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Abs t rac t - -The  problem of estimating the error rates of a sample-based rule on the basis of the same 
sample used in its construction is considered. The apparent error rate is an obvious nonparametric estimate 
of the conditional error rate of a sample rule, but unfortunately it provides too optimistic an assessment. 
Attention is focussed on the formation of improved estimates, mainly through appropriate bias correction 
of the apparent error rate. In this respect the role of the bootstrap, a computer-based methodology, is 
highlighted. 

I. I N T R O D U C T I O N  

We consider the problem of  estimating the various types of  error rates associated with the 
application of an allocation rule. Suppose there are g possible classes denoted by C~ . . . . .  C~ 
with prior probabilities wt . . . . .  % ,  respectively. The elements of rt = (~'t . . . . .  "rr 0 are 
nonnegative and sum to 1, so ~ is an element of ..(.~, the unit simplex in R ~. The aim is to 
assign an unclassified object from one of these classes to its correct class of origin on the basis 
of  the observed value of a p-dimensional random vector X. In class Ci, X has probability density 
function fi(x) (with respect to arbitrary measure) on R p. Let Z denote the random vector (X,Y) 
with density function f (z)  defined on RP ÷~, where Y is a random variable taking on the values 
1 to g so that the value of Y specifies the class to which the object belongs. The discrimination 
problem can therefore be expressed as attempting to predict the unknown value of Y,y, having 
observed X = x. 

We let r(x) denote an allocation rule for predicting y, where r(x) = i implies that an object 
with X = x is assigned to class C,(i = 1 . . . . .  g). In addition to the observed value x, the 
rule r may also depend on rt, and so it may be thought of  as a measurable function 

r: RPx~ L , {1 . . . . .  g}. 

The optimal or Bayes rule, which minimizes the error rate averaged with respect to the prior 
probabilities, is defined to be i, if 

~,(x) > ~j(x) (j = I . . . .  g ; j  # i), (1) 

where 

,/(f, ,} ~j(x) = "rofj(x ~rkf,.(x ( 2 )  

is the posterior probability that an object with X = x belongs to Cj (Anderson[3]). That is. the 
Bayes rule chooses the class which maximizes the posterior probability. For example, for g = 2 
normal classes, where 

X ~ N(I.ti, ~ )  in Ci(i = 1, 2), (3) 

we have from (1) that the Bayes rule is 1 or 2, according to whether the linear discriminant 
function 

L(x) = log{f,(x)/f2fx)} + log('rr,/~2) 

( '  1 = x -  ~ ( ~ ,  + ~..~) 1~-~(g~ - It_.)' + h 
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is greater or less than zero, and h = log(,'rr~/';r.,). The minimax rule is based on (4) with h = 0. 
which also corresponds to the case of  equal prior probabilities. 

In practice, the class conditional density functions f,(x) and the prior probabilities ~r, are 
usually unknown, and so the chosen rule of  allocation rlxl may not be able to be used in its 
desired form. For instance, r(x) might be the Bayes rule. which we have seen requires knowledge 
of all these quantities or, say, the minimax rule which depends on the class conditional densities 
but not the prior probabilities. For the construction of a suitable sample version of rtx). it is 
assumed here there are available independent training observations of known origin; that is, 
there is a set 

t = {z~ = (x~ ,  y~)  . . . . .  z,, = (x , , .  y,,))- ( 5 )  

for which Yz . . . . .  y ,  are known and xt . . . . .  x,, are independently distributed. For convenience 
of notation we relabel x~ . . . . .  x,, so that x o (j = 1 . . . . .  ni) denote those n~ realisations of 
X belonging to C~ (i = I . . . . .  g; nt + • • • + n~ = n); that is. t = {(x,j, i), j = 1 . . . . .  
n~; i = 1 . . . . .  g}. The observations x 0 may have been obtained either by sampling separately 
from each of the classes or from a mixture of  the classes in proportions ~ . . . . .  "rr~. Under 
the latter scheme, each case in t is a realisation of the random variable Z distributed according 
to f (z) ,  and so 

ni - bin(n, ";ri) (i = I . . . . .  g),  (6) 

providing ~i = n i / n  as an estimate of  ~ri. With the former scheme, the number of observations 
from C~ is fixed in advance before sampling, and hence the x o (j = 1 . . . . .  n,) constitute a 
random sample from the ith-class conditional density, f,(x), i = l . . . . .  g. 

