
Journal of the American College of Cardiology Vol. 63, No. 22, 2014
� 2014 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00
Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jacc.2014.01.049
Myocardial Bridging

Contemporary Understanding of Pathophysiology With
Implications for Diagnostic and Therapeutic Strategies

Michel T. Corban, MD,* Olivia Y. Hung, MD, PHD,* Parham Eshtehardi, MD,*

Emad Rasoul-Arzrumly, MD,* Michael McDaniel, MD,* Girum Mekonnen, MD, MPH,*

Lucas H. Timmins, PHD,y Jerre Lutz, MD,* Robert A. Guyton, MD,z Habib Samady, MD*

Atlanta, Georgia
P

From the *Andre

Department of M

yWallace H. Cou

of Technology an

Cardiothoracic Su

Medicine, Atlanta

National Research

supported by a g

the National Insti

an American H

Dr. Guyton is a co

from Volcano Corp

authors have repor

paper to disclose. D

Manuscript rece

2014, accepted Jan
atients with myocardial bridging are often asymptomatic, but this anomaly may be associated with exertional
angina, acute coronary syndromes, cardiac arrhythmias, syncope, or even sudden cardiac death. This review
presents our understanding of the pathophysiology of myocardial bridging and describes prevailing diagnostic
modalities and therapeutic options for this challenging clinical entity. (J Am Coll Cardiol 2014;63:2346–55)
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Coronary arteries that tunnel through the myocardium
are seen in as many as 40% to 80% of cases on autopsy;
however, functional myocardial bridging is less commonly
observed on angiography (0.5% to 16.0%) and can range
from 4 to 80 mm in length (1–4). Although myocardial
bridges can be found in any epicardial artery, 67% to 98%
occur in the left anterior descending coronary artery
(LAD) (5,6). Bridges have been described as superficial
or deep on the basis of 3 observations: 1) they range from
0.3 to 28 mm in depth (4,5); 2) anatomically they consist
of either superficial myocardial fibers that traverse over
the LAD or deep fibers that encircle the LAD (5,7); and
3) bridges >5 mm deep are less amenable to surgical
myotomy (8). The hemodynamic impact of myocardial
bridging depends on the thickness and length of the bridge,
the orientation of the bridge relative to myocardial fibers,
and the presence of loose connective or adipose tissue around
the bridged segment.
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Pathophysiology

Autopsy and intravascular ultrasound studies have shown
that the intramural and distal segments of bridged vessels
remain free from atherosclerotic disease while the proximal
segment of the vessel is prone to developing atherosclerosis
(9,10). Biomechanical forces may explain these observa-
tions. At the entrance of a myocardial bridge, fluid me-
chanics play an important role in plaque formation because
disturbed near-wall blood flow patterns are a central factor
in the spatial distribution of atherosclerosis (11,12). Low
and oscillatory wall shear stress (WSS) are associated with
increased expression of vascular cell adhesion molecule 1
(11,13) and reactive oxygen species production (14) as well
as the development of a proatherogenic endothelial cell
phenotype (12). Indeed, autopsy studies have shown
that coronary segments immediately proximal to myocar-
dial bridges, where WSS is low, have structurally
dysfunctional, flat and polygonal endothelial cells, whereas
endothelial cells lining bridged segments, where WSS is
physiological or high, are structurally intact (15). Clinical
studies in patients with mild atherosclerosis but without
bridging have shown greater plaque progression in seg-
ments with low WSS compared with physiological or high
WSS (16). In a case-control series comparing patients who
had bridging with control patients (17), the wall shear rate,
which is the velocity gradient perpendicular to the wall,
was found to be lower proximal to the bridge compared
with within the bridge.

Figure 1 shows a computational fluid dynamics model at
end-systole of the LAD in a patient with a symptomatic
myocardial bridge revealing an area of relatively low WSS
proximal and distal to the bridge and high WSS within
the bridge. Enhanced myocardial compression at the bridge
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entrance also results in abrupt breakage of the propagating
antegrade systolic wave, disrupting blood flow patterns,
exacerbating the low WSS, and intensifying endothelial
injury and the stimuli for plaque formation (18). Another
proposed mechanism of plaque formation proximal to a
myocardial bridge involves solid mechanical forces that result
from the motion and deformation of the coronary tree and
myocardial material properties. Specifically, compression
within the bridge and severe vessel angulation at the junction
of the bridge result in a heterogeneous stress field in the
proximal segment. The induced stresses are hypothesized to
be conducive to plaque development and possible fissuring
in the proximal segments (18).

