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For protile.analysis of independent samples from several multivariate popula- 
tions, a nonparametric analog of the hypothesis of parallelism of population 
profiles is formulated. A class of asymptotically distribution-free statistics is 
offered to test this hypothesis. These are based on generalized U statistics and 
are in some sense modifications of statistics offered previously by one of the 
authors for testing the homogeneity hypothesis. Consistency of these statistics 
is established for suitable alternatives and also asymptotic power is investigated. 

1. INTRODUCTION 

When independent random samples are obtained from each of K p-variate 
populations, the parametric statistical inference assumes the model that the 
population distributions are p-variate normal with common unknown non- 
singular covariance matrices with possible differences only in locations. If  
pi’ = (pil’ ,..., ~1~)) denotes the mean of the ith population, then the hypothesis 
of homogeneity of populations is equivalent to 

There are several well-known (see, e.g., [l, 4, 6, 91) MANOVA tests available 
for this purpose. Although these are optimal in some sense (see, e.g., [5, p. 2981) 
no single test is uniquely optimal. 
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Furthermore, the hypothesis of parallelism of population profiles is stated as 

H (1) 
1 : Pi 

- &) = . . . = pi kd - pp) i = 2,..., k. U-2) 

HI may also be interpreted as the hypothesis of no interaction betweenp variables 
and k populations. If Ht is acceptable in the sense that the population profiles 
could be assumed to be parallel, then one might be interested in testing that the 
profiles are identical, given that they are parallel. In other words, one then wants 
to test Ha which is Ho/H, (to be read as H,, given HI). Classical parametric 
tests for HI and H, in profile analysis are discussed in statistical literature (see, 
e.g., [4, 61). 

Now the need for discarding the stringent assumption of normality and for 
developing suitable nonparametric procedures has been recognized for quite 
some time. Accordingly, such nonparametric tests have been offered for the 
hypothesis of homogeneity by several workers (see, [Z, 8, 10, 111). The main 
objective of this paper is to extend some of these techniques to profile analysis 
of several samples. 

In Section 2 we begin with notation and preliminary results; in Section 3 we 
develop appropriate nonparametric analogs of various hypotheses that are 
relevant in profile analysis and suitabIe statistics are presented as test criteria. 
The consistency of these is discussed in Section 4 and the asymptotic powers are 
then obtained in Section 5. The paper concludes with some remarks in Section 6. 

2. NOTATION AND PRELIMINARY RESULTS 

Let &. = (X’!) Ij ,...) Ay), j = I)..., ni be independent random vectors from 
the ith iopulation with nonsingular continuous c.d.f. Fi , i = l,..., k. The 
hypothesis of homogeneity of these k populations is then 

H,,:F, = ... =Fk =F(say). (2.1) 

Nonparametric tests for Ho have been presented independently by Bhapkar [2] 
and Suguira [IO] based on the technique of generalized U statistics. 

As in [2], let 

(2.2) 

LY = l,..., p and i = I ,..., k, and 

U.’ = (,!l) 2 * ,-.*, Up), U’ = (U,‘,..., U,l). 

We assume here 

&)(x1 ,...) Xk) = $&Y?‘)> (2.3) 
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where r?) is the rank of $) among {xy), j = l,..., K}. In view of continuity 
assumption, with probability one there are not ties. Note that the functions 
considered by Bhapkar [2] and Suguira [lo] are special cases of functions 
satisfying (2.3). 

Let F’ = (Fr ,..., FJ and define #j(F) = E( Uy’) = E@(X1 ,..., X,), where 
Xi’s represent independent random vectors with c.d.f. Fi’s, respectively. Then we 
have 

7?‘(F) = gr #I P[Rp’ = j] = i $(j) v!q’(F); (2.4) 
j=l 

here Rk”’ is the rank of Xi”’ among (Xp), j = l,..., k} and 

V!;‘(F) = P[Rp) = j], (2.5) 

with the probabilities computed under F. 
Now if n, -+ 00 in such a way that ni/N + pi , where N = .Cin, , 0 < pi < 1, 

i = I,..., K, then, as in [2], 

P2(U, - q(F)) --% 40, T(F)), (2.6) 

for any F. Here the subscript n denotes the vector of sample sizes on which U is 
based, 9 denotes convergence in distribution, and JV denotes the normal 
vector of appropriate dimensions. Let 

