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Abstract

A p-adic Schrödinger-type operator Dα + VY is studied. Dα (α > 0) is the operator of fractional differentiation and VY =∑n
i,j=1 bij 〈δxj , ·〉δxi (bij ∈ C) is a singular potential containing the Dirac delta functions δx concentrated on a set of points

Y = {x1, . . . , xn} of the field of p-adic numbers Qp . It is shown that such a problem is well posed for α > 1/2 and the singular
perturbation VY is form-bounded for α > 1. In the latter case, the spectral analysis of η-self-adjoint operator realizations of Dα +VY

in L2(Qp) is carried out.
© 2007 Elsevier Inc. All rights reserved.

Keywords: p-Adic analysis; p-Adic Schrödinger-type operator; Point interactions; p-Adic wavelet basis; Pseudo-Hermitian quantum mechanics;
η-Self-adjoint operators; C-symmetry

1. Introduction

The non-Archimedean analysis based on p-adic numbers has a long history and a quite exhaustive presentation
of its applications in stochastics, psychology, the theory of dynamical systems, and other areas can be found in [16–
18,27]. A strong impetus to the development of p-adic analysis was given by the hypothesis about a possible p-adic
structure of physical space–time at sub-Planck distances (� 10−33 cm) [27]. This idea gave rise to many publica-
tions (see the surveys in [18,27]). Whatever form the p-adic models may take in the future, it has become clear that
finding p-adic counterparts for all basic structures of the standard mathematical physics is an interesting task. In
particular, the concept of p-adic Schrödinger-type operator was first introduced and studied by V.S. Vladimirov and
I.V. Volovich [26].

In the present paper we are going to continue the investigation of p-adic Schrödinger-type operators with point
interactions started by A. Kochubei [18].
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In ‘usual’ mathematical physics Schrödinger operators with point interactions are well studied and they are used in
quantum mechanics to obtain Hamiltonians describing realistic physical systems but having the important property of
being exactly solvable, i.e., that all eigenfunctions, spectrum, and scattering matrix can be calculated [1,4].

Since there exists a p-adic analysis based on the mappings from Qp into Qp and an analysis connected with the
mapping Qp into the field of complex numbers C, there exist two types of p-adic physical models. The present paper
deals with the mapping Qp → C, i.e., complex-valued functions defined on Qp will be considered. In this case the
operation of differentiation is not defined and the operator of fractional differentiation Dα of order α (α > 0) plays
a corresponding role [18,26,27]. In particular, p-adic Schrödinger-type operators with potentials V (x) : Qp → C are
defined as Dα + V (x).

The definition of Dα is given in the framework of the p-adic distribution theory with the help of Schwartz-type
distributions D′(Qp). One of remarkable features of this theory is that any distribution f ∈D′(Qp) with point support
suppf = {x} coincides with the Dirac delta function at the point x multiplied by a constant c ∈ C, i.e., f = cδx .

For this reason, it is natural to consider the expression Dα + VY where the singular potential VY =∑n
i,j=1 bij 〈δxj

, ·〉δxi
(bij ∈ C) contains the Dirac delta functions δx concentrated on points xk of the set Y =

{x1, . . . , xn} ⊂ Qp as a p-adic analogue of the Schrödinger operator with point interactions.
Since Dα is a p-adic pseudo-differential operator the expression Dα + VY gives an example of pseudo-differential

operators with point interactions. In the ‘usual’ (Archimedean) theory, expressions of such (and more general) type
have been studied in [5].

Obviously the domain of definition D(Dα) of the unperturbed operator Dα need not contains functions continuous
on Qp and, in general, may happen that the singular potential VY is not well defined on D(Dα).

In Section 2, together with a presentation of some elements of p-adic analysis needed for reading the paper, we
discuss the problem of characterizing D(Dα) and study in detail the solutions of the equation Dα − λI = δx .

Section 3 deals with the spectral analysis of operator realizations of Dα +VY (α > 1) in L2(Qp). We do not restrict
ourselves only to the self-adjoint case and also consider η-self-adjoint operators. The investigation of such operators
is motivated by an intensive development of pseudo-Hermitian (PT -symmetric) quantum mechanics in the last few
years [10,14,22,25,28].

Among self-adjoint extensions of the symmetric operator Asym associated with Dα +VY (α > 1), we pay a special
attention to the Friedrichs extension AF . Since AF is the ‘hard’ extension of Asym (see [8] for the terminology) and
the singular potential VY is form bounded the hypothesis that the discrete spectrum of AF depends on the geomet-
rical structure of Y looks likely. In this way we discuss the connection between the minimal distance pγmin between
elements of Y and an infinite sequence of points of the discrete spectrum (type-1 part of discrete spectrum).

We will use the following notations: D(A) and kerA denote the domain and the null-space of a linear operator A,
respectively. A �X means the restriction of A onto a set X.

2. Fractional differential operator

2.1. Elements of p-adic analysis

Basically we shall use the same notations as in [27]. Let p be a prime number. The field Qp of p-adic numbers
is the completion of the field of rational numbers Q with respect to p-adic norm | · |p , which is defined as follows:
|0|p = 0; |x|p = p−γ if a rational number x 	= 0 has the form x = pγ m

n
, where γ = γ (x) ∈ Z and integers m and

n are not divisible by p. The p-adic norm | · |p satisfies the strong triangle inequality |x + y|p � max(|x|p, |y|p).
Moreover, |x + y|p = max(|x|p, |y|p) if |x|p 	= |y|p .

Any p-adic number x 	= 0 can uniquely be presented as a series

x = pγ

+∞∑
i=0

xipi, xi = 0,1, . . . , p − 1, x0 > 0, (2.1)

convergent in the p-adic norm (the canonical presentation of x).
The canonical presentation (2.1) enables one to determine the fractional part {x}p of x ∈ Qp by the rule: {x}p = 0

if x = 0 or γ (x) � 0; {x}p = pγ (x)
∑−γ (x)−1

i=0 xipi if γ (x) < 0.
Denote by Bγ (a) = {x ∈ Qp | |x − a|p � pγ } the ball of radius pγ with the center at a point a ∈ Qp and set

Bγ (0) = Bγ . The ring Zp of p-adic integers is the ball B0 (Zp = B0).
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A complex-valued function f defined on Qp is called locally-constant if for any x ∈ Qp there exists an integer
l(x) such that f (x + x′) = f (x), ∀x′ ∈ Bl(x).

Denote by D(Qp) the linear space of locally constant functions on Qp with compact supports. For any test function
φ ∈ D(Qp) there exists l ∈ Z such that φ(x + x′) = φ(x), x′ ∈ Bl , x ∈ Qp . The largest of such numbers l = l(φ) is
called the parameter of constancy of φ. The characteristic function Ω(|x|p) = 1 if |x|p � 1 and Ω(|x|p) = 0 if
|x|p > 1 of the ball B0 is an example of test functions with parameter of constancy 1.

