
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Cell Reports

Report
IKKε-Mediated Tumorigenesis
Requires K63-Linked Polyubiquitination
by a cIAP1/cIAP2/TRAF2 E3 Ubiquitin Ligase Complex
Alicia Y. Zhou,1,2,3 Rhine R. Shen,1,2,3 Eejung Kim,1,2,3 Ying J. Lock,1,2,3 Ming Xu,4 Zhijian J. Chen,4,5

and William C. Hahn1,2,3,*
1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
2Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
3Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
4Department of Molecular Biology
5Howard Hughes Medical Institute

University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA

*Correspondence: william_hahn@dfci.harvard.edu
http://dx.doi.org/10.1016/j.celrep.2013.01.031
SUMMARY

IkB kinase ε (IKKε, IKBKE) is a key regulator of innate
immunity and a breast cancer oncogene, amplified
in �30% of breast cancers, that promotes malignant
transformation through NF-kB activation. Here, we
show that IKKε is modified and regulated by K63-
linked polyubiquitination at lysine 30 and lysine 401.
Tumor necrosis factor alpha and interleukin-1b stim-
ulation induces IKKε K63-linked polyubiquitination
over baseline levels in both macrophages and breast
cancer cell lines, and this modification is essential for
IKKε kinase activity, IKKε-mediated NF-kB activa-
tion, and IKKε-induced malignant transformation.
Disruption of K63-linked ubiquitination of IKKε does
not affect its overall structure but impairs the recruit-
ment of canonical NF-kB proteins. A cIAP1/cIAP2/
TRAF2 E3 ligase complex binds to and ubiquitinates
IKKε. Altogether, these observations demonstrate
that K63-linked polyubiquitination regulates IKKε
activity in both inflammatory and oncogenic contexts
and suggests an alternative approach to targeting
this breast cancer oncogene.

INTRODUCTION

Nuclear factor kB (NF-kB) signaling plays a critical role in innate

immunity, and inflammation has been implicated in cancer

development (Arkan and Greten, 2011; Bassères and Baldwin,

2006) where aberrant NF-kB signaling in the tumormicroenviron-

ment contributes to tumor growth (Karin, 2006). In addition,

dysregulation of specific NF-kB proteins can contribute to cell

transformation in a cell-autonomous manner. For example,

deletion of the tumor suppressorCYLD leads to familial cylindro-

matosis (Brummelkamp et al., 2003; Kovalenko et al., 2003;

Trompouki et al., 2003) and mutations in NFKB1 and NFKB2

play a role in multiple myeloma (Annunziata et al., 2007).
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The canonical NF-kB pathway is activated by proinflamma-

tory signals and converges on the activation of the IkB kinase

(IKK) complex by the TRAF E3 ligase family (Perkins, 2007).

The IKK complex consists of two catalytic subunits, IKKa

and IKKb, and a regulatory subunit, IKKg/NEMO (Hayden

and Ghosh, 2004; Israël, 2010). Proteasome-dependent and

proteasome-independent forms of ubiquitination are required

to activate NF-kB signaling (Skaug et al., 2009). Several groups

have shown that proteasome-independent Lysine 63 (K63)-

linked IKKg ubiquitination is a key step in IKK complex activation

(Tang et al., 2003; Zhou et al., 2004). Linear (Met1) IKKg ubiqui-

tination also leads to IKK complex activation (Bianchi and Meier,

2009; Iwai and Tokunaga, 2009). IKK activation by nondegrada-

tive ubiquitination leads to phosphorylation of inhibitor of kB

(IkB) proteins (Baldwin, 1996). This phosphorylation triggers

the K48-linked ubiquitination and subsequent proteasome-

mediated degradation of the IkB proteins, which allows for the

nuclear translocation of NF-kB dimers and activation of proin-

flammatory NF-kB response genes (Karin and Ben-Neriah,

2000).

Inhibitor of kB kinase ε (IKKε, IKK-i, IKBKE) is a noncanonical

IKK that activates interferon, NF-kB, and STAT signaling

(Fitzgerald et al., 2003; Ng et al., 2011; Peters et al., 2000;

Shimada et al., 1999). With its structurally related binding partner

TBK1, IKKε regulates interferon responses by phosphorylation

of IRF3 and IRF7 (Chau et al., 2008; Fitzgerald et al., 2003;

Tenoever et al., 2007), which induces nuclear translocation of

IRF3/7 and activation of type I interferon genes (Fitzgerald

et al., 2003). IKKε is also an oncogene that is amplified and

overexpressed in �30% of breast cancers (Boehm et al.,

2007). IKBKE induces malignant transformation in an NF-kB-

dependent manner, and suppression of IKKε in cancer cells

that harbor IKBKE amplifications induces cell death. Recent

studies demonstrated that STAT3 activates IKBKE transcription

(Guo et al., 2013) and have identified AKT as one target of TBK1

and IKKε (Guo et al., 2011; Xie et al., 2011). We have identified

CYLD as one substrate of IKKε and effector of IKKε-mediated

transformation (Hutti et al., 2009). However, the mechanism(s)

that regulate IKKε remain poorly understood.
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Here, we show that IKKε is K63 ubiquitinated and investigate

the role of this modification in IKKε-mediated NF-kB activation

and cell transformation.

