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a b s t r a c t

There is a long history of mathematical and computational modelling with the objective of

understanding the mechanisms governing cartilage's remarkable mechanical perfor-

mance. Nonetheless, despite sophisticated modelling development, simulations of carti-

lage have consistently lagged behind structural knowledge and thus the relationship

between structure and function in cartilage is not fully understood. However, in the most

recent generation of studies, there is an emerging confluence between our structural

knowledge and the structure represented in cartilage modelling. This raises the prospect of

further refinement in our understanding of cartilage function and also the initiation of an

engineering-level understanding for how structural degradation and ageing relates to

cartilage dysfunction and pathology, as well as informing the potential design of

prospective interventions. Aimed at researchers entering the field of cartilage modelling,

we thus review the basic principles of cartilage models, discussing the underlying physics

and assumptions in relatively simple settings, whilst presenting the derivation of relatively

parsimonious multiphase cartilage models consistent with our discussions. We proceed to

consider modern developments that start aligning the structure captured in the models

with observed complexities. This emphasises the challenges associated with constitutive

relations, boundary conditions, parameter estimation and validation in cartilage modelling

programmes. Consequently, we further detail how both experimental interrogations and

modelling developments can be utilised to investigate and reduce such difficulties before

summarising how cartilage modelling initiatives may improve our understanding of

cartilage ageing, pathology and intervention.
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1. Introduction

Articular cartilage is found at opposing bone surfaces in
joints and is a remarkable tissue, characterised by extremes
of physiological structure and mechanical function: it lacks
vasculature, lymphatics and nerves yet exhibits tribological
properties that surpass engineering standards. With
extremes of performance and loading over a whole lifetime,
it is no surprise to find that articular cartilage function is both
mechanically complex, and prone to degeneration and
pathology.
archical structure of articular cartilage, showing the
left) to micrometre (right). On the left, the ‘Benningho
t orientation of collagen fibrils on the mesoscale wi
. The typical distribution of aggrecan for the function
entanglement within the collagen meshwork, which

etation of the references to color in this figure captio
The mechanical performance of cartilage is underpinned
by its structure, as summarised in Fig. 1, which has been

extensively documented (for instance by Athanasiou et al.,

2013). The major constituents of cartilage include an aniso-
tropic and heterogeneous matrix of predominantly type II

collagen, intermeshed with high molecular weight proteogly-
cans, mainly aggrecans, immersed in an interstitial fluid

containing numerous physiological electrolytes. Near the

interface with bone, the collagen matrix is oriented predo-
minantly perpendicular to the bone when averaged at the

mesoscale, with average fibril orientation rotating on moving
organisation of collagen at different length scales from
ff arcades’ of collagen fibre orientation, which represents the
thin a given region, is illustrated with bone at the bottom of
al unit of load carriage is illustrated for healthy tissue in red
is pseudo-random at lowers level of scale (centre and right).

n, the reader is referred to the web version of thispaper.)
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up through the cartilage until the fibrils are mainly parallel to
the articulating surface, forming the classic ‘Benninghoff
arcades’ (Benninghoff 1925). From theoretical studies, this
mesoscale architecture is understood to ameliorate tissue
stresses under load (Halonen et al., 2013), and enables a
smooth transition of functionalities derived from microstruc-
tural effects.

At length scales of a few micrometres, the collagen
orientation is pseudorandom, enabling the formation of an
interconnected network that provides an effective entangle-
ment of aggrecans (Maroudas, 1976; Broom and Oloyede,
1993; Brown et al., 2014). This interaction with aggrecans is
of fundamental importance in the load bearing properties of
joints. From a mechanical point of view, the large aggrecan
macromolecules are deformed and compressed in the col-
lagen network, forming a low-permeability composite struc-
ture that serves to retain fluid pressure, and provides
compressive stiffness for cartilage. From an electro-
chemical point of view the aggrecans are relatively immobile,
with a bottlebrush structure consisting of numerous glycoa-
minoglycan sidechains possessing electric charge, in turn
inducing a shielding layer of electrophysiological ions, that
is a Debye layer, and setting up ion concentration gradients
and thus gradients of chemical potential. In turn, osmotic
pressures act to reduce these ionic gradients, hydrating and
thus swelling the solid cartilage constituent, placing the
collagen under tensile stress (Maroudas, 1976; Ateshian,
2009). This overall tendency of the solid constituent to imbibe
fluid is considered to have mechanical impact due to the
induction of a pre-stress (Mow et al., 1999) and assisting in
the prevention of cartilage being wrung out under load,
especially in the context of recovery and repeated loading
(Harrigan and Mann, 1987).

The detailed mechanisms of cartilage tribology during
dynamic loading are similarly complex, as summarised in
multiple reviews, which include Katta et al. (2008) and
Ateshian (2009). Early advances in the understanding of
cartilage lubrication were made by McCutchen (1959), who
reported empirical evidence of weeping lubrication, drawing
an analogy between cartilage and hydrated sponge, whereby
loading induces solid constituent deformation together with
fluid pressurisation and exudation, thus facilitating lubrica-
tion. An alternative hypothesis of boundary lubrication con-
sidered that load would compress the synovial fluid above
the cartilage, ultra-filtering it, driving fluid into the cartilage
and supporting lubrication via the remaining layer of lubri-
cating synovial material, inducing boundary lubrication asso-
ciated with closely opposing surfaces (Walker et al., 1968).
The direction of flow under dynamic load appears to be
difficult to empirically reconcile, whilst modelling frame-
works can be found which support either concept
(Hlavacek, 1993; Oloyede and Broom, 1996).

More recently, it has been emphasised that multiple
lubrication modes can be exhibited by cartilage according to
the detailed mechanical conditions (Gleghorn and Bonassar,
2008), with the primary mechanism for friction reduction due
to fluid pressurisation, independent of flow direction (Katta
et al., 2008). In this mechanism, elevated fluid pressure is
primarily responsible for load bearing which in turn entails
that fluid retains most of the load, so that the tribology of
fluids, and thus low friction, dominates the interaction of
opposing surfaces. However, with extended duration loads,
the flow of fluid away from loaded regions inexorably
decreases fluid pressurisation and thus increases load bear-
ing by the solid matrix and consequently friction (Katta et al.,
2008). This emphasises the need for combining proposed
models at different scales via multi-scale modelling, in that
larger spatial scales should be considered to have a theore-
tical representation of cartilage lubrication, whereby the far
field conditions will be critical in fluid drainage routes and
thus under what conditions and parameter regimes synovial
fluid ultrafiltration may dominate interstitial fluid exudation
and vice-versa.

The need to better understand joint pathology, and the
role of mechanics in common and debilitating diseases such
as osteoarthritis, bring further requirements. In particular,
osteoarthritis initiation disrupts the complex balance
between mechanics, structure and biology, and involves
multiple tissues (Setton et al., 1999). Cartilage models must
therefore look to higher levels of hierarchy to consider the
wider mechanical environment of the joint and the influence
from adjacent tissues such as bone and meniscus, and also
look to lower levels to consider the scales at which damage
and disease manifest. However, our understanding of the
precise and complex mechanisms of cartilage structure–
function relationships is incomplete. The knowledge that
we do have is considered within the context of numerous,
competing, computational modelling studies, in turn based
on differing physical assumptions, making it difficult to
translate model outputs to insight into disease and its
treatment or prevention.

As cartilage modelling advances, there are increasing
opportunities, and challenges, for its application in under-
standing the fundamental structure–function relationships in
the tissue, and in particular their roles in disease and
regeneration. Here, we aim to provide the modeller who is
new to cartilage with an introduction to the field, its achieve-
ments, its uncertainties, and its main outstanding issues,
including the scope for future opportunities in model valida-
tion and experimental comparison as part of using modelling
and simulation as one of a complement of tools for improving
our understanding of this complex tissue. Thus we first
summarise the general concepts of these modelling frame-
works together with their underlying assumptions, before
focussing on how modelling has been evolving to improve
our current and prospective future insights concerning carti-
lage. We continue by discussing open problems in boundary
conditions for cartilage modelling that are inherited from
multiphasic theories, as well as the need for modelling
parametrisation and validation, whilst outlining how experi-
mental interrogations of cartilage and modelling develop-
ments can support such a programme. Finally, we proceed to
discuss how such developments in cartilage modelling can
subsequently improve our understanding, especially in the
context of pathology, ageing and intervention measures.
However, the necessity of limiting scope entails there are
many features of cartilage modelling that we do not consider
in detail, particularly concerning the mechanical and hypoxic
extremes of cartilage cells, chondrocytes, and their funda-
mental role in cartilage maintenance and remodelling.
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Similarly, we do not discuss directly analogous multiphase
models that are becoming popular in other areas of physiol-
ogy, such as the mechanics of invertebrate discs and brain
tissue (Karajan, 2012; Elkin et al., 2010).
2. A summary of general concepts within
multiphase modelling frameworks for cartilage

Motivated by the fact simple media can be accurately
described by the abstraction of a continuum at length scales
significantly greater than the mean free path of the molecular
constituents, there have been extensive investigations con-
cerning whether and how the use of a continuum generalises
for more complex media, such as mixtures of different fluids,
solids with internal structure and of course biological tissue.

