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Abstract 

A sequence (u,,)~>o is said to be k-automatic if a, is a finite-state function of the base-k 

digits of n. We say a real number is (k,b)-automatic if its fractional part has a base-b expansion 
that forms a k-automatic sequence, and we denote the set of all such numbers as L(k,b). Lehr 
(Theoret. Comput. Sci. 108 (1993) 385-391) proved that L(k,6) forms a vector space over Q. 
In this paper we give a shortened version of the proof of Lehr’s result and, answering a question 
of Bach, show that the dimension of the vector space L(k,b) is infinite. 

We also give an example of a transcendental number such that all of its positive powers 
are automatic. The proof requires examining the coefficient of X” in the formal power series 
(X+X2 +X4 +X8 +. )‘. Along the way we are led to examine several sequences of independent 
combinatorial interest. 

Finally, solving an open problem, we show that the automatic reals are not closed under 
(1) product; (2) squaring; and (3) reciprocal. 

1. Introduction 

Let (cz~)~~o be an infinite sequence over a finite alphabet A. Then we say (cz~)~~O is 

k-automatic if, roughly speaking, a,, is a finite-state function of the base-k expansion 

of n. 
More precisely, we define a deterministic jinite automaton with output (DFAO) to 

be a 6-tuple M = (Q,Z, 6,qo, A, z), where Q is a finite set of states, C is the finite 
input alphabet, 6 : Q x C --t Q is the transition function, qo is the initial state, A is 

the finite output alphabet, and z : Q --+ A is the output function. On input w, the output 
of M is defined to be z(b(qo,w)). (For more information on automata theory, 
see [12].) 
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Then our formal definition of a k-automatic sequence is as follows: the sequence 

(a,),gO is k-automatic if there exists a DFAO such that, for all integers n 30, we have 

7(&90, (n)k)) = 4. If this is the case, then we say that the DFAO generates (an)naO. 

Here (n)k is defined to be the standard base-k representation of n over the alphabet 

C = {O,l,..., k- l}, written with the most significant digit at the left, and with no 

leading zeroes. Note that (Oh = E, the empty string. 

Now let y be a real number, b be an integer >2, and suppose 

’ (mod 11, 

where 0 <ai < b. That is, the sequence (ai)i>O gives the base-b expansion of {y}, the 

fractional part of y. (Technically speaking, we also allow the case where ai = b - 1 

for i 20.) If (ai)i>o is a k-automatic sequence, then we say that y is a (k, b)-automatic 

real number. The set of all such numbers is denoted by L(k, b). 
Lehr [15] proved that L(k, b) is a vector space over the rationals, but his proof 

was somewhat more complicated than necessary. In Section 2, we simplify Lehr’s 

proof, and generalize it somewhat. In Section 3 we give a simple proof that L(k, b) is 

of infinite dimension over Q. In Section 4 we consider the question of producing a 

single transcendental number y such that Q[y] c L(k, b); our proof requires examining 

a(r,n), the coefficient of X” in the formal power series (X + X2 + X4 +X8 + . . .>‘. 

In Section 5 we give one proof that a(r,n) is bounded for each fixed r. The proof 

is based on a relationship to a previously studied sequence that we explore in more 

detail in Section 6. In Section 7, we provide an improved bound on a(r,n), and exhibit 

a relationship with the Catalan tree of J. West. Finally, in Section 8, we show that 

L(k, b) is not closed under product; hence, it is not a ring. 

2. L(k, b) is a vector space over Q 

In this section, we reprove Lehr’s result that L(k,b) is a vector space over the 

rationals. To do this, it suffices to show that if y, y’ are in L(k, b), and n is any 

positive integer, then each of (i) -y, (ii) y/n, and (iii) y + y’ are also in L(k, b). The 

first is easy. The second follows immediately from the observation that long division by 

n is a uniform finite transduction, and Cobham [6, Theorem 41 proved that automatic 

sequences are closed under this type of transduction. The third statement will follow 

from the following slightly more general lemma. 

Lemma 1 (The Normalization Lemma). Let (ai)iao be a k-automatic sequence of 
nonnegative integers bounded by a constant C. Then y = Ci~oaib-i-’ is a (k, b)- 
automatic real number. 

It is perhaps worth noting that this result is not related to the normalization results 

of Frougny (see, e.g., [lo]). 
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Proof. The result is trivial if C < b, for then the digits in the base-b expansion of 
y are precisely ai. The only difficulty occurs when the carries are taken into account, 
since carries may come from arbitrarily far to the right. 

