmpl(T ) = ∅. By the definition of lost, it is sufficient to show

⋃
v∈V

cmpl(T )•
�cmpl(T )

v = �(cmpl(T )).

The inclusion ⊆ is clear from (D3) and (D4).
(“⊇”) Let a ∈ �(cmpl(T )). We notice that a /∈ lostT . Thus, there exists a gene node in T labelled by {a}. So

cmpl
lostT

(a) = a, hence there exists a gene node in cmpl(T ) labelled by {a}. �

Moreover, this operations preserves spec:

Proposition 6. If T is a DLS-tree, then spec(T ) = spec(cmpl(T )).

Proof. It follows easily from Lemma 4 and the definition of cmpl(T ). �

Fig. 7 presents an example of an incomplete DLS-tree T with lost species d and e. Also, we present an extraction of
its complete DLS-tree cmpl(T ) and a species tree spec(T ).
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Fig. 7. Extraction of a complete DLS-tree.

Fig. 8. DLS rules.

5. DLS rules

We define DLS rules (we call them rules). They will be used to transform DLS-trees. Each rule is defined by P/Q,
where P (premise) and Q (conclusion) are DLS-trees. By a redex of a rule R, we mean a node v in a tree to which the
premise of R is applicable. A DLS-tree T can be transformed into T ′ by a rule R in node v if and only if
• P equals T (v),
• T ′ is constructed from T by replacing this subtree by the tree Q.
We denote by R(T , v) the result of reduction.

If T is reduced to T ′ in one step, this is indicated T → T ′. If T is reduced to T ′ in zero or more steps, this is indicated
T�T ′. We use →−1 to denote backward transformation, that is, T ′ →−1 T if and only if T → T ′. The rules are
presented in Fig. 8 and its biological interpretation in Fig. 9.

It should be clear that an application of any rule to a DLS-tree yields a DLS-tree and the reduction decreases
the cost.

For a DLS-tree T and a node v in T , we call a subtree T ′ of T (v) principal for a rule R in v if v is a redex of R and
in an application of R in v

• if R is DUP, then T ′ is the tree defined by R,
• if R has type II, then T ′ is the tree defined by P or Q.

6. Properties of the system and DLS-trees

In this section, we present important properties of DLS-trees and the system. First prove that our system is sound,
then we define semi-normal and fat DLS-trees. Finally, we prove completeness and confluency of the system.

6.1. Soundness

The following Proposition shows soundness of the system:

Proposition 7 (Soundness). If T → T ′, then gene(T ) = gene(T ′) and spec(T ) = spec(T ′).
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Fig. 9. Rules and their biological interpretations.

Proof. We proceed by induction. First, for all DLS rules, we prove that gene(P ) = gene(Q), where P is a premise
and Q a consequence. We use the nested parenthesis notation adapted for gene trees.

SPEC gene((A©, B©) ) = ∅ = gene(A ∪ B©),
DUP gene((R, �(R)©)�) = gene(R),

TMOVE gene(((C©, P) , (C©, Q) )�) = �(gene(P), gene(Q)) = gene((C©, (P, Q)�) ),
CLOST gene(((P, �(Q)©) , (�(P)©, Q) )�) = �(gene(P), gene(Q)) = gene((P, Q) ),

where

�(T1, T2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if T1 = ∅ = T2,

T1 if T1 	= ∅ = T2,

T2 if T1 = ∅ 	= T2,

(T1, T2) otherwise.

This completes the first part of the proof.
Now we prove the second equation. Let us notice that �(T ) = �(T ′) and

⋃{�T
v | v ∈ V T• } = ⋃{�T ′

v | v ∈ V T ′
• }.

Easy proof is omitted. This yields

lostT = lostT
′
.

First, we consider an application of the rules CLOST, TMOVE and DUP. In these cases we have

LabelsT = LabelsT
′
. (4)
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Fig. 10. A fat DLS-tree D, its gene tree G and its species tree S, and an evolutionary interpretation of D (see Fig. 3).

