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Strongly excessive functions play an important role in the theory of Markov decision prozesses
and Markov games. In this paper the following question is investigated: What are the properties
of Markov decision processes which possess a strongly excessive function? A probabilistic
characterization is presented in the form of a random drift through a partitioned state space. For
strongly excessive functions which have a positive lower bound a characterization is given in
terms of the lifetime distribution of the process.

Finally we give a characterization in terms of the spectral radius.

Markov decision process  excessive function
transient behaviour exponentially bounded stopping time
spectral radius

1. Introduction

When analyzing (semi-) Markov decision processes and Markov games one often
applies contraction properties of certain operators in a Banach space. This tech-
nique has been introduced by Blackwell [1], using 1) the boundeciness of the
immediate return in the supremum norm and 2) discounting, which is equivalent to
a positive probability B of leaving the system in each state (for all strategies). The
idea has been generalized by Denardo [2] who weakened the discounting condition
by assuming a positive probability of leaving the system in N stages (uniform in the
starting state and the strategy).

In order to obtain weaker conditions other norms might be used. Norms which
appear to be useful are of the weighted supremum norm type. First attempts in this
direction have been made by Veinott [12] in case of a finite state space and by
Lippman [7] using a polynomial and a special condition on the transition prob-
abilities. More general approaches have been presented by Lippman [3] and by one
of the present authors {14]. Hinderer [5] uses a similar technicue as [14]
for finite stage programs. Wijngaard [15, Chapter 5] uses weighted supremum
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60 K.M. van Hee and J. Wessels /| Markov decision processes

norms (with an exponential weight function) for analyzing average costs inventory
problems.

In this paper we will investigate some properties of the decision processes when
the transition prcbabilities satisfy the conditions imposed by the weighted supre-
mum norm approach. These conditions may be formulated (see below) as the
existence of a function on the state space which is excessive in a somewhat stronger
sense than usual (compare Hordijk [6]).

In Section 3 we give a characterization of the existence of a strongly excessive
function in the form of a random drift through a partition of the state space and in
Section 4 these properties are related to the lifetime distribution of the process.

Further we give in Section 5, an analytic equivalent for the existence of a strongly
excessive function in terms of the spectral radius of the decision process.

A Markov decision process is determined by a pair (E, ) where E is called the
state space (supposed to be countable in this paper), 2 is a set of sub-Marke.
matrices (P€% is a nonnegative function on EXE with Y. P(i,j)<1 for
all ieE). It is usual to define a Markov decision process as a triple (E, 2,r)
where r is a real function cn E X% with the interpretation of a reward function.
However in this paper we are only dealing with the state space E and the transition
probabilities 2. 4

At this moment we do not require any structure on 2 but in Section 2 we make
an assumption which is fulfilled if we are dealing with the usual law of motion of a
Markov decision process. Consider a positive function u on E and introduce the
Banach space V), of all real valued functions v on E which satisfy

v (@)
V|, = sup ——-<00,
” ““ ieg I-l:(i)

We call |- ||, the weighted supremum norm and p a bounding function. The norm
concept in V,, induces a norm for the matrices P € 2, viz. the operator norm

Pl :=sup w ()" T PG, ().
ieE jeE
Definition 1. A Markov decision process (E, ) is called contracting if there exists
a bounding function x on E and a number 0<p < 1 such that

\Pl.<p forall Pe®.

In ‘[14] the contracting dynamic programming model is analysed extensively. Note
that ||P|l, <p <1 for all Pe @ is equivalent to

Pu(i):= % PG, u(i)<pu(i) forall Pe2.
je

For p=:1 this condition becomes the usual requirement for excessivity of the
function u (see Hordijk [6]). So our condition is stronger.
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Definition 2. A bounding functior : on E is called strongly excessive with respect

to (E, P) if there is a number p (0 <p < 1) with Pv < pv for all P e 2. The number p
is called an excessivity factor.

Remark. The contracting condition may be used in the total expected reward case
and in the total expected discounted reward case, viz. if in the discounted case Q is
a transition matrix we define a matrix P as BQ where 8 is the discount factor
0=a<1).