4 = $ i 4(j). 
3=1 

It was shown in [2] that under H, (2.1), 

q(F) = q(F) = 4i T(F) = T(F) = C @B(F), (2.8) 

where A @ B = [QB], and C = [cij] is given by 

= = (k !! I)2 kJ + k2A - hi’ - kjq’), (2.9) 

with J = [llwlc , A = diagonal (p;‘, i = l,..., k), q = ,&p;r, and q’ = 
(p;r,...,p;‘). Also d is a matrix of correlation coefficients porB between 
&qx, )..., X,) and ~$~r(Yr ,..., YK), where X’s and Y’s are independent with 
common c.d.f. F except that Xi = Yi, and 

where 

/.L = E[#2(Xp))] - [E(~(x~))]2, 

(2.10) 

#(xt*‘) = q&(x, ,..., X,) ] xi = Xi}. 
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Under the slightly weaker conditions assumed in [2], p could depend on F; 
however, under the somewhat stronger condition (2.3) assumed in this paper, p 
is distribution-free, as shown in the lemma below. Incidentally, we may note here 
that the explicit statistics worked out in [2] for some specific functions indeed 
satisfy (2.3). 

LEMMA 2.1. For functions @a’ satisfying (2.3), if HO holds, 

p=i ~~(z)~(m)(~~~)(~~~)B(z+m-l,2k-zI~+t)~~2, 
1=1 m=1 

where q5 is given by (2.7). 

Proof. From (2.10) we have 

9(x,!“‘) = i 4(j) P[x,‘o’ has rankj among Xf’,..., A$’ given Xi = xi] 
j=l 

= il #(j) (; 1 ;) [F”‘(x~‘)]~-’ [l - F”‘(&]“-i, 

where Fca) is the common c.d.f. under H,, of Sa). Thus 

also, 

x [@4(4d)]z+WZ-2 [l _ F(d(&4)]2k--l-W‘ 

and the lemma follows. 
It has been shown in [2] that, if the common F is nonsingular, in the sense that 

no set of p-dimensional Lebesgue measure zero contains the whole probability 
mass, then B(F) is nonsingular. 

Let 9 be a matrix of consistent estimators, as in [2], of 9 and partition U’ as 
(U,‘, Us’). If E,, is the cofactor of or1 in Z, define 

To = N(U,’ - +j’)(Z;,l @ @-‘)(U, - +j); (2.11) 

then it was shown in [2] that 

T = Nk- II2 k 
0 

l*k= 

El p,(U, - 0)’ g-‘(Vi - O), (2.12) 
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where pi = nJN and u = L&Vi and, moreover, it has a limiting x2( p(k - 1)) 
distribution under Ho . Explicit statistics denoted by V, B, L, and W were 
offered as possible nonparametric test criteria (for the hypothesis H,,) in [2]. 

Suguira [lo] considered the class of functions 

(2.13) 

where j is the rank of xpl among {$‘, 1 = l,..., k}, and (a), = a!/(~ -Y)!. 
His statistic is essentially the same as (2.12) except that he uses somewhat 
different estimates for 9. We may note here, however, that his estimates are 
consistent only under H,, , while those in [2] are valid for any F and hence the 
latter are to be preferred. 

