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Quantum codes from caps
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Abstract

Caps in a finite projective geometry over G F(4) are used for the construction of some quantum error-correcting codes, including
an optimal [[27, 13, 5]] code.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We assume familiarity with the basics of classical error-correcting codes [10] and quantum codes [3]. A linear
q-ary [n, k] code C is a k-dimensional subspace of the n-dimensional vector space over the field G F(q) of order q.
The dual code C⊥ of an [n, k] code C is the [n, n−k] code being the orthogonal space of C with respect to a specified
inner product. The ordinary inner product in G F(q)n is defined as

x · y =
n∑

i=1

xi yi . (1)

The hermitian inner product in G F(4)n is defined as

(x, y)H =

n∑
i=1

xi y2
i . (2)

The trace inner product in G F(4)n is defined as

(x, y)T =

n∑
i=1

(xi y2
i + x2

i yi ). (3)

A code C is self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. A linear code C ⊆ G F(4)n is self-orthogonal with
respect to the trace product (3) if and only if it is self-orthogonal with respect to the hermitian product (2) [3].
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An additive (n, 2k) code C over G F(4) is a subset of G F(4)n consisting of 2k vectors which is closed under
addition. An additive code is even if the weight of every codeword is even, and otherwise odd. Note that an even
additive code is trace self-orthogonal, and a linear self-orthogonal code is even [3]. If C is an (n, 2k) additive code
with weight enumerator

W (x, y) =

n∑
j=0

A j xn− j y j , (4)

the weight enumerator of the trace-dual code C⊥ is given by

W⊥ = 2−k W (x + 3y, x − y). (5)

In [3], Calderbank, Rains, Shor and Sloane described a method for the construction of quantum error-correcting codes
from additive codes that are self-orthogonal with respect to the trace product (3). Specifically, the following statement
was proved in [3].

Theorem 1 ([3]). An additive trace self-orthogonal (n, 2n−k) code C such that there are no vectors of weight < d in
C⊥ \ C yields a quantum code with parameters [[n, k, d]].

A quantum code associated with an additive code C is pure if there are no vectors of weight < d in C⊥; otherwise,
the code is called impure. A quantum code is called linear if the associated additive code C is linear. We will need
also the following result from [3].

Theorem 2 ([3]). The existence of a linear [[n, k, d]] quantum code with associated (n, 2n−k) additive code C implies
the existence of a linear [[n−m, k′, d ′]] quantum code with k′ ≥ k −m and d ′ ≥ d, for any m such that there exists a
codeword of weight m in the dual code of the binary code generated by the supports of the codewords of C.

A table with lower and upper bounds on the minimum distance d for quantum [[n, k, d]] codes of length n ≤ 30
is given in the paper by Calderbank, Rains, Shor and Sloane [3]. An extended version of this table was compiled
by Grassl [8]. An electronic server for bounds on the minimum distance of various codes is available on Andries
Brouwer’s Web page [2].

An n-cap in PG(s, q), s ≥ 3, is a set of n points no three of which are collinear (Hirschfeld and Thas [9]). An
n-cap is complete if it is not contained in any (n+ 1)-cap. Tables with bounds on the maximum size of complete caps
in various spaces are given in Storme [11].

Suppose that M is an (s + 1)× n matrix having as columns a set of n vectors in G F(q)s+1 representing the points
of an n-cap in PG(s, q). Then the dual code C⊥ (with respect to the product (1)) of the linear C code over G F(q)

spanned by the rows of M has minimum distance d ≥ 4, and if the cap is complete, we have d = 4. If q = 4 and
the rows of M are pairwise orthogonal with respect to the trace product (3), the code C defines a quantum code via
Theorem 1. The exact minimum distance of the related quantum code can be found by using the identities (4) and (5).

