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We propose a simple renormalizable left–right theory where R-parity is spontaneously broken and
neutrino masses are generated through the Type I seesaw mechanism and R-parity violation. In this
theory R-parity and the gauge symmetry are broken by the sneutrino vacuum expectation values and
there is no Majoron problem. The SU(2)R and R-parity violation scales are determined by the SUSY
breaking scale making the model very predictive. We discuss the spectrum and possible tests of the
theory through the neutralinos, charginos, Z ′ and W ±

R decays at the Large Hadron Collider.
© 2009 Elsevier B.V. Open access under CC BY license.
1. Introduction

The existence of massive neutrinos, the unknown origin of par-
ity violation in the Standard Model (SM) and the hierarchy prob-
lem are some of the main motivations for physics beyond the SM.
In the context of the so-called left–right symmetric theories [1]
one has the appealing possibility to understand the origin of parity
violation and its strong connection to the generation of neutrino
masses. The supersymmetric version of these theories can also
solve the hierarchy problem, as in the Minimal Supersymmetric
Standard Model (MSSM).

Defining a minimal left–right model is a subtle issue since
particle content depends on the mechanism generating neutrino
masses. In the so-called minimal left–right symmetric theory, neu-
trino masses are generated through the Type I [2] and Type II [3]
seesaw mechanisms. Alternatively, it is possible to have a simple
theory [4] where neutrino masses are generated through the Type I
[2] and Type III [5] seesaw mechanisms.

Supersymmetric left–right particle content further depends on
the status of R-parity, an ad hoc discrete symmetry imposed in
the MSSM to forbid rapid proton decay. Above the left–right scale,
R-parity is automatically conserved due to local U (1)B–L . Two sit-
uations are possible for the low energy theory: automatic R-parity
conservation or spontaneous R-parity violation, which conserves
baryon number and therefore does not induce proton decay. The
former was discussed in Ref. [6] where the necessary Higgs sector
was found to be involved but parity is spontaneously broken. The
latter can have a simpler Higgs sector as well as exciting collider
predictions, making the origin and impact of R-parity breaking in
such models an important issue.
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In this Letter we investigate this issue in detail and find that the
Higgs sector can be remarkably simplified. This simplification uti-
lizes the right-handed sneutrino which has both B–L and SU(2)R

quantum numbers. Once this field acquires a vacuum expectation
value (VEV), both SU(2)R ⊗U (1)B–L and R-parity are spontaneously
broken with the relevant scales determined by the soft SUSY break-
ing scale. This leads to a simple and predictive model, especially
for decays of the neutralinos, charginos, Z ′ and W R . Neutrino
masses are generated via the Type-I seesaw mechanism and R-
parity. The Majoron problem [7] associated with spontaneous lep-
ton number breaking is not present since the Majoron becomes the
longitudinal component of Z ′ . Furthermore, all of this could be ac-
complished with the same Higgs sector of the MSSM making this
the simplest left–right symmetric theory without R-parity. In this
theory the left–right discrete symmetry is broken only by the soft
terms in order to have a consistent mechanism for R-Parity viola-
tion and avoid the domain wall problem.

This Letter is organized as follows: in Section 2 we discuss the
theory, while in Section 3 we show the properties of the spectrum,
the R-parity violation mechanism, and the mechanism generating
neutrino masses are discussed in great detail. The possible tests of
the theory are discussed in Section 4.

2. Minimal SUSY left–right theory and R-parity

Left–right symmetric theories are based on the gauge group
SU(3)C ⊗SU(2)L ⊗SU(2)R ⊗U (1)B–L . Here B and L stand for baryon
and lepton number, respectively. In the supersymmetry (SUSY)
case, the matter chiral supermultiplets for quarks and leptons are
given by

Q̂ =
(

Û

D̂

)
∼ (2,1,1/3), Q̂ C =

(
Û C

D̂C

)
∼ (1,2,−1/3), (1)

L̂ =
(

N̂
Ê

)
∼ (2,1,−1), and L̂C =

(
N̂C

ÊC

)
∼ (1,2,1), (2)
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where NC , the right-handed neutrino, is now required by the
gauge group. With this field content, the superpotential is:

W = Yq Q̂ T iσ2Φ̂iσ2 Q̂ C + Y D
ν L̂T iσ2Φ̂iσ2 L̂C

+ μ

2
Tr

(
Φ̂T iσ2Φ̂iσ2

)
, (3)

where the bi-doublet Higgs is defined by

Φ̂ =
(

Ĥ0
D Ĥ+

U

Ĥ−
D Ĥ0

U

)
∼ (2,2,0). (4)

Typically, in order to have consistent relationships between the
quark masses, an extra bi-doublet needs to be introduced or one-
loop gluino corrections to the quark masses through trilinear soft
breaking terms that are different between the up and down quark
sectors must be assumed [8]. Here we see both possibilities as ap-
pealing.