For a tree T , let M(T ) be the set defined by (2) (see Lemma 3). By (4), we have

M(T ) = M(T ′). (5)

Now, we show that the above equality holds for the rule SPEC.
(1) If A ⊆ lostT , then there is no subset of A, which will be present in M(T ) or M(T ′). Thus, in this case, (5) is

satisfied.
(2) If B /⊂ lostT and C ⊆ lostT , then B ∩ lostT = A∩ lostT and there is no subset of C, which will present in M(T )

or M(T ′). Again, (5) is satisfied.

(3) If B /⊂ lostT and C /⊂ lostT , then there exists a speciation node (or nodes) in T (and in T ′) labelled by A. By
(D4) and (D5), the children of this node are labelled by B and C. Thus, B ∩ lostT and C ∩ lostT occur in M(T )

and M(T ′), this yields (5).
For each rule, from Lemma 3 and (5), we have spec(T ) = spec(T ′). �

6.2. Semi-normal and fat trees

A DLS-tree containing no type I redexes is called a semi-normal tree. A semi-normal tree T is called fat, if the
following conditions are satisfied:
• every duplication node has label �(T ),
• each speciation node has exactly one lost child.
Fig. 10 presents an example of a fat DLS-tree D. G and S are taken from Fig. 3.

Lemma 8. If T is fat, then each child of a duplication node is either a duplication node or is the root of the tree

(B1©, (B2©, . . . (Bk©, a) . . . ) ) , (6)

where a ∈ I and k�0.

Proof. If v is a duplication node, then its children are labelled by �(T ). Let w be a child of v. We have to consider
three cases:
• w is a duplication node (obvious),
• w is a leaf and the tree for v is a, where a is the label of w (also �(T ) = {a}).
• w is a speciation node and there are no more duplication nodes in T (w) (their labels do not equal �(T )); thus, all

internal nodes in the subtree T (w) are speciations.
This completes the proof. �

We call the tree defined by (6) a chain tree. The label of the only gene node will be called a target.
Extracting gene and species trees from fat trees is quite natural (see Fig. 10):

Proposition 9. Let us assume that T is fat. Then
(1) gene(T ) is constructed from T by replacing each chain tree in T by a single node labelled by its target,
(2) if there is no lost species in T , then spec(T ) is determined by

⋃
C∈C(T )M

C , where C(T ) denotes the set of all
chain trees in T .
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Proof. (1) It is easy to notice that if C is a chain tree with a target a, then gene(C) = a. By Lemma 8, we conclude
that all duplication nodes will be transformed by gene into internal nodes of the gene tree.

(2) It should be noted that the root of each chain tree is labelled by �(T ). So

LabelsT = ⋃
C∈C(T )

MC.

The above set equals the set defined by (2) from Lemma 3. From this lemma, we get the species tree. �

Also converse holds:

Proposition 10. Given a gene tree G and a species tree S such that L(G) ⊆ L(S). There exists a unique fat tree T such

that gene(T ) = G, LabelsT ⊆ MS and L(S) = �(T ).

Proof. For each label a ∈ L(G), we define the chain tree Sa with a target a. Let p0p1 . . . pk be the unique path in S,
where p0 = root (S) and pn has label a. Let Sa be the chain tree (6), where Bi = mS

pi−1
\ mS

pi
for i = 1, 2, . . . , k.

Note that �(Sa) = L(S).
We show the construction of the fat tree T . Set each internal node of the gene tree be a duplication node labelled

by L(G). Each leaf labelled by a in this tree is replaced by the chain tree Sa . It is quite easy to check that T is well
defined. It follows from the uniqueness of Sa that T is unique. �

Corollary 11. By Proposition 10, the duplication cost of T equals the number of the internal nodes in G. It also follows
that the number of gene losses in T equals

∑
a∈L(G)

len(S, a),

where L(G) is the multiset of all leaf labels in G and len(S, a) denotes the length of the path in S, whose start is the
root of S and the end is the (unique) node labelled by a in S.

We define ∼ to be the least equivalence relation on the set of DLS-trees which contains relation →. Thus, if T ∼ T ′,
then T can be transformed into T ′ by applying DLS rules zero or more times in any direction.