If K is an n-cap in PG(3, q) then n ≤ q2
+ 1 [12, p. 309]. A (q2

+ 1)-cap in PG(3, q), q 6= 2, is called an ovoid.
In [3], an ovoid in PG(3, 4) was used to obtain an optimal quantum [[17, 9, 4]] code, i.e., 4 is the largest possible
value of d for n = 17 and k = 7. Motivated by this example, we investigate in this paper quantum codes obtained
from other known complete caps or caps of largest known size in projective spaces over G F(4) of small dimension.
One of the complete 41-caps in PG(4, 4) and the known 126-cap in PG(5, 4) lead to a number of quantum codes
of various lengths with d = 4 that are either optimal or have the largest known value of d for the given n and k.
Using a geometric approach similar to the one employed for the construction of an 126-cap in PG(5, 4), we find an
incomplete 27-cap in PG(6, 4) that yields an optimal quantum [[27, 13, 5]] code. The best previously known quantum
code with n = 27 and k = 13 had minimum distance d = 4 [3].

2. Codes from a complete 41-cap in P G(4, 4)

The largest possible size of a complete cap in PG(4, 4) is 41, and up to projective equivalence, there are exactly
two 41-caps (Edel and Bierbrauer [4]). The 5× 41 matrix (6) of one of these caps, having as columns a set of vectors
representing the points of the cap, has pairwise orthogonal rows with respect to the hermitian product (2). Here,
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Table 2.1

The weight distribution of B⊥

i 0 6 8 10 12 14 15 16 17 18 19 20

B⊥i 1 16 85 220 600 3120 5340 2795 6303 16808 23648 6600

Table 2.2
Quantum codes obtained from a 41-cap in PG(4, 4)

No. m [[n, k, d]] No. m [[n, k, d]] No. m [[n, k, d]]

1 0 [[41, 31, 4]] 2 6 [[35, 25, 4]] 3 8 [[33, 23, 4]]
4 10 [[31, 21, 4]] 5 12 [[29, 19, 4]] 6 14 [[27, 17, 4]]
7 15 [[26, 16, 4]] 8 16 [[25, 15, 4]] 9 17 [[24, 14, 4]]

10 18 [[23, 13, 4]] 11 19 [[22, 12, 4]] 12 20 [[21, 11, 4]]
13 21 [[20, 10, 4]] 14 22 [[19, 9, 4]] 15 23 [[18, 8, 4]]
16 24 [[17, 7, 4]] 17 25 [[16, 6, 4]] 18 26 [[15, 5, 4]]
19 27 [[14, 4, 4]] 20 29 [[12, 2, 4]] 21 31 [[10, 0, 4]]

and later on throughout this paper, we assume that G F(4) = {0, 1, w,w2
}, and w and w2 are labeled by 2 and 3

respectively.

M2 =


10000112213322333222333020022100311310012
01000100200210110110130300230321231311222
00100012002001101101103302003312213311222
00010110011100011111111111111111111101011
00001001111122222211133333300022222200113

 . (6)

The weight enumerator of the linear (41, 5) code C over G F(4) spanned by the rows of (6) is given by

W = 1+ 9y24
+ 12y26

+ 105y28
+ 660y30

+ 90y32
+ 36y34

+ 51y36
+ 60y38,

while the weight enumerator of the trace-dual code C⊥ is

W⊥ = 1+ 9930y4
+ 176520y5

+ 3178488y6
+ · · · + 35618160526163496y41.

Thus, C defines a quantum [[41, 31, 4]] code via Theorem 1. The dual code B⊥ of the binary code B of length 41
spanned by the supports of the vectors in C is of dimension 17. The weight distribution {B⊥i } of B⊥ is given in
Table 2.1. Since the all-one vector belongs to B⊥, we have B⊥i = B⊥41−i for 0 ≤ i ≤ 20.

The parameters of quantum codes obtained from the [[41, 31, 4]] code via Theorem 2 by using vectors of weight m
(0 ≤ m ≤ 31) in B⊥ are listed in Table 2.2.

Remark 2.3. All codes in Table 2.2 are optimal, that is, d = 4 is the largest possible for the given n and k (see [3]
for lengths n ≤ 30 and [8] for lengths 31, 33, 35 and 41). Note that the lower bound on d given in [3] for n = 29 and
k = 19 is d = 3.

3. Codes from a 126-cap in P G(5, 4)

The largest size of a known complete cap in PG(5, 4) is 126, and there are two known constructions of such a
cap (Baker, Bonisoli, Cossidente, and Ebert [1], and Glynn [7]). Glynn [7] uses geometric arguments to determine the
weight distribution W of the related linear (126,6) code C over G F(4) spanned by the 6× 126 matrix associated with
the cap:

W = 1+ 945y88
+ 3087y96

+ 63y120.