Within such models, constituents are defined to be the
distinct species making up the media and among the sim-
plest theories are the classical mixture models where the
constituents are intermixed at molecular scales and equa-
tions are given in terms of balancing the mass fractions,
momenta and energy of the constituents (e.g. Bowen and
Eringen, 1976; Bowen, 1980; Bedford and Drumheller, 1983;
Ateshian, 2007; Klika, 2014). Mixture theories can also be
applied to media with immiscible constituents, which parti-
tion space into phases of distinct constituents even on
lengthscales which are much greater than molecular
(Bedford and Drumheller, 1983), generating multi-phase mod-
els. The properties of this phase-partition, typically expressed
via the volume fractions for the phase of each constituent,
enter the modelling framework which in general tracks both
mass and volume fractions, requiring additional equations
for the evolution of volume fractions. Fortunately interstitial
fluid, like water, can be considered as incompressible under
physiological conditions whilst the solid matrix of articular
cartilage exhibits negligible volume changes with hydrostatic
pressures up to 12 MPa (Bachrach et al., 1998). Hence the
assumption of incompressible constituents is reasonable for
cartilage, whereupon volume and mass fractions differ by
only a constant and the miscible mixture theory framework
has an equivalent mathematical structure to the multiphase
framework. This entails that the crucial difference of how
volume fractions are treated between many flavours of
mixture and multiphase theories disappears, which encom-
passes diverse frameworks such as the microscale theories of
miscible mixtures (Atkin and Craine, 1976; Bowen and
Eringen, 1976; Truesdell, 1984; Lai et al., 1991; Müller and
Ruggeri, 1998; Klika, 2014; Pavelka et al., 2014), the upscaled
(averaged) theories of immiscible mixtures, the Theory of
Porous Media (de Boer, 2005; Ehlers, 2002; Bercovici et al.,
2001), the Hybrid Mixture Theory (Hassanizadeh and Gray,
1979; Bennethum and Cushman, 2002) or the Thermodyna-
mically Constrained Averaging Theory (Gray and Miller, 2005).

However, a difference in the formulation of balance
equations generally remains as these frameworks are con-
sidered on varying levels of description, with different or
absent averaging procedures, and thus there is still a need to
choose a modelling framework. Nonetheless, for cartilage
tissue where constituents cannot be easily separated into
phases at larger lengthscales even though the properties of
each phase can be measured, such as interstitial fluid
viscosity, mixture theory without averaging, which is equiva-
lent to multiphase models given incompressible constituents,
represents a self-consistent and appropriate modelling fra-
mework, in line with the works of Mow et al. or Ateshian et al.

In particular, since the general framework of all such
mixture and multi-phase models consider constituents sepa-
rately, the measurable properties of the phases can be
defined and tracked so that their effect on bulk properties
can be explored effectively. This link to physical properties,
and the flexibility it allows, has considerable utility for
understanding the complex mechanical consequences of
known structural changes in a material such as cartilage.
However, modelling uncertainties are likely to arise for the
constitutive relations within such models, such as a specifi-
cation of the stresses within the media in terms of deforma-
tion. Analogous remarks apply for the ‘diffusive’ drag forces
between the different constituents (Bowen and Eringen, 1976;
Bowen, 1980) and, in more complex media, relations such as
how the osmotic stresses depend on ionic gradients in the
presence of charged solutes.

Furthermore there are only weak guiding physical princi-
ples governing the a priori choice of these relations via the
Second Law of Thermodynamics, that is no entropy destruc-
tion; this is often but not exclusively enforced using the
classical Coleman-Noll procedure (Coleman and Noll, 1963) of
Rational Thermodynamics (Truesdell, 1984), which ensures
there is no pointwise entropy destruction at the microscale
via the use of Lagrange multipliers. Nonetheless, other frame-
works can be used, for example extended rational thermo-
dynamics (Müller and Ruggeri, 1998; Wilmanski, 2008), which
is based on rewriting the entropy inequality in a form that
includes all field equations via Lagrange multipliers or, the
approach used in hybrid mixture-theory, where the Second
Law is enforced only for the macroscale-averaged version of
the microscale equations. Thus there is considerable free-
dom, and difficulty, in this aspect of model building, though it
is standard to use the most parsimonious constitutive rela-
tions consistent with the chosen enforcement of the
Second Law.

Despite such difficulties, incompressible mixture models
with the most parsimonious constitutive relations consistent
with the Coleman–Noll procedure have generally enjoyed
empirical success, especially in recent years with general-
isations to include matrix heterogeneity, including depth-
dependent material properties, and anisotropy, which are
beginning to bring observed complex structure into cartilage
models (e.g. Ateshian et al., 2009; Chen et al., 2006; Federico
and Herzog, 2008; Guo et al., 2014; Moo et al., 2014; Pierce
et al., 2013; Wilson et al., 2005a,b, 2006, 2007). All but a
minority of these cartilage multiphase models are poroelas-
tic, that is they represent a porous elastic network saturated
with fluid, as initially developed by Biot in the context of
pedology (Biot, 1941) and adapted for cartilage (Mow et al.,
1980, 1989), with the later inclusion of the physicochemical
properties of the aggrecans and electrolytes distinguishing
cartilage models (e.g. Lai et al., 1991; Ateshian et al., 2009).
Hence such models are our focus below, and we immedi-
ately note that they have been criticised under the assump-
tion that the molecular level interweaving of solid matrix,



j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 2 ( 2 0 1 6 ) 1 3 9 – 1 5 7 143
ions and interstitial fluid entails that multiple phases are

inappropriate, and that instead a single cartilage phase

should be used (Harrigan and Mann, 1987; Oloyede and

Broom, 1996).
However, firstly note that the lengthscale of the cartilage

matrix void, at its smallest is the separation between glycoa-

minoglycan chains on aggrecans which, for mature cartilage,

is 4.4(71.2) nm (Ng et al., 2003) and secondly note that the

hydrodynamics of water appears to be a reasonable approx-

imation down to scales of 10 molecular diameters (Travis

et al., 1997), or about three nanometres (Soper and Benmore,

2008), though discrepancies occur at one molecular diameter

from a boundary, consistent with a breakdown of the no-slip

boundary condition. Thus, neglecting this region of the

domain, one may conclude that treating fluid as a separate

phase in cartilage is (tolerably) consistent with continuum

fluid dynamics. In addition, the mechanics of single consti-

tuents of the solid matrix at the lowest structural level that

need be considered, such as that of a collagen fibril, can be

described in terms of continuum principles such as stiffness

so that the solid matrix can be described as a continuum

phase2. Thus, there appears to be no physical principle on

which to a-priori distinguish a single phase model over a

multi-phase model. Furthermore, whilst the use of a single

phase model is attractive in terms of tractability and the

prospect of the improved insight this may bring, assuming

modelling accuracy can be maintained, the scope of such

models in parameter space is severely limited by the extent

to which the hard-wired single phase constitutive relations

retain validity as the ratios of the constituents change. In

particular, single-phase frameworks do not track the funda-

mental constituents and thus do not automatically allow for

how a change in constituents would impact the constitutive

relations.
In contrast, the multiphase/mixture framework offers the

prospect of a theory that is more adaptive, with the potential

to maintain predictive power in larger regions of parameter

space, for example, with changes in proteoglycan densities,

subject to the final arbiter of experiment. Given the existing

validation of the poroelastic models (e.g. Mow et al., 1980,

1989; Ateshian et al., 1997; Wilson et al., 2005a,b; Ateshian

et al., 2009), increased versatility is suggested as an over-

riding requirement in using models to improve our under-

standing of cartilage, especially in the parameter extremes of

pathology. Thus in the following section we provide a

detailed summary of multiphase poroelastic models of carti-

lage and the extent to which these models can be simplified,

as well as briefly considering recent developments in multi-

phase and mixture theory frameworks, before exploring the

prospects of relating cartilage modelling to observations and

for understanding pathology.
2At least given the matrix network allows an averaging of its
structure so that this structure can be described in terms of
macroscopic variables, as implicitly assumed throughout both
single phase and multi-phase cartilage modelling
3. Multiphase models

We begin by detailing and deriving the formulation of a core
biphasic model, representing the solid and fluid phases of
cartilage, before introducing the effect of osmotic pressures
and examining boundary conditions. We then survey possi-
ble extensions to represent cartilage structure in more exten-
sive detail, such as the inclusion of collagen fibre
anisotropies.