In order to furnish D(Qp) with a topology, let us consider the subspace Dl
γ ⊂ D(Qp) consisting of functions with

supports in the ball Bγ and the parameter of constancy � l. The convergence φn → 0 in D(Qp) means that: φk ∈Dl
γ ,

where the indices l and γ do not depend on k and φk tends uniformly to zero. This convergence determines the
Schwartz topology in D(Qp).

Denote by D′(Qp) the set of all linear functionals (Schwartz-type distributions) on D(Qp). In contrast to distrib-
utions on R, any linear functional D(Qp) → C is automatically continuous. The action of a functional f upon a test
function φ will be denoted as 〈f,φ〉.

It follows from the definition of D(Qp) that any test function φ ∈D(Qp) is continuous on Qp . This means that the
Dirac delta function 〈δx,φ〉 = φ(x) is well defined for any point x ∈ Qp .

On Qp there exists the Haar measure, i.e., a positive measure dpx invariant under shifts dp(x + a) = dpx and
normalized by the equality

∫
|x|p�1 dpx = 1.

Denote by L2(Qp) the set of measurable functions f on Qp satisfying the condition
∫

Qp
|f (x)|2 dpx < ∞. The

set L2(Qp) is a Hilbert space with the scalar product (f, g) = ∫
Qp

f (x)g(x) dpx.
The Fourier transform of φ ∈D(Qp) is defined by the formula

F [φ](ξ) = φ̃(ξ) =
∫

Qp

χp(ξx)φ(x) dpx, ξ ∈ Qp,

where χp(ξx) = e2πi{ξx}p is an additive character of the field Qp for any ξ ∈ Qp . The Fourier transform F [·] maps
D(Qp) onto D(Qp). Its extension by continuity onto L2(Qp) determines an unitary operator in L2(Qp).

The Fourier transform F [f ] of a distribution f ∈ D′(Qp) is defined by the standard relation 〈F [f ], φ〉 = 〈f,F [φ]〉,
∀φ ∈ D(Qp).

2.2. The operator Dα

The operator of differentiation is not defined in L2(Qp). Its role is played by the operator of fractional differentia-
tion Dα (the Vladimirov pseudo-differential operator) which is defined as

Dαf =
∫

Qp

|ξ |αpF [f ](ξ)χp(−ξx) dpξ, α > 0. (2.2)

It is easy to see that Dαf is well defined for all f ∈ D(Qp). The element Dαf need not belong necessarily to
D(Qp) (since the function |ξ |αp is not locally constant) however Dαf ∈ L2(Qp) [18].

Since D(Qp) is not invariant with respect to Dα we cannot define Dα on the whole space D′(Qp). For a distribution
f ∈ D′(Qp) the operator Dα is well defined only if the right-hand side of (2.2) exists.1

In what follows we will consider Dα , α > 0, as an unbounded operator in L2(Qp). In this case, the domain of
definition D(Dα) consists of those f ∈ L2(Qp) for which |ξ |αpF [f ](ξ) ∈ L2(Qp). Since Dα is unitarily equivalent
to the operator of multiplication by |ξ |αp , this operator is positive self-adjoint in L2(Qp) and its spectrum consists of
eigenvalues λm = pαm (m ∈ Z) of infinite multiplicity and their accumulation point λ = 0.

It was recently shown [19] that the set of eigenfunctions of Dα

ψNjε(x) = p− N
2 χ
(
pN−1jx

)
Ω
(∣∣pNx − ε

∣∣
p

)
, N ∈ Z, ε ∈ Qp/Zp, j = 1, . . . , p − 1, (2.3)

1 To overcome such an inconvenience, a p-adic analog of the Lizorkin spaces can be used instead of D(Qp) [2,3].
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forms an orthonormal basis in L2(Qp) (p-adic wavelet basis) such that

DαψNjε = pα(1−N)ψNjε. (2.4)

Here the indexes N,j, ε serve as parameters of the basis. In particular, elements ε ∈ Qp/Zp can be described as
ε =∑m

i=1 εip
−i (m ∈ N, εi = 0, . . . , p − 1).

The p-adic wavelet basis (2.3) does not depend on the choice of α and it provides a convenient framework for the
investigation of Dα . In particular, analyzing the expansion of any element u ∈ D(Dα) with respect to (2.3), it is not
hard to establish the uniformly convergence of the corresponding series for α > 1/2. This fact and the property of
eigenfunctions ψNjε to be continuous on Qp imply the next statement.

Proposition 2.1. (See [20].) The domain D(Dα) consists of functions continuous on Qp if and only if α > 1/2.

Let us consider an equation(
Dα − λI

)
h = δxk

, λ ∈ C, xk ∈ Qp, α > 0, (2.5)

where Dα : L2(Qp) →D′(Qp) is understood in the distribution sense.
It follows from [18, Lemma 3.7] that Eq. (2.5) has no solutions belonging to L2(Qp) for α � 1/2.

Theorem 2.1. The following statements are valid:

1. If α > 1/2, then Eq. (2.5) has a unique solution h = hk,λ ∈ L2(Qp) if and only if λ 	= pαm, where m runs
Z ∪ {−∞}.

2. If α > 1 and λ 	= pαm (∀m ∈ Z ∪ {−∞}), then hk,λ ∈ D(Dα/2).

Proof. First of all we remark that any function u ∈ D(Dα) can be expanded in an uniformly convergent series with
respect to the complex-conjugated p-adic wavelet basis {ψNjε}. This means (since {ψNjε} are continuous functions

on Qp) that u(xk) =∑∞
N=−∞

∑p−1
j=1

∑
ε(u,ψNjε)ψNjε(xk) for x = xk .

Obviously, ψNjε(xk) 	= 0 ⇔ |pNxk − ε|p � 1. Here ε ∈ Qp/Zp and hence, |ε|p > 1 for ε 	= 0. It follows from
the strong triangle inequality and the condition ε ∈ Qp/Zp that |pNxk − ε|p � 1 ⇔ ε = {pNxk}p . But then, recall-
ing (2.3), we obtain

ψNjε(xk) =
{

0, ε 	= {pNxk}p,

p−N/2χ(−pN−1jxk), ε = {pNxk}p.
(2.6)

Therefore,

〈δxk
, u〉 = u(xk) =

∞∑
N=−∞

p−1∑
j=1

p−N/2χ
(−pN−1jxk

)
(u,ψNj{pNxk}p )

=
∞∑

N=−∞

p−1∑
j=1

p−N/2χ
(−pN−1jxk

)〈ψNj{pNxk}p , u〉. (2.7)

Since D(Qp) ⊂ D(Dα) the equality (2.7) yields that

δxk
=

∞∑
N=−∞

p−1∑
j=1

p−N/2χ
(−pN−1jxk

)
ψNj{pNxk}p , (2.8)

where the series converges in D′(Qp).
Suppose that a function h ∈ L2(Qp) is represented as a convergent series in L2(Qp):

h(x) =
∞∑ p−1∑∑

ε

cNjεψNjε(x).
N=−∞ j=1
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Applying the operator Dα − λI termwise, we get a series

(
Dα − λI

)
h =

∞∑
N=−∞

p−1∑
j=1

∑
ε

cNjε

(
pα(1−N) − λ

)
ψNjε, (2.9)

converging in D′ (since DαD(Qp) ⊂ L2(Qp)). The comparison of (2.8) and (2.9) gives

cNjε =
{

0, ε 	= {pNxk}p,

p−N/2χ(−pN−1jxk)[pα(1−N) − λ]−1, ε = {pNxk}p.

