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Abstract

Let U+(2k) be the set of all unicyclic graphs on 2k (k � 2) vertices with perfect match-
ings. Let U1

2k
be the graph on 2k vertices obtained from C3 by attaching a pendant edge and

k − 2 paths of length 2 at one vertex of C3; Let U2
2k

be the graph on 2k vertices obtained from
C3 by adding a pendant edge at each vertex together with k − 3 paths of length 2 at one of
three vertices. In this paper, we prove that U1

2k
and U2

2k
have the largest and the second largest

spectral radius among the graphs in U+(2k) when k /= 3.
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1. Introduction

We discuss only finite undirected graphs without loops or multiple edges. Let G

be a graph with n vertices, and let A(G) be a (0, 1)-adjacency matrix of G. Since
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A(G) is symmetric, its eigenvalues are real. These eigenvalues of A(G) are inde-
pendent of the ordering of the vertices of G, and consequently, without loss of gen-
erality, we can write them in decreasing order as λ1(G) � λ2(G) � λ3(G) � · · · �
λn(G) and call them the eigenvalues of G. The characteristic polynomial of G is
just Det(λI − A(G)), denoted by P(G; λ). The largest eigenvalue λ1(G) is called
the spectral radius of G. If G is connected, then A(G) is irreducible and so by the
Perron–Frobenius theory of non-negative matrices λ1(G) has multiplicity one and
there exists a unique positive unit eigenvector corresponding to λ1(G).

Unicyclic graphs are connected graphs in which the number of edges equals the
number of vertices. A unicyclic graph is either a cycle or a cycle with trees attached.
Let U(n) and U+(2k) denote the set of all unicyclic graphs on n vertices and the
set of all unicyclic graphs with perfect matchings on 2k vertices, respectively. The
eigenvalues of graphs in U(n) have been studied by several authors (see [1–6]). In
particular, the following result on the spectral radius of a graph in U(n) may be found
in several papers (see [1–3]).

Theorem 1.1. Let S∗
n denote the graph obtained from the star Sn on n vertices by

joining any two vertices of degree 1 in Sn. Among the graphs in U(n), the graph S∗
n

alone has the largest spectral radius and the cycle Cn alone has the smallest spectral
radius.

One may formulate Theorem 1.1 in the following way.

Corollary 1.1 [3]. Let G be a graph in U(n). Then

2 � λ1(G) �
√

n when n � 9

and the second equality is attained if and only if n = 9.

The second statement in Theorem 1.1 also holds for the graphs in U+(2k). Ac-
cordingly we have an immediate consequence: the cycle C2k alone has the smallest
spectral radius among the graphs in U+(2k). But the graph S∗

2k does not belong
to U+(2k) except for S∗

4 (in the case k = 2, S∗
4 is the unique graph with the largest

spectral radius in U+(4)). In fact, very little is known about the eigenvalues of graphs
in U+(2k) for the present. The purpose of this paper is to find the upper bound for
the spectral radius of graphs in U+(2k) by searching for the graphs with the largest
spectral radius in U+(2k).

2. Preliminaries

We denote by Kn, Sn, Cn and Pn the complete graph, the star, the cycle, and the
path, respectively, each on n vertices, and denote by rG the disjoint union of r copies
of the graph G. If a graph G has components G1, G2, . . . , Gt , then G is denoted by⋃t

i=1 Gi .
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Lemma 2.1 [13]. If G1, G2, . . . , Gt are the components of a graph G, then we have

P(G, λ) = P(G1, λ)P (G2, λ) · · ·P(Gt , λ) =
t∏

i=1

P(Gi, λ).

Recall that the spectral radius of G is just the largest root of P(G; λ). Hence,
P(G; λ) > 0 for all λ > λ1(G). Accordingly, we have as an immediate consequence
the following.

Lemma 2.2 [12]. Let G1 and G2 be two graphs. If P(G1, λ) < P (G2, λ) for λ �
λ1(G2), then λ1(G1) > λ1(G2).

Since the roots of the characteristic polynomial of a graph are real, we consider
only polynomials with real roots in this paper. If f (x) is a polynomial in the variable
x, the degree of f (x) is denoted by ∂(f ), and the largest root of f (x) by λ1(f ).

Many of the discussions in the following often involve comparing the largest root of
a polynomial with that of another polynomial. The next result provides an effective
method of doing this.