We let r(x, t) denote the sample version of r(x) constructed from t in a consistent manner 
so that r(x,  t,~) = r(x) except for sets of  probability zero, where rlx,  L)  represents the rule 
that would be obtained if the size of  the training set were increased to infinity. The sample rule 
r(x, t) may be constructed in a nonparametric framework from t using, say. the kernel method 
to estimate the class conditional densities f~(x). A survey of this method may be found in the 
recent book on the subject by Hand[14]. Alternatively. a known parametric family may be 
adopted for the fg(x) or, as with logistic regression, for the posterior probabilities. The allocation 
rule then has the parametric form r(x, O), where O denotes the vector of unknown parameters 
associated with the parametric formulation. A popular way of proceeding, referred to as the 
estimative approach, is to take the sample rule to be r(x, I)), where 0 is the value of some 
consistent and asymptotically efficient estimator of O based on t, for example, the maximum- 
likelihood (ML) estimate. An example of  this approach in the context of  logistic regression 
may be found in McLachlan[26], who considered the bias correction of the ML estimate before 
its use in forming the estimated posterior probabilities and, hence, the sample rule. Aitchison 
et  al .  [ 1] have recommended a Bayesian approach to the estimation of 0. whereby the f~(x) are 
replaced by their predictive estimates constructed by adopting some prior distribution for O. 

The estimative approach for model (3) leads to the sample rule rtx.  t). defined to be 1 or 
2 according to whether 

( l } _ £(x)= x - ~ ( x , + x : )  s-'~x,-x~)' + (7) 

is greater or less than zero, where 

nf 

x, = ~ ,  x, , /n, ,  
j = l  

= - Xi) (X/i  ,l/,ni 1). 
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and 

S = {(nt - l)St + (n: - l)S:}/{n - 2). 

Apart from the cutoffpoint  h, which is often taken to be zero, L(x) is Fisher's linear discriminant 
function as modified by Anderson[2]. In this example, it can be seen that r(x, t) is invariant 
under a permutation of  the x~j for each i: that is, symmetrically defined in z~ . . . . .  z,. This 
will generally be the case in practice and this assumption is adopted here. 

2. TYPES OF ERROR RATES 

We consider g = 2 classes in defining the error rates associated with the sample rule 
r(x, t), although the definitions extend in an obvious manner to g > 2. The error rates of  
r(x, t) averaged over  the distribution of  X within a given class are denoted by ec~(fi, t), where 

ec,(f i ,  t) = pr{r (X, t )  = 3 - i t X ~ C , ; t }  (i = 1 ,2)  

is the probability that a randomly chosen member of  C~ is misallocated. As the notation implies, 
the errors ec~(fi, t) are conditional on the training data t, and the rate with respect to the ith 
class depends on the density of X in that class. They are referred to in the literature as the 
conditional or actual error rates. Their expectations over the sampling distribution of the training 
data t give the unconditional or expected error rates, 

eu~(f) = E{ecz(f, ,  T)} 

= p r{ r (X ,T)  =. 3 - i I X E C , }  (i = 1 ,2) ,  

where T is the random quantity with t as a realisation. The unconditional error with respect to 
the ith class depends on the density of  X, not only in that class but also in the other classes, 
and on ~ if the prior probabilities are used in the formulation of the rule (McLachlan[ 18]). 

The quantities 

eoi ( f )  = ec~(f~, t=) (i = 1, 2) 

are the errors associated with the desired rule r(x), since it is assumed that r(x, t~) is equivalent 
to r(x). We shall refer to the eoi( f )  as the optimal error rates, although r(x) may not be optimal 
in the sense of  being the Bayes rule; for instance, r(x) might be the minimax rule. 