Proposition 12. Every DLS-tree is equivalent to a fat tree.

Proof. Let T be a DLS-tree. We consider the following rewrite rules:
• type I in the direction →,
• type II in the direction →−1.

(A1) First, we eliminate iteratively all redexes of the rules DUP and SPEC. We get a semi-normal tree.
(A2) Let #X(T ) equals the number of duplication nodes in T labelled by X ⊆ I. Let v be a speciation node in T

such that its children are not lost. Let T ′ = CLOST−1(T , v). Thus, we have

#A(T ′) > #A(T ),

#X(T ′) = #X(T ) for X 	= A.

Apply CLOST−1. After this step all speciation nodes have exactly one lost child. Note that the final tree is
semi-normal.

(A3) Let us assume that v is a speciation node in T labelled by A and its child is a duplication node labelled by B.
Note that the second child is lost (after (A2)). Thus, we can apply TMOVE−1. Let T ′ = TMOVE−1(T , v). We
have

#A(T ′) > #A(T ),

#B(T ′) < #B(T ),

#X(T ′) = #X(T ) for X 	= A, B.
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Applying TMOVE−1 preserves the property that speciation nodes have exactly one lost child and does not introduce
redexes of type I.

After finite number of steps, we get #X = 0 for all X 	= �(T ). It means that in the final tree all duplication nodes
are labelled by �(T ). We have shown that T can be transformed into a fat tree. �

From the proof, we conclude that the procedure presented below will produce a fat tree from any DLS-tree:
• eliminate iteratively all redexes DUP and SPEC,
• eliminate all redexes of TMOVE−1,
• eliminate all redexes of CLOST−1.
From this construction, we have the following property:

Corollary 13. Every complete DLS-tree is equivalent to a complete fat tree.

Observe that we can increase the cost of a fat tree by applying SPEC in direction →−1; in this way, we increase
each B© by at most |B| − 1, or by applying DUP in direction →−1; this can be done an unbounded number of times,
increasing the number of the duplication nodes and introducing spurious loss nodes.

Note that applying transformations (A2) and (A3) (see the proof of Proposition 12) we get a tree with larger size.
Thus, we conclude that a fat tree is the heaviest (in the sense of size) among all equivalent semi-normal trees.

Recall that a complete DLS-tree is a tree without lost species.

Proposition 14. For complete DLS-trees T1 and T2, if T1 ∼ T2, then there exists a unique complete fat tree equivalent
to T1 and T2.

Proof. By Corollary 13, there exist complete fat trees F1 and F2 equivalent to T1 and T2, respectively. Let spec(T1) =
S. Notice that LabelsT1 = LabelsF1 = MS = LabelsT2 = LabelsF2 . By Propositions 7 and 10, we obtain
uniqueness. �

6.3. Completeness

We can also prove completeness of the system.

Proposition 15 (Completeness). Let T1 and T2 be complete DLS-trees such that gene(T1) = gene(T2) and spec(T1) =
spec(T2). Then T1 ∼ T2.

Proof. By Corollary 13, there exist complete fat trees F1 and F2 equivalent to T1 and T2, respectively. By Proposition

7, for i = 1, 2, we have gene(Ti) = gene(Fi) and spec(Ti) = spec(Fi). Moreover, LabelsT2 = LabelsF2 = MS =
LabelsT2 = LabelsF2 . By Proposition 10, we get F1 = F2. Hence T1 ∼ T2. �

6.4. Confluency and normalization

We use T
=→T ′ if T ′ can be obtained from T by at most one reduction. The following proposition states that the

system is weakly confluent.

Proposition 16 (Weak confluence). Let T be a DLS-tree. Then, for each T1 and T2 such that T → T1 and T → T2,
there exists T3 such that T1

=→T3 and T2
=→T3.

Proof. For i = 1, 2, let Ti = Ri(T , vi). Without loss of generality we may assume that both reductions are different.
• R1 = DUP: We consider a pattern P = (R, �(R)©)� rooted in v1. Then, v2 is

◦ either outside of the subtree rooted by v1 in T ; in this case the pattern P is present in R2(T , v2),
◦ or in the subtree R.
We see that the applications are independent, i.e., R2(R1(T , v1), v2) = R1(R2(T , v2), v1).
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Fig. 11. TMOVE and CLOST case.