Since all weights in C are even, it follows that C is self-orthogonal with respect to the hermitian product (1), as well
as with respect to the trace product (3). The minimum distance of its trace-dual code C⊥ is 4. Consequently, C yields
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a quantum [[126, 114, 4]] code via Theorem 1. According to [8], a code with these parameters is optimal, that is, 4 is
the largest possible value of d for any quantum [[126, 114, d]] code. The dual code of the binary code spanned by the
supports of the nonzero vectors in C contains vectors of weight m, where the values of m are listed in (7).

6, 8, 10, 12, 14, 16, 18, 20, 21, . . . , 106, 108, 110, 112, 114, 116, 118, 120, 126. (7)

Consequently, there exist pure quantum [[126 − m, 114 − m, 4]] codes for all values of m ≤ 114 from the list (7)
obtained via the shortening construction of Theorem 2. Most of these codes are optimal according to [3,8]: the codes
of length 28 ≤ n ≤ 126 obtained for values of m in the range 0 ≤ m ≤ 98 are all optimal; the codes with 20 ≤ n ≤ 27
may be optimal: the theoretical upper bound on d for such codes with k = n − 12 is 5. Only the codes of length
n = 12, 14, 16 and 18 are not optimal: the largest d for an [[n, k, d]] code with k = n − 12 is 5 if n = 14, 16 or 18,
and 6 if n = 12 [3].

Several of the codes obtained by shortening of the [[126, 112, 4]] code with respect to a codeword of weight m
for various values of m improve upon previously known quantum codes with comparable parameters [5], for examle,
[[43, 31, 4]], [[63, 51, 4]], [[73, 61, 4]], [[85, 73, 4]], [[105, 93, 4]], [[112, 100, 4]], [[116, 104, 4]], [[118, 106, 4]].

4. A quantum [[27, 13, 5]] code from an incomplete cap in P G(6, 4)

The minimum distance d of a quantum code associated with a complete cap cannot exceed 4. In this section, we
describe the construction of an incomplete 27-cap in PG(6, 4) that leads to a quantum [[27, 13, 5]] code. We note that
d = 5 is the theoretical upper bound for a quantum code with n = 27 and k = 13, and the best previously known
quantum code for these parameters had minimum distance d = 4 [3].

The 126-cap in PG(5, 4) was constructed in [1] as a union of six 21-caps, where the caps of size 21 were orbits
under a certain projective transformation of order 21. Thus, by construction, the resulting code of length 126 is
invariant under a group of order 21. A similar method that employs projective transformations was used by van Eupen
and Tonchev earlier in [6] for the construction of certain 3-weight codes over G F(5).

The 7× 7 matrix M7 (8), considered as a matrix over G F(4), defines a projective transformation that partitions the
(47
− 1)/3 = 5461 points of PG(6, 4) into 421 orbits: one fixed point plus 420 orbits of length 13, where the orbits

of length 13 are 13-caps:

M7 =



0 0 2 3 0 0 0
3 3 0 1 1 1 3
1 1 2 3 2 2 2
0 0 1 1 0 1 0
3 0 1 1 3 2 1
0 0 2 3 1 1 1
2 1 2 0 0 2 3


. (8)

The column set of the matrix G7 (9) consists of two orbits of length 13 plus the fixed point under the transformation
defined by M7:

G7 =



001001110110101111011111101
010111121131102200113301011
032302123023100103001231330
001223110310311122312302223
020031021110010203322012213
020010130130222203101112032
110331311323210123023133010


. (9)

The linear code C over G F(4) spanned by the rows of G7 is a hermitian self-orthogonal [27, 7, 12] code with weight
distribution listed in Table 4.1. The trace-dual code C⊥ has minimum distance 5, and weight enumerator (10). Thus,
C defines a quantum [[27, 13, 5]] code via Theorem 1. To the best of our knowledge, a code with these parameters was
not known before.

WC⊥ = 1+ 1638y5
+ 13650y6

+ 115518y7
+ 885729y8

+ 5634954y9
+ · · · . (10)
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Table 4.1
The weight distribution {ci } of the [27, 7] code C

i 0 12 14 16 18 20 22 24 26

ci 1 39 3 1170 3705 4953 4797 1677 39
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