The idea of the proof is as follows: first, in a bounded number of steps, we rewrite 
y = ‘j&ajb-‘-’ in such a way that 0 <ai < b. Next, we show how to perform the 
potential carries resulting from the digits equal to b perform. 

For the first step, define gi = ai mod b, and hi = [ai+l/bJ for i>O. Then clearly 
y f c. rbOa~b-i-l (mod l), where U; = gi + hi. NOW (gi)i>o is easily seen to be 
k-automatic, and the fact that (/I.). 1 13~ is k-automatic follows from a remark of Cobham 
[6, p. 1741. Hence (ai)i,O is k-automatic. 

Now if ai < C for all i > 0, then ui <b - 1 + [C/b]. By repeating this transformation 
at most [logb Cl times, we reach a k-automatic sequence, say (ei)iaO, whose terms are 
all <b, and y E Ci,oeib-i-l (mod 1). 

The second step of the construction involves determining the carry bits that arise 
from the terms of ei that equal b. Define the curry sequence (ci)i>o as follows: 

c,= 1 ifthereexistsj>iwithx,=b-1 fori<t<j,andxi=b; 
I 

C 0 otherwise. 

Then it is easy to see that if f;: = ((ei+ci) modb)i>o, then y z Cibo hb-‘-’ (mod l), 
and 0 <h < b. Thus it suffices to create a DFAO M that generates (ci)i 20. 

Our construction of M = A45 goes in several stages. Let MO = (Q, C, 6, qo, A, z) be a 
DFAO generating (ei)i>o; here Z = (0, 1,. . . , k - 1). First, we create a nondeterministic 
finite automaton (NFA) A41 = (Q’, Z x C, S’, q&F) that, roughly speaking, has two 
nonnegative integer inputs, i and j, and accepts if there exists n, i < n < j, such that 
x,, # b - 1. The inputs i and j are, of course, provided in base-k, with the shorter 
padded by O’s in the front if necessary to make the lengths of the expansions the same. 
The NFA n/l, functions by nondeterministically guessing the base-k digits of n, and 
maintaining the relationship of the current guessed n with i and j. 

The states of A41 are triples of the form [q, U, u], where q E Q and u, u E {< , =}. The 
meaning of the state [q, U, u] is that the guessed expansion of n seen so far would take 
us to state q in MO, and furthermore the relationship of n to the currently seen inputs 
i and j is given by iun vj (e.g., i < n = j). The start state of Ml is qh = [qo, =, =]. 

The transition tinction 6’ is given by 

J’Uq, u, ul, [c,dl) 

’ i&q, Cl> =9 =I if (24, V) = (=, =) 

and c = d; 

[6(q,c),=,<lu[6(q,d),<,=l uUc<z<d[~(q~z)~<~-4 if (u,v)= (=,=I 

< 
= [6(q,d),<,=lUU,,,<,[6(q,z),<,<l 

and c < d; 
if (u, 0) = (<, =); 

L&7, c), =, 4 u Uc<z<k[&7A? <Y <I 

JJO~z<kmwk+4 

if (u, 21) = (=, <); 

if (u, u) = (<, <). 
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Here c should be thought of as the next base-k digit of i; d should be thought of as 

the next digit of j, and z as the “guessed” next digit of n. The set of final states is 

given by 

F = {[w,-4: z(q) # b - 1). 

We leave it to the reader to verify that Ml really behaves as we have claimed. 

Now, using the standard construction, we convert A.41 to a deterministic finite au- 

tomaton (DFA) 442 accepting the same set. Then, by interchanging accepting and 

nonaccepting states of M2, we get a DFA 443 that accepts the base-k representations 

of pairs (i,j) such that for all 12, with i < n < j, we have e, = b - 1. 

Next, we create a new NFA A4 that, on input i, “guesses” the base-k digits of j and 

simulates k4s on input (i, j). Our NFA M4 also simulates MO on input j, and accepts 

iff M3 accepts (i, j) and MO outputs b on input j. Now M4 can be easily coverted to a 

DFAO iUs that (essentially) generates the carry sequence (ci)j>o. We say “essentially” 

because the base-k representation of j may have substantially more digits than that 

of i; hence only those base-k representations of i that have sufficiently many leading 

zeroes will result in the correct output. However, this problem may be easily dealt 

with using a trick of Eilenberg [7, Prop. 3.1, p. 1061. (Or see [18].) This completes the 

proof of the Lemma. 0 

It remains to show that if y, y’ E L(k, b), then y + y’ E L(k, b). To see this, observe 

that (J+ + yf)i>o is k-automatic, and then apply the Normalization Lemma to this 

sequence. 

3. Dimension of L(k, b) over Q 

In the previous section, we saw that L(k, b) is a vector space over Q. Eric Bach 

asked (personal communication), what is the dimension of L(k, b) and what is a basis? 