3. NONPARAMETRIC TEST,FOR PARALLELISM OF PROFILES 

First, we want to formulate an appropriate nonparametric analog of the 
hypothesis HI of parallelism of profiles. In the parametric case the profiles are 
defined in terms of population means and, hence, HI takes the form (1.2). In 
the more general nonparametric case we give the following definition: 

DEFINITION 3.1. The populations Fl , F, ,..., Fk are said to have parallel 
profiles if F’ = (Fl ,..., Fk) satisfies 

HI : &F) = . . . = v!;)(F), i,j=l K, ,.‘*, (3.1) 

where v:;‘(F) is defined by (2.5). 
One might wonder whether (1.2) and (3.1) are equivalent in some sense under 

the normality assumption The answer is no, except possibly the special case 
where the variances a,, of JVa) are the same for all 01 = I,..., p. We prove here 
only the weaker statement: 

LEMMA 3.1. If X1 ,..., XI, are independent A+, , Z),..., M(pk, E) respec- 
tivei$, and the diagonal elements of C are equal, then (1.2) implies (3.1). 

Proof. Note that 

vi:(F) = P[Rp’ = j] = c P[Each of {X:;‘, 1 = I,..., j - l} =C Xi(oI’ 
c 

< Each of {Xl:, m = j + l,..., k}] 

= c P[Each of {Yj,, + ~1: - #} < Yp’ 

< Each of {Y!“’ + pe h.4 - &‘)I; (3.2) 
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here EC denote the sum over (:r:) combinations of subscripts i, , I = I ,..., j - 1 
chosen out of k - 1 distinct subscripts i, , I = l,..., K (except j) (denoting 
integers I,..., k except i). 

Now Y!&’ for i = 1 1 >..., k are independent and identical normal variables for 
each CY. If condition (1.2) is satisfied, we see from (3.2) that VI:‘(F) does not 
depend on 01 and hence, (3.1) is satisfied. 

In fact, normality as such is not used at all except for the fact that yi are 
location parameters. By using essentially the same argument we have thus 
proved the 

THEGREM 3.1. Suppose Xl ,..., X, are independent with c.d.f. 

Fib) = F(x - Pi), i = I,..., k (3.3) 

for some continuous F, and assume that the marginal c.d.f.‘s Fc5), 01 = l,..., p, of F 
are identical, then condition (1.2) implies condition (3.1). 

In order to test HI we now propose the statistic 

T = Nk--1)2 k 
1 

pk2 
zl pi&J, - 0)’ [&j-l - $+lJ&+(Ui - if) 

= TO - T, , (3.4) 

where TO is the statistic (2.12) for HO , 

T J’V(k-l)27 Ic 
2 

4’ 
zl p&J, - 0)’ &J&‘(Ui - O), (3.5) 

and 9 = l/j’&j. TI is to be regarded as a large-sample x2((p - l)(k - 1)) 
criterion for HI , while T, is regarded as a x2(k - 1) criterion for testmg H,, , 
assummg HI , i.e., for testing the “pure” differences among the populations 
after eliminating from TO the interaction contribution, if any. 

It may be noted here that if P is any (p - 1) x p matrix of rank p - 1 
satisfying Pj = 0, then 

9-l - #-‘J$‘-’ = P’(P@‘)-1P, 

where B is a positive definite matrix and y = I/j’S-lj. Since d is a nonsingular 
correlation matrix, it is positive definite, and so is 6 with probability tending 
to one as ni -+ 03. Thus, we may also express TI as 

T = W- lj2 k 
1 

ti2 
,r; p,(U, - 0)I Pr(P@Pl)-l P(U( - 6). (3.6) 

It is straightforward to show that, if HO holds, TI -3 x”((p - l)(k - 1)) 
and T2 -G’ X2(k - 1); this will also follow from Theorem 5.1 established in 
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Section 5. However, what we would like to have ifpossible is the stated limiting 
distribution of TI under HI alone. This does not seem to be possible by the present 
approach (and perhaps by any other approach) without discarding the relative 
simple form of the statistic. Note in (2.6) that, in general, the limiting covariance 
matrix T is a pk x pk matrix of functionals depending on F. It is only under H,, 
that T had the structure C @ 9, where C is known, and now B is ap x p matrix 
of functional depending on common F. Discarding the Kronecker product 
structure would make it necessary to estimate all terms of T, thus making the 
computation much more involved. However, as we shall show in Section 5, the 
use of concept of “local alternatives” to Ho still makes it possible to justify the use 
of statistic TI for testing HI . 