RESULTS

IKKε Is Ubiquitinated
To determine whether IKKε is ubiquitinated, we introduced

hemagglutinin (HA)-tagged ubiquitin (HA-Ub) and either FLAG-

tagged or myristolated-FLAG-tagged IKKε (F-IKKε or MF-

IKKε) into HEK293T cells. We purified HA immune complexes

and found that both F-IKKε and MF-IKKε are ubiquitinated

(Figure 1A).

We previously showed that IKKε confers tumorigenicity in

human embryonic kidney (HEK) epithelial and mammary epithe-

lial cells (HMEC) expressing the SV40 Early Region (SV40ER),

the telomerase catalytic subunit (hTERT), and a constitutively

active form of MEK (MEKDD) (Boehm et al., 2007). To test

whether IKKε ubiquitination occurs when IKKε is expressed at

levels found in cancer cells, we isolated IKKε immune com-

plexes from transformed HEK (HA1EM F-IKKε) and HMEC

(HMLEMMF-IKKε) cells and found that IKKε is polyubiquitinated

(Figure 1B; Figure S1). We then examined whether IKKε is ubiq-

uitinated in breast cancer cell lines (MCF-7 and ZR-75-1) that

harbor an IKBKE amplification and found endogenous polyubi-

quitinated species of IKKε (Figure 1C). These observations

demonstrate that IKKε is ubiquitinated in the setting of IKKε-

mediated cell transformation.

We next assessed if IKKε is ubiquitinated in response to

inflammatory stimuli. We stimulated RAW 264.7 gamma NO(�)

macrophages with lipopolysaccharide (LPS) to initiate an innate

immunity response.We found LPS stimulation induced both IKKε

expression and ubiquitination in thesemacrophages (Figure 1D).

In addition, we treated MCF-7 and ZR-75-1 cells with the in-

flammatory cytokines, tumor necrosis factor alpha (TNF-a), or

interleukin-1b (IL-1b) and found increased IKKε ubiquitination

over baseline levels (Figures 1E and 1F). Together, these obser-

vations show that IKKε ubiquitination occurs in the context of

IKKε-induced transformation and inflammatory stimulation.

IKKε Undergoes K63-Linkage-Specific Ubiquitination
Whereas K48-linked polyubiquitination usually target substrates

for proteasome-mediated degradation, modification by K63-

linked, K11-linked, and linear ubiquitin chains leads to protea-

some-independent changes in protein function (Pickart and

Eddins, 2004). To assess if IKKε ubiquitination is proteasome

dependent, we treated transformed HA1EM MF-IKKε, MCF-7,

and ZR-75-1 cells with two proteasome inhibitors, MG-132

and bortezomib. The overall level of ubiquitination was increased

in the presence of proteasome inhibitors. However, we failed to

observe differences in the level of IKKε, suggesting that ubiquiti-

nation does not regulate IKKε stability (Figure 2A).

We then used three methods to determine the linkage-type of

IKKε ubiquitination. First, we introduced Myc-tagged IKKε and

HA-tagged wild-type (WT), K11-only, K48-only, or K63-only

ubiquitin mutants into HEK293T cells. We note that the HA-

epitope tag directly interferes with the formation of head-to-tail

ubiquitin chains and renders these constructs as Met1-linkage-
deficient mutants. We isolated IKKε immune complexes and

found that IKKε is robustly ubiquitinated by WT and K63-only

ubiquitin (Figure 2B). In contrast, IKKε was not ubiquitinated by

the K11-only and K48-only ubiquitin mutants (Figure 2B).

To confirm these observations, we used linkage-specific ubiq-

uitin antibodies. In MCF-7 and ZR-75-1 cells, we isolated K48- or

K63-linkage-specific immune complexes and found that IKKε

was present only in the immune complexes formed by the

K63-linkage-specific antibody (Figure 2C).