Thus

hk,λ(x) =
∞∑

N=−∞

p−1∑
j=1

p−N/2χ
(−pN−1jxk

)[
pα(1−N) − λ

]−1
ψNj{pNxk}p (x) (2.10)

is a unique solution of (2.5).
Since the functions ψNj{pNxk}p (x) in (2.10) are elements of the orthonormal basis (2.3) in L2(Qp), the function

hk,λ(x) belongs to L2(Qp) if and only if

(p − 1)

∞∑
N=−∞

p−N
[
pα(1−N) − λ

]−2
< ∞.

This inequality holds ⇔ λ 	= pαm (∀m ∈ Z ∪ {−∞}). Assertion 1 is proved.
Let α > 1. Taking (2.3) and (2.10) into account, it is easy to see that hk,λ ∈ D(Dα/2) if and only if the following

series converge in L2(Qp):

∞∑
N=1

p−1∑
j=1

p−N/2χ
(−pN−1jxk

)[
pα(1−N) − λ

]−1
p

α
2 (1−N)ψpj{pNxk}p

+
0∑

N=−∞

p−1∑
j=1

p−N/2χ
(−pN−1jxk

)[
pα(1−N) − λ

]−1
p

α
2 (1−N)ψpj{pNxk}p

(if the limit exists then it coincides with Dα/2hk). For the general term of the first series we have∣∣p−N/2p
α
2 (1−N)χ

(−pN−1jxk

)[
pα(1−N) − λ

]−1∣∣2 � Cp−N(α+1), N � 1

(since λ 	= pαm, ∀m ∈ Z ∪ {−∞}) that implies its convergence in L2(Qp) for α > 1/2.
Similarly, the general term of the second series can be estimated from above by Cp(α−1)N (N � 0), which implies

its convergence in L2(Qp) for α > 1. Theorem 2.1 is proved. �
Let us study the solutions hk,λ(x) of (2.5) in more detail for α > 1. To do this we consider the family of functions

Mpγ (λ) (γ ∈ Z ∪ {−∞}) represented by the series

Mpγ (λ) = p − 1

p

−γ∑
N=−∞

pN

pαN − λ
− p−γ

pα(1−γ ) − λ
, γ ∈ Z, (2.11)

Mp−∞(λ) := M0(λ) = p − 1

p

∞∑
N=−∞

pN

pαN − λ
. (2.12)

Obviously, M0(λ) is differentiable for λ ∈ C \ {pαN | ∀N ∈ Z ∪ {−∞}} and M ′
0(λ) = p−1

p

∑∞
N=−∞

pN

(pαN−λ)2 .

Proposition 2.2. Let α > 1 and λ 	= pαN (∀N ∈ Z ∪ {−∞}). Then

hk,λ(x) =
{

M0(λ) if x = xk,

Mpγ (λ) if |x − xk|p = pγ ,
‖hk,λ‖2 = M ′

0(λ).
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Proof. If α > 1 and λ 	= pαN (∀N ∈ Z ∪ {−∞}), then hk,λ ∈D(Dα/2), where α/2 > 1/2 and hence, the series (2.10)
point-wise converges to hk,λ(x).

Employing (2.3) and (2.12), we immediately deduce from (2.10) that hk,λ(xk) = M0(λ), ‖hk,λ‖2 = M ′
0(λ), and

hk,λ(x) =
∞∑

N=−∞

p−1∑
j=1

p−Nχ(pN−1j (x − xk))

pα(1−N) − λ
· Ω(∣∣pNx − {pNxk

}
p

∣∣
p

)
(2.13)

for x 	= xk .
The expression (2.13) can be simplified with the use of the following arguments:

1. It follows from the strong triangle inequality and the definitions of {·}p and Ω(·) that Ω(|pNx − {pNxk}p|p) =
Ω(|pNx − pNxk|p) and

Ω
(∣∣pNx − {pNxk

}
p

∣∣
p

)= 0 ⇔ ∣∣pN(x − xk)
∣∣
p

> 1 ⇔ |x − xk|p > pN.

If x 	= xk , then |x − xk| = pγ for some γ ∈ Z. Therefore, the terms of (2.13) with indexes N < γ are equal to
zero.

2. Since |pN−1j (x − xk)|p = |pN−1|p|j |p|x − xk|p = pγ+1−N the fractional part {pN−1j (x − xk)}p is equal to
zero for N � γ + 1. Hence, χ(pN−1j (x − xk)) ≡ 1 when N � γ + 1.

3. Denote for brevity y = pN−1(x−xk) and consider the case when N = γ . Then |y|p = p and hence {y}p = p−1y0,
where y0 ∈ {1, . . . , p − 1} is a first term in the canonical presentation of y (see (2.1)). Since p is a prime number,
it is easy to verify that the set of numbers {jy}p (j = 1 . . . p − 1) coincides with the set p−1j (j = 1 . . . p − 1)

by modulo p. This means that

p−1∑
j=1

χ
(
pγ−1j (x − xk)

)= p−1∑
j=1

χ(jy) =
p−1∑
j=1

exp

(
j

2πi

p

)
= −1

(the last equality holds because
∑p

j=1 exp jiω = 0 for ω = 2π
p

).

Statements 1–3 allow one to rewrite (2.13) as follows

hk,λ(x) = (p − 1)

∞∑
N=γ+1

p−N

pα(1−N) − λ
− p−γ

pα(1−γ ) − λ
= Mpγ (λ).

Proposition 2.2 is proved. �
By Proposition 2.2, hk,λ(x) is a ‘radial’ function which takes exactly one value Mpγ (λ) for all points x of the

sphere Sγ (xk) = {x ∈ Qp | |x − xk|p = pγ }. Such a property of the solution hk,λ(x) of Eq. (2.5) is related to the
property of δ to be homogeneous of degree |x|−1

p [27].
In conclusion, we single out properties of the functions Mpγ (λ) and M0(λ) which will be useful for the spectral

analysis in the next section.

