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Central heavy-ion collisions may induce sizeable fluctuations of the topological charge. This effect is 
expected to distort the dispersion relation for the hadron masses. We construct a general setup for a 
compact description of this phenomenon in the framework of bottom-up holographic approach to QCD. 
A couple of soft wall holographic models are proposed for the vector mesons. The states having different 
circular polarizations are shown to have different effective mass. The requirement of stability imposes 
strong constraints on the possible choice of models.
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1. Introduction

Recently the study of light mesons by means of a bottom-up 
holographic approach has attracted a lot of attention (see, e.g., 
the short surveys [1]). Usually the spectra of resonances and the 
related physics are analyzed at vacuum conditions. However, in 
view of current experiments with relativistic heavy-ion collisions 
at RHIC, GSI, and CERN, it is useful to include in the holographic 
models some non-trivial external conditions. One of theoretical 
methods consists in incorporation of the Chern–Simons (CS) term 
in a holographic action. This permits to address holographically 
such problems as the magnetic susceptibility of the quark conden-
sate [2], the chiral magnetic effect [3,4], some subtle questions in 
the behavior of the correlation functions [5,6], and derivation of 
the O (p6) Chiral Perturbation Theory low-energy constants [7].

It has been demonstrated recently [8] that a suitable CS term 
may lead to interesting meson phenomenology. This CS term is 
motivated by the possibility of local parity breaking taking place 
in baryonic matter; a phenomenon that could be triggered by large 
topological fluctuations taking place in central heavy-ion collisions. 
For light quarks in a quasi-equilibrium situation the creation of a 
topological charge translates immediately into the generation of a 
finite chiral chemical potential

Inspired by these observations, in the present paper we analyze
the impact of the CS term in the background considered in Ref. [8]
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on the mass spectrum of the vector mesons in the Soft Wall (SW) 
holographic model [9]. This will give a generalization of results of 
Ref. [8] to higher radial excitations in the large-Nc limit of QCD. 
Our choice of the model is motivated by its nice property of pos-
sessing the linear Regge-like spectrum which is expected in the 
first approximation both experimentally [10] and in the string-like
models of hadrons. To make the consideration clear we will restrict 
ourselves by the simplest version of the SW model.

The paper is organized as follows. The general holographic 
setup is presented in Section 2. The analysis of impact of the ax-
ial chemical potential on the mass spectrum is given in Section 3. 
A couple of exactly solvable models are constructed in Section 4. 
A short discussion of our results are contained in the concluding 
Section 5.

2. The holographic setup

We consider the gauge SW model [9] with 5D Abelian fields L
and R dual (on the AdS5 boundary) to the sources of the left and 
right 4D vector currents. A parity-odd 5D CS term is added to the 
action,

S = Sfree[L] + Sfree[R] + SCS[L] − SCS[R], (1)

Sfree[B] = − 1

8g2
5

∫
d4xdzeϕ√

g B MN B MN , B = L, R, (2)

SCS[B] = −k

∫
d4xdzεMN ABC B M B N A B BC . (3)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The 5D space is the AdS5 one with the metric

ds2 = R2

z2
(dxμdxμ − dz2), μ = 0,1,2,3, (4)

where R is the radius of the AdS5 space and z > 0 represents 
the holographic coordinate. The dilaton background eϕ is not yet 
fixed for generality. As usual, the constants g5 and k are fixed 
by matching to the ultraviolet asymptotics of the two-point vec-
tor correlator [11] and to the axial anomaly, respectively,

g2
5

R
= 12π2

Nc
, k = Nc

24π2
. (5)

In terms of the vector, V = (L + R)/2, and axial-vector, A =
(R − L)/2, fields the free and CS parts of the action can be rewrit-
ten as (Lorentz indices are lowered)

Sfree = − 1

4g2
5

∫
d4xdz

eϕ

z

(
V 2

MN + A2
MN

)
, (6)

SCS = −k

∫
d4xdzεMN ABC AM (V N A V BC + AN A ABC ) . (7)

If one wishes to provide conservation of the 4D vector current, 
the Bardeen surface counterterm must be added,

SB = 2k

∫
d4xεμνλρ AμVν Vλρ. (8)

Then one obtains the standard result for the covariant anomaly 
[12],

∂μ J V
μ = 0, ∂μ J A

μ = 3kVμν Ṽμν + kAμν Ãμν, (9)

where F̃μν = 1
2 εμνλρ Fλρ .