Finally, we used a genetic system in which endogenous ubiq-

uitin is inducibly suppressed by ubiquitin-specific small hairpin

RNAs (shRNAs) in parallel to inducible expression of WT or

mutant ubiquitin (Xu et al., 2009). In U2OS shUb-Ub(WT) cells,

a shRNA-insensitive WT ubiquitin is expressed. In U2OS shUb-

Ub(K63R) cells, a shRNA-insensitive K63R mutant form of ubiq-

uitin is expressed, which is unable to form K63-linkage-specific

chains. We isolated IKKε immune complexes from U2OS

shUb-Ub(WT) and shUb-Ub(K63R) cells in the presence or

absence of tetracycline and assessed these complexes for ubiq-

uitin. We confirmed that IKKε is modified by WT ubiquitin chains

but is not modified by the K63R chains (Figure 2D). In aggregate,

we concluded that IKKε is modified by K63-linked ubiquitin

chains in breast cancer cells.

IKKε Is Ubiquitinated at K30, K401, and K416
To determine the lysine residues on which IKKε is ubiquitinated,

we expressed glutathione S-transferase (GST)-tagged IKKε

and HA-tagged ubiquitin in HEK293T cells, separated GST

immune complexes by electrophoresis, and submitted four

bands for mass spectrometry analysis (Figure 3A). We identified

IKKε K30, K401, and K416 as polyubiquitinated (Figure 3B;

Table S1).

To confirm these observations, we generated site-specific

lysine-to-alanine (K30A, K401A, K416A) and lysine-to-arginine

(K30R, K401R, K416R) IKKε mutants. After expressing WT and

mutant IKKε and HA-ubiquitin in HEK293T cells, we isolated

IKKε immune complexes and found that the K30 and K401

mutants exhibited decreased IKKε ubiquitination but saw no

changes in ubiquitinated species of the IKKε K416 mutant (Fig-

ure 3C). We noted that the lysine-to-arginine and lysine-to-

alanine IKKε mutants behaved identically in all assays.

We then created stable lines expressing each IKKεmutant and

determined if they exhibited differential levels of IKKε ubiquitina-

tion. We found that the K30 and K401 IKKε mutants exhibited

a significant decrease in ubiquitinated IKKε species while the

ubiquitination of the K416 mutant was unchanged (Figure 3D;

Figure S2). These observations suggested that the K30 and

K401 residues of IKKε are essential for IKKε ubiquitination.

IKKε Ubiquitination at K30 and K401 and IKKε Activity
We previously identified CYLD as an IKKε substrate (Hutti et al.,

2009). To determine the role of IKKε ubiquitination on IKKε func-

tion, we isolated CYLD immune complexes from U2OS shUb-

Ub(WT) and shUb-Ub(K63R) cells (Figure 2D) cultured in the

presence or absence of tetracycline and assessed the levels of

both phospho-CYLD (pCYLD) and total CYLD. We found that

under conditions where IKKε was not K63-linked ubiquitinated,

IKKε exhibited impaired kinase activity (Figure 4A). Specifically,
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Figure 1. IKKε Is Ubiquitinated in the Context of Cell Transformation and Inflammation

(A) IKKε is ubiquitinated. HA immune complexes were isolated from HEK293T cells expressing the indicated proteins and immunoblotted with an IKKε-specific

antibody.

(B) IKKε is ubiquitinated in transformed cells. IKKε immune complexes were isolated from HA1EM MF-IKKε cells using an IKKε-specific antibody and im-

munoblotted by the same antibody. Rabbit immunoglobulin (rIgG) was used as a control.

(C) IKKε is ubiquitinated in breast cancer cell lines. Endogenous IKKε immune complexes were isolated from MCF-7 and ZR-75-1 cells using an IKKε-specific

antibody and immunoblotted by the same antibody.

(D) IKKε ubiquitination is induced by LPS treatment. RAW 264.7 gamma NO(�) macrophage cells were treated with 100 ng/ml LPS. IKKε immune com-

plexes were isolated from cells using an IKKε-specific antibody and immunoblotted by the same antibody. Immunoblotting was performed with the indicated

antibodies.

(legend continued on next page)
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we failed to detect phosphorylation of CYLD in U2OS shUb-

Ub(K63R) cells as assessed by a pCYLD-specific antibody.

To determine the effect of the K30 and K401 mutants on IKKε

kinase activity, we assessed the ability of WT andmutant IKKε to

phosphorylate CYLD in vivo. We cotransfected HEK293T cells

with Myc-tagged CYLD and WT, K30R, or K401R IKKε. After

isolating Myc immune complexes, we determined CYLD phos-

phorylation by IKKε pSubstrate immunoblot (Hutti et al., 2009).

These observations confirmed that WT but not K30R or K401R

IKKε phosphorylates CYLD (Figure 4B). We found both K30R

and K401R IKKε mutants in CYLD immune complexes, indi-

cating that these mutants still retained the ability to bind CYLD.