Lemma 2.1. Let α > 1 and let Mpγ (λ) and M0(λ) be defined by (2.11) and (2.12). Then

1. The function M0(λ) is continuous and monotonically increasing on each interval (−∞,0), (pαN,pα(N+1))

(∀N ∈ Z). Furthermore, M0(λ) maps (−∞,0) onto (0,∞) and maps (pαN,pα(N+1)) onto (−∞,∞).
2. The function Mpγ (λ) is continuous and monotonically increasing (decreasing) on (−∞,0) (on (pα(1−γ ),∞)).

Furthermore, Mpγ (λ) maps (−∞,0) onto (0,∞) and maps (pα(1−γ ),∞) onto (0,∞).

The proof of Lemma 2.1 is quite elementary and it is based on a simple analysis of the series (2.11) and (2.12). In
particular, rewriting the definition of Mpγ (λ) as

Mpγ (λ) =
−γ∑ pN

pαN − λ
−

−γ+1∑ pN−1

pαN − λ

N=−∞ N=−∞
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=
−γ∑

N=−∞

pN

pαN − λ
−

−γ∑
N=−∞

pN

pα(N+1) − λ
=

−γ∑
N=−∞

pN(pα(N+1) − pαN)

(pαN − λ)(pα(N+1) − λ)

we easy establish the assertion 2.

3. p-Adic Schrödinger-type operator with point interactions

In this section, we are going to study finite rank point perturbations of Dα determined by the expression

Dα + VY , VY =
n∑

i,j=1

bij 〈δxj
, ·〉δxi

, bij ∈ C, Y = {x1, . . . , xn}. (3.1)

Since δxj
/∈ L2(Qp) the expression (3.1) does not determine an operator in L2(Qp). Moreover, in contrast to the

standard theory of point interactions [1], the potential VY is not defined on the domain of definition D(Dα) of the
unperturbed operator Dα for α � 1/2 (Proposition 2.1). For this reason we will assume α > 1/2.

3.1. Definition of operator realizations of Dα + V in L2(Qp)

Let H2 ⊂ H1 ⊂ L2(Qp) ⊂ H−1 ⊂ H−2 be the standard scale of Hilbert spaces (A-scale) associated with the positive
self-adjoint operator A = Dα in L2(Qp). Here Hs = D(As/2), s = 1,2 with the norm ‖u‖s = ‖(Dα + I )s/2u‖ and
H−s is the completion of L2(Qp) with respect to the norm ‖u‖−s . In a natural way Hs and H−s are dual and the inner
product in L2(Qp) is extended to a pairing 〈φ,u〉 = ((Dα + I )s/2u, (Dα + I )−s/2φ), u ∈ Hs , φ ∈ H−s (see [4] for
details).

By virtue of Proposition 2.2, the solutions hk,λ of (2.5) satisfy the relation hk,λ = hk,λ. Taking this into account
and using (2.7) and (2.10) we get

〈δxk
, u〉 = u(xk) = ((Dα − λI

)
u,hk,λ

)
L2(Qp)

(
u ∈D
(
Dα
)
, xk ∈ Qp

)
(3.2)

for any complex λ 	= pαm (∀m ∈ Z ∪ {−∞}). Hence, δxk
∈ H−2.

In order to give a meaning to (3.1) as an operator acting in L2(Qp), we consider the positive symmetric operator
Asym defined by

Asym = Dα �D, D = {u ∈D
(
Dα
) ∣∣ u(x1) = · · · = u(xn) = 0

}
, α > 1/2. (3.3)

It follows from (3.2) that Asym is a closed densely defined symmetric operator in L2(Qp) and the linear span
of {hk,λ}nk=1 coincides with ker(A∗

sym − λI). It is convenient to present the domain of the adjoint D(A∗
sym) as

D(A∗
sym) = D(Dα) +̇H, where H = ker(A∗

sym + I ). Then

A∗
symf = A∗

sym(u + h) = Dαu − h, ∀f = u + h ∈D
(
A∗

sym

)
(3.4)

(u ∈ D(Dα), h ∈H).
In the additive singular perturbation theory, the algorithm of the determination of operator realizations of Dα + VY

is well known [4] and it is based on the construction of some extension (regularization) Areg := Dα + VY reg of (3.1)
onto the domain D(A∗

sym) = D(Dα) +̇H.
The L2(Qp)-part

Ã = Areg �D(Ã), D(Ã) = {f ∈ D
(
A∗

sym

) ∣∣Aregf ∈ L2(Qp)
}

(3.5)

of the regularization Areg is called the operator realization of Dα + VY in L2(Qp).
Since the action of Dα on elements of H is defined by (2.5) the regularization Areg depends on the definition

of VY reg.
If α > 1, Theorem 2.1 gives that δxk

∈ H−1. Hence, the singular potential VY =∑n
i,j=1 bij 〈δxj

, ·〉δxi
is form

bounded [1]. In this case, the set D(A∗
sym) ⊂ H1 consists of continuous functions on Qp (in view of Proposition 2.1

and Theorem 2.1) and δxk
are uniquely determined on elements f ∈ D(A∗

sym) by the formula (cf. (3.2))

〈δxk
, f 〉 = ((Dα + I

)1/2
f,
(
Dα + I

)1/2
hk,−1
) = f (xk). (3.6)

L2(Qp)
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Thus the regularization AY reg is uniquely defined for α > 1 and formula (3.5) provides a unique operator realization
of (3.1) in L2(Qp) corresponding to a fixed singular potential VY .

If 1/2 < α � 1, then the delta functions δxk
form a H−1-independent system (since the linear span of {δxk

}n1 does
not intersect with H−1) and VY reg is not uniquely defined on D(A∗

sym) (see [20] for a detailed discussion of this part).

3.2. Description of operator realizations

Let η be an invertible bounded self-adjoint operator in L2(Qp).
An operator A is called η-self-adjoint in L2(Qp) if A∗ = ηAη−1, where A∗ denotes the adjoint of A [9]. Obviously,

self-adjoint operators are η-self-adjoint ones for η = I . In that case we will use the simpler terminology ‘self-adjoint’
instead of ‘I -self-adjoint.’

Our goal is to describe η-self-adjoint operator realizations of Dα + VY in L2(Qp) for α > 1.
Since the solutions hk := hk,−1 (1 � k � n) of (2.5) form a basis of H any function f ∈ D(A∗

sym) = D(Dα) +̇ H
admits a decomposition f = u +∑n

k=1 ckhk (u ∈ D(Dα), ck ∈ C). Using such a presentation we define the linear
mappings Γi :D(A∗

sym) → Cn (i = 0,1),

Γ0f =
⎛⎝f (x1)

...

f (xn)

⎞⎠ , Γ1f = −
⎛⎝ c1

...

cn

⎞⎠ , ∀f = u +
n∑

k=1

ckhk ∈D
(
A∗

sym

)
. (3.7)

In what follows we assume that

Dαη = ηDα and η : H →H. (3.8)

By the second relation in (3.8), the action of η on elements of H can be described by the matrix Y = ‖yij‖n
i,j=1

where entries yij are determined by the relations ηhj =∑n
i=1 yijhi (1 � j � n). In general, the basis {hi}ni=1 of H is

not orthogonal and the matrix Y is not Hermitian (Y 	= Y t).