In the same way discounted semi-Markov decision processes may be handled by
defining

0

Boliiyi= | e aFoltiif),  PG)=Boli NQG. 1)

0

2. Prerequisites and notations

A Markov strategy R is a sequence (P, Py, . ..) of elements of #. The set of all
Markov strategies is denoted by .

Since the matrices P € 2 are supposed to be sub-Markov, it might b¢ desirable to
extend the state space E to E by adding a new state x in the following way:
P(x,x)=1,P(i,x)=1-Y,.g P(i,j) for all i e E, for all Pe P.

All functions on E are extended to functions on E by defining them ( in x. (Note
that a strongly excessive function v on (E, 2) with excessivity factor p satisfies
pv =Py on E for all Pe P).

Any starting state i € E and any R € # determine a (nonhomogeneous)-Markov
chain on E and so a probability P; g on (E)* with transition matrix P, at time n.
The random variable X, denotes the state at time n. Let E; g be the expectation
with respect to P; .

The following lemmas will be used in Section 3.

Lemma 1. Suppose A<E,i€E, Roge M. Then

Y Pir[X,€Al<supsup ¥ P;r[XmeA]
0

n=0 R jeA m=

Proof. Suppose i€ A, since for i € A the assertion is trivial. Let Ro= (Po, Py, ...)
and define Ry = (P, Px+1. . . .). It is easy to verify that:

Pr[X.€A| X =j]=P r[Xn-k€A] fork=1,...,nandjeA.
Note that

T PinfX,cAl

© n
= z z Z Pi.Ro[Xn cA | Xk =]']P,',RO[X;¢ =j., XIEA(I sl":k}}.

n=0k=1jeA
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Hence

Z P,‘_RO[X,, € A]
n=0

fe'e) o

<3 T PinlXe=j X AL <I<k)supsup T PialXo-reAl

k=1 jeA i€

<ssupsup ). P;jr[X.€ Al

R jeA n=0

Lemma 2. Suppose (E,P) is contracting with excessivity factor p <1. Suppose
1<a <p~'. Then there exists a strongly excessive function c for (E, P) with exces-
swity factor ap, such that ¢ maps E into the set {« WieZ)!

Proof. Let b be strongly excessive for (E, ) with excessivity factor p. Define on E.
the function c: c(i) = a' if a"'<b(i)<a' icE. Then a 'c<b=<c. Hence Pc <
aPb < apb<apc.

Lemma 2 allows us to consider only exponentials as candidates for strongly
excessive functions. If there is a strongly excessive function that is bounded away
from zero the same holds for equidistant grids:

Lemma 3. Suppose b is a strongly excessive function for (E, P) satisfying 0<é <
b(i) for i € E. Suppose p +ad~' <1, where a >0, and p is an excessivity factor for b.
Then there exists a strongly excessive function ¢ for (E, P) with excessivity factor
p+ad~!, such that c maps E into the set {6 +la |1=1,2,...}.

Proof. Define c(i)=6+la if 6+(—-1)a<b(i)<&+la. Hence c(i)—a <b(i)<
¢(i), which implies

Pc<P(b+ae)<pb+ae<pc+ae<pc+ad'c=(p+ad ")

where e(i)=1 for all i € E and where we used ¢ = de.

We now introduce an assumption for ? which will be supposed to hold
throughout the rest of this paper.

~ Assumption. Let P;,P,,---€%? and let A}, A,,...be a partition of E. Then P
defined by

PG,- )= PG, ), ificA,;

is also an element of 2.

1 o

Z is the set of integers.
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This assumption is fulfilled if and only if there is for each i € E a collection Q; of
(defective) probabilities on E, i.e. Qic{q|q:E->[0,1], Y,ceq(j)<1}for all ie E,
such that Pe @ if and only if P(i, - )e Q; for all i e E.

The set Q; can be considered as the set of available actions in state i.