The overall conditional error rate is given by 

ec ( f ,  t) = 'rr,ec~(f l, t) + "rr,.ec2(f,_, t) 

and, similarly, e u ( f )  and e o ( f )  denote the overall unconditional and optimal error rates, re- 
spectively. 

It can be seen that the conditional errors, as well as the unconditional and optimal rates, 
depend on the unknown densities fi(x), and therefore must be estimated. There is a vast literature 
on the problem of  estimating the error rates, and extensive bibliographies may be found in 
Hills[ 15], Lachenbruch[ 16], McLachlan[19] and Toussaint[32], among others. 

McLachlan[21] has investigated the relationship between the separate problems of esti- 
mating each of  the three types of  error rate (conditional, unconditional and optimal) associated 
with the sample linear discriminant function (7). For a given training set t, it is the conditional 
errors eci(fi ,  t) which are of  prime concern. Interest of  the optimal errors is limited in practice 
to the extent that they represent the errors of  the best obtainable version of the given rule. In 
the subsequent work we concentrate on the estimation of the conditional error rates on the basis 
of the training set t. 
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• 3. APPARENT ERROR RATE 

An obvious nonparametric estimator of the conditional error rate. ec,(f, t). is the apparent 
error rate, A,, of r(x. t) when it is applied to the training observations known to belong to C.  
That is. A~ is the proportion of the n~ observations from Ci misallocated by r(x. t), and so we 
can write Ai as 

A~ = ~ Q[i, r(x~j, t)]/n, (i = 1, 2). 

where, for any i and k, Q[i, k] = 0 for i = k and 1 for i ~ k. This method of estimation was 
first suggested by Smith[30] in connection with the sample quadratic discriminant function. It 
is well known that A~ gives too optimistic an estimate of the conditional error, ec,(fi, t), as it 
is based on the same data t from which r(x, t) was constructed. Therefore we focus attention 
now on the bias correction of the apparent error rate. Without loss of generality we consider 
the bias correction of A~. On letting W, = A, -ec,(f~. T), we have that the bias of A~ in 
estimating the conditional error rate, ecj(ft, t), is given by 

bias(Ai) = E(WI) 

= bx, 

say, where the dependence of b, on the densities fi(x) has been suppressed. 

4. BIAS C O R R E C T I O N  ( C R O S S - V A L I D A T I O N  AND THE J A C K K N I F E )  

Methods of bias correction of the apparent error rate that have been used include cross- 
validation, the Quenouille-Tukey jackknife and the recently proposed bootstrap of Efron[6]. 
An excellent account of these methods has been given by Efron[7], who has exhibited the close 
theoretical relationship between them. 

The cross-validation estimate of the conditional error of the sample rule, rfx, t), is 

A cv = ~ Q[I,  r(xlj, t~lj,)l/n~, 
1=I 

where ttlj) denotes t with the point (xlj, 1) deleted. Hence, before the sample rule is applied to 
xlj, it is deleted from the training set and the rule recalculated on the basis of t, t j); see Lachenbruch 
and Mickey[ 171. 

There has been confusion in the literature over the roles of cross-validation and the jackknife 
in correcting the apparent error rate for bias. This is understandable as both methods delete one 
or more observation at a time in forming the bias corrected estimates. According to Stone[31], 
"Gray and Schucany ([13], p. 125-136) appear to initiate the confusion in their description of 
Mosteller and Tukey's sophisticated, simultaneous juggling act with the two concepts." Consider 
the jackknifed version of the apparent error rate given by 

where 

A~ ° = Aj + (n - 1)(A~ - At(.)), 

AI(. ) = ~ Alfb)/nl 
/=t  

and Aa(,j) denotes the apparent error rate of r(x, t~lj,) when applied to the members of t(~, from 
CI; that is, 