Fig. 12. SPEC and TMOVE, SPEC and CLOST cases.

• R1 = TMOVE and R2 = CLOST case: The dependence may occur only if the rules can be applied to the same
node. In such a case, at least one of the principal trees for R2 in v2 is a one-element tree with a loss node. Without
loss of generality we may assume that B© is the principal tree with a loss node. The reductions are presented in
Fig. 11.

• R1 = SPEC and R2 = TMOVE: The dependence may occur only if at least one of the principal trees for R2 in v2 is
a one-element tree with a loss node. Without loss of generality we may assume that B© is the principal tree with a
loss node. The reductions are presented in the left part of Fig. 12.

• R1 = SPEC and R2 = CLOST case: This case is similar to the previous one (see the right diagram in Fig. 12).
• R1 = R2: If the applied rules are equal, then their redexes are different. Simple analysis leads to the conclusion that

they have to be independent. �

The following theorem states that our system is confluent. Recall that a DLS-tree in normal form is non-reducible.

Theorem 17 (Confluence). Take a DLS-tree T . There exists a unique DLS-tree T ∗ (in normal form) such that every
sequence of reductions in direction →, which starts in T and terminates in normal form, yields T ∗.

Proof. The termination follows from the fact that every application of rules reduces the cost.
Let us assume that T 0

k and T n
0 are in normal form such that T 0

0 → T 0
1 → T 0

2 → · · · → T 0
k and T 0

0 → T 1
0 →

T 2
0 → · · · → T n

0 , where T 0
0 = T . It follows from Proposition 16, that the diagram of reductions presented in (7) is

well defined. The proof is straightforward (by induction).
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T 0
0 → T 0

1 → T 0
2 → · · · → T 0

k

↓ ↓ = ↓ = ↓ =

T 1
0

=→ T 1
1

=→ T 1
2

=→ · · · → T 1
k

↓ ↓ = ↓ = ↓ =

T 2
0

=→ T 2
1

=→ T 2
2

=→ · · · → T 2
k

↓ ↓ = ↓ = ↓ =
...

...
...

. . .
...

↓ ↓ = ↓ = ↓ =

T n
0

=→ T n
1

=→ T n
2

=→ · · · =→ T n
k

(7)

By induction, we show that, for i = 1, 2, . . . , n, T i
k is in normal form and equal T 0

k . Analogously, for i = 1, 2, . . . , k,
T n

j is in normal form and equal T n
0 . Finally, T 0

k = T n
0 . �

Theorem 18. For DLS-trees T1 and T2, we have T1 ∼ T2 if and only if T ∗
1 = T ∗

2 .

Proof. (⇒). Let
−1,1−−→ denote the following relation on DLS: T

−1,1−−→ T ′ if and only if T → T ′ or T ′ → T . Let
‖ (T1, T2) ‖ denote the minimal number of reductions → and →−1 required to transform T1 into T2. We show by
induction that, for each d ∈ {0, 1, . . . }, if T1 ∼ T2 and ‖ (T1, T2) ‖= d then T ∗

1 = T ∗
2 .

Let d = 0. We have T1 = T2. This case is clear, by Theorem 17.
Let d > 0. Assume that, for all T1 and T2 such that ‖ (T1, T2) ‖< d, T ∗

1 = T ∗
2 .

Consider T1 and T2 such that ‖ (T1, T2) ‖= d . Thus, we have T1
−1,1−−→ S1 −1,1−−→ S2 −1,1−−→ · · · −1,1−−→ Sd −1,1−−→ T2.

By the induction hypothesis, we have

T1
−1,1−−→ S1

�

S∗
1

−1,1−−→

=

S2

�

S∗
2

−1,1−−→

=

. . .

. . .