In this section, we answer the first question; the second is still open. 

Theorem 2. L(k, b) is of inJnite dimension over Cl. 

Proof. For simplicity, we prove the result for k = 2, but the proof can easily be 

modified to handle the general case. 

Consider the formal power series 

f(X)= &Y2” =x+x2+x4+x8+.., 
k>O 

Then it is clear that, for all odd integers r> 1, the number f(l/b’) is a (2, b)-automatic 

real number, since a DFAO generating the base-b expansion of f(l/b’) need only 

output 1 if its input is of the form (~)20*, and output 0 otherwise. 

We claim that the numbers {f(l/b’): Y odd, 2 1) are linearly independent over Q. 

Assume not. Then there exists a finite linear combination 
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(1) 0~Gzuif(l/b2i+1) = 0, 

with ai E Z and not all ai = 0. Let M = maqGiGS [ail. 

Now separate the positive and negative coefficients in Eq. (1) to obtain a new 

equation 

C dif( l/b2’+‘) = C f?if( l/b2’+‘) (2) 
OQiQs OGiQs 

with O<di, ei<M and diei = 0 for O<i<s. 
Now consider the base-b representation of both sides of Eq. (2). Let (g)b = go . glg2 

g3 . + be the representation of the left-hand side, and (h)b = ho . hlh2h3 . . . be the 

representation of the right-hand side. These base-b representations are so sparse that 

for n large enough (it suffices to take II > [log,(2s + 1)1 + log,( 1 + log, M)), the digits 

immediately to the left of position (2i+ 1)2” in (g)b are (di)b, while those in the same 

position in (h)b are (ei)b. It follows that di = ei, and SO di = ei = 0 for O<i<s. This 

gives us the desired contradiction. 0 

4. An infinite-dimensional automatic ring Q[y] 

In the previous section, we proved that the vector space L(k,b) is of infinite dimen- 

sion over Q by exhibiting an infinite set of linearly independent automatic numbers. 

This raises the natural question, does there exist a single real number y whose posi- 

tive powers are all automatic and linearly independent? In this section, we answer this 

question affirmatively. Again, for simplicity, we consider only the case k = 2, although 

our proof can be easily modified to handle the general case. 

Theorem 3. Let y = f(l/b), where f(X) = CaaoX2k. Then every element in Q[y] 
is (2, b)-automatic, and furthermore Q[y] is of injinite dimension over Q. 

Proof. Consider the number y = f(l/b). Then f(l/b) is transcendental, and hence 

the numbers 1, f(l/b),f(l/b)2,f(l/b)3,... are linearly independent over Q. This was 

first proved by Kempner [13]; for a more elementary proof, see [ 141. Thus, if each of 

the powers f( l/b)’ were in L(2, b) for i 22, the desired result would follow. 

To prove that f( l/b)’ E L(2, b) for i > 2, we use the theory of k-regular sequences. 

A sequence of integers (c,),>g is said to be k-regular if its k-kernel 

fGf(c) = {(Q’n+j)n20: rB0; O<j<k’} 

generates a finitely generated module over Z. 

We now use the following theorems about k-regular sequences, as proved in [l]: 

Theorem 4. Every k-automatic sequence is k-regular. 
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Theorem 5. rf G(X) = Ciao giX’ and H(X) = CiBohiXi are both power series 

in H[[X]], and their coefJicient sequences (gi)i>o and (hi)iaO are both k-regular se- 
quences, then SO is the coeficient sequence of G(X)H(X) = Ci+j=n gihjX”. 

Theorem 6. If a k-regular sequence is bounded, then it is k-automatic. 

Now define a(r,n) = [P]f(X)‘, i.e., the coefficient of X” in the formal power 

series f(X)‘. We now need the following lemma, whose proof is postponed until the 

next section: 

Lemma 7. The quantity a(r,n) is bounded by a constant that depends on r, but not 

on n. 

It now follows from Theorems 44 and Lemma 7 that for any given r, the coefficients 

(+-,n>>,do 0 f f(X>’ form an automatic sequence. Then, applying the Normalization 

Lemma, it follows that f( l/b)’ is a (2, b)-automatic real number. Hence Q[y] G L(2, b). 
0 

5. a(r,n) is bounded 

The definition of a(r,n) given in the previous section implies the following inter- 

pretation: a(r,n) is the number of compositions of n as the sum of r integral powers 

of 2. (By “compositions” we mean that summands can be repeated and representations 

that differ only in the order of the summands are counted as distinct.) 

Table 1 gives the first few values of a(r,n). 