AHj , = ~ Q[l,r(x[~.  t~lj,)]/(ni - 1). 
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This jackknifed form of A, is appropriate for the estimation of the optimal error eo,(f),  as in 
this context the bias of  A, is reduced to the second order with respect to the reciprocal of  the 
size of the training sample. But A~,, is frequently used or suggested as an estimate of  the 
conditional error eq(f~, t), as in Crask and Perreault[5]. However,  in estimating the conditional 
error ec~(ft, t), the bias of  A~,, is still of  the first order. It follows from Chap. 7 of  Efron[7] 
that the jackknifed version of A,, which reduces its bias as an estimator of  ec,(f, ,  t) to the 
second order, can be written as 

where 

A~' = A, + (n - I)(A~ - A,(.,), (8) 

A~ = 1 ~ i I O i l .  r(Xl~, t.j))]; 
Ill )=l ~'--t /'/I 

see, also, Efron and Gong[9]. Efron[7] noted that the last term on the right-hand side of  (8) 
can be rearranged to give 

A~¢ = A cv + A, - 1 ~  i I__ a [ l ,  r(xlk,  t, lj,)]. 
nl j= l  k'-~l nl 

demonstrating the close relationship between the jackknife and the cross-validation methods of 
bias correction of the apparent error rate in estimating the conditional error of  a sample rule. 
Also, he showed how the jackknife estimate of  bias (A, - A'~, in this instance) can be considered 
as a quadratic approximation to the nonparametric bootstrap estimate of  bias to be defined in 
the next section. The underlying assumption here that r(x, t) is symmetrically defined in 
zt . . . . .  z, has to be strengthened to r(x, t) depending on zt . . . . .  z, through a functional 
statistic in order to establish the above connection between the bootstrap, cross-validation and 
the jackknife. 

5. BIAS C O R R E C T I O N  (THE B O O T S T R A P )  

The "boots t rap , "  which is a computer-based methodology, was introduced by Efron[6] 
for assessing the variability in an estimate on the basis of  the data at hand. By resampling the 
original observations in a way so as to preserve the stochastic structure, pseudodata (bootstrap 
samples) are obtained on which the estimator of  interest can be assessed. 

We now consider the application of  the bootstrap in the present context of  correcting the 
apparent error rate of  a sample allocation rule for bias. The bias correction of A, in estimating 
the conditional error, ect(fl, t), may be implemented according to the bootstrap method as 
follows. 

Step 1. In the case of  mixture sampling, a new training set, 

t* = {z*  = ( x * ,  y * )  . . . . .  z*  = ( x * ,  y * ) } ,  

called the bootstrap sample, is generated according to f (z) ,  an estimate of  the density formed 
from the original training data t. That is, t" consists of  the observed values of  an independent 
and identically distributed (i.i.d.) random sample, Z* . . . . .  Z* ,  from f (z) .  As with !he original 
observations, we relabel x* . . . . .  x,* so that x*( j  = I . . . . .  n*) denote those x* observa- 
tions, n* in number, for which ~)* = i(i = 1 , . . . , g ; n *  + • " .  + n*~ = n). 

With separate sampling, the bootstrap training set is t* = {(x,*, i ) , j  = 
I . . . . .  ni; i = i . . . . .  g}, where the class label i is specified before sampling and the 
x* ( j  = 1 . . . . .  n,) are generated then according to an estimate of  the ith-class conditional 
density, jei(x), i = 1 . . . . .  g. That is, the x*( j  = I . . . . .  ni) are the observed values of  an 
i.i.d, sample, X* . . . . .  X*,, from j~i(x). 

Step 2. The rule, r(x, t*), is formed from the bootstrap training data t* in precisely the 
same manner as r(x, t) was from the original set t. 
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Step 3. The apparent error rate of r(x, t*) with respect to the first class, A*, is computed 
by noting the proportion of the members in t* belonging to Ct misallocated by r(x, t*). Also, 
the difference 

w* = A'~ - ec l ( f  t. t*) (9) 

is computed, where ect(ft, t*) is the error rate obtained by averaging over X with respect to 
the density estimate, ft(x); it is conditional on the bootstrap data t*. 

