
Ain Shams Engineering Journal (2016) xxx, xxx–xxx
Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com
CIVIL ENGINEERING
Data-driven modeling for water quality prediction

case study: The drains system associated with

Manzala Lake, Egypt
* Corresponding author.
E-mail addresses: mosaad.khadr@f-eng.tanta.edu.eg (M. Khadr),

m.elshemy@f-eng.tanta.edu.eg (M. Elshemy).

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.asej.2016.08.004
2090-4479 � 2016 Ain Shams University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for water quality prediction case study: The drains system associated with
Lake, Egypt, Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.08.004
Mosaad Khadr *, Mohamed Elshemy
Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Tanta University, 31734 Tanta, Egypt
Received 10 October 2015; revised 25 June 2016; accepted 11 August 2016
KEYWORDS

Data-driven modeling;

Water quality parameters;

Manzala Lake;

Egypt
Abstract Manzala Lake, the largest of the Egyptian lakes, is affected qualitatively and quantita-

tively by drainage water that flows into the lake. This study investigated the capabilities of adaptive

neuro-fuzzy inference system (ANFIS) to predict water quality parameters of drains associated with

Manzala Lake, with emphasis on total phosphorus and total nitrogen. A combination of data sets

was considered as input data for ANFIS models, including discharge, pH, total suspended solids,

electrical conductivity, total dissolved solids, water temperature, dissolved oxygen and turbidity.

The models were calibrated and validated against the measured data for the period from year

2001 to 2010. The performance of the models was measured using various prediction skill criteria.

Results show that ANFIS models are capable of simulating the water quality parameters and pro-

vided reliable prediction of total phosphorus and total nitrogen, thus suggesting the suitability of

the proposed model as a tool for onsite water quality evaluation.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The quality and quantity of water resource worldwide is a sub-

ject of ongoing concern [1]. Assessment and management of
long-term water quality of water resources is also a challenging
problem [2–4]. The determination of the water quality refers to
the classification by considering the physical, chemical and
biological characteristics according to the water usage range

[5]. In water quality modeling, the mathematical modeling usu-
ally involves several parameters that cannot be measured or
involve considerable expense [6,7]. A deterministic model

may also have inevitably errors originated from model struc-
tures or other causes. Water quality models are still therefore
simplified approximations of reality, and they inevitably con-
tain certain kinds of errors that result in uncertainty in the

model results [8]. Therefore the researchers tend to rely on con-
ceptual or empirical models in practical applications to reduce
this uncertainty. A new modeling paradigm such as data-

driven modeling or data mining has recently been a
considerable growth in the development and application of
Manzala

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mosaad.khadr@f-eng.tanta.edu.eg
mailto:    m.elshemy@f-eng.tanta.edu.eg
http://dx.doi.org/10.1016/j.asej.2016.08.004
http://dx.doi.org/10.1016/j.asej.2016.08.004
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2016.08.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.asej.2016.08.004


2 M. Khadr, M. Elshemy
computational intelligence and computer tools with respect to
water-related problems [9,10].

These techniques are an approach to estimate the water

quality parameters based on the field data sets and to map
the relationship between the water quality parameter accord-
ing to the temporal and spatial variation [11,12]. Data-driven

models refer to a wide range of models that simulate a system
by the data experienced in the real life of that system. Data-
driven modeling (DDM) is based on analyzing the data char-

acterizing the system under study; in particular, a model can
be defined on the basis of finding connections between the sys-
tem state variables (input, internal and output variables) with-
out explicit knowledge of the physical behavior [13]. DDM

includes different categories generally divided into statistical
and artificial-intelligent models which include neural networks,
fuzzy systems and evolutionary computing as well as other areas

within artificial intelligence and machine learning [14–17].
The use of ANNs and fuzzy logic has many successful

applications in hydrology; in modeling rainfall-runoff pro-

cesses [18–21]; replicating the behavior of hydrodynamic/
hydrological models of a river basin where ANNs are used
to provide optimal control of a reservoir [22]; modeling