4. CONSISTENCY OF T,, T,, AND Tz 

Now in order to study consistency of these criteria for testing the respective 
hypotheses we need the lemma: 

LEMMA 4.1. Suppose W12(YD - 5) -9 X(0, ‘4) and A is positive definite. 
Then the quadratic form Q,, = N(Y. - 6)’ A(Y,, - 8) -+P 00, in the sense that 

P[Qn > cl - 1 as ni+ oqforalli 

for every $xed c, if and only if 5 # S. 

The proof is straightforward and hence is deleted. We insert now the subscript 
n while studying asymptotic properties. 

THEOREM 4.1. Let T,,, , T,,, , and T,,, be defined as (2.12), (3.4) and (3.5) 

for functions #) satisfying (2.3). I f  ni --f 00 in such a way that n,/N +pi , 

O-cpi-=cl, then 

(9 To,, --tp co ifi F $ {F 1 Zj+(j)r@(F) is independent of i and a, 

i = l,..., K, 01 = l,..., p}, 

(ii) TI,n --+p 00 ifl F # {F ( &+(j)#F) is independent of LX = 1 ,**.7 p 

for each i = l,..., k> 

and, if 9-l = PB], then 

(iii) T,,, --tp 00 ifl F 4 {F 1 Z~+(j)ZE,@%~4’(F) is independent of i}. 

Proof. Letting U’ = (Vi, Ui), as in (2.1 l), it follows from (2.6) and 
Lemma 4.1 that 
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onlyifqi(F) =+j fori = 2,..., K. Since &~=, q(F) = k+j, (4.1) holds i f f  v?‘(F) = 4 
for all i = l,..., k, and ar = l,..., p. I f  we replace 9’ by consistent estimators, we 
see that T,,n and the quadratic form in (4.1) have the same limiting distribution in 
view of (2.11) and (2.12). This establishes (i). 

Now using the argument in [2] for reducing (2.11) to (2.12), from (3.6) we 
have 

T1.n = NU,,n - +j)’ [C;,’ @ P’(P&P’)-l P](U,,, - $j) 

= Wk-l 0 WJ,,, - bi)l’ Pii1 0 P~W-lI[&--l 0 WL - CiD 

Again from (2.6) and Lemma 4.1 it follows that T1,n -ftp cc only if 

(Ll 0 PI (ii) = +(Ll 0 Ph = 0, 

i.e., Pq,(F) = 0, i = 2 ,..., K. Since &n,(F) = k+j, the condition for T,,, hp co 
is that Pq,(F) = 0 for i = l,..., k, which is equivalent to the condition that 
Q(F) cc j; this establishes (ii). The proof of (iii) is easy to obtain along similar 
lines. 

Remark. We thus note here that the tests T,, , Tl designed for H,, , HI , 
respectively, are consistent only against alternatives to the hypotheses 
“effectively” being tested, viz. 

Horn : gl b(.i) d?‘(F) is independent of i and 01 

and 

fb : il Hi) d?(F) is independent of 01, for every i, 

depending on the function + used for T’s. Of course, this undesirable feature of 
nonparametric tests is usually unavoidable, e.g., the Mann-Whitney test, Sign 
test, and Kruskal-Wallis tests all suffer from a similar disadvantage. 

Note also that if HI is accepted, i.e., v:;’ is independent of OL, then T,,, +p co 
unless Z;TW~F) is independent of i, which is precisely the condition for 
T,,, ++p 00 assuming HI . 

5. ASYMPTOTIC DISTRIBUTIONS 

In the previous section we found the class offixed alternatives F’ = (RI ,..., Fk) 
for which the tests are consistent, i.e., for which the power of the respective test 
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tends to 1 as n, --f 03. We shall now find the limiting distributions of TO , TI and 
T, under the sequence of Pitman location alternatives 

HN: F&X) = F(x - N-li2 S,), i = l,..., k (5.1) 

where the 6$‘s are not all equal, and .X,6, = 0. 