Step 4. Let W* be the random variable defined according to (9). Then its expectation, the 
bootstrap bias of the apparent error rate, can be approximated by averaging w* over M repeated 
independent realisation (say, M = 50 or 100) of bootstrap samples t*(m = 1 . . . . .  M). That 
is, 

E*(W*) = E*{A'~ - ec,([f,, T*)} 
I 

" ~  W ~ ,  

where 

M 

w* = ~ w*, /M.  (lO) 
m = l  

and where E* refers to expectation with respect to the bootstrap distribution of the training data 
T*, and w*, denotes the value of W* on the mth bootstrap realisation t*. The bootstrap estimate 
of the bias of At, b~, is taken then to be 

bib = w * ,  

and so the apparent error rate corrected for bias according to the bootstrap is given by 

Ai a = A, - b~ a. 

In Step 1 of the above algorithm, the nonparametric version of the bootstrap would under 
mixture sampling take f(z) to be fo(z), the empirical probability function with mass l /n  at each 
original data ~ in t  zj = (xj, yj) in t(j = I . . . . .  n). Similarly, under separate sampling, 
f~(x) would be f,0(x), the empirical probability function equal to I/n~ at x = x,j(.~ = ! . . . . .  
n3. Under either sampling scheme with the nonparametric bootstrap, the rate ect(f~, t*) in (9) 
is given by 

ect(~fl, t*) = ~ Q[I, r(x,~, t*)l/nt. 
i = 1  

The reader is referred to Efron ([7], p. 30) for ways of smoothing the empirical distribution 
for use in generating the bootstrap data. 

The bootstrap is a very powerful technique and it can be used to assess other sampling 
properties of the apparent error rate besides its bias. For instance, an estimate of the mean- 
squared error (MSE) of A~, in estimating the conditional error ec~(ft, t), is provided by 

M 

MSES(A,) ~ {A*. - ec,(f, ,  t,,)}-/M, (11) 
r a m |  

where the right-hand side of (10) is the Monte Carlo approximation to the bootstrap MSE of 
ect(f~, T*). Note that the bootstrap sample variance of W*, 

m = I 
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suggests a lower bound for the MSE ofA~ s in estimating ect(f[, t). For, the true variance of 
W~ can be viewed as the MSE of the 'qdeal constant" estimator 

A~ c = AI - bl, 

and it would be expected that A~ would have MSE at least as large as A~C; see Efron and Gong 
([9], p. 48). 

The bootstrap can be used also to assess the performance of the apparent error rate in its 
estimation of the other types of error rates. Replacing ect(fj, t*) by eoj(.f) in (10) and (11) 
yield the bootstrap estimates of the bias and MSE, respectively, of At in estimating the optimal 
error eot(f). For the nonparametric version of the bootstrap, where each f~(x) is the empirical 
probability function, eo~(.f) = At at least if r(x, t) depends on t through f0(z). Similarly, an 
assessment of the MSE of A~, in estimating the unconditional error eu~(f), is obtained by 
replacing ec~(~ft, t*) with 

M 

ec,(~f,, t*)/M 
r a i l  

(12) 

in (11): the Monte Carlo approximation to the bootstrap expectation of ecx(f~, T*); (12) is the 
bootstrap estimate of the unconditional error, euj(f). 

For the rule based on the sample linear discriminant function (7) with ~. = 0, Mc- 
Lachlan[24] showed that under (3) the bias of the apparent error rate in estimating the conditional 
error is equal (up to terms of the second order) to 

b, ~ 13,(,5), 

where 

and where 

,5 = {(itl - It_,)E-I(itl - It.,)'}"-' 

is the Mahalanobis distance between Cj and C_,, (5 denotes the standard normal density function, 
and N = n~ + n., - 2. If A is now replaced by its sample counterpart, 

D = {(xt - x:)S- '(x. - x.,)'}t'-', 

then [3t(D) is the estimate of the bias corresponding to the parametric delta method. It also can 
be viewed as the bootstrap bias of A*, expanded up to terms of the second order, for the fully 
parametric version of the bootstrap where, in step 1, the generation of the bootstrap data is 
undertaken with fi(x) taken to be the multivariate normal density with mean x~ and covariance 
matrix S(i = 1, 2). McLachlan[27] carried out some simulations in which he compared the 
MSE of bt n with that of 13~(D) in estimating the true bias, bf, to demonstrate the high efficiency 
of the nonparametric version of the bootstrap estimator of the bias of the apparent error rate. 