stage-discharge relationships [23]; simulation of multipurpose
reservoir operation [24–26]; and deriving a rule base for reser-
voir operation from observed data. The development and cur-
rent progress in the integration of various artificial intelligence

techniques (knowledge-based system, genetic algorithm, artifi-
cial neural network, and fuzzy inference system) in water qual-
ity modeling, sediment transportation and DO concentration

have been studied by many researchers [27–29]. Egyptian
northern lakes have been regarded highly as a fishery; there-
fore, monitoring of water quality of the drainage water input

to the northern lakes is a major task for maintaining their ecol-
ogy. In this study, adaptive neuro-fuzzy inference system
(ANFIS) models were developed for prediction and simulation

of water quality parameters in drains systems associated with
Manzala Lake, the most important among all Egyptian Lakes,
with emphasis on total phosphorus (TP) and total nitrogen
(TN). TN and TP are considered as the most essential param-

eters to assess and control the water quality and trophic status
of water bodies. In order to measure these two parameters,
laboratory examinations should be done using water samples,

which is costly and time consuming process. To the best of our
knowledge, the issue on predicting of water quality in the study
area using ANFIS model so far has not been addressed. It is

hoped that the proposed approach and our findings obtained
in this study are useful and valuable to assist in reporting the
status of water quality in the study area.

2. Method and materials

2.1. Study area and water quality data

Manzala Lake, which is located at the northern edge of the
Nile Delta, is the largest of the Egyptian lakes along the

Mediterranean coast (Fig. 1) [30,31]. The lake is bordered at
the north by a sandy margin which separates the lake from
the Mediterranean Sea except at three outlets where exchange

of water occurs. These outlets are El-Gamil, El-Boughdady,
and the new El-Gamil [31]. The eastern side of the lake is con-
nected with the Suez Canal through El-Raswa Canal, a few
Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for
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kilometers to the south of Port Said City. To the west, the
Damietta branch of the Nile River borders the lake and the
southern side of the lake is bordered by cultivated land [30].

The Lake is exposed to high inputs of pollutants from indus-
trial, domestic, and agricultural sources. The southern region
of the lake is characterized by lower values of salinities and

high concentration of nutrients and heavy metals as a result
of receiving high volumes of low salinity drainage water
through different drains. The Lake is enriched by drainage

water transplanted by the drains which are connected to the
Lake at the South and South Eastern Borders. Six major
drains contribute by a flow rate of about 4170 million cubic
meters annually [32]. The main two drains flow into Manzala

Lake, which were considered in this study, are Bahr El-
Baker Drain system and Bahr Hadous Drain system. Bahr
El Baqar drain, which is heavily polluted and anoxic over its

entire length, transports untreated and poorly treated wastew-
ater to Lake Manzala over a distance of 170 km. Water quality
data, that were used to develop the ANFIS models, are mea-

sured values at outfall measuring stations and have a record
length of 10 years covering between 2001 and 2010. The data
set includes discharge (Q), pH, total suspended solids (TSS),

electrical conductivity (EC), total dissolved solids (TDS),
water temperature, dissolved oxygen (DO) and turbidity
(TU). The output of the model is two water quality parame-
ters; total phosphorus (TP) and total nitrogen (TN). Both

parameters were chosen to be the model objective output
due to their main impacts on water quality status and control.
Table 1 summarizes the statistical properties of input and out-

put data used in the simulations.