In contrast to the finite density effects, the thermal corrections 
to the meson masses appear in the next-to-leading order in the 
large-Nc counting as they emerge due to the pion loops. On the 
other hand, the holographic approach is inherently large-Nc one. 
For this reason we will not include the finite temperature effects 
into our considerations.

3. Embedding the axial chemical potential

In Ref. [8] it was assumed that the axial chemical potential 
μ5 arises from a time-dependent but spatially homogeneous back-
ground of a pseudoscalar field a(t) such that μ5 = ȧ(t). In the 5D 
setup, we will treat AM as a background axial-vector field and re-
late a(t) to the z-component of AM . Namely, we assume for the 
vacuum expectation value of the vector field that

〈AM〉 = 〈Az〉 = μ5x0 f (z), (10)

where the shape function f (z) will be specified later. The expres-
sions (9) and (10) lead to the following form for the vector part of 
the action (1),

S = R

g2
5

∫
d4xdz

(
−eϕ

4z
V 2

MN + ξμ5 f ε05ABC V A∂B V C

)
. (11)

Here ξ = 2kg2
5

R = 1 (see (5)).
In the axial gauge V z = 0, the equation of motion reads

∂z

(
eϕ

z
∂z Vμ

)
− eϕ

z
∂2
μVμ − 2μ5 f εmik∂i Vk = 0. (12)

The small Latin indices denote the usual space coordinates, 
m, i, k = 1, 2, 3. Making the 4D Fourier transform, Vμ(x, z) =∫

d4 peipx Vμ(p, z) and assuming the standard plane wave ansatz, 
Vμ(p, z) = εμv(z), we arrive at the equation for the particle-like 
excitations,[
∂z

(
eϕ

z
∂z v

)
+ eϕ

z
p2 v

]
εμ + i2μ5 f εmik piεk v = 0. (13)

The physical spectrum is given by the eigenvalues p2
n = m2

n of nor-
malizable solutions of Eq. (13). However, the last term induces the 
mixing between different polarizations. We must find a basis diag-
onalizing Eq. (13).

For convenience, let us introduce the notation for the differen-
tial operator

F̂ = ∂z

(
eϕ

z
∂z

)
+ eϕ

z
p2. (14)

The space-like part of Eq. (13) can be rewritten in the vector form(
F̂ �ε + i2μ5 f �p × �ε

)
v = 0. (15)

Eq. (15) is diagonalized with the help of the projectors,

P̂ ‖
ik = pi pk

�p2
, (16)

P̂±
ik = 1

2

[
δik − pi pk

�p2
± i

|�p|εikn pn

]
. (17)

The projectors (17) on the “circular” polarizations have the follow-
ing evident properties,

P̂± P̂∓ = 0, P̂± P̂± = P̂±, tr P̂± = 1, P̂±�p = 0,

P̂+ + P̂− = P̂⊥. (18)

Now we change the basis for the space-like polarizations from �ε =
(ε1, ε2, ε3) to (ε‖, ε−, ε+). Eq. (15) takes the form

F̂ v‖ = 0, (19)(
F̂ ± 2μ5 f |�p|

)
v± = 0. (20)

Thus, the longitudinal and circular polarizations will have differ-
ent masses, with the latter being dependent on the momentum. 
In other words, instead of a “peak” corresponding to a given me-
son we will see three “peaks” with the splitting depending on the 
value of three-dimensional momentum. A similar phenomenon in 
a different situation was obtained in Refs. [8,13].

4. Solvable models

We have not yet specified the dilaton background ϕ(z) and the 
shape function f (z) for the axial chemical potential. Various holo-
graphic models for the “splitting phenomenon” can be obtained by 
fixing these functions. The simplest solvable SW model resulting in 
a Regge-like spectrum is given by the background [9].