To complete the proof of Theorem 3, we must prove Lemma 7: that a(r,n) is 

bounded by a constant that depends on r, but not on n. 
Sections 5-7 of the paper are devoted to two proofs of this fact. Both lead to 

estimates on the size of cI(r,n). The first provides a relationship with a previously 

studied sequence counting the number of partitions of 1 as powers of l/2, and leads 

to the estimate a(r,n) = O(r! .3.6”). The second is inspired by notions of Kolmogorov 

complexity, and leads to a better bound of cc(r,n) = O(r! .2’). 

Table 1 

r\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

11101000100000 0 0 1 
20 12 122 0 12 2 0 2 0 0 0 1 
300133463 3 6 64 6 6 0 3 
4 0 0 0 1 4 6 8 13 12 10 16 18 16 20 24 13 
5 0 0 0 0 1 5 10 15 25 31 30 40 50 50 60 75 
6 0 0 0 0 0 1 6 15 26 45 66 76 96 126 140 165 
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In this section, we provide the first proof. We first show (Theorem 9) that any 

composition of n as the sum of powers of 2 can be “decomposed” into groups of 

terms, each of which sums to one of the powers of 2 appearing in the standard base-2 

representation of n. It then suffices to bound CI(Y,~) where n is a power of 2. Next, 

we show (Lemma 11) that any composition of 2j as the sum of Y powers of 2 cannot 

include any terms smaller than 2 - j r+l From this, we can conclude that c((~,n) is . 

bounded for each r. 

The claims in this section were obtained with the assistance of Anna Lubiw. 

Lemma 8. Let x0,x1,x2,. . .,a7 be positive integers such x0 ~~13x2 2 . ’ ’ ax,, 

Cl$i<rXi ax02 and xi+ 1 1 xi for 0 < i < r - 1. Then there exists an index b, 1 < b < r, 

such that Clgi<bxi = ~0. 

Proof. Suppose not. Then there exists an index s, O<s < r, such that 

C Xi <X0 (3) 
1 Ci<s 

and 

c Xi > X0. (4) 
1 gigs+1 

If s = 0, then xi > x0, a contradiction. Hence 1 <s < r. 

Now xs 1x0, and XS I Cl<i<sXi, ~0 -G 1x0 - c lGigsxis It follows from Eq. (3) that 

xO-Cl<i<s 1 x,2x,. But, since x,+1 <xs, we have x0 - CiQi<sxi>~s+i, which contra- 

dicts Eq. (4). 0 

Theorem 9. Let n 2 0 be a positive integer, and express n as a sum of distinct powers 
of 2, i.e., n = 2a1 + 2a2 + . . . + 2@ where al < a2 < . . . < a,. Then if there exists a 
multiset S of nonnegative integers such that n = CsES 2’, then S can be partitioned 
into t disjoint submultisets S1, S2,. . . , S, such that 2al = ‘&, 2s for 16 i < t. 

Proof. By induction on t. Clearly the result is true for t = 1. Now assume it is true 

up to t - 1; we prove it for t. 

Consider the equality n = 2”’ ++ . . +2O’ modulo 2al+1. Then n = 2@ (mod2”lf1). Let 

U be the multiset defined by taking all elements <aI from S. Clearly CuEU 2” = 2=’ 

(mod2”‘+‘). Now let x1,x2 , . . . ,x, be the elements of U, written in decreasing order, 

and note that CIGiGr 2& > 2a’. It then follows from Lemma 8 that there is an index b 
such that Cisi..b2XI = 2”. 

Now define n’ = n - 2a’1 and S’ = S - {xi,. . . ,xb}. Then xsES, s = n’, and, since n’ 
has one fewer power of 2 in its base-2 expansion than n does, it follows by induction 

that there exist t - 1 disjoint subsets S2,. . . , S, such that 2a1 = CsES, 2’ for 2 d i < t. 
Now put Si = {xi , . . . ,xb}, and the theorem is proved. •i 
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Lemma 10. DeJine q.(n) to be the sum of the bits in the base-2 expansion of n. 
Then if there exist nonnegative integers q,cz,.. . , cj (not necessarily distinct) such 
that n = 2’1 + 2’2 + . ’ . + 2’1, we must have j >sz(n). 

Proof. Clear. Cl 

Lemma 11. Suppose cl, ~2,. . . , cj, m are nonnegative integers such that cl <c2 < ’ ’ ’ 

<cjand2”=2C’+...+2C~. Thenclam-jfl. 

Proof. We have 2m - 2c1 = 2c2 + . . . + 2c~ and ~(2~ - 2cl) = m -cl. By Lemma 10, 

we have j - 1 Zm - cl, and the result follows. 