We recently solved the structure of the close IKKε homolog

TBK1 and found that TBK1 forms a homodimer (Tu et al.,

2013). When we expressedWT or mutant IKKε in HEK293T cells,

we found that WT and mutant IKKε all formed homodimers (Fig-

ure S3A). In addition, we found that the K30R/K401R TBK1

mutant that cannot be ubiquitinated showed significantly

decreased kinase activity as compared to WT TBK1 (Tu et al.,

2013). These observations provide further evidence that these

ubiquitination-deficient mutants do not disrupt the structure of

the IKKε protein.

The activation of NF-kB signaling is essential for IKKε-

mediated transformation (Boehm et al., 2007). To assess the

effects of IKKε ubiquitination on NF-kB activation, we used

a NF-kB luciferase reporter assay (Figure 4C) and we found

that WT but neither IKKε mutant induced this NF-kB reporter.

IKKε and TBK1 also interact with the canonical NF-kB proteins,

IKKb and IKKg (NEMO), through the adaptor TANK (Chariot

et al., 2002). This interaction allows IKKε and TBK1 to activate

the canonical NF-kB pathway and TLR signaling. We found

that WT IKKε robustly recruited IKKb and IKKg, while the

IKKε mutants were defective in their ability to recruit these

proteins (Figure 4D). This decreased binding resulted in

a consequent decrease in TLR signaling as assessed by

MyD88 recruitment (Figure S3B). These observations demon-

strate that IKKε ubiquitination is required for NF-kB pathway

activation.

IKKε Ubiquitination at K30 and K401 and IKKε-Mediated
Transformation
To interrogate the role of ubiquitination in IKKε-mediated cell

transformation, we assessed if mutant IKKε was able to trans-

form cells (Figure 4E; Figures S3C and S3D). In HA1EM cells,

expression of WT IKKε induces robust anchorage-independent

colony growth. In contrast, the K30 and K401 IKKε mutants

were markedly defective in anchorage-independent colony

growth. This transformation phenotype was identical in both

the lysine-to-arginine and lysine-to-alanine mutants.

To confirm these in vitro findings, we then assessed if

expression of WT or mutant IKKε conferred tumorigenicity. We

found that WT IKKε induced tumor formation. In contrast, the
(E) IKKε ubiquitination is induced by TNF-a treatment. MCF-7 and ZR-75-1were tr

from cells using an IKKε-specific antibody and immunoblotted by the same antib

(F) IKKε ubiquitination is induced by IL-1b treatment. MCF-7 and ZR-75-1 were tr

from cells using an IKKε-specific antibody and immunoblotted by the same antibo

all panels.
K30 and K401 IKKεmutants exhibited markedly impaired tumor-

igenicity (Figure 4F). These observations indicate that the K63-

linkage-specific ubiquitination of IKKε at K30 and K401 are

essential for IKKε-mediated cell transformation.

The cIAP1/cIAP2/TRAF2 E3 Ubiquitin Ligase Complex
Ubiquitinates IKKε
Prior work has shown that IKKε forms a complex that includes

TBK1, TRAF2, cIAP-1, and TANK (Pomerantz and Baltimore,

1999; Vince et al., 2009). In particular, the cIAP1/cIAP2/TRAF2

complex forms an active E3 ubiquitin ligase complex that

K63-linkage ubiquitinates RIP1 during activation of the canon-

ical NF-kB pathway (Bertrand et al., 2008; Shih et al., 2011;

Vince et al., 2009; Zarnegar et al., 2008). Thus, we tested if

the cIAP1/cIAP2/TRAF2 complex is an E3 ubiquitin ligase

for IKKε.

To confirm that IKKε interacts with TRAF2 and cIAP1, we iso-

lated IKKε immune complexes in MCF-7 cells and confirmed

that IKKε binds to cIAP1 and TRAF2 (Figure 5A). We then per-

formed an in vitro ubiquitination assay to identify which

member(s) of the cIAP1/cIAP2/TRAF2 complex are responsible

for IKKε ubiquitination. We found that expression of immuno-

purified TRAF2 induced a low level of IKKε ubiquitination and

that either recombinant cIAP1 or cIAP2 alone induced strong

ubiquitination of purified IKKε (Figure 5B). To confirm this obser-

vation, we introduced IKKε with either WT or E3 ligase-deficient

mutant cIAP1, WT or E3 ligase-deficient mutant cIAP2, and

TRAF2 into HEK293T cells. We found that WT cIAP1 alone and

in complex with WT cIAP2 and TRAF2 sufficed to induce IKKε

ubiquitination (Figure 5C). When expressed in these cells,

TRAF2 also induced IKKε ubiquitination. However, mutant

cIAP1 and cIAP2 disrupted the ability of TRAF2 to ubiquitinate

IKKε. Together, these observations support a model in which

the cIAP1/cIAP2/TRAF2 E3 ligase complex is responsible for

IKKε ubiquitination.