Within the bridge, increased mechanical loads likely
contribute to constrictive vascular remodeling as an attempt
to restore loads to homeostatic levels (19). These mecha-
nisms are amplified with diastolic dysfunction that occurs
with left ventricular hypertrophy. In addition, separation of
the bridged segment from perivascular adipose tissue in the
epicardium that is associated with proinflammatory cyto-
kines and adipokines may be a protective mechanism against
the development of atherosclerosis (20). These factors likely
contribute to plaque formation proximal to myocardial
bridges and exert an atheroprotective role within the bridge.
The relative lack of atherosclerosis observed distal to
myocardial bridges despite the presence of low WSS is not
well understood. Clearly, complex and dynamic biome-
chanical factors influence the blood flow within and at the
exit of the bridge that in aggregate appear to attenuate the
proatherosclerotic stimulus of low WSS observed distal to
the bridge.

Additional pathophysiological changes can induce symp-
toms of myocardial ischemia in previously asymptomatic
Figure 1
Relative WSS Profile of the LAD in the Context of
Myocardial Bridging

Relative WSS profile of a 3-dimensional angiographically reconstructed LAD during

systole from a patient with myocardial bridging. Coronary segments proximal and

distal to the myocardial bridge show relatively low WSS compared with the bridged

segment. LAD ¼ left anterior descending coronary artery; S1 ¼ first septal branch;

WSS ¼ wall shear stress. Image created by Craig Skaggs.
patients (Fig. 2). First, increasing
left ventricular diastolic dysfunc-
tion associated with aging, hyper-
tension, and coronary atherosclerosis
can exacerbate the supply-demand
mismatch imposed by the bridge.
Second, development of left ven-
tricular hypertrophy can increase
compression and reduce the cor-
onary microvascular reserve. Third,
coronary vasospasm, microvascular
dysfunction, or endothelial dys-
function related to cardiovascular
risk factors combined with the
bridge can result in myocardial
ischemia. Fourth, plaque devel-
opment proximal to the bridge
Figure 2
Schematic Diagram of the Effects of Aging on the
Myocardial Bridge

(A) Heart with myocardial bridging, early stage. (B) Longitudinal view of the

bridged vessel. (C) Cross-sectional view of the vessel in the middle of the

myocardial bridge. (A0) Heart with myocardial bridging, late stage, with ventricular

hypertrophy and diastolic dysfunction. (B0) Longitudinal view of the bridged vessel,

with hypertrophied muscle and plaque progression proximal to the bridge.

(C0) Cross-sectional view of the vessel in the middle of the myocardial bridge

showing hypertrophied muscle and negative remodeling of the vessel with

decreased lumen diameter. Images created by Clare Wang and Craig Skaggs.



Table 1 Diagnostic Modalities for Myocardial Bridging

Diagnostic Technique Diagnostic Sign Advantages Disadvantages

Quantitative coronary angiography Milking effect Commonly used
Cornerstone technique
Anatomic assessment

Invasive
No physiological value

Intravascular ultrasound Half-moon Identify
� Proximal plaque
� Negative arterial remodeling
� Extent of phasic arterial compression

Not commonly used
Invasive
No physiological value

Intracoronary Doppler measure
(with pharmacological infusion)

Fingertip Hemodynamic evaluation of
� Proximal plaque
� Negative remodeling
Simulation of dynamic myocardial obstruction
Endothelial function testing/coronary vasospasm

assessment

Longer procedural time
Invasive
Pharmacological side effects
No established FFR cutoff with

adenosine or dobutamine
Off-label use of acetylcholine

Intracoronary pressure measure
(with pharmacological infusion)

Hemodynamic limitation
(FFR <0.75 to 0.8)

Multiple-slice computed tomography Completely or partially surrounded
coronary segment by myocardium
on axial and multiplanar reformatted
images

Superior to angiography
Noninvasive
Promising physiological value in the near future

Not readily available
Radiation exposure

Single-photon emission
computed tomography

Reversible stress-induced myocardial
perfusion defect in the absence of
angiographic coronary artery disease

Physiological assessment of myocardial bridge
stress-induced ischemia

Not readily available
Radiation and contrast exposure

Contrast stress echocardiography Reversible perfusion defects in
angiographically normal arteries

Readily available
Noninvasive
Physiological assessment

No anatomic value
Contrast exposure

FFR ¼ fractional flow reserve.
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can augment coronary obstruction by the bridge. Fifth, the
negative remodeling within the bridge can reduce myocar-
dial flow. Each of these factors can contribute to a varying
degree to the development of symptoms in patients with
myocardial bridging.