In the sequel we will frequently consider a function v on E defined by

v(i) = sup Ei‘R[nzo A"r(X, )]

for some positive number A and some nonnegative function r on E. If v < 00, then it
may be shown that v satisfies Bellman’s optimality principle:

v=r+APv forall Pe 2.

The proof of this property is completely analogous to the proof of Theorem 6.1 in
Ross [10]. For this proof one only needs, that v is not only the supremum over all
Markov strategies, but also over a more general class of strategies. The equality cf
both suprema has been proved in {4], under more general conditions.

Note that A > 1 is allowed here.

The following lemma gives the two forms in which we will use the property
v =r+ APy for the construction of strongly excessive functions.

Lemma 4. Consider a Markov decision process (E, P). If there is a function r =0 on
E such that one of the following conditions holds for all i ¢ E

(i) v(i)=supr Eir[Tn-0r(X,)]<, r(i)=(1-p)v(i) and v(i)>0 for some
0<p<l,
(ii) z(i):=supgr E;r[Xn=0A"r(X,)] <0 and z(i)>0, for some X > 1, then there is
a strongly excessive function for (E, P).

To prove this note that, by Bellman’s optimality principle v = r+ Pv. Hence
v=(1-p)v+Pv and therefore pv = Pv if (i) is true. Further z=r+APz and so
A"z = Pz, if (i) holds.

In the next sections we shall search for functions =0 on E satisfying one of the
conditions (i) and (ii) of Lemma 4 to prove the existence of strongly excessive
functions.

We conclude this section with some conventions. Recall that the unit function on
E is denoted by e, so e(i) =1 for all i € E. The characteristic function of some set .4
is denoted by xa, s0 xa(i)=1 i i € A and O otherwise.

3. Probabilistic equivalent for strong excessivity

In this section it is shown that strong excessivity is related to certain drifting
properties of the Markov chain involved.
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Theorem 1. (E, P) is contracting, if and only if there exist a partition {Ei | k € Z} of
E and numbers a > 1, 8 > 1, such that for all R € #

Y P.riX,eE]<Bmin{l,a"*} ificE.
n=0

Proof. We first prove the “if”’-part. Suppose we have a partition of E with the
properties mentioned in the assertion. Choose ¢ with 0<e <1, ea »- 1. The posi-
tive functions r and v on E are defined by

rii)==(ea)* ifieE. and v(i):= snlxzp io E.r[r(X,)).

Then for i E;

o(i)=sup ¥ (ea)* T PirlXncEil
R keZ n=0

<g Zl(ea)" +B kZ,(ea)"a'_" =B(ea){(ca—1)"+(1-¢)}}
k< =

=Bri(1—¢e) ' +(ea~1)""}
=(1-p) 'r@f) withe<p<i

Hence, according to Lemma 4(i), we have pv = Py for all Pe 2.

Now the ‘“‘only if”’-part will be proved, hence it is assumed that (E, ) is
contracting with excessivity factor p < 1. Without loss of generality, we may assume
that the strongly excessive function b is equal to a' for i€ E,, where {E;|leZ} is
some partition on E and 1<a <p~' (Lemma 2). Note that pb = Pb for all Pe P
implies for any Markov strategy R = (P, P3,...)

-] n-—1
p"b=Py: - Pyyh, or (1-p)'b= Y ( I1 Pm)b,
n=0 ‘m=0
(where an empty product is equal to the unii matrix). For i € E; this means

(1-p)'a'= Z a* Z Pir[Xn € Ei],

n=0

hence

®  (1-p)a'za* T PalX,eEl.

n=0

With B8 = (1—p)~! this settles the assertion for k =[. For k <l we apply Lemma 1
with A = E,:

T PialXocEi<supsup T PefXneEl<{i-p)".

Ro jeEx m=0

where the inequality (*) has been used with [/ = k.
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Remarks. (i) In the construction of a strongly excessive function in the first part of
the proof, the choice of ¢ determines the excessivity factor p. For & =a~"/? the
constructed p is minimal, viz. 1 —-(a"*-1)8 (a'/*+1)"".

(ii) If there is a strongly excessive function b such that b(i)=6 >0 for all ic E
then there is a partition {E;, k =1, 2, 3, ...} of E, which has the drifting property
described in Theorem 1.