3.1. Biphasic poroelastic models

The simplest poroelastic cartilage framework is the biphasic
model (Mow et al., 1980, 1986), with two constituents, the solid
matrix and interstitial fluid, which in combination fill space,
and this framework reduces to the classical Biot model (Biot,
1941) for infinitesimal strain (Bowen, 1980). We will briefly
summarise a formulation of a biphasic model: as already
discussed above, continuum fluid dynamics is legitimate for
the interstitial phase fluid dynamics, and thus we use con-
tinuum fluid dynamics, deviating from the traditional frame-
works (Mow et al., 1980, 1986; Lai et al., 1991; Huyghe and
Janssen, 1997) though the resulting framework is, at most, a
simple variant of the standard biphasic model and any
differences are in principle testable.

3.1.1. Mass and momentum balance
By microscale incompressibility, we have that the mass
densities ρf and ρs for the fluid and solid phases, are related
to their volume fractions ϕf ;ϕs by the constant, true, density
of the phases, via ρβTϕ

β ¼ ρβ, with βAff ; sg and where the T
subscript denotes true density. In addition, demanding the
material fills all space yields

1¼ ϕf þ ϕs: ð1Þ

furthermore, we have velocity fields of the fluid phase,
denoted by vf , and the displacement of solid phase material
points usðX; tÞ ¼ xðX; tÞ�X, where xðX; tÞ maps material points,
X in the reference configuration to points x in the inertial
frame at a given time, t; these represent 6 unknown scalar
fields. We enforce constraint (1) using a Lagrange multiplier,
denoted p, via the Coleman–Noll procedure (Coleman and
Noll, 1963), as detailed in Section 1 of the Electronic Supple-
mentary Material (ESM). We thus have 9 macroscale scalar
unknowns, fus;vf ;p;ϕf ;ϕsg, and hence 9 scalar equations are
required, of which constraint (1) is one. Two more scalar
equations arise from mass balances, with a further six from
the balance of momentum.

With the assumptions of mixture theory for porous media
(Bowen, 1980), equivalent to a multiphase model given con-
stituent incompressibility, we have the macroscale mass
balances

∂ρβ

∂t
þ ∂

∂xi
ρβvβi

� �
¼ 0; βAf f ; s

� �g; ð2Þ

where vs≔Dus=Dt, ρβTϕ
β ¼ ρβ and where ∂=∂t holds x, a point in

the inertial reference frame, fixed in contrast to the derivative
D=Dt, which is relative to a material point, denoted X, fixed in
the reference configuration of the solid phase.
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In formulating the momentum balance equations, we
assume the system is isothermal and with negligible inertia,
as motivated in the ESM, Section 2. Further noting, as implicit
in the mixture theory framework, that all stress gradients and
drag forces are defined per unit volume of tissue, mixture theory
postulates the following form of the macroscale equations

∂sfij
∂xj

þ qfi ¼ 0;
∂ssij
∂xj

þ qsi ¼ 0;

qf ¼ �qs ¼ γðvs�vf Þ þ Δq: ð3Þ
Here rf ;rs are the Cauchy stress tensors for the elastic and
solid phases and qf is the stress exerted on the fluid phase by
the solid phase, with qf ¼ �qs by Newton's Third Law. A
standard choice for this term is γðvs�vf Þ, with γ40 constant
(Mow et al., 1980, 1986; Huyghe and Janssen, 1997; Wilson
et al., 2005a,b; Julkunen et al., 2013). However, this immedi-
ately discounts how the detailed structure impacts the
relative forces between the two phases and, once more,
information about cartilage structure is lost. Finally, we
additionally require an additional drag term, Δq to enforce
thermodynamic consistency, as detailed in the ESM,
Section 1.

3.1.2. Constitutive relations
To close the above equations, we firstly require a specification
of the fluid stress in terms of the rate of fluid strain and the
solid stress in terms of deformation, assuming each phase is
respectively an incompressible viscous fluid and an incom-
pressible hyperelastic solid. We additionally require a speci-
fication of Δq to define the inter-phase drag. A common
assumption more generally is that the constitutive relation of
the pure material is inherited by each constituent in propor-
tion to its volume fraction (Bedford and Drumheller, 1983),
though a priori there is no guarantee that this is consistent
with thermodynamics and requires careful consideration (see
e.g. Huyghe et al., 2009). Here, our choices are the most
parsimonious that are consistent with the constraint ϕs þ
ϕf ¼ 1 and the Second Law of Thermodynamics.

As derived in detail in the ESM, Section 1, via the Cole-
man–Noll procedure (Coleman and Noll, 1963) we have that
the fluid phase constitutive relation depends on ϕf, the rate of
strain tensor

Dij ¼
1
2

∂vfi
∂xj

þ
∂vfj
∂xi

0
@

1
A ð4Þ

and the Lagrange multiplier for the constraint ϕs þ ϕf ¼ 1,
denoted pðx; tÞ, via

rf ¼ �ϕfpIþ 2μ D� 1
3
trD½ �I

� �
; ð5Þ

where I is the identity and with μ40 physically interpreted as
viscosity. Note that this constitutive relation does not prevent
∇ � vf a0, for example as fluid is exuded from a region. Thus,
the fluid flow is not that of a single phase incompressible
fluid, even though on the microscale the fluid is assumed to
be incompressible. There is no inconsistency, as discussed in
detail in the ESM, Section 3, and these remarks also apply to
the solid phase constitutive relation.

To consider the solid phase constitutive relation in detail,
let ψ be the solid phase free energy per unit volume of the
reference configuration; the ability to associate a free energy
in this manner is an implicit assumption, of hyperelasticity, on
the solid phase, which in itself should be subjected to
empirical testing. With this assumption then, akin to the
energy of a Hookean spring, the solid phase free energy is
written in terms of deformation. Given material isotropy and
the requirement that the material properties be independent
of the reference frame, this can be considered, without loss of
generality (Gurtin et al., 2010), in terms of the right Cauchy–
Green deformation tensor C¼ FTF where F is the deformation
tensor, given by

Fij ¼ Iij þ
∂us

i

∂Xj
¼ ∂xi

∂Xj
: ð6Þ

Then the Coleman–Noll procedure, as detailed in the ESM,
Section 1, entails that

rs ¼ �ϕspIþ 2
det F

F
∂ψðCÞ
∂C

FT : ð7Þ

Note that there are numerous possible explicit such forms for
ψ , for instance neo-Hookean or Mooney–Rivlin free energies
(Gurtin et al., 2010) but the distinction between these choices
forms part of the difficult aspect of parametrising the con-
stitutive relation for cartilage, which we discuss
further below.

Finally we have from the Coleman–Noll procedure that
the simplest thermodynamically consistent form of Δq
within the above modelling formulation is given by
Δq¼ p∇ϕf ¼ �p∇ϕs. Thus in summary we have the full set
of nine equations that are given by ϕs þ ϕf ¼ 1, the two mass
balances of Eq. (2) and the six scalar momentum balances

�ϕf∇pþ γ vs�vf
� �

þ μ ∇2
xv

f þ 1
3
∇x ∇x � vf

� �� 	
¼ 0; ð8Þ

�ϕs∇pþ ∇x �
2

det F
F
∂ψ Cð Þ
∂C

FT

 �

þ γ vf�vs
� �

¼ 0: ð9Þ

In the above, note that the pressure is the isotropic stress and
respectively given for the fluid and solid phases via

�1
3
trrf ; � 1

3
trrs;

in particular, and in contrast to a single-phase Newtonian
fluid, the pressure is not equivalent to a constraint Lagrange
multiplier. Noting that the phase densities and volume
fractions are constant multiples of each other, the nine scalar
bulk biphasic Eqs. (1), (3), (8), (9) constitute a closed model
where the boxed viscosity terms have the prospect of being
subordinate since the viscous scales are often small, as
discussed in the ESM, Section 2. However, the neglect of such
viscous terms constitutes a singular perturbation and thus, in
generality, these terms may need to be retained, in which
case they induce boundary layer effects; otherwise Eq. (8)
reduces to simply a D'Arcy law for the flow of the fluid
relative to the solid phase.