Lemma 12. Let U(r,m) denote the number of compositions of 2m as a sum of r 

powers of 2. Then U(r, m) <Y’. 

Proof. By Lemma 11, we know that any such composition of 2”’ must use only the 

powers 2m, 2m-‘, . . . , 2”‘++’ Thus, at most r different powers of 2 can be used, and . 

each power might potentially appear in any one of r different places. This gives the 

bound. q 

Note that the bound U(r, m) <r-r may be easily improved to (Y - 1)’ for r >2, by 

observing that 2”’ cannot be used in any composition of 2”’ as a sum of 2 or more 

powers of 2. 

We can now complete the first proof of Lemma 7, and prove that a(r,n) is bounded. 

If s2(n) > I, then by Lemma 10, it follows that a(r,n) = 0. If sz(n)<r, then by 

Theorem 9 we can express n in base 2, say n = 2” +. . . + 2@, and consider separately 

the composition of each 24. By Lemma 12, there are at most r’ compositions for each 

2al, and since t < r, there are only a finite number of compositions of n as the sum of 

r powers of 2. 0 

6. Representations as sums of powers of two 

In the previous section, we introduced U(r,m), the number of compositions of 2m 

as a sum of r powers of 2. Table 2 is a brief table of U(r,m). 
The table suggests that U(r,m) is eventually constant, as m gets large. This is clearly 

true, since for m >r - 1, any composition of 2m corresponds in a l-l fashion with a 

composition for 2”” (m’ > m), by multiplication by the appropriate power of 2. This 

suggests defining U, = U(r,r - 1). Table 3 is a table of U,. 

We may improve the result of Lemma 12 still further by studying the unordered 

analogue of U(r,m). Let V(r,m) denote the number of partitions of 2”’ as a sum 

of r powers of 2. (By “partition” we mean that summands may be repeated, but 

representations that differ only in order of the summands are regarded as identical.) 

Then clearly U(r, m) < r! V(r, m). 
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Table 2 

rim 0 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 1 
2 0 1 1 1 1 1 1 1 1 

3 0 0 3 3 3 3 3 3 3 

4 0 0 1 13 13 13 13 13 13 

5 0 0 0 15 75 75 75 75 75 

6 0 0 0 15 165 525 525 525 525 

Table 3 

r ur 

1 1 

2 1 
3 3 

4 13 

5 75 

6 525 

7 4347 

8 41245 

9 441675 

10 5259885 

11 68958747 

12 986533053 

13 15292855019 

14 255321427725 

15 4567457001915 

We now relate V(r,m) to a quantity that has been previously studied by many 
authors: namely, H,., the number of partitions of 1 as the sum of r powers of l/2. 
Such a partition of 1 gives rise (by multiplication by an appropriate power of 2) to 
a partition of 2m as a sum of I powers of 2. The converse also holds. It therefore 
follows that V(r,m) <H,, and indeed V(r,m) = H, for m >r - 1. (This idea also 
suggests another way of expressing U,, as the ordered analogue of H,.: the number of 
compositions of 1 as a sum of r powers of l/2.) 

Many other authors have studied the sequence 

(K),>I = (1,1,1,2,3,5,9,16,28,50,89 ,... ), 

which arises in coding theory [2,11,4,3]; computing prefix codes for trees [8]; enu- 
meration of elements in groupoids [16]; and algebraic topology [5,9,20]. It is Sloane’s 
sequence #261 [19]. 

It is known [4,9] that H, N K . vrel, where K A 0.25451 and v A 1.79415. Hence 
we have the following improved bound for U, and U(r,m): 

Theorem 13. There exists a constant K’ such that U(r, m)< U, <K’ . r! . 1.8’. 
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It would be of interest to determine the asymptotic behavior of U,. Numerical ev- 

idence suggests that perhaps U, N A . r! . B’, where A G 0.2487 and B A 1.1926. 

(N.J.A. Sloane was kind enough to send us a copy of a letter dated 22 July 1975 from 

D.E. Knuth to R.E. Tarjan. In this letter Knuth studies U,. and suggests that “something 

like” U, - qrrpcz should be true for constants cl, c2.) 

Now define W,. = max,,gs a(r,n). We have 

Theorem 14. There exists a constant K2 such that W,. <Kz . r! .3.6’. 