Lemma 2.3 [11]. Let f (x), g(x) be two monic polynomials with real roots, and
∂(f ) � ∂(g). If f (x) = q(x)g(x) + r(x), where q(x) is also a monic polynomial,
and ∂(r) � ∂(g), λ1(g) > λ1(q), then

(i) when r(x) = 0, then λ1(f ) = λ1(g);
(ii) when r(x) > 0 for any x satisfying x � λ1(g), then λ1(f ) < λ1(g);
(iii) when r(λ1(g)) < 0, then λ1(f ) > λ1(g).

The following result is often used to calculate the characteristic polynomials of
unicyclic graphs.

Lemma 2.4 [8,10,13]. Let e = uv be an edge of G, and let C(e) be the set of all
cycles containing e. The characteristic polynomial of G satisfies

P(G, λ) = P(G − e, λ) − P(G − u − v, λ) − 2
∑

Z∈C(e)

P (G \ V (Z), λ),

where the summation extends over all Z ∈ C(e).

Lemma 2.5 [13]. Let G be the graph obtained by joining the vertex u of the graph
G1 to the vertex v of the graph G2 by an edge. Then

P(G, λ) = P(G1, λ)P (G2, λ) − P(G1 \ u, λ)P (G2 \ v, λ).

Lemma 2.6 [13]. Let v be a vertex of degree 1 in the graph G and u be the vertex
adjacent to v. Then
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P(G, λ) = λP (G \ v, λ) − P(G \ {u, v}, λ).

It is well-known that if G′ is a proper spanning subgraph of a connected graph G,

then λ1(G) > λ1(G
′). Furthermore, we have the following result.

Lemma 2.7 [6,12,14].
(i) Let G be a connected graph, and let G′ be a proper spanning subgraph of G.

Then P(G′, λ) > P (G, λ) for all λ � λ1(G).

(ii) Let G′, H ′ be spanning subgraphs of the connected graphs G and H, respec-
tively. If λ1(G) � λ1(H) and G′ is a proper subgraph of G, then

P(G′ ∪ H ′, λ) > P (G ∪ H, λ) for all λ � λ1(G).

Two edges of a graph G are said to be independent if they are not adjacent in G. A
matching of G is a set of mutually independent edges of G, and a perfect matching
of G is a matching that includes every vertex of G. For any G ∈ U+(2k), G consists
of a unique cycle, denoted by CG, and some trees attached to some vertices on the
cycle. Those vertices attached to trees, for convenience, are called the roots of the
trees attached to them. A root may have more than one tree attached to it.

Lemma 2.8. Let G be a graph in U+(2k), k � 3, and let T be a tree in G attached
to a root r. If v ∈ V (T ) is a vertex furthest from the root r, then v is a pendant vertex
and adjacent to a vertex u of degree 2.

Proof. The first statement is obvious. Since uv is a pendant edge, uv must belong
to each perfect matching of G. Moreover, the other edges incident with u are not
in any perfect matching of G. If the degree of u is not 2, there would be a pendant
vertex v′ /= v joined to u, and G cannot have perfect matchings. This contradiction
completes the proof. �

Lemma 2.9 [9]. Let u and v be two vertices in a non-trivial connected graph G and
suppose that s paths of length 2 are attached to G at u, and t paths of length 2 are
attached to G at v to form Gs,t . Then

either λ1(Gs+i,t−i ) > λ1(Gs,t ) (1 � i � t)

or λ1(Gs−i,t+i ) > λ1(Gs,t ) (1 � i � s).

Lemma 2.10 [13]. Let H be the graph obtained from the graph G with vertex set
V (G) = {v1, v2, . . . , vk} in the following way:

(i) for each vertex vi of G a set Vi of p new isolated vertices is added; and
(ii) vi is joined by an edge to each of the p vertices of Vi (i = 1, 2, . . . , k).

Then P(H, λ) = λkpP (G, λ − (p/λ)).
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3. Main results

First, we turn to a slightly more general situation. Let G be a connected graph
with perfect matchings which, as shown in Fig. 1, consists of a connected subgraph
H and a tree T such that T is attached to a vertex r of H .