2.2. Adaptive neuro-fuzzy inference system – ANFIS

An adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy
inference system formulated as a feed-forward neural network.
Hence, the advantages of a fuzzy system can be combined with

a learning algorithm [33,34]. ANFIS was introduced as an
effective tool to represent simple and highly complex functions
more powerfully than conventional statistical methods. Neuro-
fuzzy modeling is a technique for describing the behavior of a

system using fuzzy inference rules within a Neural Network
(NN) structure. Using a given input/output data set, adaptive
neuro-fuzzy inference system (ANFIS) constructs a FIS whose

member ship function parameters are tuned using a back prop-
agation algorithm [34]. So, the FIS could learn from the train-
ing data. In this study, the ANFIS models were developed in

the MATLAB environment.
ANFIS was used to extract the relation of the total phos-

phorus (TP), total nitrogen (TN), discharge (Q), pH, total sus-
pended solids (TSS), electrical conductivity (EC), total

dissolved solids (TDS), water temperature, dissolved oxygen
(DO) and turbidity (TU). The consequent part is total phos-
phorus (TP) or total nitrogen (TN). The structure of the

ANFIS model consists of a Sugeno type fuzzy system with gen-
eralized bell input membership functions, which provided the
best results in this study, and a linear output membership func-

tion. The Sugeno model makes use of ‘‘if then” rules to pro-
duce an output for each rule. It is similar to the Mamdani
method in many respects. The first two parts of the fuzzy infer-

ence process, fuzzifying the inputs and applying the fuzzy
operator, are exactly the same. The main difference between
water quality prediction case study: The drains system associated with Manzala
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Figure 1 Layout of El-Manzala Lake and main canals and drainage system associated with it.

Table 1 Statistical measures of water quality parameters at the outlet of Bahr El Baqar and Bahr Hadous drains.

Bahr El-Baqar drain Bahr Hadous drain

Min. Max. Mean Std. Min. Max. Mean Std.

Discharge (m3/s) 42 59.9 50.38 4.93 2.34 11.65 5.44 2.77

PH 6.6 8.45 7.48 0.28 6.82 8.41 7.52 0.27

TSS (lg/L) 0 197 77.26 42.09 0.00 499.00 38.54 51.81

EC (lg/L) 1.15 6.57 4.36 0.94 0.50 2.28 1.41 0.27

TDS (lg/L) 291 4468 2779.1 645.21 342.0 1420.00 967.11 183.36

Temperature (�C) 13 31 23.05 5.31 11.00 32.00 21.90 5.35

DO (lg/L) 0.36 5.6 2.27 1.08 0.08 7.80 1.58 1.52

TU 39 200 108.73 44.7 14.00 73.00 39.59 15.41

TP (lg/L) 0.14 1.87 0.92 0.3 0.05 2.08 0.79 0.36

TN (lg/L) 0.7 55.6 15.41 13.44 0.31 80.77 10.29 13.17

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1w 1w
11 fw

X

F

Y 2w 2w 22 fw

A1

A2

B1

B2

Figure 2 An ANFIS architecture for a two rule Sugeno system.
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Mamdani and Sugeno is that in the Sugeno type rule outputs
consist of the linear combination of the input variables plus
a constant term; the final output is the weighted average of

each rule’s output. Adaptive neuro-fuzzy inference system
mimics the operation of a Takagi–Sugeno–Kang (TSK) fuzzy
system. Fig. 2 presents the typical architecture of ANFIS with

a multilayer feed-forward network, which is linked with a
fuzzy system for two inputs (x and y). Fuzzy inference systems
are composed of five functional blocks and the ANFIS model

contains the following [35]:
Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for w
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1. A rule base containing a number of if-then rules.

2. A database which defines the membership function.
3. A decision making interface that operates the given rules.
4. A fuzzification interface that converts the crisp inputs into

‘‘degree of match” with the linguistic values such as high or

low.
5. A defuzzification interface that reconverts to a crisp output.