Proof. It follows from the proof of Lemma 7 that a(r,n) achieves its maximum when 

the base-2 expansion of n is of the form 

for some i, 1 <i<r. (It may also achieve this maximum at other strings.) For by 

Theorem 9, we may consider separately the representations for each power of 2 in 

the binary expansion of n, and by Lemma 11, the representation for 2” uses only the 

terms 2”,2”-’ . , . . ,2+“+‘. To maximize cL(r, n), we can assume that the ranges of the 

representations for the various powers of 2 that appear in the binary representation of n 

do not overlap; for duplicate occurrences of the same power of 2 would lead to fewer 

compositions. This gives us a way to estimate W,, using the previously cited bound 

for H,. 

There are (:I:) compositions of r as the sum of i positive integers, r = 61 + bz 
+ . . .+bi. For each such composition, we can partition 2i(‘-*) (1 <j < i) into bj powers 

of 2 in Hbl different ways. Finally, once an unordered representation for n is chosen, 

it may be re-ordered in at most r! ways. This gives the bound 

W, 6 r! max 
l<i<r 

Q K2 . r! ’ 3.6’, 

where KI, K2 are constants. 

It would be of interest to 

. Kl . 1.8’ 

0 

determine the true asymptotic behavior of W,.. Numerical 

evidence suggests that perhaps W, N C. r! . D’, where C A 0.131 and D A 1.686. 

Table 4 is a table of W,, which was calculated by using a product formula based on 

the analysis just given, and the enumeration method for the partitions of 1 as powers 

of l/2 given in [8]. 



S. Lehr et al. I Theoretical Computer Science 163 (1996) 193-210 203 

Table 4 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 

2 

6 

36 

270 

2520 

28560 

361200 

5481000 

88565400 

1654052400 

32885455680 

721400359680 

17024709461760 

7. An improved bound on a(r,n) 

In this section, we give another proof of the fact that cl(r,~t) is bounded, for each 

fixed r. This proof provides a better estimate for M(T,IZ). 

The idea of the proof is to encode each sequence of r powers of 2 adding up 

to n as a pair of sequences characterizing the additions in binary notation. Suppose 
n=2il+2j2+.. .+2jr. Define ni =2jl +.. . + 2h, the ith partial sum, and consider 

the addition ni = ni-i + 2) in base-2: 

Xi 0 Id’ yi = ?Zi-1 

+ 1 OA = 2A 
(5) 

Xi 1 Od’ yi = ni 

Define ai to be the number of l’s in the string xi, and bi = sz(ni), the number of 

l’s in the binary expansion of Iii. Then 

0 < Ui < bi, (6) 
1 < bi < bi-1 + 1. (7) 

Given ni, the addition (5) is completely determined by ui (which determines the 1 where 

carry propagation ends) and bi-i (which gives the “carry distance” di as bi_i + 1 - bi). 

It follows that the sequence (2j1,2jz,. . . , 2jr ) is completely characterized by the pair of 

sequences 

ai = 0, u2, . . .) a,-1, a,; 

b, = 1, b2, . . . , b,_l, b,. 

We can relate these (a, b)-sequences to the Catalan tree T, defined as follows: the 

root of T is labeled 1, and each vertex labeled i has i+ 1 children labeled 1, 2, . . , i + 1. 

(This tree, up to a relabeling, was studied previously by West [22,21,23], who observed 
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Fig. 1. Levels O-3 of the Catalan tree T. 

Table 5 

d\i 1 2 3 4 5 6 7 8 

0 1 

1 1 2 

2 3 6 6 

3 15 30 36 24 

4 105 210 270 240 120 

5 945 1890 2520 2520 1800 720 

6 10395 20790 28350 30240 25200 15120 5040 

7 135135 270270 374220 415800 378000 272160 141120 40320 

that the number of vertices at depth d is the (d + 1 )st Catalan number, (2dd++:)/(d + 2).) 

Let the weight of a vertex u be the product of all labels on the path from the root to 

u, and let w(d, i) be the sum of the weight of all vertices labeled i at depth d. 

Levels O-3 of T are given in Fig. 1. Note that each sequence bt , . . . , b, satisfying (7) 

corresponds to a path from the root to a vertex v at depth r - 1, and the weight of the 

vertex v equals the number of possible sequences al,. . . , a, satisfying (6). This gives 

us the upper bound a(r,n)<maxlGjG,w(r - l,j)<w(r,l). The bound is not sharp; 

for example, only 2 of the 4 a-sequences are feasible for the b-sequence 1,2,2, 1. The 

reason is that the two l’s in rr3 must be adjacent to allow a carry distance of 2 from 

n3 to n4, hence the carry from n2 to n3, having distance 1, can only go into one of 

these 1 ‘s. 

We can compute w(d, i) by defining w(d, 0) = 0 for all d, and using the following 

recurrence relation: 

w(d,i) = i C w(d - 1,j). (8) 
i--lgjgd 

Table 5 gives the first few values of w(d,i). 