We remark that while this framework is commonplace it
does not retain physical consistency should either of the
volume fractions approach zero. Then the stresses and inter-
phase stresses per unit volume of tissue do not tend to zero,
implying a finite force on an infinitesimal amount of medium
and hence theory breakdown. Strictly, one should implement
the replacement qj-ϕsϕfqj; jAff ; sg so that momentum



j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 2 ( 2 0 1 6 ) 1 3 9 – 1 5 7 145
exchange tends to zero if either volume fraction tends to
zero. In addition the stresses should be weighted by ϕf for the
fluid and ϕs for the solid so that neither phase contributes a
stress in the limit that it is exuded, i.e. the choice of the
anisotropic stresses chosen via the Collman–Noll procedure
become

rj� 1
3
trrjI

� �
-ϕj rj� 1

3
trrjI

� �
; jAf f ; s

� �g:
The consequences of this constitute a straightforward exer-
cise to derive by generalising the calculations of the ESM,
Section 1, though we only have derived the classical models
for reasons of brevity. This more generally emphasises the
importance of model testing to distinguish whether such
model variations are important in the physiological or patho-
logical regime.

Finally, one should note that any biphasic model fails to
capture various aspects of cartilage behaviour, for example
cartilage microstructure and the influence of changes in
osmotic pressure, limiting utility for disease-related model-
ling, due to the importance of physicochemical and structural
effects. Thus we proceed to describe modelling generalisa-
tions below.

3.2. Triphasic and quadphasic poroelastic models

The classical work of Lai et al. (1991) could be considered as
founding the triphasic modelling framework for cartilage,
generalising biphasic models by incorporating an ionic phase.
This yields complex models that allow for a tighter link
between the actual observed processes and the modelling
representation, which can be reflected in simpler constitutive
relations as contributions to overall behaviour are linked to
individual constituents. Nonetheless triphasic treatments,
with the solid phase of tissue simplified to a homogeneous,
isotropic, linearly elastic material undergoing infinitesimal
strain, can often be related to biphasic models a posteriori in
contexts where the properties of the aggrecans do not change
extensively (Ateshian et al., 2004).

Further generalisations appear with the quadphasic
description of cartilage tissue, as proposed by Huyghe and
Janssen (1997), with cations and anions treated separately in
order to capture swelling more accurately. General treat-
ments for an arbitrary number of ion species can be found
in Gu et al. (1998) and in Ateshian's analysis (Ateshian, 2007).
The latter work can be considered as the most comprehen-
sive and general treatment of soft tissue modelling based on
mixture theory and rational thermodynamics; it also includes
a modelling description of phenomena such as growth or
reactions among constituents and simplifying assumptions
for cartilage and soft tissue modelling are discussed and
implemented.

3.2.1. On the triphasic model
We proceed to consider the biophysics of physiological ion
dynamics, though with some deviations from traditional
triphasic frameworks (Mow et al., 1980, 1986; Lai et al., 1991;
Huyghe and Janssen, 1997). In particular, we build upon the
biphasic model of the previous section and thus inherit its
differences. In addition we briefly consider ion transport via
the generalised Stefan-Maxwell equations (Quintard et al.,
2006), which extend the kinetic theory momentum balances
of perfect gas mixtures to fluids (Lightfoot et al., 1962) and
reduce to the standard, Fickian, diffusion equation for a
single solute (Quintard et al., 2006). Within approximately
two Debye lengths (Moy et al., 2000; Corry et al., 2000) from
charges fixed on the aggrecans of the solid phase, the
violation of electroneutrality also needs to be considered as
it induces an osmotic swelling pressure, which can have very
important mechanical effects in cartilage. We also note that
effects such as entropic and excluded volume contributions
to the ion-induced pressures are not considered here to
maintain model simplicity. In particular, a number of model-
ling studies have incorporated these influences, such as Lai
et al. (1991) and this is likely to be important at relatively low
fixed charge densities, especially in the pathological regime.

Ion transport: As with most other modelling frameworks we
only consider sodium and chloride ions with cþ the sodium
ion concentration, defined per unit volume of fluid (rather than

per unit volume of tissue) and c� the chloride ion concentration.
In the bulk we have cþ ¼ c�≔c by electroneutrality. Thus the
above biphasic formulation is still valid and we simply
require a coupling between the forces associated with the
Debye layers and the biphasic model, and Donnan theory is
typically used (Mow et al., 1986; Lai et al., 1991; Huyghe and
Janssen, 1997).

However, under physiological conditions a Debye length is
about one 0.5–1 nm (Moy et al., 2000; Weiss, 1996), which
entails Debye layers from adjacent glycoaminoglycans on the
brush-structure of aggrecan can potentially interact; such
interactions are not captured in Donnan theory, which is
also unreliable at physiological isotonicity (Basser and
Grodzinsky, 1993). The Poisson–Boltzmann equation frame-
work, or the equivalent results of the Poisson–Nernst–Planck
equation framework (Weiss, 1996), are more fundamental
and can capture the impact of overlapping Debye layers, as
explored by Buschmann et al. (1995), who also present an
empirical study favouring this more general theory. None-
theless, below we restrict ourselves to Donnan theory to
determine the osmotic swelling pressure, pSwell, in terms of
the bulk, electroneutral concentration, c, and the fixed charge
density, with latter given in terms of the initial distribution of
fixed charge density, assumed to be known.

Hence, to proceed we consider the ion transport equation
at the microscale level

∂c
∂t

¼∇ D � ∇cð Þ�∇ � cvf
micro

� �
; ð10Þ

where D is the diffusion coefficient of NaCl and vf
micro is the

flow field at the microscale. Thus ∇ � vf
micro ¼ 0 by incompres-

sibility; physiologically at least typical boundary conditions
will simply be zero ionic flux at domain boundaries and the
initial condition would be isotonicity. Under these conditions,
constant, isotonic, c is the solution in the bulk. This can be
understood intuitively: at very small scales within cartilage
pores diffusion is very effective and dominates transport and
acts to drive the solute to its mean concentration, and thus c
is approximately constant (at least once transients have
decayed which happens on short timescales within a carti-
lage pore). Of course in experimental investigations, for
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instance placing excised cartilage in a salt bath to assess
swelling, one can readily find conditions when solute trans-
port is non-trivial. However, this requires boundary condi-
tions that strongly force the solution and we do not address
these extremes and this assumption of ionic equilibrium also
features in the literature for example, in the framework
introduced by Wilson and co-workers (Wilson et al., 2005a,
b, 2006, 2007); it also entails the model presented below is
often referred to as the biphasic swelling model rather than a
full triphasic model (Wilson et al., 2005a,b).

The mechanical impact of ions: Via the Donnan theory for a
binary solution of monovalent electrolytes, the osmotic
swelling pressure is predicted to be

pSwell ¼ RT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2f þ c2b

q
�cb

� �
; ð11Þ

where R is the gas constant, T is temperature and cb ¼ 2c is the
osmolarity of the bulk interstitial fluid away from Debye
layers and cf is the fixed charge density, noting that some
authors additionally consider further corrections in terms of
a polynomial expansion obtained from experimental mea-
surements, see Ateshian et al. (2009). Thus the ion concen-
tration, c, in the bulk, as can be determined from the above
allows the ready determination of the Donnan osmotic, or
swelling, pressure thus providing an expression for the
macroscopic pressure gradient due to physiological ions and
fixed charges, denoted ∇xðpSwellÞ below (Lai et al., 1991; Huyghe
and Janssen, 1997; Ateshian, 2007).

We inherit the constitutive laws of the biphasic model and
assume linear constitutive laws without cross terms for ion
transport, as is typically observed for ion transport (e.g.
Chapter 1, Bachelor 2000), and exemplified by the above
assumption of Fickian diffusion in the bulk within Eq. (10).
Thus for instance we do not consider the possibility of a
chemical expansion stress (Huyghe et al., 2009), though this
would be an interesting generalisation. With these assump-
tions the derivation of the bulk equations, including the
Coleman–Noll procedure, proceeds as previously, as detailed
in the ESM, Section 1, and we have

1¼ ϕf þ ϕs ð12Þ

0¼ ∂ϕf

∂t
þ div ϕfvf

� �
¼ ∂ϕs

∂t
þ div ϕsvsð Þ; ð13Þ

0¼ �ϕf∇xpþ γ vs�vf
� �

�ϕf∇xpSwell

þ μ ∇2
xv

f þ 1
3
∇x ∇x � vf

� �� 	
; ð14Þ

0¼ �ϕs∇xpþ ∇x �
2

det F
F
∂ψ Cð Þ
∂C

FT

 �

þ γ vf �vs
� �

; ð15Þ

where the Donnan swelling pressure is given by

pSwell ¼ RT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ c2b

q
�cb

� �
: ð16Þ

Once more, the fluid viscosity terms are boxed as they have
the potential to be neglected apart from the possibility of
boundary layers.

For either the biphasic or the biphasic swelling/triphasic
models one also needs to consider initial conditions, which
are generally straightforward, and boundary conditions,
which can be complex and hence we proceed to discuss
these conditions in detail.