THEOREM 5.1. Consider the sequence {HN) of distributions (FN} giwen by (5.1) 
and assume that F(*) is d$%rentiable and has a bounded derivative f (OL) almost 
everywhere, OL = l,..., p. Suppose further that there exist functions gca) such that 
for sujliciently small h 

F’“‘(x + h) -F@(x) 
h 

for almost all x, and szm gfa)(x) dFca)(x) < 00. Then as ni -+ CO, so that ni/N +p, , 
0 <pi < 1, 

NVJ, - 49 3 -4y(F), T(F)), 

where T(F) is given by (2.8) and 

#j(F) = h@’ q (.) (4, F), yi’ = (d%., #“‘>, Y’ = (~1’ ,a.., Y;), 

(5.2) 

q(=‘WF) = 2 (b(i) 
j-l 

x [(; 1 i) a(% - 2, h -j, F) - (; x f) (5.3) 

x atol’(j - 1, K -j - 1, F)] 

a(‘)(b, c, F) = jrn [F’“‘(y)]” [l -F’“‘(y)]” f (u)(y) dF(*)(y). 
--m 

Proof. The details of the proof consist mainly in showing that for large N 

E&J,) = E,,&) + N-1’2y + o(N-~‘~) 

N~I,JU,J = N~&Jn) + O(N-1’2); 
(5.4) 

the result then follows from (2.8). We shall only sketch the proof of the first part 
of (5.4); the proof of the second part follows by straightforward though lengthy 
verification of all possible terms and hence will be deleted. 

We note that 

E&J’“’ = E,, II N &)(X1 ,..., 
j-1 
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and, using the notation of (3.2), 

x n [I - P(y + N-““Cg)] dz+(y), 

?iI=l 

where 6::’ = 6i0) - S{f’. Then, in view of our assumptions, 

P,,[Ry = j] 

= P&?y = j] 

+ N-l’2 c 
il 

js &‘) Ia [@‘(y)]~-” [l - j+‘(y)yf(“)(y) d@‘(y) 
z-1 

-($l,/ 

--m 

0: m  [+)(,)]j-l [I - j~(~)(~)]k-j-lf (a)(y~ d+)(Y) 

m  I 

+ o(N-1'2) 

zz pHo[@' = j] + N-1'2 1 2 a"'(j - 2, k - j, P) 

2) 

- N-lb(~l~$$)(f~;) a(')( j - 1, k - j - 1, F) + o(N-li2) 

= PHo[l@ = j] + kN-1’2 Sp [ (:. i) a(‘)( j - 2, k - j, F) 

+ (i’!f) a’“‘(j- 1, k-j- l,F)] +o(N-l12), 

which establishes the first assertion of (5.4). 

THEOREM 5.2. Assume the conditions of Theorem 5.1. Let 

T = W--1)2 ’ 
n 

pk2 zl PO-Jin - u.1’ Q’(Q@Q’)Y Q&J,. - % (5.5) 

where Q is any q x p matrix of rank q. Then under {HN} as ni -+ cn 

Tn -3 x2(4@ - l), Md, 6, J% 
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and the noncentrality parameter is 

A&, 6, F) = @ Lh l) 2 2 i, P<(Y~ - f)’ Q'(QRW Q(ui - 7) (5.6) 

when 
f = zipiyi . 

Proof. It can be seen, by argument as in [2] taking U’ = (Ui’, Ua’), 

T. = WH 0 Q)VJO,~ - Ml CC;: 0 @)[&-I 0 Q>(UU - 431. 

In view of (5.2), 

Ar1/2(Ll 0 Q)(Uo.n - +i) 5 J’G-I 0 Q) Y(F), =n 0 Q@(F) Q’), 

and hence, the theorem follows in view of the fact that the noncentrality 
parameter is 

YOI(WI-I 0 Q)’ (X,i’ 0 (Q@(F) Q’)-‘)&-I 0 Q) Y,(F) (5.7) 

with y’ = (yl’, y,,‘), and thus reduces to (5.6). 
Now we replace B by the consistent estimators 4 and in (5.5) take Q respec- 

tively equal to I, , P as in (3.6) and j’@-l. Then we have the following corollary 
the Theorem 5.2: 