More recently, it has been recognized that myocardial
ischemia is not purely related to systolic vascular compres-
sion. Indeed, systolic vessel compression has been shown to
persist into mid-to-late diastole (2). The hemodynamic
disturbance imposed by this persistent diastolic luminal
narrowing was corroborated by increases in both average
Figure 3 “Milking Effect” in Coronary Angiography

(A) Systolic compression of myocardial bridges: the “milking effect.” (B) Subsequent inc

myocardial bridging.
peak flow velocity and average diastolic peak flow velocity,
with only minor changes in systolic blood flow within the
bridged segment of the coronary artery. These data suggest
that both systolic and diastolic flow impairment contribute
to myocardial supply-demand mismatch in patients with
myocardial bridging.

Clinical Presentation

Although myocardial bridging can be an incidental finding
on angiography or autopsy, symptomatic patients who have
rease in vessel lumen diameter during diastole. White arrows indicate areas of



Figure 4 Systolic Narrowing at the Myocardial Bridge Accentuated by Intracoronary Nitroglycerin

(A) Systolic compression of the myocardial bridge at baseline. (B) Systolic narrowing at the myocardial bridge accentuated by intracoronary injection of nitroglycerin.

White arrows indicate the area of myocardial bridging.
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myocardial bridges as their only cardiac abnormality may
present with myocardial ischemia (21), acute coronary
syndromes (22–24), coronary spasm (21,25), exercise-
induced dysrhythmias such as supraventricular tachycardia
(24), ventricular tachycardia (26,27) or atrioventricular
conduction block (28), myocardial stunning (29), transient
ventricular dysfunction (30), syncope (24,27), or even
sudden death (31,32).
Figure 5 Intravascular Ultrasound “Half-Moon” Sign

In this example of the “half-moon” sign, the echolucent area is present only

between the bridged coronary segment and the epicardial tissue.
Diagnosis

A number of diagnostic modalities have been used to
investigate the anatomic and physiological significance of
myocardial bridging (Table 1). Because of the lack of a true
gold standard for diagnosing myocardial bridging, the re-
ported diagnostic accuracies are variable.
Noninvasive diagnostic techniques. Multiple-slice computed
tomography (MSCT), stress single-photon emission
computed tomography, and stress echocardiography have
been used in the diagnosis of myocardial bridging. MSCT
defines bridges as segments surrounded by myocardium
(33). Recent developments allowing for physiological
assessment by MSCT may enhance its diagnostic utility
for identifying hemodynamically significant bridges.
Stress single-photon emission computed tomography can
detect reversible myocardial perfusion defects in patients
with myocardial bridging and relate the amount of
ischemia to the degree of systolic luminal narrowing
(34,35). Contrast stress echocardiography has been used
for detection of myocardial bridging but is not as well
validated (36).
Invasive diagnostic techniques. On angiography, diag-
nosis depends on the change in diameter between systole
and diastole within the bridged coronary segment. A sig-
nificant “milking effect” (Fig. 3) is present when there
is �70% reduction in minimal luminal diameter during
systole and persistent �35% reduction in minimal luminal
diameter during mid-to-late diastole (2). Systolic narrowing
at the bridge can be accentuated by intracoronary injection
of nitroglycerin by vasodilating adjacent nonbridged coro-
nary segments (Fig. 4) (9,37).