The vertex r is called the root of the tree T , or the root-vertex of G. The distance
between the root r and the vertex of T furthest from r is defined as the height of the
tree T . Throughout the paper, |V (T )| is the number of vertices of an attached tree T

not including the root r of T . Suppose that |V (T )| is greater than 2. If v is the vertex
of T furthest from the root r , since G has perfect matchings, as in Lemma 2.8, we
can prove that v is a pendant vertex and adjacent with a vertex u of degree 2. Now
we carry out a transformation on G in the following way: first, take off the edge uv

to obtain the graph G − u − v; then attach a path of length 2, say ru′v′, to the root r .
This procedure results a graph G1 which still has perfect matchings and is displayed
in Fig. 1. If |V (T − u − v)| is greater than 2, we can repeat above transformation on
G1. And finally we get a graph G0 when |V (T )| is odd or a graph H0 when |V (T )|
is even. Both G0 and H0 are shown in Fig. 2.

Lemma 3.1. Let G, G0 and H0 be the above three graphs shown in Figs. 1 and 2.

Then

P(G, λ) > P (G0, λ) for all λ � λ1(G) (1)

or

P(G, λ) > P (H0, λ) for all λ � λ1(G). (2)

In particular, we have λ1(G0) > λ1(G) and λ1(H0) > λ1(G), respectively.

Fig. 1. The graph G in Lemma 3.1 and the resulting graph G1.

Fig. 2. Two graphs G0 and H0 in Lemma 3.1.
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Proof. By Lemma 2.2, it is sufficient to prove (1) and (2). The proof is by induction
on |V (T )|. Let |V (T )| = p. For p = 1, 2, the result holds obviously since G∼=G0
when p = 1 and G ∼= H0 when p = 2. Now suppose further that the result holds for
the positive integers smaller than p. We have to distinguish the following two cases.

Case i: p is odd. By Lemma 2.6, we have

P(G, λ) = (λ2 − 1)P (G − u − v, λ) − λP (G \ {u, v, w}, λ), (∗)

P(G0, λ) = (λ2 − 1)P (G0 − u′ − v′, λ) − λP (G0 \ {u′, v′, r}, λ). (∗∗)

By the induction hypothesis, we have

P(G − u − v, λ) > P (G0 − u′ − v′, λ) for all λ � λ1(G − u − v).

Since

G0 \ {u′, v′, r} = (H − r)
⋃(

p − 1

2

)
K2

⋃
K1

is a proper spanning subgraph of G \ {u, v, w}, by Lemma 2.7, we have

P(G0 \ {u′, v′, r}, λ) > P (G \ {u, v, w}, λ) for all λ � λ1(G \ {u, v, w}).
Since G \ {u, v, w} is a proper subgraph of G − u − v, we have λ1(G − u − v) >

λ1(G \ {u, v, w}). Hence, when λ � λ1(G − u − v), we have by (∗) and (∗∗) that

P(G, λ) > P (G0, λ).

Again, since G − u − v is a proper subgraphs of G, we have λ1(G) > λ1(G − u − v)

and λ1(G) > (G \ {u, v, w}).
Thus, for λ � λ1(G), we have P(G, λ) > P (G0, λ).

Therefore the result is established by induction in this case.

Case ii: p is even. The proof is similar to (i).
This completes the proof. �

Now we consider the set U+(2k). From the two tables of the spectra of connected
graphs on n vertices, 2 � n � 5 in [13] and n = 6 in [7], respectively, we know that
there exist two graphs in U+(4) when k = 2 and eight graphs in U+(6) when k = 3.
We already know by Theorem 1.1 that the graph S∗

4 alone has the largest spectral
radius in U+(4). Among the eight graphs in U+(6), the graph obtained by attaching
a pendant edge to each vertex of C3 alone has the largest spectral radius. Accordingly
we assume that k � 4.

We first focus on the set U+
3 (2k) of all graphs in U+(2k) whose unique cycle is

C3. Let U1
2k be the graph on 2k vertices obtained from C3 by attaching a pendant

edge together with k − 2 paths of length 2 at one vertex. Let U2
2k be the graph on 2k
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Fig. 3. Three graphs U1
2k

, U2
2k

and U3
2k

.

vertices obtained from C3 by attaching a pendant edge and k − 3 paths of length 2 at
one vertex, and single pendant edges at the other vertices, respectively; Let U3

2k be
the graph on 2k vertices obtained from C3 by attaching a pendant edge at one vertex
and k − 2 paths of length 2 at another vertex. The three graphs U1

2k , U2
2k and U3

2k are
displayed in Fig. 3. Obviously, U1

2k , U2
2k and U3

2k all belong to the set U+
3 (2k), and

each has a unique perfect matching. Note that U1
2k = U3

2k when k = 2.