ϕ = −λ2z2. (21)

Let us accept this background and consider the longitudinal polar-
ization. Following Ref. [9], we use the substitution

v(z) = eλ2 z2/2√zψ(z), (22)

to convert Eq. (19) into the Schrödinger form

−∂2
z ψ

‖
n +

(
λ4z2 + 3

4z2

)
ψ

‖
n = m2

nψ
‖
n . (23)

Introducing the dimensionless variable y = λz, Eq. (23) for the dis-
crete mass spectrum m2

n = p2
n of the longitudinal (and time-like) 

polarization transforms into
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−∂2
yψ

‖
n +

(
y2 + 3

4y2

)
ψ

‖
n = m2

n,‖
λ2

ψ
‖
n . (24)

The normalized solutions are (n = 0, 1, 2, . . .)

ψ
‖
n =

√
2n!

(1 + n)!e−y2/2 y3/2L1
n(y2), (25)

where L1
n denote the associated Laguerre polynomials. The mass 

spectrum is given by the corresponding eigenvalues,

m2
n,‖ = 4λ2(n + 1), (26)

where the parameter λ controls the slope of the radial Regge tra-
jectory.

To obtain the spectrum of circular polarizations we need to 
specify the function f (z). The choice of f (z) must comply with the 
requirement of correct UV/IR behavior of the action with respect to 
conformal symmetry. This constraint leaves, however, much free-
dom. We will be interested in the exactly solvable cases. A simple 
possibility of this sort is given by the ansatz

f = b

2

e−λ2z2

z
. (27)

Here b is a dimensionless constant. After the substitution (22) the 
Schrödinger equation (24) acquires an additional contribution,

−∂2
yψ

±
n +

(
y2 + 3

4y2
± bμ5

λ2
|�p|

)
ψ±

n = m2
n,±
λ2

ψ±
n . (28)

The eigenfunctions remain the same as in (25) but the mass spec-
trum is shifted,

m2
n,± = 4λ2(n + 1) ± bμ5|�p|. (29)

Thus, the massive vector fields split into three polarizations with 
masses mn,− < mn,‖ < mn,+ . The mass splitting is linearly depen-
dent on the value of the spatial momentum �p. The formula (29)
can be considered as a generalization of the result of Ref. [8] to 
the radially excited spectrum.

The matching of (29) with the corresponding expression in 
Ref. [8],

m2
V ,± = m2

V ± ζ |�p|, (30)

allows to estimate the constant b. Within the effective model stud-
ied in Ref. [8], ζ = Nc g2

ρμ5/8π2, where gρ is related with the 
mass of vector particle, m2

ρ = 2g2
ρ f 2

π 
 m2
ω . Substituting the phe-

nomenological values for mρ and for the weak pion decay constant 
fπ , one obtains the estimate ζ 
 1.5μ5. We remark that this es-
timate can be made without phenomenological values if one uses 
the formula for mρ from the QCD sum rules in the large-Nc limit 
(see, e.g., [14]), m2

ρ = 24π2 f 2
π/Nc that yields gρ = 12π2/Nc and 

leads directly to ζ = 3
2 μ5. Comparing (29) and (30) we arrive at 

the value b = 3
2 .

Using the results of Ref. [15], the background (21) can be gen-
eralized to

ϕ = −λ2z2 log U 2(c,0;λ2z2), (31)

where U is the Tricomi hypergeometric function. Then the dimen-
sionless parameter c in (31) will control the shift of the radial 
Regge trajectories: n + 1 in (26) and (29) will be replaced by 
n + 1 + c.

The model was designed such that the relation m2
n,+ − m2

n,− =
const holds for any n. Other possibilities are of course possible. 
For instance, one can construct a solvable model with the relation 
m2

n,+/m2
n,− = const. This is achieved via replacing (27) by

f = b̃

2
ze−λ2 z2

. (32)

Introducing the variable

y =
(

1 ± b̃μ5

λ4
|�p|

) 1
4

λz, (33)

the analogue of Eq. (28) looks as follows

−∂2
yψ

±
n +

(
y2 + 3

4y2

)
ψ±

n = m2
n,±

λ2
√

1 ± b̃μ5
λ4 |�p|

ψ±
n , (34)

resulting in the mass spectrum

m2
n,± = 4λ2

√
1 ± b̃μ5

λ4
|�p| (n + 1). (35)

The eigenfunctions (25) are now momentum- and μ5-dependent 
because the variable y (33) depends on |�p| and μ5. The matching 
to Eq. (30) for n = 0 for small |�p| gives b̃ = 3

4 λ2. In this scenario, 
the contribution of μ5 to the masses grows with n.