So far, it seems like extra superfields are needed to break
SU(2)R × U (1)B–L , since the bi-doublet does not have a B–L quan-
tum number. As mentioned earlier, the choice for these fields de-
pends on whether or not the low energy theory should conserve
R-parity (or M-Parity). R-parity is defined as R = (−1)3(B–L)+2S =
(−1)2S M , where M is M-parity. As it is well known M-parity is −1
for any matter chiral superfield and +1 for any Higgs or vector su-
perfield. Therefore, R-parity conservation requires Higgs fields with
an even value of B–L. Typically, this is achieved by introducing
several extra Higgs chiral superfields or higher-dimensional opera-
tors as in [6].

In the Letter, we wish to take advantage of the fact that Eq. (3)
already contains a scalar field with the correct quantum num-
bers: the right-handed sneutrino. Once this field acquires a VEV, it
spontaneously breaks both the higher gauge symmetry as well as
R-parity and forces left-handed sneutrino, through mixing terms,
to acquire a VEV. Since lepton number is part of the gauge symme-
try the Majoron (the Goldstone boson associated with spontaneous
breaking of lepton number) becomes the longitudinal component
of the Z ′ and does not pose a problem. Therefore, in this context
one can have a simple and consistent TeV scale theory for spon-
taneous SU(2)R × U (1)B–L and R-parity violation with the same
Higgs sector as the MSSM.

The kinetic terms in the theory are given by

LKin =
∫

d4θ Tr
(
Φ̂†egL V̂ L Φ̂egR V̂ R

)

+
∫

d4θ L̂†egL V̂ L− 1
2 gBL V̂ BL L̂

+
∫

d4θ L̂C †egR V̂ T
R + 1

2 gBL V̂ BL L̂C , (5)

where V̂ L and V̂ R are the vector superfields for the gauge bosons
in SU(2)L and SU(2)R , respectively. Here, we use gL and gR for the
gauge couplings in left–right sector.

In our notation the soft breaking terms are given by

V soft = M2
Q̃

Q̃ † Q̃ + M2
Q̃ C Q̃ C † Q̃ C + M2

L̃
L̃† L̃

+ M2
L̃C L̃C † L̃C + M2

Φ Tr(Φ†Φ)

+
(

1

2
MR Tr W̃ R W̃ R + 1

2
ML Tr W̃ L W̃ L

+ 1

2
MBL B̃ B̃ + A1

q Q̃ T iσ2Φiσ2 Q̃ C + AD
ν L̃T iσ2Φiσ2 L̃C

+ B
μ

2
Tr

(
ΦT iσ2Φiσ2

) + h.c.

)
. (6)

It is important to mention that under the discrete Left–Right Sym-
metry one has the transformations: Q̂ ↔ Q̂ C ∗ , L̂ ↔ L̂C ∗ and Φ̂ ↔
Φ̂†. In this case the Yukawa couplings Yq and Y D
ν are hermitian.

Notice that in general there is no reason to assume the left–right
discrete symmetry in the soft-breaking sector. In the rest of the
Letter we will assume that the Left–Right discrete symmetry is
only softly broken by the soft terms. In this case one can have a
consistent mechanism for R-parity violation and avoid the domain
wall problem. Notice that the breaking of the Left–Right symmetry
is transmitted only through loop effects to the gauge interactions
relevant for β and μ decays. Also we can add non-holomorfic soft
terms A2

q Q̃ T Φ∗ Q̃ C + Aν L̃T Φ∗ L̃C which could help us to correct the
relation between the fermion masses at one-loop.

3. Spectrum and R-parity violation

In this theory the gauge boson masses are generated by the vac-
uum expectation values (VEVS) of sneutrinos (〈ν̃i〉 = vi

L/
√

2 and
〈ν̃C

i 〉 = vi
R/

√
2) and the bi-doublet (〈H0

U 〉 = vu/
√

2 and 〈H0
D〉 =

vd/
√

2). The sneutrino VEVs also break R-parity and lepton num-
ber eliminating the quantum numbers necessary to distinguish be-
tween the lepton, Higgs and gaugino sectors. Therefore the physical
charginos and neutralinos, as well as the Higgses will be admix-
tures of these three sectors. The properties of the full spectrum
will be discussed in more detail in a future publication [9]. It is
important to mention that in this context there is no Majoron
problem since lepton number is part of the gauge symmetry (the
Majoron becomes the longitudinal component of Z ′).