Theorem 3.1. (See [20].) Let α > 1 and let Ã be the operator realization of Dα + VY defined by (3.5). Then Ã

coincides with the operator

AB = A∗
sym �D(AB), D(AB) = {f ∈D

(
A∗

sym

) ∣∣ BΓ0f = Γ1f
}
, (3.9)

where B = ‖bij‖n
i,j=1 is the coefficient matrix of the potential VY .

The operator AB is self-adjoint if and only if the matrix B is Hermitian.
If η satisfies (3.8), then AB is η-self-adjoint if and only if the matrix YB is Hermitian.

Example 1 (P-self-adjoint realizations). Let Y = {x1, x2}, where x2 = −x1 and let η = P be the space parity operator
Pf (x) = f (−x) in L2(Qp). It follows from Proposition 2.2 that Ph1 = h2 and Ph2 = h1. Hence, the corresponding
matrix Y has the form Y = ( 0 1

1 0

)
and P satisfies (3.8).

By Theorem 3.1 the formula (3.9) determines P-self-adjoint realizations AB of Dα + VY if and only if the entries
bij of the matrix B = ‖bij‖2

i,j=1 satisfy the relations b12, b21 ∈ R, b11 = b22.
Under such conditions imposed on bij the corresponding singular potential VY is not symmetric in the stan-

dard sense (except the case bij ∈ R, b11 = b22, b12 = b21) but satisfies the condition of P-symmetry PV ∗
Y = VYP ,

where the adjoint V ∗
Y is determined by the relation 〈VY u, v〉 = 〈u,V ∗

Y v〉 (u,v ∈ D(Dα)). Assuming formally that
T VY = V ∗

Y T , where T is the complex conjugation operator T f (x) = f (x), we can rewrite the condition of P-
symmetry as follows PT VY = VYPT . This means that the expression Dα + VY is PT -symmetric (since PT Dα =
DαPT ). Thus the P-self-adjoint operators AB described above are operator realizations of the PT -symmetric ex-
pression Dα + VY in L2(Qp).

3.3. Spectral properties

As a rule, spectral properties of finite rank perturbations are described in terms of a Nevanlinna function (Krein–
Langer Q-function) appearing as a parameter in a Krein’s type resolvent formula relating the resolvents of perturbed
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and unperturbed operators [4,12,23]. The choice of a resolvent formula has to be motivated by simple links with the
parameters of the perturbations.

Denote by L and LY the closed subspaces of L2(Qp) spanned by the p-adic wavelets ψNjε(x) (N ∈ Z, j =
1, . . . , p − 1) with ε 	= {pNxi}p (∀xi ∈ Y) and ε = {pNxi}p (∃xi ∈ Y }, respectively. Obviously, L ⊕ LY = L2(Qp).
Relations (2.4), (2.6), and (3.3) imply that the subspaces L and LY reduce the operators Dα and Asym. Furthermore
Asym = Dα �L ⊕Asym �LY

.
Let AB be the operator realization of Dα + V defined by (3.9). Then AB = Dα �L ⊕AB �LY

. Therefore, the
spectrum of AB consists of eigenvalues λ = pαN (∀N ∈ Z) of infinite multiplicity and their accumulation point λ = 0.

To describe eigenvalues of finite multiplicity we consider the matrix

M(λ) = ∥∥M|xi−xj |p (λ)
∥∥n

i,j=1, ∀λ ∈ C \ {pαN
∣∣ ∀N ∈ Z ∪ {−∞}}, (3.10)

where the functions M|xi−xj |p (λ) (|xi − xj |p = pγ (xi ,xj )) are defined by (2.11) and (2.12).

Theorem 3.2. Let the matrix B in (3.9) be invertible. Then a point λ ∈ C \ {pαN | ∀N ∈ Z ∪ {−∞}} is an eigenvalue
of AB if and only if det[M(λ) + B−1] = 0. In this case, the (geometric) multiplicity of λ is n − r , where r is the rank
of M(λ) +B−1.

If det[M(λ) +B−1] 	= 0, then λ ∈ ρ(AB) and the corresponding Krein’s resolvent formula has the form

(AB − λI)−1 = (Dα − λI
)−1 − (h1,λ, . . . , hn,λ)

[
M(λ) +B−1]−1

⎛⎜⎝ (·, h1,λ)

...

(·, hn,λ)

⎞⎟⎠ . (3.11)

Proof. It is easy to see from (2.10) that hk,λ = u + hk,−1, where u ∈D(Dα). This relation and (3.7) give

Γ1hk,λ = (0, . . . , −1︸︷︷︸
kth

, . . . ,0)t. (3.12)

On the other hand, in view of Proposition 2.2 and (3.7),

Γ0hk,λ = (M|xk−x1|p (λ), . . . ,M0(λ)︸ ︷︷ ︸
kth

, . . . ,M|xk−xn|p (λ)
)t

. (3.13)

It is clear that λ ∈ C\{pαN | ∀N ∈ Z∪{−∞}} is an eigenvalue of AB if and only if there exists a non-trivial element
fλ ∈ ker(A∗

sym −λI)∩D(AB). Representing fλ as fλ =∑n
k=1 ckhk,λ, using (3.10), (3.12), (3.13), and keeping in mind

that D(AB) = ker(Γ0 −B−1Γ1), we rewrite the latter condition as follows: [M(λ)+B−1](c1, . . . , cn)
t = 0. Therefore,

λ is an eigenvalue if and only if this matrix equation has a non-trivial solution. Obviously, the (geometric) multiplicity
of λ is n − r , where r is the rank of M(λ) +B−1.

The resolvent formula (3.11) can be established by a direct verification with the help of (3.2), (3.12), and (3.13).
Theorem 3.2 is proved. �
Remark. It is easy to see that the triple (Cn,−Γ1,Γ0), where Γi are defined by (3.7) is a boundary value space
(BVS) of Asym and the matrix M(λ) is the corresponding Weyl–Titchmarsh function of Asym [13]. From this point of
view, Theorem 3.2 is a direct consequence of the general BVS theory. However, we prefer not to employ the general
constructions in the cases where the required results can be established in a more direct way.

3.4. The case of η-self-adjoint operator realizations

One of the principal motivations for the study of η-self-adjoint operators in framework of the quantum mechanics
is the observation that some of them have real spectrum (like self-adjoint operators) and, therefore, they can be used
as alternates to standard Hamiltonians to explain experimental data [21].