To confirm that cIAP1, cIAP2, and TRAF2 are required for IKKε

ubiquitination, we suppressed the expression of these proteins in

MCF-7 cells and assessed IKKε ubiquitination. We suppressed

TRAF2 with two independent TRAF2-specific shRNAs (shTRAF2

#1 and shTRAF2 #2). We then isolated IKKε immune complexes

and found that cells in which TRAF2 was suppressed exhibited

a decrease in polyubiquitinated IKKε proportional to the amount

of TRAF2 suppression (Figure 5D). We next suppressed cIAP1

and cIAP2 expression alone or in combination with two indepen-

dent cIAP1-specific shRNAs (shcIAP1 #1, shcIAP1 #2) and

cIAP2-specific shRNAs (shcIAP2 #1, shcIAP2 #2), respectively.

When we isolated IKKε immune complexes, we found that cells

in which cIAP1 or cIAP2 was suppressed independently or in

combination exhibited a decrease in polyubiquitinated IKKε (Fig-

ure 5E). These observations show that all three components of

the cIAP1/cIAP2/TRAF2 E3 ligase complex are essential for

IKKε ubiquitination.
eated with 20 ng/ml TNF-a as indicated. IKKε immune complexes were isolated

ody.

eated with 20 ng/ml IL-1b as indicated. IKKε immune complexes were isolated

dy. A total of 5% of the whole cell lysate (WCL) was used as an input control for
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Figure 2. IKKε Is Modified by K63-Linked Ubiquitination

(A) Proteasome inhibitor treatment does not affect IKKε protein levels. MCF-7 and ZR-75-1 and HA1EMMF-IKKε cells were treated with 10 mMMG-132 and 1 mM

bortezomib. Immunoblotting was performed with the indicated antibodies.

(B) K63-linked ubiquitination of IKKε. HA-tagged WT, K11-only, K48-only, or K63-only ubiquitin mutants were cotransfected into HEK293T cells. Myc immune

complexes (IKKε) were isolated followed by immunoblotting with the indicated antibodies. Murine immunoglobulin (mIgG) was used as a control.

(C) K63-linked ubiquitination of IKKε in breast cancer cell lines. Endogenous K48-linked polyubiquitin and K63-linked polyubiquitin immune complexes were

isolated followed by immunoblotting with the indicated antibodies in MCF-7 and ZR-75-1 cells. rIgG was used as a control.

(D) U2OS-shUb-Ub(WT) or U2OS-shUb-Ub(K63R) cells were treated with tetracycline (TET) (1 mg/ml). IKKε immune complexes were isolated followed by

immunoblot analysis with the indicated antibodies. A total of 5% of the WCL was loaded for comparison (input).

728 Cell Reports 3, 724–733, March 28, 2013 ª2013 The Authors
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Figure 3. IKKε Is Ubiquitinated on K30, K401, and K416

(A) Ubiquitinated IKKε analysis by mass spectrometry. GST-IKKε was cotransfected into HEK293T cells with HA-Ub. GST immune complexes were isolated and

subjected to SDS-PAGE and Colloidal Blue staining. The band corresponding to IKKε (arrow) and three additional bands (arrowheads) were excised from the gel

and digested with trypsin and chymotrypsin. Ubiquitination sites were mapped by microcapillary liquid chromatography MS/MS.

(B) Amino acid sequence of IKKε. Mass spectrometry analysis covered 58.2% of IKKε (underlined) and 64.7% (22/34) of the internal lysines (bold). K30, K401, and

K416 (red) were identified as ubiquitinated.

(C) IKKεK30A and K401Amutants exhibit decreased ubiquitination. IKKε ubiquitination sitemutants (K30A, K401A, and K416A) were cotransfected into HEK293T

cells with HA-Ub. IKKε immune complexes were isolated with an IKKε-specific antibody and analyzed by immunoblotting.

(D) IKKε K30A and K401A mutants exhibit decreased ubiquitination in transformed HA1EM cells. IKKε immune complexes were isolated from HA1EM cells

expressingWT, K30A, K401A, and K416AMF-IKKεwith anti-M2 FLAGSepharose and analyzed by immunoblotting. A total of 5%of theWCLwas loaded for input

control.
DISCUSSION

K63-Linked Ubiquitination of IKKε Is Essential for its
Activity as an Oncogene
IKKε plays a key role in initiating the interferon response to viral

challenge and has been identified as an oncogene that is ampli-

fied in�30% of breast cancers. Here, we demonstrate that IKKε

is specifically modified by K63-linked ubiquitination. Using a pro-

teomic approach, we identified IKKε residues that are ubiquiti-

nated and determined that ubiquitination of IKKε at K30 and

K401 is essential for its role both as an NF-kB activator and as

an oncogene.
Modification of proteins by specific types of ubiquitination is

an important mechanism to regulate protein function or stability.