The scalar potential in this theory is given by

V = V F + V D + V S
soft, (7)

where the relevant terms for V S
soft are given in Eq. (6). Once one

generation of sneutrinos, ν̃ and ν̃C , and Φ , acquire a VEV, the po-
tential reads

〈V F 〉 = 1

4

(
Y D

ν

)2(
v2

R v2
u + v2

R v2
L + v2

L v2
u

) + 1

2
μ2(v2

u + v2
d

)

+ 1√
2

Y D
ν μv R v L vd, (8)

〈V D〉 = 1

32

[
g2

R

(
v2

R + v2
d − v2

u

)2 + g2
L

(
v2

u − v2
d − v2

L

)2

+ g2
BL

(
v2

R − v2
L

)2]
, (9)

〈V S
soft〉 = 1

2
M2

L̃
v2

L + 1

2
M2

L̃c v2
R + 1

2
M2

Φ

(
v2

u + v2
d

) − Re(Bμ)vu vd

− 1

2
√

2

(
AD

ν + (
AD

ν

)†)
v R v L vu (10)

and can be minimized in the usual way. Illuminating results can
be found for the case v R 
 vu , vd 
 v L (a reasonable assump-
tion given the phenomenologically necessary hierarchy between
the left- and right-handed scales):

v R =
√√√√ −8M2

L̃c

g2
R + g2

BL

, (11)

v L = AD
ν v R vu√

2(M2
L̃
− 1

8 g2
BL v2

R)
, (12)

μ2 = −1

8

(
g2

R + g2
L

)(
v2

u + v2
d

) + M2
HU

tan2 β − M2
H D

1 − tan2 β
, (13)

Bμ = sin 2β

2

(
2μ2 + M2

HU
+ M2

H D

)
, (14)

where Eq. (11) has the same form as the Standard Model mini-
mization condition and demonstrates the need for M2

L̃c < 0, while

Eq. (12) indicates that AD
ν should be small, i.e. AD

ν �
√

2
8 g2

BL
v2

R
v in
u
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order to have v R 
 v L . Eqs. (13) and (14) are similar to their MSSM
counterparts with M2

HU
≡ M2

Φ − 1
8 g2

R v2
R and M2

H D
≡ M2

Φ + 1
8 g2

R v2
R .

Note that the negative contribution to m2
HU

is conducive for elec-

troweak symmetry breaking. Also, even though M2
L̃c is negative,

a realistic spectrum still exists [9].

3.1. Neutrino masses

Let us discuss how the neutrino masses are generated in this
context. Once the symmetry is broken the neutralinos χ̃0 are de-
fined as a linear combination of B̃ , W̃ 0

R , H̃0
D , H̃0

U and W̃ 0
L and their

mass matrix is given by

Mχ̃0 =

⎛
⎜⎜⎜⎜⎜⎝

MBL 0 0 0 0

0 MR − 1
2 gR vd

1
2 gR vu 0

0 − 1
2 gR vd 0 −μ 1

2 g2 vd

0 1
2 gR vu −μ 0 − 1

2 g2 vu

0 0 1
2 g2 vd − 1

2 g2 vu M2

⎞
⎟⎟⎟⎟⎟⎠

. (15)

Working in the basis where the neutralino mass matrix is diagonal
one finds that the matrix which define the mixings between the
neutrinos and neutralinos in the basis (νi, ν

C
j , χ̃0) is defined by

Mνχ =
⎛
⎝ 0 M D

ν Γ

(M D
ν )T 0 G

Γ T G T Mχ̃0

⎞
⎠ , (16)

where

Γ αi = − gBL

2
vα

L N1i − vβ
R√
2

(
Y D

ν

)αβ
N4i + g2 vα

L N5i, (17)

and

Gβ i = gBL

2
vβ

R N1i − vα
L√
2

(
Y D

ν

)βα
N4i − gR vβ

R N2i . (18)

In the above equations, N is the matrix which diagonalizes the
neutralino mass matrix. Now, assuming that G,Γ � Mχ̃0 integrat-
ing out the neutralinos and the right-handed neutrinos one finds
the neutrino mass matrix

Mν = M R
ν + M I

ν (19)

with

M R
ν = −(

M D
ν

(
Γ G−1)T + (

Γ G−1)(M D
ν

)T )
, (20)

M I
ν = M D

ν (MνC )−1(M D
ν

)T
, (21)

and

MνC = G(Mχ̃0 )
−1G T . (22)

In the above equations M I
ν is the usual Type I seesaw contribution

generated when the right-handed neutrinos are integrated out, but
the mass matrix for νC is generated by R-parity violation. There-
fore, in this case neutrino masses are generated through the double
seesaw mechanism. The second contribution, M R