We now prove the following formula for w(d, i) : 

Theorem 15. We have 

w(d, i) = 
i(2d-i+l)! 

2d-i+l(d _ j + I)!’ 
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Proof. First, we prove the following lemma: 

Lemma 16. For all integers n, d 20 we have 

205 

Proof. By induction on n. 

d(y) - 2d. (‘“,-‘) = 0. 

For n = 0 the left side is 0, while the right side is 

Now assume true for n; we prove it for n + 1. We have 

c 
O<j<n+l 

j.2j. (‘“,-1, ‘) 

= CZGj.2j. (2d;j;l)) +@+1).2”+‘. (27:;2) 

=d(~)+2”++z+l)(2d~~~2)-d(2d-~-l)) 

(by induction) 

Now we can prove Theorem 15, by induction on d. The base case, d = 0, is left to 

the reader. Assume the result is true for d - 1. Then we have 

w(d,i) = i C w(d - 1,j) 
i-1 Qj<d 

j(2d-j- l)! 
= ii_ls,d 2d_j(d _ j), (by induction) 

- i’d; l)l&j .2j. ( 2dd-A; ‘> 

i(d - l)! 
ZZ 

2d 
.d.2’-1.(2dFdi’1) (byLemma 16) 

i(2d - i+ l)! 
= 2d-i+I(d _ i + I)!’ 

That completes the proof. 0 

It now follows, for example, that w(d - 1,d) = d!, and w(d,d) = (d/2)(d + l)! = 

(-l)d+1&+l,2, where Ld,, iS a Lah number; see [17, pp. 43-441. 

By setting i = 1, it now follows that w(d, 1) = (2d)!/(zd . d!). (There is also a 

beautiful combinatorial proof of this fact, which is based on a l-l correspondence 
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between (a, b)-sequences and perfect matchings on the complete graph on 2d labeled 

vertices. ) 

We have therefore proved the following theorem: 

Theorem 17. IV,. = rnaxnaO c((Y,I~) exists and we have 

w, <w(r, 1) = $$ N 2’ . r! . (7q1’2. 

8. L(k, b) is not closed under product 

At the “Themate” conference in Luminy in May 1993, Lehr raised the question of 

whether or not the automatic real numbers form a ring, i.e., are they closed under 

product? In this section we resolve this open problem by exhibiting a counterexample. 

It follows that L(k, b) is not closed under squaring or taking the reciprocal. 

Theorem 18. L(k, b) is not closed under product. 

Proof. For simplicity we prove the result only for k = 2, although the methods can 

easily be extended to cover the general case. 

As before, we define 

f(X)= &P=X+P+P+.... 
r>O 

We also define 

=x+x2 +x3 +x4 +x6 +x7 +x8 +P2 +x14 +X15 +x16 

As before, if y = f( l/b), then y E L(2, b). Similarly, if z = g( l/b), then z E L(2, b), 
since the base-b representation of z has l’s in those positions whose base-2 represen- 

tations are given by the regular set 1 +O*. We will show that yz $! L(2, b). 
First, note that 

f(X)CU) = 
c x2r .x(2”-1)2” = c X2r+(2m-l)2” 

m>l,n>O,r>O m>l,n>O,r>O 

= 
c 

X2r+(2m-l)2” + 
c 

x2’+(2”- 1)2” 

rin r=lI 
m>l,naO,r~o m>l,n>O,r>O 

+ gn x2r+(2m-1)2” 

m>l,nkO,r>O 

= S(X) + T(X) + U(X). 
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Second, note that 

W)= c x2’+(2*- 1)2” = 

FitI 

rg /-y2’(1+2”-‘(2’-1)) 

mal,n~O,r30 m>l,n>O,r~O 

= c x 2’(l+2P(2m-l)) _ _ c *2y2p+m-2p+l) 

m>l,p3l,r>O m>l,p>l,r>O 

NOW (2”(ZPfm - 2J’ + 1))~ = lm OP-’ 1 O’, so it follows that S(X) = Ci~o~$?, where 

{ 

1 if (92 E l+ 0* 1 O*; 

si = 0 otherwise. 

Hence (Si)iao is a 2-automatic sequence, and therefore 8(1/b) E L(2,b). 

Third, note that 

U(X) = gn pr+(2m-l)2” = jg x2’(2”+2m-l) 

ma1,nao,r>o m~l,n~O,r~O 

c x2724+2m-l). 

ma1,n>o,q>1 

Now 

{ 

1 Oq-” lm 0” if m < . 4, 

(2”(24 + 2m - 1))2 = lm+l 0” if m = q; 

1 Ommq lq 0” if m > q. 

Hence U(x) = Ciao UiX’, where 

Ui = 

I 

2 if (i)2 E lO+ l+O*; 

1 if (i)2 E 1 I+ O*; 

0 otherwise. 