Using a combination of biochemical assays, linkage-specific

ubiquitin mutant constructs and antibodies, and a cell-based

ubiquitin replacement model, we found that IKKε is modified

by K63-linked polyubiquitination. Although we were unable to

purify sufficient amounts of IKKε to identify linkages by mass

spectrometry and cannot exclude the possibility that IKKε is

also modified by other types of ubiquitination, these comple-

mentary approaches provide evidence that K63-linked poly-

ubiquitination regulates IKKε activity in both inflammatory and

oncogenic contexts.
Cell Reports 3, 724–733, March 28, 2013 ª2013 The Authors 729
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Figure 4. IKKε K63-Linked Ubiquitination at

K30 and K401 Is Essential for IKKε Function

(A) IKKε kinase function is dependent on K63-

linked ubiquitination. U2OS-shUb-Ub(WT) or

U2OS-shUb-Ub(K63R) cells were treated with

TET. CYLD immune complexes were isolated fol-

lowed by immunoblotting for phospho-CYLD and

total CYLD.

(B) Effects of IKKε ubiquitination mutants on CYLD

phosphorylation. HEK293T cells were transfected

as indicated. Myc-CYLD immune complexes were

isolated and analyzed with the indicated anti-

bodies.

(C) Effects of IKKε ubiquitination mutants on

NF-kB activation. GloResponse NF-kB-RE-luc2P

HEK293T cells were transfected with V5-IKKεWT,

V5-IKKε K30R, and V5-IKKε K401R and analyzed

by the One-Glo Luciferase assay. Results reported

as RLU mean ± SD for six experiments. *p = 1.1 3

10�7, calculated by a standard t test.

(D) Effects of IKKε ubiquitination on IKKb and IKKg

recruitment. IKKε immune complexes were iso-

lated from HA1EM cells expressing WT, K30R, or

K401R IKKε and immunoblotted with the indicated

antibodies. A total of 5% of the WCL was loaded

for input control.

(E) Anchorage-independent growth of HA1EM

MF-IKKεWT andmutant cells. Colony formation of

HA1EM cells in Figure S3D expressing control

vector, WT MF-IKKε, MF-IKKε K30R, or MF-IKKε

K401R was analyzed after 28 days. Results

reported as mean ± SD for three experiments. *p =

0.0045, calculated by standard t test.

(F) Tumorigenicity of HA1EM MF-IKKε WT and

mutant cells. HA1EM cells expressing control

vector, WT MF-IKKε, MF-IKKε K30A, or MF-IKKε

K401A were introduced subcutaneously into im-

munodeficient mice (n = 6). Tumor formation is

shown as a fraction.
We previously showed that IKKε induces cell transfor-

mation that is dependent upon NF-kB activation (Boehm et al.,

2007). Here, we show that K63-linked IKKε ubiquitination is

required for its kinase activity but that mutations that

ablate ubiquitination of IKKε did not affect its interaction

with other proteins such as CYLD. This latter observation

makes it unlikely that these mutants disrupt the overall structure

of IKKε.

In concurrent work (Tu et al., 2013), we describe the structure

of TBK1, a family member that shares �65% protein homology

with IKKε, whose homodimerization is essential for activity. We

show that TBK1 is ubiquitinated at the analogous residues that

are ubiquitinated in IKKε. These residues are on opposing sides

of one face of an IKKε/TBK1 monomer but are juxtaposed

closely when TBK1 homodimerizes, suggesting that these resi-

dues may interact with an E3 ligase at this face of the dimer.

Moreover, this suggests that this modification creates a new

binding interface, and mutations affect recruitment of other

molecules critical for kinase function. IKKεmay be similarly regu-
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lated because IKKε also homodimerizes. In addition, we found

that disruption of IKKε ubiquitination does not interfere with

IKKε homodimerization, indicating that ubiquitination may occur

after dimerization.

The cIAP1/cIAP2/TRAF2 E3 Ubiquitin Ligase Complex
Modifies IKKε
We also found that the IKKε-interacting cIAP1/cIAP2/TRAF2 E3

ubiquitin ligase complex is both sufficient and essential to cata-

lyze IKKε ubiquitination. Using both biochemical and genetic

approaches, we found that cIAP1, cIAP2, and TRAF2 are all

required for the ubiquitination of IKKε.