−1,1−−→

=

Sd

�

S∗
d

−1,1−−→

=

T2

�

T ∗
2

(8)

where, for each i = 1, 2, . . . , d, S∗
i is the normal form of Si . We have two cases:

• If T1 → S1, then T1�S∗
1 . By the uniqueness of the normal form of T1 we obtain T ∗

1 = S∗
1 = T ∗

2 .
• If T1 →−1 S1, then S1�T ∗

1 . By the uniqueness of the normal form of S1, we obtain S∗
1 = T ∗

1 = T ∗
2 .

(⇐). We have T1�T ∗
1 = T ∗

2�T2. Thus, T1 ∼ T2. �

Corollary 19. For a DLS-tree T , T ∗ is the unique tree with minimal cost in the set of all trees which are equivalent
to T .

6.5. Computing a fat tree

Algorithm 1. DLS-tree to a fat tree.
1. Input: DLS-tree T

2. Output: The unique fat tree equivalent to T

3. eliminate all redexes of DUP, SPEC and HGT
4. eliminate all redexes of TMOVE−1 and CLOST−1

Algorithm 1 presents an efficient procedure for transforming a given DLS-tree into the (unique) equivalent fat tree.
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Fig. 13. Example hierarchy of semi-normal trees with all possible reductions.

Theorem 20. The time and space complexity of Algorithm 1 is O(|T |2).

Proof. Assume that T has n nodes. Then T has k = (n + 1)/2 leaves and at most k gene nodes. Also, the longest path
in T has at most k nodes. Hence, the path in the longest chain tree in the final fat tree has at most k nodes. Having, this
we conclude that we have at most 2 ∗ k ∗ k + n nodes in the fat tree. Each reversed reduction of type II increases the
size of the tree, therefore, the time and space complexity of Algorithm 1 complexity is O(|T |2). �

6.6. Computing a tree in normal form

Similarly to Algorithm 1, we can define an algorithm for computing the normal form of a given DLS-tree (by
removing −1 in line 4). It is clear that the time complexity of this transformation is O(|T |) and the space complexity
is O(1) (in each step we decrease the size of T ).
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Fig. 14. D (semi-normal) and D∗ (in normal form) have the same minimal duplication cost (v is a redex).

6.7. Hierarchy of semi-normal trees

Semi-normal trees are important representants of each class of equivalent DLS-trees. We consider a hierarchy of
equivalent semi-normal trees and summarize its properties.

By the proof of Proposition 12 and further discussion, we can transform each semi-normal tree into the unique fat
tree in two steps. In the first step, we apply all possible CLOST rules in the reverse direction. Then, we apply TMOVE
rules in the reverse direction.

Analogously, we can transform each semi-normal tree into the unique tree in a normal form. First, we apply TMOVE
rules, then CLOST in the direction →.

An example of a hierarchy of semi-normal trees, with all possible reductions, is presented in Fig. 13. In our example,
we have all possible 15 semi-normal DLS-trees. T f is the fat tree. T ∗ is the tree in normal form. The labels of the
internal nodes are not shown. They can be easily reconstructed from the labels of the leaves. Dotted and solid arrows
denote CLOST and TMOVE reductions, respectively. The nodes marked by a number i (and ∗) are the redexes of the
rules which produce Ti (and T ∗, respectively). For instance, a redex of T5 → T9 is a node in T5 marked by 9.

It should be noted that, if trees are in the same row in Fig. 13, then they have the same number of speciations. It
follows easily from the fact that the reductions of type II reduce the number of speciations by one.

6.8. Duplication cost and uniqueness

We can also prove that there exists more than one DLS-tree with the same minimal duplication cost. It is clear, if
an application of SPEC is possible. For example, there exists a DLS-tree T (not semi-normal) which has the same
duplication cost as T ∗ from Fig. 13 and such that T ∗ is obtained from T by one application of SPEC (to obtain T

replace de© in T ∗ by (d©, e©) ). Even if we consider only semi-normal trees, the uniqueness of duplication cost is
not satisfied. See Fig. 14 for details.

7. From gene and species trees to DLS-trees

In this section, for a given species tree S and a gene tree G, we present the construction of a DLS-tree �(G, S) in
normal form subject to the condition ∅ 	= L(G) ⊆ L(S) (this condition is required for the trees in this section). We
show how to compute the number of evolutionary events in such a tree. Also, we show a natural transformation from
reconciled trees into normal form DLS-trees.