6. VARIANTS OF THE BOOTSTRAP 

In a recent study. Efron[8] reported some simulation results on the performance of the 
bootstrap relative to other methods such as cross-validation in their bias correction of the overall 
apparent error rate, 

A = ~ n~Ai/n, 
i=1 
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in the context of estimating the overall conditional error rate, e c ( f ,  t), of the sample rule based 
on (7) with h = 0, applied under the corresponding normal model (3). It was concluded that 
cross-validation is nearly unbiased, but that it has often an unacceptably high variability if n is 
small. The bootstrap estimate of A,  A s, has much less variability, but unfortunately b s, the 
bootstrap estimate of the bias of A, is negatively correlated with W, the actual difference between 
A and e c ( f ,  t). The MSE of A s can be expresssed as 

MSE(A e) = var(b s) + var(W) + {E(b e) - b}-' - 2 cov(W, bS). (13) 

It can be seen that a negative value for the term coy(W, b a) in (13) inflates the MSE of A a, 
although it is still, in general, less than that of the cross-validated estimator. Also, the bootstrap 
estimate of the bias tends to underestimate the magnitude of it. Efron[8] therefore has developed 
more sophisticated variants of his ordinary bootstrap, including the randomized and double 
bootstraps, and the "'0.632 estimator" to be discussed in the next section. These variants were 
found to clearly outperform cross-validation and the bootstrap. 

The double bootstrap corrects the bias of the ordinary bootstrap apparently without in- 
creasing its MSE. The bias corrected estimate of A so obtained for the overall conditional error 
is 

A °8 = A - biasa(Ae), 

where biasn(A e) is the bootstrap estimate of the bias of the ordinary bootstrap estimator A e. 
Although it appears that the computation of the estimate, biase(Ae),  requires two layers of 
bootstrapping with a total of M-" bootstrap replications, Efron[8] has shown that, by using a 
Monte Carlo "swindle," it can be implemented with just 2M replications. 

The randomized bootstrap in the case of mixture sampling generates the bootstrap data 
from the probability function defined over the 2n points, z, = (xi, ~3) and zj = (xj, 3 - ','j) 
f o r j  = 1 . . . . .  n, with mass v ( z j ) /n  and v(zj)/n at z, and zj, respectively, and v(zj) + 
v(zj) = 1. Efron[8] studied the use of 

v(zj) = 0.9, v(z i) = 0.1 (14) 

and a more complicated version, equivalent here to taking 

v(Z,)  = ~, . (xj) ,  v (z j )  = I - ~ , ( x j ) ,  (15)  

with the restriction that v(zj), and hence v(zj), lie in the range 0.1-0.9. It can be seen that the 
randomized bootstrap is an attempt to smooth the empirical probability distribution in the y 
direction. The use of either (14) or (15) in step 1 of the bootstrap algorithm was found to 
substantially lower the MSE of the ordinary bootstrap estimator of the overall conditional error, 
with (14) giving almost as much improvement as the more complicated version (15). 

7. THE 0.632 ESTIMATOR 

We let A °632 be the estimator of the overall conditional error rate, termed the "0.632 
estimator" by Efron[8], who reported that it was clearly best in his simulation experiments. It 
is a weighted sum of the apparent error rate and the quantity ~, so that 

where 

A ~-" = 0.368A + 0.632e, 

• = ~ ~3,,,iQ[y i, r(x,. t;~,)l/Mi 
m = ]  i=1  
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tt 

Ml = ~ 8,.j; 
m = l  j = l  

~,,) = 1, if xj is not present in the bootstrap training set t*. and zero otherwise. The quantity 
is the bootstrap error rate at an original data point not in the training set. 