Lemma 3.2

P(U1
2k, λ) = (λ2 − 1)k−2[λ4 − (k + 2)λ2 − 2λ + 1],

P (U2
2k, λ) = (λ2 − 1)k−4(λ2 + λ − 1)

× [λ6 − λ5 − (k + 2)λ4 + (k − 1)λ3 + (k + 2)λ2 − λ − 1],
P (U3

2k, λ) = (λ2 − 1)k−3[λ6 − (k + 3)λ4 − 2λ3 + (2k + 1)λ2 + 2λ − 1].

Proof. In U1
2k , we choose one edge e1 = uv of C3 which is not in the unique perfect

matching of U1
2k . By Lemma 2.4, we have

P(U1
2k, λ) = P(U1

2k − e1, λ) − P(U1
2k − u − v, λ) − 2P(U1

2k \ V (C3), λ).

Taking G = Sk, p = 1 in Lemma 2.10, we have

P(U1
2k − e1, λ) = λkP

(
Sk, λ − 1

λ

)

= λk

(
λ − 1

λ

)k−2
[(

λ − 1

λ

)2

− (k − 1)

]

= (λ2 − 1)k−2[λ4 − (k + 1)λ2 + 1].
Since U1

2k − u − v ∼= (k − 2)K2 ∪ 2K1, and U1
2k \ V (C3) ∼= (k − 2)K2 ∪ K1, thus

P(U1
2k, λ) = (λ2 − 1)k−2[λ4 − (k + 1)λ2 + 1]

− λ2(λ2 − 1)k−2 − 2λ(λ2 − 1)k−2

= (λ2 − 1)k−2[λ4 − (k + 2)λ2 − 2λ + 1].
By Lemmas 2.4 and 2.5, it is not difficult to show that P(S∗

k ) = λk−4(λ4 − kλ2 −
2λ + k − 3). Taking G = S∗

k , p = 1 in Lemma 2.10, we have
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P(U2
2k, λ) = λkP

(
S∗

k , λ − 1

λ

)

= λk

(
λ − 1

λ

)k−4

×
[(

λ − 1

λ

)4

− k

(
λ − 1

λ

)2

− 2

(
λ − 1

λ

)
+ k − 3

]

= (λ2 − 1)k−4(λ2 + λ − 1)

× [λ6 − λ5 − (k + 2)λ4 + (k − 1)λ3 + (k + 2)λ2 − λ − 1].
For U3

2k consider the edge e′ = u′v′ of C3, where a pendant edge is attached at u′
and paths of length 2 are attached at v′. By Lemma 2.4, we have

P(U3
2k, λ) = P(U3

2k − e′, λ) − P(U3
2k − u′ − v′, λ) − 2P(U3

2k \ V (C3), λ)

= P(U3
2k − e′, λ) − P((k − 2)K2 ∪ 2K1, λ)

− 2P((k − 2)K2 ∪ K1, λ).

And by Lemmas 2.5 and 2.6, it is not difficult but somewhat tedious to show that

P(U3
2k − e′, λ) = (λ2 − 1)k−3[λ6 − (k + 2)λ4 + 2kλ2 − 1].

Hence,

P(U3
2k, λ) = (λ2 − 1)k−3[λ6 − (k + 2)λ4 + 2kλ2 − 1]

− λ2(λ2 − 1)k−2 − 2λ(λ2 − 1)k−2

= (λ2 − 1)k−3[λ6 − (k + 3)λ4 − 2λ3 + (2k + 1)λ2 + 2λ − 1].
The proof is completed. �

Theorem 3.3. Among the all graphs in U+
3 (2k), k � 4, U1

2k and U2
2k are the graphs

with the largest and the second largest spectral radius, respectively.

Proof. Let G be a graph in U+
3 (2k), and M a perfect matching of G. We distinguish

the following two cases.