Since an arbitrary η-self-adjoint operator A is self-adjoint with respect to the indefinite metric [f,g] := (ηf,g)

(f, g ∈ L2(Qp)), one can attempt to develop a consistent quantum theory for η-self-adjoint Hamiltonians with real
spectrum. However, in this case, we encounter the difficulty of dealing with a Hilbert space L2(Qp) equipped by



1276 S. Albeverio et al. / J. Math. Anal. Appl. 338 (2008) 1267–1281
the indefinite metric [·,·]. One of the natural ways to overcome this problem consists in the construction of a certain
previously unnoticed physical symmetry C for A (see, e.g., [10,11,22]).

By analogy with [10], we will say that an η-self-adjoint operator A acting in L2(Qp) possesses the property of C-
symmetry if there exists a bounded linear operator C in L2(Qp) such that the following conditions are satisfied:

(i) AC = CA;
(ii) C2 = I ;

(iii) the sesquilinear form (f, g)C := [Cf,g] (∀f,g ∈ L2(Qp)) determines an inner product in L2(Qp) that is equiv-
alent to initial one.

The existence of a C-symmetry for an η-self-adjoint operator A ensures unitarity of the dynamics generated by A

in the norm ‖ · ‖2
C = (·,·)C .

In ordinary quantum theory, it is crucial that any state vector can be expressed as a linear combination of the
eigenstates of the Hamiltonian. For this reason, it is natural to assume that every physically acceptable η-self-adjoint
operator must admit an unconditional basis composed of its eigenvectors, or at least, of its root vectors (see [25] for a
detailed discussion of this point).

Theorem 3.3. Let AB be the η-self-adjoint operator realization of Dα + V defined by (3.9). Then the following
statements are equivalent:

(i) AB possesses the property of C-symmetry;
(ii) the spectrum σ(AB) is real and there exists a Riesz basis of L2(Qp) composed of the eigenfunctions of AB .

Proof. It is known that the property of C-symmetry for η-self-adjoint operators is equivalent to their similarity to
self-adjoint ones [6,22]. Hence, if AB possesses C-symmetry, then there exists an invertible bounded operator Z such
that

AB = ZHZ−1, (3.14)

where H is a self-adjoint operator in L2(Qp). So, the spectrum of AB lies on the real axis. Furthermore, it follows
from Theorem 3.2 that σ(AB) has no more than a countable set of points of condensations. Obviously, this property
holds for the spectrum of the self-adjoint operator H . Applying now Lemma 4.2.7 in [9], we immediately derive the
existence of an orthonormal basis of L2(Qp) composed of the eigenfunctions of H . To complete the proof of the
implication (i) ⇒ (ii) it is sufficient to use (3.14).

Let us verify that (ii) ⇒ (i). Indeed, if {fi}∞1 is a Riesz basis composed of the eigenfunctions of AB (i.e.,
ABfi = λifi, λi ∈ R), then fi = Zei , where {ei}∞1 is an orthonormal basis of L2(Qp) and Z is an invertible bounded
operator. This means that (3.14) holds for a self-adjoint operator H defined by the relations Hei = λiei . Theorem 3.3
is proved. �

The next statement is a direct consequence of Theorem 3.3.

Corollary 1. An arbitrary self-adjoint operator realization AB of Dα + V possesses a complete set of eigenfunctions
in L2(Qp).

In conclusion we note that the spectral properties of η-self-adjoint operators can have rather unexpected features.
In particular, the standard one-dimensional Schrödinger operator with a certain kind PT -symmetric zero-range po-
tentials gives examples of P-self-adjoint operators in L2(R) whose spectra coincide with C [7].

3.5. The Friedrichs extension

Let AF be the Friedrichs extension of the symmetric operator Asym defined by (3.3). The standard arguments of
the extension theory lead to the conclusion (see [20] for details) that AF = Dα when 1/2 < α � 1 and

AF = A∗
sym �D(AF ), D(AF ) = {f (x) ∈ D

(
A∗

sym

) ∣∣ f (x1) = · · · = f (xn) = 0
}

when α > 1. In the latter case, D(AF ) = kerΓ0 and the operator AF can formally be described by (3.9) with B = ∞.



S. Albeverio et al. / J. Math. Anal. Appl. 338 (2008) 1267–1281 1277
Obviously, the essential spectrum of AF consists of the eigenvalues λ = pαN (N ∈ Z) of infinite multiplicity, and
their accumulation point λ = 0.

Let α > 1. Repeating step by step the proof of Theorem 3.2 and taking the relation D(AF ) = kerΓ0 into account,
we conclude that the discrete spectrum σdis(AF ) coincides with the set of solutions λ of the equation detM(λ) = 0.

The obtained relation allows one to establish some connections between σdis(AF ) and the geometrical characteristics
of the set Y . To illustrate this fact we consider the two points case Y = {x1, x2}.

Indeed,

λ ∈ σdis(AF ) ⇔ 0 = det
∥∥M|xi−xj |p (λ)

∥∥2
i,j=1 = (M0(λ) − Mpγ (λ)

)(
M0(λ) + Mpγ (λ)

)
,

where pγ = |x1 − x2|p . Therefore, the discrete spectrum is determined by the equations M0(λ) − Mpγ (λ) = 0 and
M0(λ) + Mpγ (λ) = 0.

In view of (2.11) and (2.12),

M0(λ) − Mpγ (λ) = p − 1

p

∞∑
N=−γ+2

pN

pαN − λ
+ p1−γ

pα(1−γ ) − λ
. (3.15)

A simple analysis of (3.15) shows that the function M0(λ) − Mpγ (λ) is monotonically increasing on the in-
tervals (−∞,pα(1−γ )) and (pαN,pα(N+1)), ∀N � −γ + 1 and it maps (−∞,pα(1−γ )) onto (0,∞) and maps
(pαN,pα(N+1)) onto (−∞,∞). This means that the set of solutions of M0(λ) − Mpγ (λ) = 0 coincides with the
infinite series of numbers λ = λ−

N , N � −γ + 1 each of which is situated in the interval (pαN,pα(N+1)). We will call
the series of numbers {λ−

N }∞N=−γ+1 the type-1 part of the discrete spectrum of AF . So, the type-1 part σ−
dis of σdis(AF )

consists of solutions of the equation M0(λ) − Mpγ (λ) = 0.
By virtue of (2.11) and (2.12),

M0(λ) + Mpγ (λ) = 2
p − 1

p

−γ∑
N=−∞

pN

pαN − λ
+ p − 2

p

p1−γ

pα(1−γ ) − λ
+ p − 1

p

∞∑
N=−γ+2

pN

pαN − λ
.

Analyzing this relation, it is easy to see that there exists exactly one solution λ = λ+
N of M0(λ) + Mpγ (λ) = 0 lying

inside an interval (pαN,pα(N+1)), ∀N ∈ Z. We will call the infinite series of numbers {λ+
N }∞−∞ the type-2 part σ+

dis of
the discrete spectrum σdis(AF ).