3.3. Boundary and initial conditions

Boundary conditions are equally important in any mathema-
tical formulation of a given problem and corresponding
attention is required. Yet, despite all the development in
the field of mixture theories, and even more so for averaging
theories, the problem of plausible boundary conditions for
constituent variables remains an open question.

In particular, difficulties generally arise because physical
principles require total balances at interfaces, for example
the balance of mass and momentum, but the partition of
mass and momentum among the various phases at a bound-
ary for mixture and multiphase media that is required for
system closure is not subject to the same physical require-
ments, and thus can require additional justification or
assumption. Tangential stress conditions are particularly
problematic and have been considered in pioneering experi-
mental and modelling work by Beavers and Joseph, exploring
the boundary conditions between fluid and porous media
(Beavers and Joseph, 1967). This study illustrated that a
boundary layer formed at the interface of a viscous fluid
and a porous medium, a special case of a multiphase model,
and hence one cannot simply neglect viscosity in general for
multiphase and mixture models, including those used to
represent cartilage. In additional, detailed theoretical justifi-
cations of the Beavers and Joseph condition (Beavers and
Joseph, 1967) have been presented by Saffman (1971) and
more recently by Chandesris and Jamet (2006), though defor-
mation of the solid phase is not considered.

In the context of cartilage, Hou et al. (1989) proposed a
hypothesised kinematic condition, which gave a tangential
stress boundary condition and studied its implications for
solutions of biphasic cartilage model. Although their results
are promising, the problem of boundary conditions for bi- and
tri-phasic models is not solved here in that one still has only
a hypothesised boundary condition. Lai et al. (1991) further
highlight that the continuity of chemical potentials is
required, whilst Ateshian et al. (1994) uses the results of
Hou et al. (1989) and modifies them for frictionless contact
between two biphasic layers whose fluid phase is inviscid
with zero tangential surface stress t:eagr:n¼ 0, where r

stands for total stress defined in the ESM, Section 1.
More generally, Rajagopal (2007) noted that the decom-

position of boundary conditions of a mixture into boundary
conditions of constituents is likely dependent on the parti-
cular problem at hand and calls for developing a constitutive
theory. Surprisingly, this study also reports that there is an
insensitivity to the detailed decomposition of boundary con-
ditions among the different phases. In particular (i) saturated
boundary conditions, (ii) a decomposition of traction among
constituents based on volume fractions and (iii) a decom-
position based on the requirement for constant chemical
potential across boundary all yielded similar, plausible,
results in the context of fluid flow past a slab. Nonetheless,
the appropriate choice of boundary condition is far from
settled. Finally, the recent work by Dell'Isola et al. (2009)
approaches the issue of biphasic model boundary conditions
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via a variational approach and seems to be a promising
treatment of this issue, even allowing the incorporation of
friction or dissipation.

In light of such uncertainties, we conclude this section by
discussing the unambiguous boundaries conditions of a
simple 1d problem for cartilage and also the higher dimen-
sional case of a joint, where we explicitly use the Beavers–
Joseph framework to hypothesise relevant BCs for cartilage
models, whilst calling for experimental guidance concerning
tangential components of velocities.

3.3.1. One dimensional experiments
Before proceeding note that the above triphasic model has an
isotonic ion concentration in the bulk, given the assumption
this is consistent with the boundary conditions. In practice
this means the cartilage is not subject to large ionic concen-
tration gradients, which occur only in experimental settings,
such as an immersion in a salt bath. Hence the initial and
boundary conditions below are sufficient for both the bipha-
sic and triphasic models discussed above.

The simplest scenario to consider is a one-dimensional
compression of cartilage with a porous filter plunger, at
z¼ z�ðtÞ40, and a rigid impermeable base at z ¼ 0 (Mow
et al., 1986), as depicted in Fig. 2. Reducing fields to one
spatial dimension, for instance,

vf ðx; tÞ-ezvf ðz; tÞ;

where ez is the z-direction unit vector, typical boundary
conditions would be

vf 0; tð Þ ¼ vs 0; tð Þ ¼ 0; vs z� tð Þ; tð Þ ¼ _z� tð Þez;

rf z� tð Þ; tð Þez ¼ � Patm� 8μl _z�ðtÞ
a2

þ ρgl
� 	

ez;

where the fluid has density ρ, viscosity μ and the plunger has
identical cylindrical pores of height l and radius a. In parti-
cular, in addition to atmospheric pressure, there are con-
tributions due to hydrostatic pressure ðρglÞ and a Poiseuille
flow pressure drop, neglecting any entry flows complications
in the pores, which is reasonable at low Reynolds number
providing the pore radius is much less than its length
(Goldberg and Folk, 1988). More generally for sufficiently slow
flow and shallow pores, such terms are negligible. Hence, in
this model the solid phase is advected with the porous
plunger but the fluid phase satisfies a stress balance. Initial
conditions would typically be
Fig. 2 – A schematic of the plunger experiment and its boundary
the z-direction with a porous plunger (brown). The fluid phase
pressure, Patm while the solid phase is condensed between impe
times t24t140 is depicted. (For interpretation of the references to
version of this paper.)
vf ðz;0Þ ¼ vsðz;0Þ ¼ 0;

provided _z�ð0Þ ¼ 0 to ensure consistency between the bound-
ary and initial conditions. In particular this model has been
investigated in detail, where atmospheric pressure domi-
nates other pressure terms, by Mow et al. (1986).

3.3.2. Multiple spatial dimensions
In multiple dimensions, and/or in the context of joints,
boundary conditions have been stipulated and hypothesised
by Hou et al. (1989), and are fundamentally important in
understanding cartilage behaviour. In particular for physio-
logical, in vivo modelling the histological scale necessarily
couples with the anatomical scale, as required to ascertain
overall fluid motion and thus the details of cartilage tribology.

As an exemplar, we consider the joint of a finger pressed
against a hard surface, as illustrated in Fig. 3, thus imposing a
pressure, p�ðtÞ, at the upper bone-cartilage interface. The
synovial fluid is represented via a stress tensor rSynovial and
a velocity field, vSynovial, which here is simplified to that of a
Newtonian fluid, though in practice synovial fluid is viscoe-
lastic (Thurston and Greilin, 1978). Whilst an anatomically
accurate model would not possess symmetry, axisymmetry
presents an opportunity for moderate simplification, as illu-
strated in Fig. 3. Even this simple case of a finger knuckle is
geometrically complex, requiring closure from the deforma-
tion of the fibrous capsule. This could, for instance, be
modelled as a stiff shell, with velocity and stress continuity
boundary conditions for the free boundary, i.e.

rSynovial � n¼ rshell � n; vSynovial ¼ vshell;

where rshell; vshell are the stress and velocity fields of the shell
and n generically in this section is a unit normal to the
interface where the boundary condition is imposed. Suitable
initial conditions for the finger joint model are straightfor-
ward; for instance the initial state of the system could be
unloaded, whereafter p�ðtÞ is increased to represent loading of
the finger.

Cartilage Boundary conditions: The boundary conditions for
the cartilage, modelled as a bi- or tri- phasic material, are
more vexatious to specify. Firstly, note that the solid phase
moves with the cartilage boundary so characteristics of the
solid phase velocity do not enter the cartilage domain and
hence no boundary conditions are required for the equation
governing the solid phase mass balance. However, if there is
a flux of fluid into the cartilage, then a flux boundary
conditions. Cartilage (blue) is compressed from time t ¼ 0 in
is exuded (blue arrows) at equilibrium with atmospheric
rmeable walls (grey) and the plunger, whose position z�ðtÞ, at
color in this figure caption, the reader is referred to the web



Fig. 3 – Boundary conditions for the finger knuckle, given axisymmetry approximations. The unit vectors n; t are normal and
tangential to the interface where the boundary condition is imposed. The interpretation of p* is discussed in the main text,
whilst vbone is an a-priori unknown for the very slow motion of the bone under forcing, for example pressing a finger against a
solid surface with the knuckle straight. In addition, rSynovial, rshell, vSynovial, vshell are the stress and velocity fields of the synovial
fluid and the fibrous capsule shell.
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condition for the fluid phase mass balance hyperbolic partial
differential equation is required. In addition, there are
numerous further interfacial conditions for the finger carti-
lage in this model, as depicted in Fig. 3.