Adjunctive intravascular imaging and physiology can
contribute to our clinical evaluation and understand-
ing of the complex pathophysiology of bridging. On



Figure 6 Fingertip Phenomenon During Intracoronary Doppler Measurements

(A) Example of a normal flow pattern. (B) Example of the “fingertip” phenomenon, a characteristic velocity profile showing abrupt early diastolic acceleration, rapid mid-diastolic

deceleration, and mid-to-late diastolic plateau.
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intravascular ultrasound the characteristic finding is the
“half-moon” sign, an echolucent area present only bet-
ween the bridged coronary segment and epicardial
tissue that persists throughout the cardiac cycle (Fig. 5)
Figure 7 Intracoronary Hemodynamics From a Patient With Myocard

Coronary blood velocity (blue tracing), proximal pressure (Pa) (red tracing), and distal pr

Blue circles indicate the portions of the tracings magnified above each circle. (A) Adeno

(B) Dobutamine (60 mg $ kg�1$min�1): FFR ¼ 0.82, APV ¼ 38 cm/s, HR ¼ 122 beats/mi
(9). Additionally, intravascular ultrasound can charac-
terize subangiographic atherosclerosis proximal to bridges.

Coronary physiological measurements across a myocardial
bridge during pharmacological infusion can be valuable for:
ial Bridging

essure (Pd) (yellow tracing) measurements from a patient with myocardial bridging.

sine (140 mg $kg�1$min�1): FFR ¼ 0.83, APV ¼ 28 cm/s; HR ¼ 96 beats/min.

n. APV ¼ average peak blood velocity; FFR ¼ fractional flow reserve; HR ¼ heart rate.



Table 2
Schwarz Classification for Myocardial Bridges and
Treatment

Schwarz
Type Criteria

Objective
Signs of
Ischemia Treatment

A Incidental finding on
angiography

� None

B Ischemia on stress test þ BB or CCB

C Altered intracoronary
hemodynamics
(quantitative coronary
angiography/coronary
flow reserve/Doppler)

þ/� BB or CCB
and/or
revascularization

BB ¼ beta-blocker; CCB ¼ calcium channel blocker.
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1) evaluation of the hemodynamic significance of fixed
obstruction associated with the bridge; 2) simulation of
dynamic myocardial obstruction that could contribute to
ischemic symptoms; and 3) unmasking concomitant en-
dothelial dysfunction or coronary vasospasm within the
bridged segment that could also be clinically relevant. The
bridged segment produces a distinctive flow velocity called
the “fingertip” phenomenon (Fig. 6). The abrupt accelera-
tion in velocity in early diastole results from a decrease in
distal microvascular resistance as the myocardium untwists
during isovolumetric relaxation concomitant with con-
tinuing myocardial compression of the bridged coronary
segment. A rapid deceleration in velocity ensues as the
bridge muscle relaxes and the cross-sectional area of the
lumen increases. The velocity plateaus when the artery has
fully reopened (1,18).

For the evaluation of hemodynamically significant ste-
noses, fractional flow reserve (FFR) can be measured (38).
A patient with a myocardial bridge with an FFR <0.75
likely has ischemia associated with that bridge. As in
nonbridged patients, there is a gray zone of ischemia with
an FFR of 0.75 to 0.80. For a patient with an abnormal
but nonischemic FFR (>0.80), intravenous administra-
tion of dobutamine can lead to higher pressure gradients
(and sometimes ventricularization of the distal pressure
tracing) and reproduction of angina symptoms, which
would then suggest a clinically significant myocardial
Table 3 Studies of Percutaneous Coronary Intervention for Myocardi

First Author, Year (Ref. #) Study Cohort Interve

Klues et al., 1997 (42) MB (n ¼ 3) BMS

Haager et al., 2000 (45) MB (n ¼ 11) BMS

Kursaklioglu et al., 2004 (46) MB (n ¼ 12)
Non-MB (n ¼ 39)

BMS

Kunamneni et al., 2008 (47) MB (n ¼ 12) 4 BMS
8 DES

Tsujita et al., 2009 (48) MB (n ¼ 70)
34% of stents covering MB
66% of stents not covering MB