Obviously, σ−
dis ∪σ+

dis = σdis(AF ). Let N � −γ +1 and let λ±
N ∈ σ±

dis be the corresponding discrete spectrum points
in (pαN,pα(N+1)). It follows from Lemma 2.1 that λ+

N < λ−
N . Therefore, σ−

dis ∩ σ+
dis = ∅.

Thus the discrete spectrum σdis(AF ) consists of infinite series of eigenvalues of multiplicity one, which are dis-
posed as follows: an interval (pαN,pα(N+1)) contains exactly one eigenvalue λ+

N if N < −γ (type-2 only) and exactly
two eigenvalues λ+

N < λ−
N if N � −γ + 1 (type-1 and type-2).

The obtained description shows that the type-1 part σ−
dis of σdis(AF ) uniquely determines the distance |x1 − x2|p .

In the general case Y = {x1, . . . , xn} the discrete spectrum σdis(AF ) also contains the type-1 part. Indeed, denote by
pγmin the minimal distance between the points of Y . Without loss of generality we may assume that |x1 −x2|p = pγmin .
Then, by the strong triangle inequality, |xj − x1|p = |xj − x2|p = pγj � pγmin for any point xj ∈ Y (j 	= 1,2). This
means that the first two rows (columns) of the matrix M(λ) (see (3.10)) differ from each other by the first two terms
only. Subtracting the second row from the first one we get

detM(λ) = (M0(λ) − Mpγmin (λ)
)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

Mpγmin (λ) M0(λ) Mpγ3 (λ) . . . Mpγn (λ)

Mpγ3 (λ) Mpγ3 (λ)
. . .

...
...

. . .

Mpγn (λ) Mpγn (λ)
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus the type-1 part σ−
dis of the discrete spectrum always exists and it characterizes the minimal distance pγmin

between elements of Y .
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3.6. Two points interaction

3.6.1. Invariance with respect to the change of points of interaction
Let Y = {x1, x2} and let the symmetric potential VY =∑2

i,j=1 bij 〈δxj
, ·〉δxi

be invariant under the change x1 ↔ x2.

This means that bij ∈ R and b11 = b22, b12 = b21. In this case, the inverse B−1 of the coefficient matrix B has the form
B−1 = ( a b

b a

)
, where a = b11/Δ, b = −b12/Δ, and Δ = b2

11 − b2
12 	= 0. (We omit the case b11 = b12 = b21 = b22.)

The operator AB is self-adjoint in L2(Qp) and (by Theorem 3.2)

λ ∈ σdis(AB) ⇔ (
M0(λ) − Mpγ (λ) + a − b

)(
M0(λ) + Mpγ (λ) + a + b

)= 0,

where pγ = |x1 − x2|p . Thus, the description of σdis(AB) is similar to the description of σdis(AF ) and we can define
some analogs of the type-1

σ−
dis(AB) := {λ ∈ R \ σ

(
Dα
) ∣∣M0(λ) − Mpγ (λ) + a − b = 0

}
and the type-2 σ+

dis(AB) := {λ ∈ R \ σ(Dα) | M0(λ) + Mpγ (λ) + a + b = 0} parts of the discrete spectrum σdis(AB).
By analogy with the Friedrichs extension case (see (3.15)), σ−

dis(AB) contains an infinite series of eigenvalues
λ−

N lying in the intervals (pαN,pα(N+1)), ∀N � −γ + 1. However, in contrast to the Friedrichs case, the interval
(−∞,pα(−γ+1)) contains an additional (unique) point λ− ∈ σ−

dis(AB) if and only if

0 < b − a and b − a 	= [M0(λ) − Mpγ (λ)
]∣∣

λ=pαm, −∞ � m � −γ ,

where the difference [M0(λ)−Mpγ (λ)]|λ=pαm is determined by (3.15). In particular, λ− < 0 ⇔ 0 < b−a < M0(0)−
Mpγ (0) = p(1−α)(−γ+1).

The type-2 part σ+
dis(AB) contains an infinite series of eigenvalues λ+

N lying in the intervals (pαN,pα(N+1)),
∀N ∈ Z, covering positive semi-axis. An additional (unique) negative point λ+ ∈ σ+

dis(AB) arises ⇔ b + a < 0.
Obviously σ−

dis(AB) ∪ σ+
dis(AB) = σdis(AB) but σ−

dis(AB) and σ+
dis(AB) need not be disjoint.

3.6.2. Examples of P-self-adjoint realizations
Let Y = {x1, x2}, where x2 = −x1 and let AB be P-self-adjoint realizations of Dα + VY described in Example 1.

We restrict ourselves to the case where the inverse B−1 of the coefficient matrix B has the form B−1 = (−ia b
−b ia

)
(a, b ∈ R).

The operator AB is P-self-adjoint in L2(Qp) and λ is an eigenvalue of AB if and only if(
M0(λ) − Mpγ (λ)

)(
M0(λ) + Mpγ (λ)

)+ a2 + b2 = 0
(
pγ = |2x1|p

)
.

Using properties of M0(λ) − Mpγ (λ) and M0(λ) + Mpγ (λ) presented in Section 3.5, it is easy to describe real
eigenvalues of AB . Precisely:

(i) The negative semi-axis R− = (−∞,0) belongs to ρ(AB).
(ii) If N < −γ , then the interval (pαN,pα(N+1)) contains an eigenvalue λN of AB such that pαN < λN < λ+

N , where
λ+

N is the corresponding type-2 discrete spectrum point of the Friedrichs extension AF .
(iii) If N � −γ + 1, then eigenvalues of AB may appear only in the subinterval (λ+

N,λ−
N) ⊂ (pαN,pα(N+1)), where

λ−
N is the type-1 point of σdis(AF ). The existence of such eigenvalues in (λ+

N,λ−
N) can be guaranteed by the

decreasing of a and b (for fixed N � −γ + 1).