COROLLARY 5.1. Assume the conditions of Theorem 5.1, and let TO,, , T,., , T,., 
be deJned by (2.12) (3.4), and (3.5), respectively. Then 

where 

To,, s XTP@ - I), &,(A 6 F)), 

T,,, -% x”((P - l)(h - I), W, 8, F)) - (5.8) 

T2.n -5 xY(h - 11, h2(+, s,F)), 

A&, 6,F) = +g2 $ Pi(Yi - 3 @TYi - 3, 

(5.9) 

A,(& s, F) = @;h21)a St pi(yi - 0)’ [g-l - @‘-7@-ll(~, - 3, 

and 

Now we are in a position to identify the sequences (HN} of distributions 
{FN) for which the criteria have limiting null distributions. 
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THEOREM 5.3. Assume conditions of Theorem 

q(“)(+,F) # 0. Then 

(i) T,,, -3 x2(p(k - 1)) #H, holds; 

furthermore, if F ta) = F(e) for all a # ,8, then 

(ii) T,,, 3 x”((p - l)(k - 1)) @SF’ = ... = 

and 

5.1 and suppose that 

= ,!*’ , , i = I,..., k 

(5.10) 

(iii) T2*, 3 x2(k - 1) a2 H, holds, assuming SF’ = Sy) for all a: f: /?. 

Proof. (i) From (5.9) we see that A,, vanishes only if yi = y for all i, and 
hence only if &‘s are all equal in view of (5.3). 

(ii) Expressing A1 in (5.9) as the noncentrality parameter in (5.7) with 
Q = P (as before, of rankp - 1 & Pj = 0) we see that A, = 0 only if 

Vk-I 0 P) Y&F> = 0 

i.e., if Pyi(F) = 0, i = l,..., k. However, from (5.3) we see that 

;I #’ = kqCa) g1 sp = 0, 

and hence A, = 0 only if Py<(F) = 0, i = l,..., k. 
If now we assume F(m) = F(B) for all 01 # j?, then in (5.3), @) = $8) for all 

LX, /3, and then Py, = 0 implies Sr’ = Si8’ for all OL, fi and each i. Thus (ii) is 
established. (iii) can be proved along similar lines. 

Finally, in this section, we present the form of q’s for some specific 4 functions 
corresponding to the statistics referred to in Section 2: 

qcn)(&, , F) = -a(‘)(O, k - 2, F) 

q’“‘(& , F) = a(&)(k - 2, 0, F) 

c$“‘(+~ , F) = aCa)(O, k - 2, F) + a’“‘(k - 2, 0, F) 

d%hv > F) = j-: f (“(r) d@)(y). 

(5.11) 

6. CONCLUDING REMARKS 

We have thus esyablished, first of all, consistency of the three tests To, Tl , 
and T2 for a specific q% function against alternatives to H, , HI , and H2 , respec- 
tively, in the direction of the specific + function used. Next we have obtained their 
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asymptotic powers for local alternatives to H, , and have established that if all 

marginals of F are identical and the location parameters N-*B~) are the same 
for all ~1, then T1 is asymptotically x2(@ - l)(K - 1)). Note from Theorem 3.1 

that H, in terms of condition (3.1) is satisfied in such a case. 
Computer programs for To and Tl have been written for specific functions 

&, &, & and the multivariate version (see [lo, 111) of the Kruskal-Wallis 
H statistic. (It has been noted (see, e.g., [lo]) that W statistics (i.e., T’s using +,+,) 
have the same limiting properties as H.) Also, simulation studies have been 
carried out to investigate x2 approximations under H,, and powers under some 
alternatives to H,, (some satisfying HI) for three different distributions and 
several covariance structures. These studies [7] are being presented in another 
paper [3] and these seem to indicate that, apart from the partial justification 
provided for the test Tl for the hypothesis HI , there is also reasonable empirical 
justification to believe that the concept of local alternatives to Ho in the direction 

of HI might indeed provide the way out of the theoretical hurdle encountered 
earlier. 
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