4 BMS
66 DE

Ernst et al., 2013 (43) MB (n ¼ 15) DES

BMS ¼ bare-metal stent(s); DES ¼ drug-eluting stent(s); ISR ¼ in-stent restenosis; MACE ¼ major adver
bridge (39). Higher average peak velocity and greater
pressure gradients with infusion of dobutamine compared
with adenosine suggest a hemodynamically significant myo-
cardial bridge (Fig. 7A and B). Finally, vasoconstriction
with intracoronary acetylcholine infusion (off-label use) can
unmask concomitant endothelial dysfunctional or coro-
nary vasospasm.
Classification. The Schwarz classification (Table 2) can
serve as a guide for directing therapy for patients with
myocardial bridging because it has been linked to clinical
outcomes after pharmacological and invasive interventions
(40). Patients with Schwarz type A need no treatment,
whereas patients with types B and C show significant
symptomatic improvement with beta-blockers or calcium
channel blockers at 5-year follow-up. Patients with Schwarz
type C refractory to medical therapy may be considered
for revascularization of the myocardial bridge.
Management

Treatment of symptomatic patients with myocardial
bridging consists primarily of pharmacological therapy,
although percutaneous coronary intervention (PCI),
myotomy, or coronary artery bypass grafting (CABG) can
be considered for selected patients refractory to maximal
medical therapy.
Pharmacological therapy. Aggressive risk factor modifi-
cation is advocated and antiplatelet therapy should be
considered in patients with myocardial bridging because
they are at increased risk for developing atherosclerosis.
One approach to individualizing the need for antiplatelet
therapy would be to perform MSCT to identify subclinical
atherosclerosis. For symptomatic patients, beta-blockers
remain the mainstay of treatment and relieve the hemo-
dynamic disturbance caused by the myocardial bridge
by decreasing the heart rate, increasing the diastolic coro-
nary filling period, and decreasing contractility and
compression of the coronary arteries (2,41). Calcium chan-
nel blockers are also frequently used and, in addition to
the aforementioned pharmacological effects of beta-blockers,
may have vasodilatory effects that might be beneficial in
al Bridging

ntion Follow-Up Period Results

7 weeks No ISR or MACE

2 yrs 45% ISR (7 weeks)

6 months ISR 67% in MB vs. 28% in non-MB

1 yr ISR 75% in BMS vs. 25% in DES

S
1 yr MB stent group: 33% MACE

Non-MB stent group: 11% MACE

5 yrs 1 perforation during stent implantation
19% ISR (6 months)

se cardiac events; MB ¼ myocardial bridge.



Figure 8 Myotomy Procedure

(A) View before incision showing the intramyocardial LAD. (B) Fat incised, showing

the LAD (yellow arrows) and the bridging muscle (blue arrows). (C) Unroofed LAD

with cut ends of bridging muscle (blue arrows). Abbreviation as in Figure 1.
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patients with concomitant vasospasm. Head-to-head com-
parisons of beta-blockers and calcium channel blockers or
randomized clinical trials of outcome benefits of beta-
blockers are not available.

In contrast, pure vasodilating agents such as nitroglycerin
should be used cautiously in patients with myocardial
bridges. Although nitrates have antispasmodic properties
and can decrease pre-load, they can worsen symptoms by
intensifying systolic compression of the bridged segment and
vasodilating segments proximal to the bridge (Fig. 4),
thereby exacerbating retrograde flow in the proximal
segment and reducing the myocardial ischemic threshold
(9,37). Vasodilators should thus be avoided unless there is
significant coexisting coronary vasospasm.
Percutaneous coronary intervention. Stent implantation
in symptomatic patients with myocardial bridges can
ameliorate peak intracoronary systolic pressure and vessel
compression, normalize flow, and abolish symptoms (42);
however, concerns regarding perforation during stent
deployment (21,43), stent fracture (44), in-stent restenosis
(44–48), and stent thrombosis (49) have limited their use in
this condition. Investigations focusing on in-stent reste-
nosis are summarized in Table 3 and suggest 2 conclusions:
1) stent implantation in patients with symptomatic
myocardial bridges results in high rates of early in-stent
restenosis that may be related to bridge-associated de-
creased lumen area; and 2) compared with PCI with bare-
metal stents (BMS), PCI with drug-eluting stents (DES)
has lower rates of target vessel revascularization (TVR).