The rule base in the Sugeno model has the following form:

If x is A1 and y is B1 then f1 ¼ p�1xþ q�1yþ r1 ð1Þ
ater quality prediction case study: The drains system associated with Manzala
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If x is A2 and y is B2 then f2 ¼ p�2xþ q�2yþ r2 ð2Þ
where x and y are predefined membership functions, Ai and Bi

are membership values, pi, qi, and ri are the consequent param-
eters that are updated in the forward pass in the learning algo-
rithm, and fi is the output within the fuzzy region specified by

the fuzzy rule.
Let the membership functions of fuzzy sets Ai and Bj, be lAi

and lBi
respectively. The five layers that integrate ANFIS are

as follows:
Let the output of the ith node in layer l is denoted as O1,i,

then,

Layer 1: Every node i in this layer is an adaptive node with

node function;
Q1;i ¼ lAi
ðxÞ for i ¼ 1; 2; or Q1;i ¼ lBi�2

ðyÞ
for i ¼ 3; 4 ð3Þ
where x (or y) is the input to the ith node and Ai (or Bi�2) is

linguistic labels.
Layer 2: This layer consists of the nodes labeled which mul-

tiply incoming signals and send the product out. Each node
output represents the firing strength of a rule;
O2;i ¼ wi ¼ lAi
ðxÞ lBi

ðyÞ for i ¼ 1; 2 ð4Þ
Layer 3: In this layer, the nodes labeled N act to scale the
firing strengths to provide normalized firing strengths;
O3i ¼ �wi ¼ wi

w1 þ w2

; i ¼ 1; 2 ð5Þ

Layer 4: The output of layer 4 is comprised of linear com-
bination of inputs multiplied by normalized firing strengths.
This layer’s nodes are adaptive with node functions;
O4i ¼ wi fi ¼ wi ðpi xþ qi yþ riÞ ð6Þ
where, wi is the output of layer 3, and {pi, qi, ri} are the param-

eter set. Parameters of this layer are referred to as consequent
parameters.

Layer 5: This layer consists of a single node and computes
the final output as the summation of all incoming signals;
O5i ¼
X
i¼1

�wifi ¼
P

i¼1wifiP
i¼1wi

ð7Þ

Layers represented by squares are adaptive and their values
are adjusted when carrying out the system training. Layers rep-

resented by circles remain invariable before, during and after
the training [36]. Fig. 3 illustrates the network used in this
paper and consists of eight inputs, and one output membership

function (TP or TN).

2.3. Performance measures

Several measures of goodness of fit were used to evaluate the
prediction performance of all the aforementioned ANFIS
models. The measures that were used include Mean Absolute

Deviations (MAD), the coefficient of determination (R2), Root
Mean Square Error (RMSE), correlation coefficient (Cr) and
Nash–Sutcliffe coefficient (E). To investigate whether there is
a significant difference between the mean from the observed

and predicted data, the two-sample t-test for the means was
Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for
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employed. The MAD measures the average magnitude of the
errors in a set of prediction, without considering their direc-
tion. It measures accuracy for continuous variables. Expressed

MAD is calculated as follows:

MAD ¼
Pn

i¼1jWQoi
�WQfij

n
ð8Þ

where WQo is the observed value, WQf is the predicted value

and n is the number of data points.
In statistics, the coefficient of determination, R2 is used in

the context of statistical models whose main purpose is the pre-
diction of future outcomes on the basis of other related infor-

mation. The absolute fraction of variance, R2, is calculated as
follows:

R2 ¼ 1�
Pn

i¼1ðWQoi �WQfiÞ2Pn
i¼1ðWQoiÞ2

ð9Þ

with the variables already having been defined. The RMSE is
the square root of the variance of the residuals. It indicates
the absolute fit of the model to the data–how close the

observed data points are to the model’s predicted values.
Whereas R-squared is a relative measure of fit, RMSE is an
absolute measure of fit and lower values of RMSE indicate
better fit. RMSE is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðWQoi
�WQfiÞ2

n

s
ð10Þ

The correlation coefficient is a concept from statistics, and
it is a measure of how well trends in the predicted values follow

trends in past actual values (historical releases). The correla-
tion coefficient is calculated as follows:

Cr ¼
Pn

i¼1WQoi
WQfi �

ð
P

WQoi
ÞðWQfiÞ

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1WQ2

oi
�

Pn

i¼1
WQoið Þ2
n

� � Pn
i¼1WQ2

fi �
Pn

i¼1
WQfið Þ2
n

� �� �s

ð11Þ
The efficiency E proposed by Nash and Sutcliffe [37] is

defined as one minus the sum of the absolute squared differ-
ences between the predicted and observed values normalized

by the variance of the observed values during the period under
investigation. It is calculated as follows:

E ¼ 1�
Pn

i¼1ðWQoi
�WQfiÞ2Pn

i¼1ðWQoi
�WQoÞ2

" #
ð12Þ

where WQo is the average of the considered parameter.
3. Results and discussion

The adaptive neuro-fuzzy inference system (ANFIS) was used
to derive and to develop models for prediction of water quality

parameters in Bahr El-Baker Drain system and Bahr Hadous
Drain system. To simulate and predict the behavior of water
quality parameters in the two drains systems, a time series of

the ten previously noted parameters in a 10-year (120-
month) period was used. For ANFIS models construction,
monthly data set has been randomly partitioned into two parts

for the training and testing processes by considering 70% and
30% respectively, which are common divisional percentages in
water quality prediction case study: The drains system associated with Manzala
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Figure 3 An ANFIS architecture for TP and TN prediction.

Table 2 Performance of particular ANFIS models according to the RMSE, with respect to the selection of input–output membership

functions.

Bahr El-Baqar drain Bahr Hadous drain

gaussmf dsigmf trapmf gbellmf trimf gaussmf dsigmf trapmf gbellmf trimf

Training TP 0.073 0.092 0.068 0.029 0.061 0.151 0.182 0.142 0.102 0.132

TN 1.352 1.295 1.086 0.756 0.954 0.092 0.087 0.093 0.018 0.076

Testing TP 0.084 0.094 0.073 0.023 0.062 0.334 0.297 0.161 0.122 0.143

TN 1.272 1.383 1.317 1.109 1.253 0.705 0.833 0.917 0.478 0.624

ANFIS Training from i=1: i=t

Selection of desired output (TP or TN)

Load historical data (TP, TN, Q, pH, TSS, EC, TDS, temperature, DO
and FTU) from i=1: i=N

Check data and filling missing values

Generate Fuzzy Inference System (FIS) from i=1: i=t

Optimization of FIS Parameters

ANFIS validation from i=t+1: i=N

Calculation of Output

Model performance measurement

Figure 4 Flowchart of the water quality parameters simulation

using ANFIS.
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data-driven models. Accordingly, data set was divided into

used 7 and 3-year periods, respectively, for the training and
testing data sets. Fuzzy inference system structure of a
Sugeno-type was then generated using subtractive clustering

and the separate sets of input and output data as input argu-
ments and this was applied to TP and TN as well. The aim
of this step was to determine the number of rules and antece-

dent membership functions and then used linear least squares
estimation to determine each rule’s consequent equations to
cover the feature space.

A hybrid learning algorithm was used to identify parame-

ters of Sugeno-type fuzzy inference systems by applying a com-
bination of the least-squares method and the back propagation
gradient descent method for training FIS membership function

parameters to emulate a given training data set. The network
was trained to obtain the nearest output to the target. In order
to find the best model, an optimization model was developed

to find the ANFIS parameters that give best performance.
The performance function that was used for feed-forward is
the root of mean square error between the network outputs

and the target output. More than 119 models were tested to
select the best model which fits data space with best perfor-
mance. According to the least RMSE from Table 2 it is very
obvious that the best ANFIS model, used for training and test-

ing, is the one using generalized bell-shaped membership func-
tions per each input and a linear output membership function.
Once the best working model was selected through ANFIS

training, the TP and TN predicted values would be worked
Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for w
Lake, Egypt, Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.08.004
out and compared with actual measured values to validate
and examine the reliability of the developed ANFIS model
as shown in Fig. 4.
ater quality prediction case study: The drains system associated with Manzala
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Figure 5 Observation and estimation of water quality parameters using ANFIS model in Bahr El-Baker Drain. (a) TP training period;

(b) TP testing period; (c) TN training period; (d) TN testing period.