ν , is generated by
pure R-parity violation. Therefore, we see that in this theory, with
a mechanism for spontaneous R-parity violation, it is possible to
generate neutrino masses in a consistent way. It is important to
emphasize that the matrix Γ in Eq. (17) and G in Eq. (18) can be
small and one can have a mini-seesaw mechanism where the see-
saw scale is TeV. In the above equations M D

ν = Y D
ν vu , which is,

in principle, a free matrix since the charged lepton masses can be
generated through SUSY loop effects due to the chargino and neu-
tralino corrections. This is similar to the solution presented in [8]
for the quark sector. See Ref. [10] for models with similar neutrino
mass matrix.
4. Possible signals at the LHC

As it is well known in supersymmetric scenarios where R-parity
is broken the neutralinos are unstable and new decay channels
become available for the charginos. For a recent analysis of the
signals of R-parity violation see [11]. In this theory the chargino
mass matrix is given by

Mχ̃± =
⎛
⎜⎝

MR 0 − gR√
2

vd

0 M2
g2
2 vu

−gR
vu√

2
g2√

2
vd μ

⎞
⎟⎠ (23)

when we work in the basis χ̃+ = (W̃ +
R , W̃ +

L , H̃+
U ) and χ̃− =

(W̃ −
R , W̃ −

L , H̃−
D ). Now, the matrix that defines the mixing between

charged leptons and charginos reads as

M± =
(

Mχ̃± Γ +

Γ − ME

)
, (24)

where

Γ +
αi = 1√

2
g2 v LαC+

2i + 1√
2

(
Y D

ν

)
αβ

vβ
R C+

3i, (25)

Γ −
β i = − 1√

2
gR v Rβ C−

1i + 1√
2

(
Y D

ν

)
αβ

vα
L C−

3i . (26)

Here, C± are the matrices which diagonalize the chargino mass
matrix. The generic predictions coming from R-parity scenarios are
the decays of neutralinos and the new decays for the charginos. In
our case we have three charginos, χ̃± , which will have the follow-
ing decay channels: χ̃±

i → e±
j Z , νW ± through the coupling Γ ± ,

and the neutralinos decays χ̃0
i → ν Z , e±

j W ∓ through the coupling
Γ and G , respectively. Therefore, once we take into account the
neutrino mass constraints one can predict these decays [9].

It is important to mention that once the charginos are inte-
grated out one can generate mass for one charged lepton. In this
case:

(ME)αβ = Γ +
αi M−1

χ̃+
i
Γ −

β i . (27)

And, neglecting the terms proportional to Y D
ν :

(ME)αβ ≈ − g2 gR

2
v Lα v Rβ

C+
2i C

−
1i

Mχ̃i

. (28)

Therefore, one could generate one of the charged lepton masses
once the charginos are integrated out. There are some new novel
decays in this theory. For example the decays ν̃ → e−

i e+
j , Z ′ →

e±
i χ̃∓

j and W ±
R → e±

i χ̃0
j which could help test this theory. Be-

fore finishing this section, we would like to emphasize that in this
case the R-parity violating decays of the neutralinos and charginos
are not highly suppressed by neutrino masses since they are pro-
portional to the couplings Γ , G and Γ ± . This is an important
difference between the usual R-parity violating scenarios and this
one. We will study these issues in great detail in a future publica-
tion [9].

5. Summary and outlook

We have investigated the connection between R-parity and the
possibility of finding the simplest supersymmetric left–right sym-
metric theory. We found a simple theory where R-parity is sponta-
neously broken and neutrino masses are generated through Type I
seesaw and R-parity violation. In this theory R-parity and the
SU(2)R symmetry are broken by the vacuum expectation value of
the sneutrinos, which are related to the SUSY breaking scale. The
Higgs sector of the theory is quite simple since could be composed
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of the MSSM Higgses or only two bidoublets. We have discussed
the spectrum of the theory, and the possible tests at the Large
Hadron Collider though the decays of neutralinos, charginos, Z ′
and W ±

R . Furthermore, neutralinos and charginos decays are not
highly suppressed by neutrino masses because of the double see-
saw mechanism. The phenomenological and cosmological aspects
of this theory will be investigated in detail in a future publica-
tion.
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R.N. Mohapatra, G. Senjanović, Phys. Rev. D 23 (1981) 165.

[4] P. Fileviez Pérez, arXiv:0809.1202 [hep-ph].
[5] R. Foot, H. Lew, X.G. He, G.C. Joshi, Z. Phys. C 44 (1989) 441;

E. Ma, Phys. Rev. Lett. 81 (1998) 1171;
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