Efron[8] developed the 0.632 estimator by consideration of the distribution of the distance 
~i between the point at which the rule is applied and the nearest point in the training set. It was 
demonstrated that the distribution of ~ is quite different in the bootstrap context than in the 
actual situation. The points which contribute to e have 8 > 0 and, as a consequence of the 
resampling scheme of the nonparametric bootstrap, are about 1/0.632 too far away from the 
training set than in the actual situation. This led Efron[8] to propose 

b °'6n = 0.632(A - ~) 

as an estimator of  the bias, b, of A in estimating the overall conditional error rate e c ( f ,  t). The 
bias corrected version of A is therefore 

A 0"632 - -  A - b °'632 

= 0.368A + 0.632~. 

Efron[8] showed that A °63-" is almost the same as the estimator, 

0.368A + 0.632A ncv, 

w h e r e  A Hcv is the estimate of the overall error rate after a cross-validation that leaves out half 
of the observations at a time. Estimators of this type have been considered by McLachlan[25] 
in the context of  choosing the weight "r, so that 

AT = (1 - "OAt + "rA~ cv 

has zero first-order bias as an estimator of the conditional error, ec~(f~, t), of the rule based 
on the sample linear discriminant function (7) with k = 0; A ccv denotes the estimate after 
cross-validation is performed removing n / G  observations at a time. Under the normal model 
(3), the desired value of r, %, was computed as a function of G, A, p and the relative size of 
nl and n.,. For G -- 2, so that A ccv = A "cv, McLachlan[25] showed under separate sampling 
that To ranged from 0.6 to 0.7 for the combinations of the other parameters (A = !, 2; p = 4, 
8, 16; n~/n,_ = 1/3, 1, 3). Hence, under (3), the estimator AT" is about the same as Efron's 
0.632 estimator. The latter therefore should have almost zero first-order bias under (3), at least 
for the sample rule based on (7). Efron ([8], Table 4) did calculate the first-order bias of 
A °-63-' for this rule in the various cases of (3) under which it was applied in his simulations, and 
it was small. With one exception, the asymptotic bias was in a downward direction, and in the 
simulations A °63' exhibited a moderate downward bias. The reason for the remarkably low MSE 
of A °6j-" in the simulations was the lack of negative correlation between b °'632 and W = A - 

e c ( f ,  t). 

8. SMOOTHED MODIFICATION OF THE APPARENT ERROR 

Glick[12l has considered ways of smoothing the apparent error rate in order to reduce its 
variance in estimating the conditional error rate. The smoothed version of the overall apparent 
error rate, A, is 

ii 

A s = ~ K(xj)/n: 
/ = 1  
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obtained by replacing the zero--one function Q[y/, r(xj, t)] in the definition of A by a smoothing 
function, K(xj), which may take on values between zero and one. It can be seen that a modest 
perturbation of an xj can switch the indicator function Q from zero to one or vice versa, but 
will cause only small perturbation for a smooth function. 

It is well known (Fukunaga and Kessell[10l) that the rate, 

• min{~,(xj), ~:(xj)}/n, (16) 
j= l  

provides an unbiased estimator of the overall error rate, eo(f),  of the Bayes rule, with smaller 
variance than A. An estimator of the optimal error rate with respect to the ith class can be 
formed in a similar fashion (Schwemer and Dunn[29]). The estimated error rate (16) is sometimes 
referred to as a posterior probability estimator due to its formation in terms of the posterior 
probabilities of each xj in the training data. It suggests that a possible choice of the smoothing 
function in the formation of A s is the minimum of the estimated posterior probabilities, ~t(xj) 
and ~.,(xj), leading to 

Aee = ~ min{~,(xj), ~,_(xj)}/n 
j~ l  

as a smoothed counting estimator of the overall conditional error rate, ec(f,  t). The performance 
of A pe depends on the reliability of the estimates of the posterior probabilities, and so its 
applicability at least in a nonparametric framework may be limited. Of course Apt, gives a biased 
assessment of ec(f,  t), but it can be corrected for bias by using the bootstrap. The asymptotic 
bias ofA  ee in estimating ec(f ,  t) has been studied by Ganesalingam and McLachlan[12]. 