Cartilage-Bone: At the lower, assumed static, bone zero
velocity for both fluid and solid phase is imposed,

vf ¼ vs ¼ 0:

On the upper bone-cartilage interface continuity of both
velocity and stress for both phases are imposed, noting that
the upper bone can move in response to the applied force, as
represented by the pressure p*. Thus firstly,

vf ¼ vs ¼ vbone:

In addition, on the upper bone-cartilage interface the stress
from the synovial fluid must be distributed between the solid
and fluid cartilage phases. In the absence of detailed empiri-
cal guidance, this is implemented via the area fractions of
solid and fluid phase presenting at the bone-cartilage inter-
face, though approximating collagen fibres as cylinders, these
area fractions can readily be shown to be equivalent to
volume fractions. For instance near bone, collagen fibres are
essentially perpendicular to the interface, and for an array of
N vertical cylinders of radius a, the ratio of surface area to
volume fractions with a region of area A and height H is given
by

Nπa2

A

� �
HA

NHπa2

� �
¼ 1:

Hence we have

rs � n¼ �p�nϕs; rf � n¼ �p�nϕf :

Cartilage-synovial fluid. At the cartilage-synovial interface,
continuity of stress is imposed for both cartilage phases,
again with area fractions taken as equivalent to volume
fractions. Hence

rs � n¼ rSynovial � nϕs; rf � n¼ rSynovial � nϕf :

Additional conditions are required. Continuity of normal
synovial fluid and normal solid cartilage velocity is imposed,
vs � n¼ vSynovial � n, representing a kinematic condition delimit-
ing the evolution of the interface. We also have the cartilage
fluid normal velocity and normal synovial fluid velocities are
related by mass balance across the interface; assuming the
cartilage fluid and synovial fluid have the same density, this
is simply the constraint

vSynovial � n¼ ϕfvf � n:

At this stage only tangential fluid velocities and tangential
solid displacements, or alternatively tangential stresses, have
not been subjected to boundary constraints. However, there
are no fundamental principles for the imposition of these
final boundary conditions and as we have discussed, even in
simpler settings of a viscous fluid adjacent to a porous
medium, which is effectively the biphasic model with an
infinitely stiff solid phase, the most appropriate boundary
condition is an open question (Le Bars and Worster, 2006).
Nonetheless, it has been extensively studied by Beavers and
Joseph (1967) in the context of the interface between a
viscous fluid and a porous medium; their experimental study
is consistent with a slip velocity, with the tangential fluid
velocity proportional to the tangential stress, and is inter-
preted via a boundary layer, emphasising the importance of
viscosity. Given the biphasic model is, in the limit of large
stiffness of the solid component, a porous medium, the
Beavers–Joseph boundary condition may be anticipated to
be relevant in at least some regions of parameter space for
the poroelastic multiphase models used to represent
cartilage.
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The absence of evidence-based tangential boundary con-

ditions entails that characterising shear flows above cartilage

would be a fruitful area for experimental investigation and

modelling validation, not least because of the potential
impact in understanding flow in joints and cartilage tribology.

In the meantime we simply suggest tangential fluid velocity

boundary conditions by analogy with the Beavers–Joseph

condition, noting that the Beavers–Joseph experiments were
conducted with constant volume fractions; hence we also

explicitly partition the synovial fluid tangential stress by

volume fraction. This gives

½vf � t�vSynovial � t� ¼Const1ϕft � rSynovial � n;
½vs � t�vSynovial � t� ¼Const2ϕst � rSynovial � n;
with two positive constants of proportionality where the t is
the unit tangent to the interface, see Fig. 3. More generally, it

is apparent that these tangential boundary conditions are
effectively constitutive, and require empirical investigation.
3.4. Further multiphase models

The biphasic and triphasic modelling framework considered
above, has not covered all types of cartilage multiphase

models and, in particular, there is still a neglect of the impact

that anisotropic and heterogeneous microstructure imposes

on cartilage mechanics. Thus we proceed to review further

multiphase models, especially those developing a framework
for considering cartilage microstructure, though we do not

present derivations of these diverse modelling frameworks in

detail.
3.4.1. Biphasic models of solid and ions
A different type of biphasic model, with solid and ionic

constituents, was recently proposed by Nagel and Kelly

(2010). They considered an equilibrium model adjusted for
fibre anisotropy, including a deterministic fibre angle orienta-

tion law according to Benninghoff-type architecture. This

allowed a focussed study of the interaction of ions and the

solid phase, for instance predicting that osmotic swelling

causes pre-tension of fibres in cartilage tissue.
3.4.2. Cellular inclusions
The idea of the role of individual chondrocytes on tissue

response can be traced back to two independent studies by
Wu et al. (1999) and Guilak and Mow (2000) and this has been

further developed by Federico et al. (2004, 2005), resulting in a

very different modelling approach than the multiphasic

theories. Particularly, Ferderico et. al. were initially motivated
by the presence of significantly softer chondrocytes within

cartilage tissue and wanted to study consequences of such

structure on material behaviour. They used the upscaling

method of homogenisation, with spherical inclusions, and

hence their mixture quantities are directly related to
mechanical properties on a finer scale; at least in terms of

matrix and cell constituents this is probably the closest

representation of microstructure in a cartilage modelling

framework (Federico et al., 2004).
3.4.3. Multiphase models with anisotropy and heterogeneity
The impact of structural anisotropy and heterogeneity has
been considered by Wilson et al. (2005a,b, 2006, 2007), build-
ing upon a triphasic framework where the ionic concentra-
tion is in local equilibrium, thus removing the need to
explicitly track the ionic phase, analogous to our example
above. However, the details differ and these papers intro-
duced ‘replaced pressures’ with an electro-chemical poten-
tial, which includes the impact of the Donnan osmotic
pressure and fixed charge density (FCD).

In particular Wilson et al. (2005a,b) compared their model
with a triphasic finite element study under confined com-
pression and 1D swelling, demonstrating that the assumption
of ionic equilibrium generates an accurate approximation to
the full triphasic model under these experimental conditions,
illustrating the scope for controlled model simplification in
focussed studies. Furthermore, this modelling framework
was subsequently used as a building block to explore the
impact of cartilage structure in more detail, for instance with
Wilson et al. (2005a,b) exploring the impact of anisotropic
collagen structure. Here, the non-fibrillar part of the cartilage
solid matrix was treated as a neo-Hookean material with
fibril-reinforcement, defined in the context of cartilage to entail
that stress is distributed among fibres based on volume
fraction, with stress in individual fibres related to the overall
stress in the fibres via fibril density. In (Wilson et al., 2006) the
authors furthered their goal of relating structure to cartilage
behaviour, deriving a relation between permeability and
tissue composition together with a proposed, new viscoelas-
tic law for the fibrils. In a further generalisation, this group
(Wilson et al., 2007) considered intra-and -extra fibrillar water
content in order to correct for the effective fixed charge
density, and the influence of the solid fraction on the
compressive properties of the tissue. It was shown that with
this model the typical depth-dependent behaviour of articu-
lar cartilage can be captured simply by the depth-dependence
of the composition and collagen orientation only, with
homogeneous material constants for the individual
components.

More generally, many recent models have made advances
towards the required levels of structural realism. Further
notable examples of such advances include non-uniform
distributions of fixed charge density (Chen et al., 2006),
continuous fibre angular distribution swelled by the osmotic
pressure of the proteoglycan ground matrix (Ateshian et al.,
2009), alternative studies of depth-dependent collagen con-
tent, fibril orientation, fixed charge density and water content
(Julkunen et al., 2008), and anisotropic diffusion (Pierce et al.,
2013).
4. Moving towards modelling cartilage
pathology such as osteoarthritis

We have briefly reviewed frameworks for multiphase carti-
lage modelling including their boundary conditions together
with a description of common frameworks and ways of
incorporating various aspects of the anisotropic and hetero-
geneous structure of cartilage. There is tremendous scope for
such models to explore both homeostasis and disease. This
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may include relatively simple tasks such as calculating solid
stress, and therefore susceptibility to damage, with structural
changes such as degradation/depletion of aggrecan or recon-
figuration of the collagen meshwork. More elaborate pro-
grammes of work may calculate damage progression and
feedbacks for matrix turnover, couple tissue changes that
drive progression, or develop key structural markers of
functionality or defunctionalisation that can be used to
inform and assess treatment. The proliferation of modelling
frameworks to explore structure-function relationships in
detail, and the need to push parameter space into patholo-
gical regimes, emphasises the need to further validate and
test the modelling frameworks.

This in turn presents many challenges and opportunities,
which we develop below. In particular, to move focus from
simulating and understanding bulk cartilage behaviour to
developing insight of disease processes, we increasingly rely
on our models to represent the functional interdependence of
constituents, and to provide insight at the levels of structural
hierarchy that represents degradative change. This is a more
demanding objective than representing normal cartilage
function in silico and would benefit from the ability to
differentiate between modelling frameworks, a higher level
of confidence in the modelling predictions, especially within
pathological regions of parameter space, and a greater under-
standing of how modelling predictions can fail. All of these
requirements assert the importance of model parameter
estimation, testing and validation, including the extreme
regimes of pathology.