6 M. Khadr, M. Elshemy
Figs. 5 and 6 present the monthly values of total phospho-

rus (TP) and total nitrogen (TN) estimated by ANFIS versus
the corresponding measured values for the training and the test
data set for Bahr El-Baker Drain system and Bahr Hadous
Drain system respectively. It is shown in Figs. 5 and 6 that

the two curves of observed and estimated data almost overlap
each other and the trend between the measured and estimated
Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for
Lake, Egypt, Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.08.004
values is similar except few records which are more deviated

from actual measured values.
The training, testing and validation results for both the

total phosphorus (TP) and total nitrogen (TN) prediction
models are summarized in Table 3. It is clearly seen from

Table 3 that the ANFIS performs satisfactory and the overall
prediction results are fairly good from the RMSE, MAD and
water quality prediction case study: The drains system associated with Manzala
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Figure 6 Observation and estimation of water quality parameters using ANFIS model in Bahr Hadous Drain. (a) TP training period; (b)

TP testing period; (c) TN training period; (d) TN testing period.

Table 3 Performance measures for comparison of observed and predicted water quality parameters.

Bahr El-Baqar drain Bahr Hadous drain

MAD R2 RMSE Cr E MAD R2 RMSE Cr E

Training TP 0.016 0.98 0.029 0.976 0.992 0.071 0.98 0.102 0.971 0.942

TN 0.457 0.99 0.756 0.945 0.983 0.009 0.97 0.018 0.981 0.932

Testing TP 0.015 0.94 0.023 0.901 0.994 0.036 0.97 0.122 0.802 0.953

TN 0.682 0.92 1.109 0.857 0.971 0.209 0.91 0.478 0.829 0.928

Data-driven modeling for water quality prediction case study 7
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R2 viewpoints. All values of RMSE shown in Table 3 are very
small compared to mean values of both TP and TN during
training and testing periods, which is an indicator for the high

efficiency of the data-driven model. Table 3 also indicates that
the RMSE, for all models, is always closer to or equal to the
MAD which indicates that all the errors are of the same mag-

nitude. A significant positive correlation was obtained between
the two groups of data for both TP and TN in case of Bahr
El-Baker Drain with values of 0.901 and 0.857 respectively;

however, in Bahr Hadous Drain Cr equals 0.802 and 0.929
respectively. The large values of R2 are indicative of a perfect
relationship between the observed and predicted values.

According to Eq. (12), the range of E lies between 1.0 (per-

fect fit) and �1; high value of E is indicative of a more effi-
cient data-driven model. Values of E in the range (�1, 0)
occur when the mean observed value is a better estimation

than the model prediction or simulation value, which indicates
unacceptable performance. Values of E shown in Table 3 are
greater than 0.9, which indicates that proposed models have

perfect fit for all of the quality parameters in both training
and testing data sets. The two-sample t-test failed to reject
the null hypothesis at the 5% significance level (h = 0) that

both predicted and measured data come from independent
random samples from normal distributions with equal means.
4. Conclusions

In this study, the capabilities of data-driven models to predict
water quality parameters were investigated. This study
adopted ANFIS models to achieve easier and faster water

quality parameter predictions with emphasis on total phospho-
rus (TP) and total nitrogen (TN) in drain systems associated
with Manzala Lake, the most important among all Egyptian

Lakes. Two main ANFIS models, for each drain system, were
constructed for both TP and TN. The performance of the
developed models was measured on a 10-year database of

ten water quality parameters. Comparison between predicted
and measured data, using several evaluation criteria, showed
the efficiency of the applied models and confirmed the accu-

racy of the developed ANFIS models. Validation statistics also
indicate that the correlation between predicted and actual mea-
sured values was fairly good. With reference to our findings,
we propose the developed models as a simple tool for predict-

ing water quality parameters and for onsite water quality
parameters evaluation.
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Neural network modeling of dissolved oxygen in the Gruza

reservoir, Serbia. Ecol Model 2010;221:1239–44.