3.7. One point interaction

Without loss of generality we will assume x1 = 0. Then the general expression (3.1) takes the form Dα + b〈δ0, ·〉δ0
(b ∈ R ∪ ∞) and the corresponding self-adjoint operator realizations Ab in L2(Qp) are defined by the formula

Abf = Ab(u + βh1,−1) = Dαu − βh1,−1, (3.16)

where the parameter β = β(u, b) ∈ C is uniquely determined by the relation bu(0) = −β[1 + bM0(−1)]. The opera-
tors Ab are self-adjoint extensions of the symmetric operator Asym = Dα �D, D = {u ∈D(Dα) | u(0) = 0}.
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In our case, the subspace LY is the closed linear span of ψNj0(x) (N ∈ Z, j = 1, . . . , p − 1) and Ab = Dα �L ⊕
Ab �LY

. The operator Ab �LY
is a self-adjoint extension of Asym �LY

and the points pα(1−N) are eigenvalues of

multiplicity p − 2 of the symmetric operator Asym �LY
. The orthonormal basis {ψ̃Nj0(x)}p−2

j=1 of the corresponding

subspace ker(Asym �LY
−pα(1−N)I ) can be chosen as follows:

ψ̃Nj0(x) =
(

j

j + 1

)1/2
[
ψN(j+1)0(x) − 1

j

j∑
i=1

ψNi0(x)

]
. (3.17)

The decomposition Ab = Dα �L ⊕Ab �LY
, Lemma 2.1, and Theorem 3.2 allow one to describe in detail the spectral

properties of Ab (b 	= 0). Precisely:

(i) The operator Ab is positive ⇔ b > 0. Otherwise (b < 0), the unique solution of the equation M0(λ) = −1/b

on the semi-axis (−∞,0) gives a negative eigenvalue λ−
b of multiplicity one. The corresponding normalized

eigenfunction has the form

φ−
b (x) =

h1,λ−
b
(x)√

M ′
0(λ

−
b )

= 1√
M ′

0(λ
−
b )

∞∑
m=−∞

p−1∑
j=1

p−m/2

pα(1−m) − λ−
b

ψmj0(x). (3.18)

(ii) The positive part of the discrete spectrum of Ab consists of an infinite series of points λNb of multiplicity one,
each of which is the unique solution of M0(λ) = −1/b in the interval (pαN,pα(N+1)) (N ∈ Z). The correspond-
ing normalized eigenfunction is (cf. (3.18))

φNb(x) = 1√
M ′

0(λNb)

∞∑
m=−∞

p−1∑
j=1

p−m/2

pα(1−m) − λNb

ψmj0(x). (3.19)

(iii) The points pα(1−N) are eigenvalues of infinite multiplicity of Ab . The orthonormal basis of the corresponding
subspace ker(Ab − pα(1−N)I ) can be chosen as follows:

ψNjε(x) (1 � j � p − 1, ε 	= 0), ψ̃Nj0(x) (1 � j � p − 2),

where ψNjε(x) and ψ̃Nj0(x) are defined by (2.3) and (3.17), respectively.
(iv) The coefficient b of the singular perturbation b〈δ0, ·〉δ0 is uniquely recovered by any point of the discrete spec-

trum and

σdis(Ab1) ∩ σdis(Ab2) = ∅ (b1 	= b2);
⋃

b∈R∪{∞}
σdis(Ab) = R \ σ

(
Dα
)
.

Combining properties (i)–(iii) with Corollary 1 we immediately establish the following statement.

Proposition 3.1. The set of eigenfunctions of Ab

ψNjε(x) (N ∈ Z, 1 � j � p − 1, ε 	= 0),

ψ̃Nj0(x) (N ∈ Z, 1 � j � p − 2),

φNb(x) (N ∈ Z),

φ−
b (x) (for the case b < 0 only) (3.20)

forms an orthonormal basis of L2(Qp).

The Krein spectral shift ξb(λ) = 1
π

arg[1 + bM0(λ + i0)] is easily calculated

ξb(λ) =
{

0 if λ ∈ (−∞, λ−) ∪ [⋃∞
−∞(λN,b,p

α(N+1))],
1 if λ ∈ (λ ,0) ∪ [⋃∞

(pαN,λ )]
− −∞ N,b



1280 S. Albeverio et al. / J. Math. Anal. Appl. 338 (2008) 1267–1281
(the interval (λ−,0) is omitted for b > 0). Therefore [24], the difference of the spectral projectors Pλ(Ab) − Pλ(D
α)

(Pλ := P(−∞,λ)) is trace class and Tr[Pλ(Ab) − Pλ(D
α)] = 0 for all λ ∈ ker ξb(λ).

Let us consider the transformation of dilation Uf (x) = p−1/2f (px). Obviously, U is an unitary operator in
L2(Qp) and the p-adic wavelet basis {ψNjε(x)} is invariant with respect to the dilation

UψNjε(x) = ψ(N+1)jε(x). (3.21)

Furthermore, in view of (2.4)

UmDα = pαmDαUm, m ∈ Z. (3.22)

In this sense the operator Dα is pαm-homogeneous with respect to the one parameter family U = {Um}m∈Z of unitary
operators [4,15].

Proposition 3.2. Among self-adjoint operators Ab described by (3.16) there are only two pαm-homogeneous opera-
tors with respect to the family U. One of them A0 = Dα is the Krein–von Neumann extension of Asym, another one
coincides with the Friedrichs extension A∞ = AF .

An orthonormal basis of L2(Qp) composed of the eigenfunctions of Ab and invariant with respect to the dilation U

exists if and only if b = 0 or b = ∞.

Proof. The first part of the proposition is a direct consequence of [15, Subsection 4.4].
The p-adic wavelet basis {ψNjε(x)} is an example of an orthonormal basis composed of the eigenfunctions of A0

and invariant with respect to U .
Let us show that the orthonormal basis of eigenfunctions of A∞ defined by (3.20) also is invariant with respect

to U . Indeed, relations (3.17) and (3.21) yield Uψ̃Nj0 = ψ̃(N+1)j0.
It follows from (2.12) that

pα−1M0
(
pαλ
)= M0(λ). (3.23)

Using (3.23) and recalling that λN∞ is the solution of M0(λ) = 0 in the interval (pαN,pα(N+1)), we derive the recur-
rent relation λ(N+1)∞ = pαλN∞. The obtained relation and (3.19), (3.21) imply UφN∞(x) = φ(N−1)∞(x). Hence,
the basis (3.20) is invariant with respect to U for b = ∞.

Let M be an arbitrary orthonormal basis composed of the eigenfunctions of Ab (b ∈ R \ {0}). Since λNb ∈
(pαN,pα(N+1)) is an eigenvalue of Ab of multiplicity one the corresponding eigenfunction φNb(x) belongs to M.
Assuming that M is invariant with respect to U we get AbUφNb = μUφNb , where μ ∈ σ(Ab). To find μ we note
that the pαm-homogeneity of A0 and A∞ with respect to U implies that Asym and A∗

sym also are pαm-homogeneous
with respect to U . Therefore,

λNbUφNb = UAbφNb = UA∗
symφNb = pαA∗

symUφNb = pαAbUφNb = pαμUφNb.

Thus μ = p−αλNb. Obviously μ ∈ (pα(N−1), pαN) and μ is the solution of M0(λ) = −1/b (since μ is an eigenvalue
of Ab). Employing (3.23) for λ = μ, we arrive at the following contradiction −1/b = M0(μ) = pα−1M0(p

αμ) =
pα−1M0(λNb) = −pα−1/b that completes the proof of Proposition 3.2. �
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