Higher rates of restenosis were shown in patients un-
dergoing PCI with BMS for symptomatic isolated
myocardial bridging in one prospective study of 11 patients
that reported early in-stent restenosis requiring TVR in 4
patients (45) and in another investigation comparing a
similar cohort of 12 patients with 39 patients who under-
went implantation of BMS for atherosclerotic lesions in
the LAD (46). Although implantation of DES results in
lower TVR rates than implantation of BMS, restenosis
still occurs more frequently with PCI for symptomatic
myocardial bridging than with PCI for atherosclerotic le-
sions. A small study that compared implantation of DES
(n ¼ 8) with BMS (n ¼ 4) in symptomatic patients re-
fractory to maximal medical therapy reported lower TVR
rates in the DES group than in the BMS group, but both
groups had higher rates than historical controls (47).
Another investigation evaluated PCI with predominantly
DES in 70 patients with both myocardial bridges and
LAD lesions and divided them into 2 cohorts depending on
whether the implanted stents ended proximal to a myocar-
dial bridge or extended into the bridged segment. The TVR
rate was significantly higher in patients with stents extend-
ing into the bridge compared with patients with stents
ending proximal to the myocardial bridge (29% vs. 3%) (48).
Interestingly, the minimum stent cross-sectional area was
also significantly smaller for stents extending into the
bridged segment as opposed to those that ended proximal
to the bridge (4.8 mm2 vs. 5.8 mm2). A recent prospective
study of PCI with DES for symptomatic isolated myocar-
dial bridging reported 3 of 15 patients requiring revascu-
larization within 6 months post-procedure but no further
complications (43).

Any rationale for PCI in selected patients with a
myocardial bridge would be to treat plaque proximal to
the bridge as well as the negative remodeling and dynamic
obstruction within the bridged segment. Although



Table 4 Studies of Surgical Interventions for Myocardial Bridging

First Author,
Year (Ref. #) Study Design Procedure Follow-Up Period Immediate Post-Operative Results Follow-Up Results

Iversen et al.,
1992 (50)

Retrospective
9 patients

Myotomy In-hospital 2 patients with right
ventricular perforation

All patients survived
operation

Post-operative studies
showed flow restoration

None

Rezayat et al.,
2006 (51)

Retrospective
26 patients

Myotomy 7–81 months
(mean 34.2 months)

1 patient had post-operative
angina with angiography
showing narrowing in the
left anterior descending
coronary artery and
subsequently underwent
CABG with LIMA graft

2 patients with angina were treated
medically

No MACE

Wan and Wu,
2005 (54)

Retrospective
19 patients

4 PCI with BMS
8 CABG
7 myotomy

6–75 months
(mean 23.5 months)

No complications 2 of 4 patients who underwent
PCI had ISR; one subsequently
underwent CABG

No MACE in the surgical groups

Wu and Xu,
2007 (4)

Retrospective
31 patients

16 CABG
15 myotomy

3–115 months
(mean 31 months)

1 patient with right ventricular
perforation was successfully
converted to CABG

21 of 31 patients (11 CABG,
10 myotomy) underwent follow-up
angiography showing restoration
of flow

No MACE

Huang et al.,
2007 (55)

Retrospective
11 patients
Isolated
myocardial
bridge

8 CABG with
LIMA graft

3 myotomy

6–120 months
(median 35.3 months)

1 patient with right ventricular
perforation was successfully
converted to CABG

2 patients experienced atypical chest
pain and were treated medically

No MACE

Sun et al.,
2012 (52)

Retrospective
13 patients
Isolated
myocardial
bridge

CABG with
LIMA graft

24–55 months No complications Patients were Canadian Cardiovascular
Society class 0 or 1

7 patients underwent cardiac
computed tomography angiography
at 1 yr, no stenoses

No MACE

Bockeria et al.,
2013 (53)

Retrospective
39 patients
Isolated
myocardial
bridge

CABG
19 with SVG
20 with LIMA
graft

LIMA graft:
6–23 months
SVG:
2–25 months

2 patients underwent repeat
sternotomy for bleeding

2 patients required inotropes

6 of 39 patients had recurrent angina
Angiography at 12 months showed
occlusions in 12 LIMA grafts and
3 SVGs

No mortality

CABG ¼ coronary artery bypass grafting; LIMA ¼ left internal mammary artery; PCI ¼ percutaneous coronary intervention; SVG ¼ saphenous vein graft; other abbreviations as in Table 3.
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contemporary metallic stent platforms can provide sufficient
scaffolding to achieve adequate diastolic and systolic flow,
sustained stress over time may result in stent fracture,
restenosis, or thrombosis. Concerns have also been raised
about the radial strength of bioabsorbable stents. Future
bioabsorbable scaffolds could be designed with sufficient
radial strength to safely achieve greater acute luminal gain in
the intramyocardial artery while withstanding the systolic
compression pressure during the bioabsorption phase, which
after resorption could leave behind a much larger lumen
supported by a residual thin fibrous endoluminal layer.
Whether scaffolds with these biomechanical properties
can be developed and withstand the scrutiny of angiographic
and outcome studies remains to be seen.