Since the formation of the estimator Aee does not require the origin of each xj in the training 
set, it has been found to be helpful in a cluster analysis context where there are no training 
data of known origin. Basford and McLachlan[4] have shown how an estimator of the same 
form as Aee, after correction for bias according to a parametric version of the bootstrap, can 
provide a useful assessment of the performance of a clustering rule formed by adopting a mixture 
model for the training data of unknown origin. 

9. P A R A M E T R I C  E S T I M A T O R S  

With any application of a sample rule its apparent error rate with respect to each class and 
overall would be calculated in the first instance to provide an initial guide to the performance 
of the rule based on the training data at hand. In the previous sections we have considered how 
the apparent error rate can be modified to give an improved estimate of the conditional error 
rate, concentrating on the available nonparametric methods of bias correction. 

In the case of a parametric sample rule, we may wish to adopt a parametric approach to 
the estimation of the conditional error rates, eci(fi, t). 

The parametric bias correction term of the apparent error rate A~ under the normal model 
(3) was given in Section 4 in the course of commenting on the efficiency of the nonparametric 
bootstrap correction. Concerning the parametric estimation of the conditional errors themselves, 
a number of estimators have been proposed and studied over the years: see, for example, 
Lachenbruch and Mickey[17l and McLachlan[191. A common approach is to use "plug-in" 
estimators of the form eoi(.f) or eu,(f), that is. the corresponding optimal or unconditional error 
with the class conditional densities f~(x) or their unknown parameters replaced by appropriate 
estimates. Unfortunately, for most problems, eu~(f) is unable to be computed exactly, but in 
some instances the parametric delta method can be used to derive an asymptotic expansion. For 
example, under (3), the unconditional error eu~(A) of the rule based on the sample linear 
discriminant function (7) with h fixed depends on the unknown Mahalanobis distance A, and 
Okamoto[28] has derived its asymptotic expansion, euai(A), up to terms of the third order with 
respect to the reciprocals of the sample sizes n, and N. Lachenbruch and Mickey[17] proposed 
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using euai(A) as an estimator of  eci(~f~, t), where A = D or DS, and 
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DS = {(N - p - I ) /N} ' :D.  

The bias of eua~(A) is of the second order, and in the case of ~. = 0, McLachlan[20,22] has 
shown that this bias can be reduced to the third order only by using 

(,) (l) 
P~ = 4) - ~ D  + 4) - ~ O  [ (p - l ) / (Dn, )  + D{4(4p - 1) - D- ' } / (32N)  

+ (p  - l ) ( p  - 2)/(4Dn~) + (p - I ) { - D  -~ + 8(2p + I )D  + (16/D)} / (64n~N)] ,  

where q~ denotes the standard normal distribution function. 
For the more general model of classes having normal densities with unequal covariance 

matrices, asymptotic expansions of the unconditional error rates are available only in special 
cases; for example, with proportional covariance matrices (McLachlan[23]). However, this 
model can be handled by using the boot_strap in parametric form, where f~(x) is taken to be the 
multivariate normal density with mean x~ and covariance matrix S,(i = 1, 2) in the generation 
of the bootstrap training data. The bootstrap expectation of ec~(f,, T*) can be approximated by 
the Monte Carlo approximation 

M 

~'~ eci(f~, t*) /M, 
t n ~  I 

which can be used as an estimate of eci(f, t). 
Note that caution should be exercised with the use of parametric estimators of the error 

rates as they may not be reliable under departures from the parametric model adopted, even 
though the sample rule itself may be robust. For example, the rule based on the sample linear 
discriminant function is known to be fairly robust, but that the normality based estimators of 
its error rates are not. 
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