Although prior work suggests that TRAF2 may be an E3 ubiq-

uitin ligase, the recent structure of the TRAF2 RING domain

suggests that it is unlikely to have enzymatic E3 ligase activity

(Yin et al., 2009). Instead, TRAF2 may act as a scaffold for the

recruitment of the cIAP proteins. Consistent with this model,

we found that cIAP1 and cIAP2 induce more robust IKKε ubiq-

uitination in vitro than immunopurified TRAF2. Moreover,
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Figure 5. The cIAP1/cIAP2/TRAF2 E3 Ubiq-

uitin Ligase Complex Ubiquitinates IKKε

(A) IKKε binds to TRAF2 and cIAP1 in MCF-7

cancer cells. Endogenous IKKε immune com-

plexes were isolated from MCF-7 breast cancer

cells using an IKKε-specific antibody and analyzed

by immunoblotting as indicated. rIgG was used as

a control.

(B) cIAP1/cIAP2/TRAF2 ubiquitinates IKKε in vitro.

An in vitro ubiquitination assay was performed

using recombinant cIAP1, recombinant cIAP2,

and immunopurified TRAF2. The samples were

analyzed by immunoblot.

(C) cIAP1/cIAP2/TRAF2 ubiquitinates IKKε in vivo.

HEK293T cells were transfected as indicated.

Lysates were immunoblotted with the indicated

antibodies.

(D) Effects of TRAF2 suppression on IKKε ubiq-

uitination. shTRAF2#1, shTRAF2#2, or control

shLACZ were expressed in MCF-7 cells. IKKε

immune complexes were isolated and immuno-

blotted with the indicated antibodies. rIgG was

used for control immunoprecipitations. Relative

TRAF2 levels were calculated by densitometry

analysis.

(E) Effects of cIAP1 and cIAP2 suppression on

IKKε ubiquitination. MCF-7 cells were trans-

duced with lentiviruses as indicated. IKKε

immune complexes were isolated and immuno-

blotted with the indicated antibodies. Relative

cIAP1 and cIAP2 levels were determined by

quantitative PCR. A total of 5% of the WCL was

loaded for input control and quantitative PCR

analysis.
because cIAP1 and cIAP2 form a complex with TRAF2, we

cannot eliminate the possibility that the immunopurified

TRAF2 used herein contains low levels of cIAP1 and cIAP2

undetectable by immunoblotting. We also found that the addi-

tion of E3 ligase-deficient mutant cIAP1 and mutant cIAP2 in-

hibited the ability of TRAF2 to catalyze IKKε ubiquitination

in vivo. These observations support the model that TRAF2

acts as a scaffold that recruits the enzymatically active cIAP1

and cIAP2 into an active E3 ubiquitin ligase complex that ubiq-

uitinates IKKε.

Although IKKε is a serine-threonine kinase potentially

amenable to inhibition by small molecule inhibitors, IKKε shares

substantial homology to TBK1, which makes likely that ATP-

competitive small molecule inhibitors of IKKε will also inhibit

TBK1. Recent work has demonstrated that E3 ligases can also
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be targeted by small molecules (Lydeard

and Harper, 2010), and small molecule

inhibitors of the cullin-RING family of

E3 ubiquitin ligases have been described

(Aghajan et al., 2010). Because we found

that cIAP1/cIAP2/TRAF2 E3 ligase

complex-mediated K63-linked ubiquiti-

nation is essential for IKKε activity, these

observations not only provide new

insights into the IKKε regulation but may
also identify an alternative mechanism for targeting IKKε

therapeutically.

EXPERIMENTAL PROCEDURES

Reagents

The antibodies used were Myc (clone 4A6) (Millipore), cIAP1, K48-linkage

specific Ubiquitin, K63-linkage specific Ubiquitin, phospho-CYLD, TRAF2

(Rabbit) and TANK (Cell Signaling Technologies), V5-HRP (Invitrogen), Ubiq-

uitin (FL-76 and PD-1), b-actin-HRP, cIAP2, CYLD, TRAF2 (mouse; Santa

Cruz Biotechnology), IKKε (Sigma-Aldrich), and HA (Clone12C5; Boehringer

Mannheim). The IKKε phospho-substrate antibody has been described previ-

ously (Hutti et al., 2009).

MF-IKKε K30A, MF-IKKε K401A, MF-IKKε K416A, MF-IKKε K30R, MF-IKKε

K401R, andMF-IKKε K416R were created using the QuikChange site-directed

mutagenesis protocol (Stratagene). V5-TRAF2, V5-TRAF2 DRING, V5-IKKε,

V5-IKKε K30R, V5-IKKε K401R, V5-IKKε K416R, Myc-IKKε, Myc-IKKε K30R,
3, March 28, 2013 ª2013 The Authors 731



Myc-IKKε K401R, and Myc-IKKε K416R were generated by Gateway cloning

into the pLEX-V5-Blast vector. HA-ubiquitin, HA-Ub K63-only, and HA-Ub

K48-only were used as described previously (Abbott et al., 2004; Boehm

et al., 2007). shRNA constructs were obtained from the RNAi Consortium.