Case 1. One of three edges of C3 in G is in M .
Suppose that e = uv is an edge of C3, and e ∈ M . Then all trees attached to u

or v have even order, and among the trees attached at the third vertex of C3, exactly
one has odd order. By Lemmas 3.1 and 2.9, G can be transformed into one of the
two graphs U1

2k and U3
2k , and λ1(G) is strictly less than both λ1(U

1
2k) and λ1(U

3
2k) if

G � U1
2k and G � U3

2k .
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Case 2. No edge of C3 in G lies in M .
Then each vertex of C3 is attached to some trees, and exactly one of these trees

has odd order. Also, by Lemmas 3.1 and 2.9, G can be transformed into the graph
U2

2k and λ1(G) < λ1(U
2
2k) if G � U2

2k .
Now it suffices to show that λ1(U

1
2k) > λ1(U

2
2k) > λ1(U

3
2k). For the first inequal-

ity, we know from Lemma 3.2 that λ1(U
1
2k) and λ1(U

2
2k) are the largest roots of

the polynomials λ4 − (k + 2)λ2 − 2λ + 1 and λ6 − λ5 − (k + 2)λ4 + (k − 1)λ3 +
(k + 2)λ2 − λ − 1, respectively. Let f (λ) = λ4 − (k + 2)λ2 − 2λ + 1 and g(λ) =
λ6 − λ5 − (k + 2)λ4 + (k − 1)λ3 + (k + 2)λ2 − λ − 1. Then we have

g(λ) = λ(λ − 1)f (λ) + (k − 1)λ2 − λ3 − 1.

Let r1(λ) = (k − 1)λ2 − λ3 − 1, so that we have r ′
1(λ) = 2(k − 1)λ − 3λ2.

Thus r ′
1(λ) > 0 when λ < 2

3 (k − 1).

By Corollary 1.1, here λ also satisfies λ <
√

2k. It is easy to see from the condi-
tion

√
2k < 2

3 (k − 1) that

r ′
1(λ) > 0 when k � 7.

That is, r1(λ) is an increasing function of λ when k � 7. Since Sk+2 is a proper
subgraph of U1

2k , we have λ1(U
1
2k) > λ1(Sk+2) = √

k + 1. Moreover, it is easy to
verify that

r1

(√
k + 1

)
> 0 when k � 5.

So we have r1(λ) > 0 for λ � λ1(U
1
2k). Then, by Lemma 2.3, an immediate conse-

quence is that λ1(U
1
2k) > λ1(U

2
2k) when k � 7.

When k = 4, 5, 6, by direct calculation we obtain that λ1(U
1
8 ) ≈ 2.5741,

λ1(U
2
8 ) ≈ 2.5606; λ1(U

1
10) ≈ 2.7557, λ1(U

2
10) ≈ 2.7117; λ1(U

1
12) ≈ 2.9269,

λ1(U
2
12) ≈ 2.8634. Thus the first inequality holds for all k � 4.

For the second inequality, we consider the edge e2 = xy of U2
2k , where a pendant

edge is attached at x and y, respectively, and the edge e′′ = u′w′ of U3
2k , where a

pendant edge is attached at u′ and w′ is the vertex of degree 2 of U3
2k . Then by

Lemma 2.4, we have

P(U2
2k, λ) = P(U2

2k − e2, λ) − P(U2
2k − x − y, λ)

− 2P(3K1 ∪ (k − 3)K2, λ), (i)

P(U3
2k, λ) = P(U3

2k − e′′, λ) − P(U3
2k − u′ − w′, λ)

− 2P(K1 ∪ (k − 2)K2, λ). (ii)

Obviously, we have U2
2k − e2 ∼= U3

2k − e′′, thus,

P(U2
2k − e2, λ) = P(U3

2k − e′′λ).

Since U2
2k − x − y is a proper spanning subgraph of U3

2k − u′ − w′, and by Lemma
2.7, we have
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P(U2
2k − x − y, λ) > P (U3

2k − u′ − w′, λ) for all λ � λ1(U
3
2k − u′ − w′).

It is easy to verify that

P(3K1 ∪ (k − 3)K2, λ) > P (K1 ∪ (k − 2)K2, λ) when λ > 1.

Since U3
2k − u′ − w′ is a proper subgraph of U3

2k , we have λ1(U
3
2k) > λ1(U

3
2k − u′ −

w′). Hence by Eqs. (i) and (ii), we get

P(U2
2k, λ) < P (U3

2k, λ) for all λ � λ1(U
3
2k).