It follows that (Ui)i>o is a 2-automatic sequence, and, by the Normalization Lemma, 

we have U( l/b) E L(2, b). 

Finally, note that 

T(X) = & X2r+(2m-1)2” = c X2’(l+2m-l) 

m21,nd0,r~0 
r>O,m>l 

= r>o;>lX2m+r = n-l rlx2”. 
Y, A 

Now consider the base-b expansion of T( l/b), say (T( l/b))b = 0. coclc2 . . . . Evidently 

the base-b digits immediately to the left of position 2” are just (n)b. It follows that 

every element of (0, 1, . . . , b- 1 }* eventually appears as a factor of the infinite sequence 

c = COClC2.. . 
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If we define the subword complexity pd(n) of an infinite sequence d = (di)igO to be 
the number of distinct factors of length n which appear in d, then we have shown 
that pc(n) = b”. But, by a result of Cobham [6], if c were k-automatic for any k, we 
would have p&n) = O(n). This gives a contradiction, and so T( l/b) 4 L(2, b). 

It follows that yz $! L(2, b), since yz = S( l/b) + T( l/b) + U( l/b). q 

Theorem 19. The set L(2, b) is not closed under the map x + x2. 

Proof. Suppose it were. Then, since 

YZ = i((Y + z)2 - (Y - z)2), 

we would have that L(2, b) is closed under product, a contradiction. 0 

Actually, using the same method as used to prove Theorem 18, we can prove the 
following: 

Theorem 20. We have g(l/b)2 $ L(2, b). 

Proof. Since the proof is similar to that used for Theorem 18, we just give an outline. 
The idea is as follows: we observe that 

S(x)2 = C Yjxj, 
j>O 

where Yj = l{(p,q,r,s) : p, qal; Y, ~30; h(p,q,r,s) = j}l, and h(p,q,r,s) = 

2’(2p - 1) + 2’(2q - 1). Now, by considering the various possible orderings between 

Table 6 

Case Subcase h(p,q,r,s) Term definition 

r=s p=q 

p>q=l 

[lP OS+‘]* 

[l op+q2 

aj = 1 if (j)2 E l+ O+; 

0 otherwise. 

b/- = t if(j), = 10’; 

0 otherwise. 

p>q>l [l op--4 14-l os+‘12 Cj = 1 if(j), E 1 Of l+ O+; 
0 otherwise. 

r>sqir-s [lP 0+-s--g 14 OS]2 dj = 1 if(j), E l+ 0+ l+ O*; 
0 otherwise. 

q=r--s [lp+q 072 ej = t - 1 if (j)2 E l’O*; 

0 otherwise. 

r - s < q <p + r -s [lOP+r--s--q 1q--r+s--L 0 I’-s Oq2 fj = 1 if(j)zElO*l*Ol+O*; 

0 otherwise. 

q > p+r-s [lOq-_p+s--r IP_-lO I’-$ oq2 
Sj = 

1 if(j)zElO+l*Ol+O*; 
0 otherwise. 
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P, 4, r,s, and Using symmetry, we see that, for j >O, we have 

yj = aj + 2bj + 2cj + 2dj + 2ej + 2fj + 2qj, 

where (aj)j,o, (bj)j>o,. . * 3 (gj)jao are defined according to Table 6. The first two 
columns of the table provide the particular restrictions on p, q, r, s (keeping in mind 
that we always have p, q B 1 and r, s > 0). The third column provides the binary expan- 
sion for h(p, q, r, s) under the given restrictions on p, q, r, s. Finally, the last column 
gives the implied value for aj, . . . , gja 

Clearly, all seven of these sequences are bounded and 2-automatic, with the exception 
of (bj)jao and (ej)jao. TO show g(l/b)2 4 L(2, b), it suffices by the Normalization 
Lemma to show that y’ = cj>o(bj + ej)b-j $ L(2, b). But this again follows from an 
argument on the subword complexity of the base-b expansion of y’, since the digits 
immediately to the left of position 2p(24 - 1) in y’ are (for p sufficiently large) just 
the base-b representation of q - 1. Hence the result again follows by the result of 
Cobham [6]. 0 

Theorem 21. The set L(2, b) is not closed under the map x + l/x. 

Proof. Suppose it were. Then, since 

y2=y+ 
1 

ll(Y - 1) - l/Y’ 

we would have that L(2, b) is closed under squaring, a contradiction. 0 
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