[30] Ali Mohamed HH. Assessment of some water quality character-

istics and determination of some heavy metals in Lake Manzala,

Egypt. J Aquat Biol Fish 2008;12(2):133–54.

[31] Abdel Mola Hesham R, Abd El – Rashid Mohamed. Effect of

drains on the distribution of zooplankton at the southeastern part

of Lake Manzala, Egypt. J Aquat Biol Fish 2012;16:57–68, ISSN

1110–1131.

[32] Laila Shakweer. Ecological and fisheries development of lake

Manzala, Egypt. Egypt J Aquat Res 2005;31(1).

[33] Zadeh LA. Outline of a new approach to analysis of complex

systems and decision processes. IEEE Trans Syst Man Cybernet-

ics, Smc 1973;3(1):28–44.

[34] Labani MM, Salahshoor K. Estimation of NMR log parameters

from conventional well log data using a committee machine with

intelligent systems: a case study from the Iranian part of the South

Pars gas field, Persian Gulf Basin. J Petrol Sci Eng

2010;72:175–85.

[35] Venugopal C, Devi SP, Rao KS. Predicting ERP user satisfaction-

an adaptive neuro fuzzy inference system (ANFIS). Approach

Intell Inf Manage 2010;2:422–30.

[36] Kablan A. Adaptive neuro-fuzzy inference system for financial

trading using intraday seasonality observation model. World

Acad Sci, Eng Technol 2009;58:479–88.
Please cite this article in press as: Khadr M, Elshemy M, Data-driven modeling for w
Lake, Egypt, Ain Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2016.08.004
[37] Nash JE, Sutcliffe JV. River flow forecasting through conceptual

models part 1 - A discussion of principles. J Hydrol 1970;10

(3):282–90.

Mosaad Khadr is an Assistant Professor in

Irrigation and Hydraulics Engineering

Department, Faculty of Engineering, Tanta

University, Egypt. In 1997, he did B.Sc. in

Civil Eng. (Structural Engineering), and in

2002, M.Sc. in Civil Engineering, Irrigation

and Hydraulic Engineering, Faculty of Engi-

neering, Tanta University, Egypt. In 2011, he

did Ph.D. in Water Resources Management,

University of Wuppertal, Germany.
Mohamed Elshemy is an Assistant Professor in

Irrigation and Hydraulics Engineering

Department, Faculty of Engineering, Tanta

University, Egypt. In 1997, he did B.Sc. in

Civil Eng. (Structural Engineering), and in

2002, M.Sc. in Civil Engineering, Irrigation

and Hydraulic Engineering, Faculty of Engi-

neering, Tanta University, Egypt. In 2010, he

did Ph.D. in Civil Engineering (Environmen-

tal Engineering), University of Braunschweig,

Germany.
ater quality prediction case study: The drains system associated with Manzala

http://refhub.elsevier.com/S2090-4479(16)30114-9/h0130
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0130
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0135
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0135
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0140
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0140
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0140
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0145
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0145
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0145
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0150
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0150
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0150
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0155
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0155
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0155
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0155
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0160
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0160
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0165
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0165
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0165
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0170
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0170
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0170
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0170
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0170
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0175
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0175
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0175
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0180
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0180
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0180
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0185
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0185
http://refhub.elsevier.com/S2090-4479(16)30114-9/h0185
http://dx.doi.org/10.1016/j.asej.2016.08.004

	Data-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt
	1 Introduction
	2 Method and materials
	2.1 Study area and water quality data
	2.2 Adaptive neuro-fuzzy inference system – ANFIS
	2.3 Performance measures

	3 Results and discussion
	4 Conclusions
	References