Thus we have the result. The proof is completed. �

Let G be a graph in U+
2k, k � 4, and let CG be the cycle of G, CG � C3. If there

exists a vertex r on CG such that

(i) if r is a root of G, the orders of all trees attached to r are even;
(ii) a neighbour v of r on CG is not root of G and the edge rv is in a perfect matching

of G.

Let G′ be the graph obtained from G by contracting the edge e = rv (i.e., coalesc-
encing the root r with v), and then attaching a pendant edge rv′ to r . This procedure
is shown in Fig. 4.

Lemma 3.4. Let G and G′ be the two graphs in Fig. 4. Then

P(G, λ) > P (G′, λ) for all λ � λ1(G).

In particular, λ1(G
′) � λ1(G).

Proof. Consider the edge e1 = vu (u /= r) of CG and the edge and the edge e′
1 = ru

of CG′ . Note that |V (CG′)| = |V (CG)| − 1. By Lemma 2.4, we have

P(G, λ) = P(G − e1, λ) − P(G − v − u, λ) − 2P(G \ V (CG), λ),

P (G′, λ) = P(G′ − e′
1, λ) − P(G′ − r − u, λ) − 2P(G′ \ V (CG′), λ).

Fig. 4. The graph G and the resulting graph G′ in Lemma 3.4.
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Moreover, it is easy to see that we have

G − e1 ∼= G′ − e′
1,

G′ − r − u ⊂ G − v − u,

G′ \ V (CG′) = G \ V (CG) ∪ {v′}.
Hence,

P(G − e1, λ) = P(G′ − e′
1, λ),

P (G′ \ V (CG′), λ) = λP (G \ V (CG), λ) > P (G \ V (CG), λ) when λ > 1,

and by Lemma 2.7, we have

P(G′ − r − u, λ) > P (G − v − u, λ) for all λ � λ1(G − v − u).

Since G − v − u is a proper subgraph of G, we have λ1(G) > λ1(G − v − u). There-
fore, it follows immediately from the above that P(G, λ) > P (G′, λ) for all λ �
λ1(G).

The proof is completed. �

Theorem 3.5. Let G be a graph in U+
2k, k � 4. Then

λ1(G) � λ1(U
1
2k)

and the equality holds if and only if G ∼= U1
2k, where λ1(U

1
2k) is the largest root

of the polynomial λ4 − (k + 2)λ2 − 2λ + 1.

Proof. Suppose that G is a graph in U+
2k, k � 4. If G ∼=C2k , the result is obvious.

If the cycle CG is C3, by Theorem 3.3, the result also holds. So now we assume
G � C2k , and |V (CG)| � 4. Consequently, there exist trees attached to roots on the
cycle CG of G. If the heights of all trees attached on the cycle CG are not greater
than 2, then these trees are either pendant edges or paths of length 2. Note that it is
evident that two pendant edges cannot be attached to a common root since G has
perfect matchings. If there exist some trees with height more than 2 in G, we can
transform G, using Lemma 3.1 repeatedly, into a graph G0 such that the heights of
all attached trees of G0 are not greater than 2, and λ1(G) < λ1(G0). Therefore, it
is sufficient to focus our attention on those unicyclic graphs in U+

2k whose attached
trees all have heights not greater than 2. We can transform such a G0, using Lemma
2.9 repeatedly, into a graph G1 such that all trees of height 2 are attached to a root r

on the cycle CG1 of G1, and λ1(G0) < λ1(G1). If there is no a pendant edge attached
to r , then there must exist an edge incident with r on CG1 which belongs to a perfect
matching of G1. By Lemma 3.4, G1 can be transformed into a graph U0 with the root
r attached to a pendant edge and all paths of length 2. Assume that the number of
these paths is i, and the other roots of U0 are attached to only one pendant edge. And
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Fig. 5. The procedure in the transformation on U0 in Theorem 3.5.

we also have λ1(G1) < λ1(U0). Note that the number of vertices between two roots
with only one pendant edge attached in U0 must be even since all pendant edges
belong to perfect matchings of U0.

For the graph U0, we distinguish the following two cases:

(i) The cycle CU0 of U0 is C3. Then U0 must be one of two graphs U1
2k and U2

2k .
By Theorem 3.3, the result holds immediately.