Since the effective masses of polarized modes depend on the 
spatial momentum in the models under consideration, a certain 
care must be exercised to provide stability and, as a consequence, 
to avoid the superluminal propagation. From (29) we have for the 
energy

p2
0,n = �p 2 + 4λ2(n + 1) ± bμ5|�p|. (36)

In this respect, the ε− polarization is dangerous. Imposing the con-
dition p2

0,n ≥ 0 we arrive at

μ2
5 ≤ 16λ2

b
(n + 1). (37)

The strongest limitation comes from the ground state n = 0,

μ5 ≤ 4λ

b
. (38)

Consider now the group velocity v = dp0
d|�p| . It cannot exceed the 

speed of light in the vacuum, v ≤ 1. For (36) this yields

2|�p| ± bμ5

2
√�p 2 + 4λ2(n + 1) ± bμ5|�p| ≤ 1. (39)

The constraint (39) leads to the same limitations (37) and (38).
The analogue of constraint (39) for the second model consid-

ered above takes the form

|�p| ± bμ5(n+1)

λ2
√

1± b̃μ5|�p|/λ4√
�p 2 + 4λ2

√
1 ± b̃μ5|�p|/λ4(n + 1)

≤ 1. (40)

It is seen that the condition (40) cannot be fulfilled at any n — the 
larger is n the stronger is limitation on μ5. Since n labels the 
Kaluza–Klein modes of a five-dimensional field, all infinite num-
ber of resonances must be present simultaneously in agreement 
with the limit Nc → ∞. Thus, the second solvable model should 
be disregarded.
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5. Concluding discussions

According to some estimates of Ref. [8], the natural value of μ5
in the central heavy-ion collisions is in the few hundreds of MeV. 
Such values are far below the limitation (38),

μ5 ≤ 4λ

b
≈ 8λ

3
≈ 1400 MeV, (41)

where the value λ ≈ 530 MeV is taken from the typical slopes 
of the vector radial trajectories. Thus, the first model passes the 
stability criterion. We have shown that this criterion imposes a 
strong constraint on the possible choice of models. In particular, 
it seems to falsify the second model constructed in the previous 
section.

In principle, the effect of mass splitting between different po-
larizations can be quite large. The masses of ε+ and ε− circular 
polarizations of neighboring resonances can even overlap.

We expect that the contribution of the axial chemical potential 
to the hadron masses is approximately constant, i.e., it does not 
depend on the radial number n. In this regard, the first constructed 
model looks physical.

The splitting of effective masses of two polarizations signifies 
the parity breaking in the medium. In the framework of Ref. [8], 
this effect is related with the violation of 4D Lorentz invariance 
due to the time-dependent background which is present in the La-
grangian from the very beginning. In the presented holographic 
description, we have essentially the same situation.

The experimental implications of the presence of the axial 
chemical potential are discussed in detail in Ref. [16].

Finally we mention some possible future directions. First of all, 
it would be interesting to study the impact of the axial chem-
ical potential on the masses of vector mesons in the top-down 
holographic approach. Second, it makes sense to include a non-
zero isospin chemical potential μI into our consideration. In the 
low-energy QCD, μI contributes to the masses of charged pions, 
mπ± ≈ mπ0 ± μI , and triggers the pion condensation at values 
μI > mπ0 [17]. This result is reproduced by the hard-wall bottom-
up holographic model [18] and by the Sakai–Sugimoto top-down 
holographic model [19]. In addition, the latter analysis shows that 
at μI � 1.7mρ , the lowest vector meson also condenses. It is thus 
interesting to verify this effect in the bottom-up approach and 
then to study the interplay of μI and the axial chemical poten-
tial. The third direction for the extension of our analysis could 
be a holographic study of impact of the axial chemical poten-
tial on the dynamics of spontaneous chiral symmetry breaking. 
A mean-field study of this impact in framework of a many-body
Hamiltonian with contact interactions of Dirac fermions was re-
ported in Ref. [20], where the mixing of transverse polarizations of 
vector states was also observed.
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