Taken together, although there are no randomized
controlled trials of optimal medical therapy versus optimal
medical therapy and contemporary PCI with DES, medical
therapy appears to be superior to PCI. Ischemia-guided
revascularization using DES may be considered on a case-
by-case basis for symptomatic patients refractory to
maximal medical therapy and who are not optimal surgical
candidates.
Surgical treatment. Surgical intervention involves either
supra-arterial myotomy or CABG. In a typical myotomy
case (Fig. 8), the cardiac muscle is dissected carefully and
completely. Potential complications of myotomy include
wall perforation, ventricular aneurysm formation, and post-
operative bleeding. Conversely, the major concern of
CABG with regard to myocardial bridges is graft failure.

Studies investigating the effectiveness of myotomy or
CABG in patients with symptomatic bridging refractory
to medical therapy are summarized in Table 4. Two
retrospective studies of myotomy described overall suc-
cessful operations; however, 1 series reported accidental
right ventricular wall perforation in 2 of 9 patients (50), and
the other study reported that 1 of 26 patients underwent
CABG for post-operative angina with LAD narrowing
(51). Regarding CABG, one investigation reported no
complications (52) and the second described 6 of 39
patients with recurrent angina and 15 of 39 patients with
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graft occlusions on follow-up (53). Grafting with the left
internal mammary artery was more likely to result in
occlusion compared with grafting with the saphenous vein
(12 vs. 3 patients), leading the investigators to conclude
that grafting with the saphenous vein was preferable. This
is in contrast to a previous report recommending the left
internal mammary artery as the preferred graft for
CABG (4).

Investigations comparing the effectiveness between
myotomy and CABG in patients with symptomatic
myocardial bridges consist of 1 study of 31 patients (4,54)
and an even smaller series of 11 patients (55). In the first
investigation, 1 myotomy case was converted to CABG
after accidental right ventricular wall perforation. Twenty-
one of 31 patients (either myotomy or CABG) who un-
derwent follow-up angiography had restoration of distal
coronary blood flow (4). In the second study, 2 of 11 pa-
tients experienced atypical chest pain and were managed
medically (55).

Although both myotomy and CABG are reasonable
initial choices, it is unclear which procedure is superior. On
the one hand, because myotomy attempts to correct the
underlying pathology, it may be the treatment of choice for
patients who have symptomatic myocardial bridging re-
fractory to medical therapy, �75% systolic coronary
compression on angiography, or evidence of myocardial
ischemia or infarction (4). On the other hand, CABG is
favored over myotomy in cases of extensive (>25 mm) or
deep (>5 mm) myocardial bridges (the risk of myotomy can
be considerable) or when the bridged coronary segment fails
to decompress completely in diastole (myotomy is unlikely to
correct the persistent diastolic compression) (4,8). Impor-
tantly, there are no randomized clinical trials comparing
intensification of medical therapy with surgical intervention.
These limited data suggest that surgical therapy, either
myotomy or CABG, appears safe and effective in symp-
tomatic patients with myocardial bridging refractory to
medical therapy.
Conclusions

Patients with myocardial bridging are commonly encoun-
tered clinically and may present with exertional symptoms of
myocardial ischemia, syncope, and even sudden death. An
array of noninvasive and invasive diagnostic modalities that
have shed light on the pathophysiology of myocardial
bridging can be deployed to evaluate symptomatic patients.
Medical therapy with beta-blockers and calcium channel
blockers remain the mainstay of treatment. For select pa-
tients refractory to intensified medical therapy, surgical
intervention, or less preferably PCI with DES, can be
considered. Larger registries and randomized clinical trials
are warranted to shed light on optimal strategies for patients
with myocardial bridging refractory to medical therapy.
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