Thus we proceed to discuss the difficulties, and also the
opportunities such considerations present, in terms of com-
bining mechanical measurements with recent developments
in cartilage imaging, modelling, systems biology and mathe-
matical upscaling tools, which determine macroscale beha-
viours from microscale information.

4.1. Constitutive relations and model parameters

Generally, the solid phase of cartilage is assumed to be
hyperelastic, allowing the stress to be expressed via the free
energy (Gurtin et al., 2010). It is also typically inferred that
cartilage anisotropy arises primarily from collagen (Bachrach
et al., 1998): numerous recent modelling studies use an
isotropic hyperelastic contribution to the stress supplemen-
ted by an anisotropic contribution aligned with the local
collagen fibril orientation (Wilson et al., 2005a,b, 2006, 2007;
Pierce et al., 2009; Julkunen et al., 2013; Pierce et al., 2013). It is
unclear, however, whether this is sufficient to describe
pathology. It should be also noted that the choice of the bulk
collagen strain energy potential cannot currently be directly
verified or compared to experimental data (Federico and
Gasser, 2010).

In contrast to the solid phase, constitutive relations for the
fluid phase and the inter-phase drag are generally linear, as
readily justified by maintaining model tractability and the
absence of evidence to the contrary. There is also the
possibility of constitutive coupling relations between stresses
and solutes (Huyghe et al., 2009) whilst the tangential
boundary conditions at the interface of fluid and cartilage
are not characterised.
Further difficulties arise with identifiability, as similar
findings emerge from very different models. For instance
homogeneous equilibrium triphasic models (Ateshian et al.,
2009) yield the same ‘experimental behaviour’ as inhomoge-
neous models (Federico et al., 2004), whilst even basic para-
meters such as Poisson's ratio are likely to be highly variable
in cartilage (Wilson et al., 2007), due to its multiple phases,
again hindering definitive parameter estimation. Thus resol-
ving parameters is not straightforward, reducing confidence
in extrapolating simulations to pathological regions of
parameter space.

Furthermore, testing a detailed, many-parameter model
against a small number of quasi-steady state axial loading
curves is unlikely to be sufficient for model validation
although some works are proposing ways to tackle this issue
(Pierce et al., 2009); this also becomes even more prominent
when considering pathological regimes as corresponding
parameter values are not a straightforward extrapolation of
the physiological ones. Nonetheless, predictions of the struc-
tural response to load are at hand in many models and to
move the field forward, these should be confronted with
complex reality and we thus proceed to discuss experimental
interrogations that can potentially be used for such modelling
development.

4.2. Experimental frameworks for model validation and
testing

As described above, the advancement of our understanding
of fundamental function, and its changes/roles in pathogen-
esis, requires the stronger coupling of theoretical and experi-
mental approaches to characterisation. This may take the
form of testing and improving the basic assumptions of
classical models in the pathological regime, for example the
potential breakdown of the biphasic model at the large
strains and therefore low fluid fraction (see Section 3.1.2)
that may occur with physiological loading in the highly
permeable, aggrecan depleted matrix of diseased tissue.
Experiments, particularly on diseased tissue, further chal-
lenge and refine boundary conditions, such as that of the
impermeable cartilage-bone interface (Section 3.3).

Increased modelling sophistication such as the inclusion
of collagen fibril anisotropy and ‘reinforcement’ detailed in
Section 3.4.3, brings a need, and opportunity, to compare and
optimise against experimental observations of that behaviour
under load (e.g. Fig. 4. Bringing detailed theoretical predic-
tions together with similarly detailed experimental measure-
ments, outlined below, provides a basis to validate and
improve constitutive model formulation, for example
through controlled enzymatic digestions of matrix compo-
nents, and then to explore disease-related changes such as
calcification, decreased interconnectivity of collagen and
therefore defunctionalisation of aggrecan entrapment, and
heterogeneous patterns of degradation that can challenge or
expand existing theories of pathogenesis. Importantly, by
validating against cross-sectional data from different stages
of the disease process, such models will be empowered to
examine processes which are generally inaccessible to the
experimentalist.



Fig. 4 – The complex restructuring of the collagen meshwork under static indentation, where the observed directionality from
differential interference contrast (DIC) imaging corresponds to the dominant orientation of the collagen meshwork within a
focal volume (� 1 μm diameter) in the loaded state. (A) A typical pattern of orientation near the symmetry axis (dashed
vertical line) of an axisymmetric loading. AS¼articular surface; TM¼tidemark, (the transition between calcified and
uncalcified cartilage); subchondral bone can be observed at the bottom of the image. (B–D) Collagen reorientation due to
applied deformation extends laterally into the edge effect region and beyond, with a distinct reversal of shear observed at
approximately 300 μm from the surface (dashed line in (C)). Image reproduced from (Thambyah and Broom, 2006), with
permission. Scale bars ¼ 200 μm (A, B, D); 100 μm (C).
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There are three main approaches that can be used to

probe the structural response to loading for such explora-

tions. The first, used by the Broom group (Thambyah and

Broom, 2006), involves static indentation to equilibrium, at

which point the sample is immersed in fixative, typically

overnight. The fixed tissue is then removed and sectioned for

imaging in its deformed state (this was the method used for
Fig. 4. This approach has the advantage of experimental ease,

though it does not allow the structure to be probed before

loading, and fixation limits the use of some measurements. A

second approach is to use a plane-strain experiment in which

a thin sample is clamped between glass plates to allow

imaging during deformation. This more difficult technique

allows real-time probing of structural changes with
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deformation and loading, providing dynamical information
and a richer dataset. A plane-strain experiment will be
particularly useful for understanding transients and cyclical
loading, load sharing between superficial and deeper layers,
and the role of the chondron in protecting chondrocytes from
stresses during loading. 2-D tensile measurements coupled
with structural imaging can further provide information on
constituent interactions and structure–function relationships
in the tissue (Broom and Oloyede, 1993; Broom and Silyn-
Roberts, 1989). Finally, cartilage-on-bone explants can be
mechanically tested under magnetic resonance imaging
(MRI) using non-metallic components in a pneumatic or
hydraulic loading system (Wellard et al., 2014). Like plane-
strain loading, this is experimentally difficult to set up, yet
can provide rich 3-D data. Based on such approaches, we thus
provide an overview of available techniques to extract and
quantify the response of collagen, aggrecan and interstitial
fluid to load.

4.2.1. Collagen
Collagen organisation can be measured quantitatively using a
number of methods. The simplest and most accessible is
polarised light microscopy (PLM, Bullough and Goodfellow,
1968) which gives information on anisotropy and orientation
of scatterers, averaged within the focal volume, which is
usually on the scale of a micron. Second harmonic generation
(SHG) microscopy also provides this information, but is more
specific to collagen due to the requirement of noncentrosym-
metry (Freund et al., 1986). In particular SHG provides a
powerful method for probing collagen structural changes
with disease and deformation due to its sensitivity to fibril
bundling, and can therefore provide quantitative and quali-
tative measures of early-stage disease over a number of
hierarchical levels (Brown et al., 2014).

Vibrational spectroscopic methods can be used to esti-
mate the concentration of collagen in a bulk sample, or to
determine its distribution when used as imaging techniques
(Camacho et al., 2001; Dehring et al., 2006). Coupled with
polarisation optics, these methods reveal the orientation of
matrix components as well as concentrations. The choice
Fig. 5 – Compressive forces between (a) a 2.5 mm radius tip and
(b) opposing aggrecan layers attached to both the tip and substr
Reprinted from (Dean et al., 2006), with permission from Elsevie
between infrared, Raman or near-infrared requires a balan-

cing of each method's strengths and weaknesses. Infrared

spectroscopy is easy to interpret and well-suited to imaging,

however the low penetration (few tens of micrometres) in

tissue limits its use in bulk measurements. Raman spectro-

scopy is highly penetrating and easy to interpret, but requires

long integration times (approximately one photon per million

is Raman scattered in standard setups). Near infrared spec-

troscopy is fast and penetrating, though difficult to interpret

due to wide, overlapping absorbance bands. A more powerful,

but less accessible, technique for unfixed samples is small

angle X-ray scattering (SAXS), which is sensitive to collagen

D-spacing (often referred to as banding, typically � 67 nm),

and can therefore be used to directly measure average

orientation and, most importantly, strain in collagen fibrils

within the focal volume of the X-ray beam (Moger et al., 2007).
Such techniques can thus provide detailed collagen infor-

mation, including orientation, potentially allowing a careful

parametrisation and model testing for the solid phase of

cartilage, including extensions from simple isotropic solid

phase models to more complex anisotropic mechanical

models.
4.2.2. Aggrecan
Aggrecan is trapped within the collagen meshwork and will