7.1. Normal from trees

Let� denote a path existence relation in S, i.e., a� b if and only if there exists a path from a to b in S. Let �

denote a child relation, i.e., a � b if and only if b is a child of a. Reversed arrows are used to denote the reversed
relations.

For a species tree S and a gene tree G such that ∅ 	= L(G) ⊆ L(S), for each g ∈ G, by M(g) we denote the node
s ∈ S such that

mS
s = ⋂{mS

w | mG
g ⊆ mS

w}.
The obtained function M : G → S is called in the literature [6,15] a least common ancestor mapping or just lca-mapping
(see Fig. 19).



P. Górecki, J. Tiuryn / Theoretical Computer Science 359 (2006) 378 –399 395

The definition of �(G, S) is by structural induction on the size of G and S. Let s = root (S) and g = root (G). If S
and G are leaves, then � = a, where a is the label of g. Otherwise, let p and q be the children of g, then

�(G, S) =
⎧⎨
⎩

(�(G(p), S), �(G(q), S))� if M(g) = s = M(q) (R1),

(�(G(p), S(a), �(G(q), S(b))) if M(p)�a � s = M(g) � b�M(q) (R2),

(�(G, S(a)), (mS
b )©) if M(g)�a � s � b 	= a (R3).

(9)

Lemma 21. For a species tree S and a gene tree G such that ∅ 	= L(G) ⊆ L(S), �(G, S) is a DLS-tree.

Proof. The proof follows easily from the definition of the DLS-tree. �

Lemma 22. Under the assumptions of Lemma 21
(I) gene(�(G, S)) = G,

(II) labels of �(G, S) are clusters in S,
(III) if L(G) = L(S), then spec(�(G, S)) = S.

Proof. (I) It follows by induction on the size of G and S. If G = S = g, then gene(�(g, g)) = g. Let d > 1. Assume
that, for all G and S such that |G| + |S| < d and ∅ 	= L(G) ⊆ L(S), gene(�(G, S)) = G. We proceed with G and S
such that |G| + |S| = d . From the definition of gene and (9), we have
(R1) gene((�(G(p), S), �(G(q), S))�) = (gene(�(G(p), S)), gene(�(G(q), S))) = (G(p), G(q)) = G,
(R2) gene((�(G(p), S(a)), �(G(q), S(b))) ) = (gene(�(G(p), S(a))), gene(�(G(q), S(b)))) = (G(p), G(q)) = G,

(R3) gene((�(G, S(a)), (mS
b )©) ) = gene(�(G, S(a))) = G.

(II) It follows immediately from the fact that �(�(G, S)) = L(S).
(III) Note that lost�(G,S) = L(S) \ L(G). In this case �(G, S) is a complete DLS-tree. By (II) and Lemma 3, we

conclude that spec(�(G, S)) = S.
This completes the proof. �

One of the most important properties of � is stated below:

Lemma 23. Let G be a gene tree and S be a species tree such that ∅ 	= L(G) ⊆ L(S). Then �(G, S) is in normal form.

Proof. We show that there are no redexes of the DLS rules in R = �(G, S).
(SPEC) Observe that �(G′, S ′) can never be a lost leaf. Thus, there is no DLS pattern (A©, B©)∗ in �(G, S). We

conclude that SPEC cannot be applicable.
(DUP) Similarly, we obtain that (A©, T )� is not present in �(G, S).
(TMOVE) Let us assume that ((S1, C©) , (S2, C©) )� (i.e., the premise of this rule) is present in �(G, S). Without

loss of generality, we may assume that the root of �(G, S) is the redex of the rule. The pattern can be obtained only
from the first case, that is, from (R1) of (9). So we have

M(root (G)) = root (S) = M(q), (10)

where q is a child of the root in G. By (R1), for i = 1 or 2, we see that

�(G(q), S) = (Si, C©) .