(ii) The cycle CU0 of U0 is not C3. Then we have |V (CU0)| � 4. Assume that u is
the vertex adjacent to the root r on CU0 clockwise. If u is not a root-vertex, then
u is a vertex of degree 2, and so is its other adjacent vertex, say v0, on CU0 , and
the edge uv0 belongs to perfect matchings of U0.

By Lemma 3.4, one can transform U0 into a graph U1 such that u is a root-
vertex of U1 to which a pendant edge, say uv, is attached, and λ1(U0) < λ1(U1).
If U1 ∼= U2

2k , then we have the result by Theorem 3.3; If |V (CU1)| � 4, we continue
to carry out the following transformation on U1: first, take off the vertex v from U1
to obtain the graph U1 − v; then contract the edge ru, and attach a path of length
2, say ru′v′, to the root r . The resulting graph is denoted by U2. This procedure is
shown in Fig. 5. Now we have to prove the following Claim.

Claim. λ1(U1) < λ1(U2).

Let u1 be the vertex on CU1 adjacent to u clockwise. Then u1 is adjacent to the
root r in U2. Consider the edge e1 = uu1 of U1 and the edge e2 = ru1 of U2. By
Lemma 2.4, we have

P(U1, λ) = P(U1 − e1, λ) − P(U1 − u − u1, λ) − 2P(U1 \ V (CU1), λ),

P (U2, λ) = P(U2 − e2, λ) − P(U2 − r − u1, λ) − 2P(U2 \ V (CU2), λ).

It is obvious that U1 − e1 ∼= U2 − e2 and U2 − r − u1 ⊂ U1 − u − u1.
Thus, P(U1 − e1, λ) = P(U2 − e2, λ).

And, by Lemma 2.7, we have P(U2 − r − u1, λ) > P (U1 − u − u1, λ) when
λ � λ1(U1 − u − u1).
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Moreover,

P(U1 \ V (CU1), λ) = λs(λ2 − 1)i ,

P (U2 \ V (CU2), λ) = λs−1(λ2 − 1)i+1,

where s is the number of pendant edges attached to roots of U1. Then

P(U2 \ V (CU2), λ) − P(U1 \ V (CU1), λ) = λs−1(λ2 − 1)i(λ2 − λ − 1).

Therefore, P(U2 \ V (CU2), λ) > P (U1 \ V (CU1), λ) when λ > (1 + √
5)/2.

Since U1 − u − u1 is a proper subgraph of U1, we know that λ1(U1) > λ1(U1 −
u − u1). Thus, when λ � λ1(U1) (>(1 + √

5)/2), we have P(U1, λ) > P (U2, λ).
So the Claim is established.

By the above Claim, if U2 ∼= U1
2k or U2 ∼= U2

2k , then we have the result by Theorem
3.3. Otherwise, the graph U2 satisfies |V (CU2)| � 4, and then the transformations
above can be carry out on U2 similarly. This procedure continues until the resulting
graph is one of U1

2k and U2
2k . So the result follows by Theorem 3.3.

The proof is completed. �

The next result follows immediately by Theorem 3.3 and the proof of Theorem 3.5.

Theorem 3.6. Let G be a graph in U+
2k, k � 4, and G � U1

2k. Then

λ1(G) � λ1(U
2
2k)

and the equality holds if and only if G ∼=U2
2k, where λ1(U

2
2k) is the largest root of

the polynomial λ6 − λ5 − (k + 2)λ4 + (k − 1)λ3 + (k + 2)λ2 − λ − 1.

Remark. From the table of spectra of the connected graphs on six vertices (see
[7]) we know that U2

6 and U1
6 are the graphs with the largest and second largest

spectral radius in U+
6 , respectively. Also notice that we have U1

4 = S∗
4 . Accordingly

Theorems 3.5 and 3.6 may be restated as follows.

Theorem 3.7. Among the graphs in U+
2k (k /= 3), two graphs U1

2k and U2
2k have the

largest and the second largest spectral radius, respectively.
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[5] D. Cvetković, P. Rowlinson, Spectra of unicyclic graphs, Graphs Combin. 3 (1987) 7–23.
[6] Q. Li, K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sinica 2 (1979) 167–175 (in

Chinese).
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