therefore move with collagen during deformation. It remains,

however, an important component to measure in order to

test the effects of structural changes in early-stage osteoar-

thritis. As collagen and aggrecan are functionally interdepen-

dent, the effects of aggrecan depletion on local mechanics

and collagen restructuring under load is important in under-

standing the disease process. Recent work using scanning

probe techniques (Dean et al., 2006) has measured compres-

sive properties of opposing aggrecan macromolecules within

0.001–1 NaCl solutions (Fig. 5). Coupled with shear informa-

tion (Han et al., 2007) and constraining collagen–aggrecan

adhesion forces (Rojas et al., 2014), this provides an experi-

mental basis for building microstructurally relevant consti-

tutive equations.
a single aggrecan layer attached to the substrate; and
ate, in different bath ionic strengths (0:001��1 M NaCl).
r (3662880049459).
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Staining with safranin-O and digital densitometry (Kiraly
et al., 1996) can be used to measure the distribution of
aggrecan on larger scales. Similar information can be gained
using vibrational spectroscopy (Camacho et al., 2001), also
enabling the tracking of concentrations under plane strain
experiments, in turn allowing aggrecan content and its
effects to be parametrised and modelled. Coupling aggrecan
measurements with the use of external salt baths allows
scope for measuring the mechanical and structural impact of
ion concentration changes, thus enabling parametrisation
and the possibility of testing appropriate modelling frame-
works for the stress due to charges.

4.2.3. Fluid
Bulk fluid pressure measurements, coupled with mechanical
measurements, have been available for some time and
provide a useful tool for describing the role of interstitial
fluid pressurisation in load carriage and lubrication (Soltz and
Ateshian, 1998). Fluid interaction with the cartilage surface
may also further be explored with fluid shearing techniques
(Beavers and Joseph, 1967), whilst MRI provides 0.1–0.5 mm
resolution of solute transport (Burstein et al., 1993) and
relative permeability (Filidoro et al., 2005). Permeability mea-
surements by diffusion tensor imaging, require long times
and high fields, yet provide crucial data. The permeability
tensor, and its change with loading, depends on the config-
uration of collagen and aggrecan and is likely to be an
important functional change early in osteoarthritic progres-
sion, as higher permeability will transfer stress to the solid
matrix more quickly, arguably increasing susceptibility to
further damage. T2, T2* and exchange measurements, which
are sensitive to water confinement in the matrix and its
binding to aggrecan, can potentially provide similar informa-
tion over much shorter timescales. Like diffusion, these
measurements are best suited to equilibrium but nonetheless
have potential for the testing and validation of cartilage
models.

4.3. Modelling developments: current and future

With all these empirical interrogations, there remain funda-
mental difficulties in that experimental changes affect many
aspects of cartilage in a highly coupled manner. Thus in
generality one cannot isolate a given parameter to allow
simple testing of a model response. First, an adaptable
modelling simulation environment is required, so that para-
meter farms of simulations varying a host of cartilage proper-
ties can be quickly implemented to facilitate model testing,
analogous to the open-source CMiSS human physiome suite
(Bradley, 2011). Indeed, recently, Ateshian et al. (2011, 2013)
have provided an open-source numerical environment, FEBio,
using finite element methods and specifically targeting con-
tinuum soft tissue modelling, such as cartilage. In particular,
this numerical environment is specifically designed for soft
tissue, for instance allowing phenomena such as permeation,
osmosis, electroosmosis, diffusion, electrophoresis and bar-
ophoresis to be considered more readily than generic, com-
mercial finite element packages. Such developments will
facilitate the testing of parameters and concepts in modelling
studies, which in turn will facilitate the detailed coupling of
modelling with the information emerging from the above
imaging and mechanical studies.

Furthermore, determining the links between microstruc-
ture and bulk properties is a fundamental multiscale problem
that permeates through extensive areas of applied mathe-
matics. In particular, and in contrast to most of the studies
described above, we note that there are averaging techniques
to consider the mass and concentration balance equations for
cartilage at the microlevel and, at least prospectively, to then
scale to the bulk level (Davit et al., 2010; Cushman et al.,
2002). Ultimately these raise the prospect of exploiting the
detailed microstructural information that the above imaging
tools are capable of delivering for incorporation into models.
In turn, this would allow the consequences of microstructural
changes to be explored in simulations without the need to
consider multiple orders of lengthscale (Davit et al., 2013),
with the one example for cartilage given by Federico et. al.'s
upscaling studies of how the presence of cartilage cells,
chondrocytes, impacts macroscale mechanics (Federico
et al., 2004, 2005).

Even with such possibilities, exploiting experimental data
to distinguish modelling and parameter choices is still not
straightforward. Nonetheless, numerous system biological
tools have been developed for such parametrisation pro-
blems, especially by classifying the relative importance of
parameters taking into account interactions between multi-
ple simultaneous changes. These global sensitivity analyses
can proceed via numerous statistical or machine learning
techniques, such as least square general linear methods
(Makler-Pick et al., 2011), or Latin hypercube sampling and
partial rank correlations (Wu et al.,), or recursive partitioning
tools such as random forests (Strobl et al., 2009). In particular,
such techniques facilitate at least the prospect of reducing
the combinatorial difficulties of investigating parameter esti-
mation and validation across extensive parameter spaces
regions.

4.4. Extending models to pathology, ageing and select
interventions

Known processes associated with cartilage disease involve
phenomena such as aggrecan depletion, collagen meshwork
restructuring, subchondral bone changes and advancing
calcification, whereas ageing induces changes such as
increased cross linking and aggrecan degradation. Treat-
ments such as osteotomy aim to modulate the mechanical
environment of the tissue to halt or slow disease progression,
while others seek to recreate the structure and function of
native tissue in engineered constructs for localised replace-
ment. As mentioned above, extending models into such
regions of parameter space to simulate pathology and ageing,
and thus also potential compensating interventions, requires
confidence in the constitutive relations and modelling frame-
works, even with simple generalisations of functional models
such as the impact of aggrecan depletion.

Nonetheless, these raise numerous prospective topics for
exploration within virtual cartilage models. For instance, one
could assess how lubrication processes and stresses are
altered in cartilage with degradative changes, such as surface
disruption, synovial fluid changes, or aggrecan depletion or
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assess how subchondral bone lesions and the advancing

calcification front affect stress distributions in the overlying

cartilage. Cartilage models can also provide insight into

treatment effects as highlighted by considering the impact

of interventions such as osteotomy or bracing on the stress

distribution within cartilage. In particular the extent to which

such interventions may disperse stresses from cartilage

lesions is of current interest as clinicians attempt to provide

solutions to the ‘treatment gap’ between the onset of pain

and/or disability, and the applicability of successful late-stage

treatments such as joint replacement.
5. Summary and conclusions

We have summarised the assumptions underlying, and the

construction processes defining, core models of cartilage

mechanics, with a hierarchy of complexity from the simplest

biphasic model to modern extensions of the triphasic models

taking into account numerous aspects of cartilage structure

and physiology, such as the depth dependent distribution of

collagen fibre orientation, aggrecan density and structural

anisotropies. However, this level of complexity, coupled with

the currently limited resolving power of small numbers of

quasi-steady state axial loading curves, entails that model

parametrisation and validation is under developed. In addi-

tion, modelling in the field has not embraced the complex

geometry of a joint, nor the interfacial mechanics of cartilage

and synovial fluid, despite the fact the drainage routes are

critical in the physical mechanism of joint lubrication and a

subject of debate in the literature. Consequently, there are

still numerous topics to explore even in the modelling of

function, though arguably the most important of these is to

continue current efforts to parametrise and validate cartilage

models, including their boundary conditions.
Furthermore, combining modern imaging technologies

with the fixing of loaded samples or the temporal evolution

of loading experiments can offer substantial new data on the

solid, fluid and ionic phases of cartilage, as well as its

anisotropies thus potentially facilitating model parametrisa-

tion, including the constitutive relations. Pursuing these

directions will most likely exploit recent efforts to provide

an open-source modelling suite for cartilage simulations,

FEBio, together with the hijacking of modern systems biology

tools, based on statistical and machine learning algorithms,

to provide the modelling capabilities required for high

dimensional parametrisation. This in turn also offers the

prospect of further investigations of such models, exploring

regions of parameter spaces corresponding to ageing, pathol-

ogy and intervention, such as aggrecan degradation, collagen

restructuring and the performance of prospective engineered

tissue. More generally, such directions may improve our

systems level understanding of cartilage and how its various

constituents orchestrate, in health to provide remarkable

mechanical performance and in pathology, to provide insight

into joint dysfunction and prospective treatment.
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