The pattern could be obtained only from the case (R3). However, this requires M(root (G(q))) = M(q) 	= root (S)

which contradicts (10).
(CLOST) The proof is similar to (TMOVE) case. �

Now, we conclude that if T is a complete DLS-tree, then T ∗ = �(gene(T ), spec(T )), where T ∗ is the normal
form of T .
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Fig. 15. Example of G and S with loss0 = 2.

7.2. Counting evolutionary events

Having formula (9), we can compute the number of evolutionary events in a tree in normal form.

Lemma 24. Let G be a gene tree and S be a species tree such that ∅ 	= L(G) ⊆ L(S). Then the number of duplications
in �(G, S) equals

dup(G, S) = |{g | M(g) = M(p) where p is a child of g in G}|.

Proof. Follows immediately from (R1) in (9). �

Lemma 25. Let G be a gene tree and S be a species tree such that ∅ 	= L(G) ⊆ L(S). For each node g, we define a
non-negative integer lossg as follows: we set lossg = 0 if g is leaf in G, if g is an internal node in G then let p and q

denote the two children of g. We define

lossg =
{

d(M(g), M(p)) + 1 if M(p) 	= M(g) = M(q),

d(M(g), M(p)) + d(M(g), M(q)) otherwise,

where d(s, s′) = |{t | mS
s′ ⊂ mS

t ⊂ mS
s }|.

Let loss0 = |{s | mS
M(root (G))

⊂ mS
s }|. Then the number of gene losses in �(G, S) is given by

loss0 + ∑
g∈G

lossg. (11)

Proof. The first element of the final sum (11) is needed, if M(root (G)) 	= root (S). It should be clear from (R3) case
of (9) that we obtain loss0 gene losses in the first applications of � until S′ = S(M(root (G))) is reached as the second
argument of �:

�(G, S) = (A1
©, . . . (A

loss0
© , �(G, S′)) . . . ) .

Fig. 15 illustrates this property. Note that if M(root (G)) = root (S), then loss0 = 0.
Let g ∈ G. It follows from (9) that S(M(g)) is the smallest subtree T of S such that �(G, S) = (. . . �(G(g), T ) . . . ).

For a node g in G, let g be the root of Tg = �(G(g), S(M(g))) in �(G, S). Let us assume that g is internal node in G.
Let p and q be the two children of g.

We consider paths gp1 . . . pkp and gq1 . . . qmq in �(G, S). We show that lossg = k + m.
Without loss of generality we assume that g is the root of G and M(g) = root (S).
Case A: M(p) = M(g) = M(q). (R1) is applied. So �(G, S) = (�(G(p), S), �(G(q), S))�, and hence Tp =

�(G(p), S). Similarly, Tq = �(G(q), S). We obtain: k = m = 0. See Fig. 16 for details.
Case B: M(p) 	= M(g) = M(q). Again, (R1) is applied. We have Tq = �(G(q), S), and hence m = 0. For the

second child, we apply a sequence of k (R3) cases. In this way, we reach Tp in �(G, S). Fig. 16 presents the details.
Note that

mS
M(g) = �g = �p1 . (12)

It should be clear that �p2 , �p3 , . . ., �pk
is a sequence of all intermediate labels which occur between M(g) and M(p)

in S. So d(M(g), M(p)) = k − 1, and hence the number of gene losses equals d(M(g), M(p)) + 1.
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Fig. 16. Cases A and B.

Fig. 17. Case C.

Case C: M(p) 	= M(g) 	= M(q). First, (R2) is applied. So the labels of the children of �g in Tg (i.e., �p1 and �q1 )
do not equal mS

M(g). Thus, this situation is different, that is, (12) does not hold. We apply a sequence of k (R3) cases

to obtain Tp. In this case, �p1 , �p2 , . . ., mS
pk

is a sequence of all intermediate labels which occur between M(g) and
M(p) in S. So d(M(g), M(p)) = k and, similarly, d(M(g), M(q)) = m.

Fig. 17 presents the details. �

7.3. Embeddings and normal form trees

It should be clear that we can embed a DLS-tree D into a species tree S if the labels of T are clusters in S. For a
gene tree G and a species tree S, consider the set P(G, S) of all DLS-trees in normal form such that if T ∈ P(G, S),
then gene(T ) = G and Labels(T ) ⊆ MS .