FLAG-CIAP1 (plasmid 27972), FLAG-CIAP2 (plasmid 27973), pcdna3.1

hciap1mut (plasmid 8337), pcdna3.1 hciap2mut (plasmid 8339), pCMV-HA-

MyD88 (plasmid 12287), and pRK5-HA-Ubiquitin-K11 (plasmid 22901) were

obtained from Addgene.

Transfection, Immunoprecipitation, and Immunoblotting

Transfection experiments were performed using Fugene (Roche). U2OS shUb-

Ub(WT) andU2OS shUb-Ub(K63R) cells were cultured as described previously

(Xu et al., 2009). Immunoprecipitations in which IKKε ubiquitination was as-

sessed were performed as described previously (Xu et al., 2009) in Buffer

‘‘A’’ (20 mM Tris [pH 7.5], 150 mM NaCl, 10% glycerol, 1% Triton X-100).

Conditions that did or did not include boiling denaturation did not affect IKKε

ubiquitination. Densitometry was assessed using ImageJ software.

Mass Spectrometry Analysis

HEK293T cells were cotransfected with GST-IKKε and HA-Ub. GST immune

complexes were isolated using Glutathione Sepharose (GE Healthcare) and

the sample was resolved on SDS-PAGE and visualized with Colloidal Blue

(Invitrogen). Four bands were excised and subjected to in-gel trypsin diges-

tion. Peptides were separated across a 50 min gradient ranging from 7% to

30% (v/v) acetonitrile in 0.1% (v/v) trifluoroacetic acid in a microcapillary

(125 mm 3 18 cm) column packed with C18 reverse-phase material (Magic

C18AQ, 5-mm particles, 200-Å pore size, Michrom Bioresources) and

analyzed online on a hybrid linear ion trap-Orbitrap mass spectrometer

(Thermo-Electron). For each cycle, one full mass spectrometry (MS) scan

acquired on the Orbitrap at high mass resolution was followed by ten MS/

MS spectra on the linear ion trap from the ten most abundant ions. MS/

MS spectra were searched using the Sequest algorithm against the human

IPI protein database. Dynamic modifications of 114.0429275 Da on lysine

was allowed for ubiquitination. All peptide matches were initially filtered

based on enzyme specificity, mass measurement error, Xcorr, and dCorr

scores and further manually validated for peptide identification and site

localization.

NF-kB Reporter Assays

GloResponse NF-kB-RE-luc2P HEK293T cells (Promega) were transfected

with V5-IKKε WT, V5-IKKε K30R, and V5-IKKε K401R. NF-kB activity was

measured 36 hr posttransfection according to the One-Glo Luciferase

assay protocol (Promega). Luciferase values are reported directly in raw light

units (RLU).

Transformation Assays

Growth of HA1EM cells in soft agar was determined by plating 53 104 cells in

triplicate in 0.4% Noble agar. Colonies greater than 100 mm in diameter were

counted 28 days after plating, and 2 3 106 cells were subcutaneously

implanted into immunodeficient mice (Balb/c Nude, Charles River Laborato-

ries) anesthetized with isoflurane. Six independent tumors were tested for

each condition. Tumors were measured at 21 days after implantation.

In Vitro Ubiquitination Assay

Immunopurified TRAF2 was isolated by Myc immunoprecipitation from

HEK293T cells that were transfected with 3xMyc-TRAF2 for 48 hr. Recombi-

nant His-cIAP1(818-IA-050) and His-cIAP2(817-P2-050) were purchased

from R&D Systems. Recombinant E1 ubiquitin activating enzyme (E-304),

Ubc13 E2 enzyme (E2-664), and ubiquitin (U-100H) were purchased from

Boston Biochem. Recombinant IKKε protein (PV4875) was purchased from

Invitrogen. Reactions were carried out at 35�C for 2 hr in 50 nM HEPES

(pH 7.8), 10 mM MgCl2, and 4 mM ATP with 50 nM E1, 150 nM E2,

50 ng IKKε, 10 mg ubiquitin, 100 ng cIAP1, 100 ng cIAP2, and 20 ml immu-

nopurified TRAF2 Protein G Sepharose. Reactions were stopped after 2 hr

by adding 10 ml SDS loading dye and were subsequently analyzed by

immunoblot.
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