The following lemma states one of the crucial properties of P(G, S).

Lemma 26. Let G be a gene tree and S be a species tree such that ∅ 	= L(G) ⊆ L(S). Then

P(G, S) = {T (s) | T = �(G, S), s ∈ V T , L(G) ⊆ �T
s ⊆ L(S)}. (13)

Proof. (⊇) Clear. (⊆) Assume that P(G, S) contains T ∗
1 and T ∗

2 such that �(T ∗
1 ) = �(T ∗

2 ) = L(S). There exist fat
trees F1 and F2 equivalent to T ∗

1 and T ∗
2 , respectively. By Proposition 10, F1 = F2. Thus, T ∗

1 and T ∗
2 are equivalent

and by uniqueness of the normal form T ∗
1 = T ∗

2 . We conclude that there is exactly one DLS-tree T ∗ in normal form in
P(G, S) satisfying L(S) = �(T ∗). It is defined by �(G, S).

Assume that P(G, S) contains T such that �(T ) ⊂ L(S). It is obvious that L(G) ⊆ �(T ). Let T ′ = (. . . ((T , A1
©) ,

A2
©) . . . , Ak

©) such that �(T ′) = L(S) (note that T ′ is reconstructed uniquely). This yields T ′ = �(G, S). �

In general, it should be clear that P(G, S) contains loss0 + 1 elements. See Fig. 18 for illustration.

7.4. Reconciled trees

Now, we present a definition of the reconciled tree taken from [2]. We know that this definition is equivalent to the
definition given by [15]. Let s = root (S) and g = root (G). The reconciled tree R(G, S) of G with respect to S is the
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Fig. 18. Elements of P(G, S) and corresponding embeddings.

Fig. 19. Example of a mapping M , a reconciled tree R(G, S) and a DLS-tree �(G, S).

Fig. 20. The evolution of species and genes (cont. example from Fig. 19).

tree G, if G and S are leaves. Otherwise, let p and q be the children of g, then

R(G, S) =
⎧⎨
⎩

(R(G(p), S), R(G(q), S)) if M(g) = s = M(q) (RT 1),

(R(G(p), S(a)), R(G(q), S(b))) if M(p)�a � s = M(g) � b�M(q) (RT 2),

(R(G, S(a)), S(b)) if M(g)�a � s � b 	= a (RT 3).

(14)

Theorem 27. Let G be a gene tree and S be a species tree such that ∅ 	= L(G) ⊆ L(S). Let � be a transformation
which takes a DLS-tree and returns a tree with leaves labelled by species:

�(T ) =
⎧⎨
⎩

a if T = a and a ∈ I,

S(v) if T = A© and v in S such that mS
v = A,

(T1, T2)∗ if T = (T1, T2)∗, where ∗ ∈ { ,�}.
(15)

Then �(�(G, S)) = R(G, S).

Proof. It follows immediately from the definition of the reconciled tree and the definition of �. �

Thus, � is a natural transformation between reconciled trees and DLS-trees in normal form. We claim that the formula
for computing the mutation cost is the same for the reconciled tree [11] and the tree in normal form.
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Fig. 19 presents an example of a lca-mapping M , for all internal nodes of G. Also, it presents a reconciled tree
R(G, S) and a DLS-tree �(G, S). Note that �(G, S) equals the tree T ∗ shown in Fig. 13. It is easy to notice that
�(�(G, S)) = R(G, S). For a more readable presentation, all the lost gene lineages are shown with dotted lines. The
solid lines in R(G, S) and �(G, S) represent embedded gene trees.

Fig. 20 is a continuation of the example presented in Fig. 19. Tree E is the evolutionary interpretation of our DLS-
tree. T presents an extraction of the gene lineages from E. Note that the tree T is equal topologically to the DLS-tree
�(G, S). Also the embedding is shown.

8. Final remarks

All algorithms presented here, the system of rules, mappings, reductions, reconciled trees and others for DL-models
are included in this software. It will be soon available.
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