4. Strong excessivity and exponentially bounded life times

Since we supposed Y; P(i, j)< 1, there may be positive probabilities f r certain i
that the process does not exist any more after one step. Hence we can speak of the
life time T of the process. We say that T =n iff X, € E, hence for R = (Py, Py, ...)

P.r[X. € E]=Pir[T=n]=(PoP; ... P,1e}i).

In this section we will investigate the relation between strong excessivity and
exponential boundedness of the life time distributions. Exponentially bounded
lifetimes are well known in statistical sequential analysis (cf. Ferguson [3]).

Definition 2. (1) The life time T of (E, P) is said to be exponentially bounded ift
there exist a real number y (0 <y <1) and a positive function a on I with for all
ReMandiecE

P.r[T=n]l<a()y"

(2) If the function a in Definition 2.1 does not depend on i, the life time T of
(E, P) is said to be uniformly exponentially bounded.

Remarks. (1) In the case of discounting we have P(i, j) := BQ(i,j) with0< B8 <1,
Y Q(, j)<1. Hence the life time is uniformly exponentially bounded with a(i)=

1,y=1-8.
(2) In the case of discounted semi-Markov decision processes we have

oo

Boli, ) ==jo e dFoltiiif) PG.1)=BollNOG)  £QGNSL.

Hence the life time is uniformly exponentially bounded if
Bali,j)sB<1.

(3) In the nondiscounted case we have: if there exist a natural number M and a
real number € >0, such that for all R, i

P,',R[XMEE]-<~1-8,

then (E, ) is uniformly exponentially bounded.
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Theorem 2. The life time of (E,P) is exponentially bounded if and only if there
is a strongly excessive function b on (E, P) satisfying 0<8=<b(i) for all i e E and
certain 4.

Proof. We first prove the “if”’-part assuming pb=Pb for PP with 0<p<1,
b(i)= 48 >0. The assumption implies p"b =Py : - P,_106 =8P, * - - P,—1e. Hence for
anyie¢E,Re

P,"R[X,. € E] Sp"éél—)

So the choices y = p and a(i) = b(i)d ' prove the assertion.
We now prove the “only if”’-part assuming the exponential boundedness of the
life time T. Define

b(i) = sup E,-'R[ Y /\"e(X,.)], icE
R n=0

with 1 <A <y7'. Itis easy to verify that E; gx[e(X,)] = P.r[T =n]. Hence 1 < b(i)<
a(i)(1 - yA) ' <o and therefore by Lemma 4(ii) b has the desired properties.

Corecllary. The life time of (E, P) is uniformly exponentially bounded if and only if
(E, P) is contracting with a strongly excessive function b satisfying 0<8<b(i)<A
for all i € E and certain 8 and A.

Proof. The ‘‘if”’-part follows from the first part of the proof of Theorem 2:
0(i)8 '<A87", hence a(i):= 48" suffices.

For the “only if”’-part we use the construction of the second part in the proof of
Theorem 2. Then we obtain b with

1<b(i)<sa(l-yA)"' ifa(i)=aforallicE.

Remark. In the case of a Markov decision process with a uniformly exponentially

bounded life time, another strongly excessive function may be constructed in the
following way

b(i)==sup ¥ P.r[X.€E], icE.
R n=0
Namely we have 1<b(i)<a(l—-y)', (a=1)and
b(i)=sup Y E;rle(X,)].
R n=0

So by Lemma 4(i) with 0= 1-p<a~'(1-1v) we have that b is strongly excessive,
with excessivity factor p.
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5. Strong excessivity and the spectral radius

In this section we will present an analytical characterization of contracting
Markov decision processes. If (E, 2) is contracting with respect to the bounding
function w, then ||P|, <p<1 and consequently |P"||./"<p. So we have for a
contracting Markov decision process that the spectral radii of all Pe % are at
most p:

sup limsup |P"||)/"<p <1.

Pe® n-co

The topic of this section will be the investigation of the reverse proposition.

Definition 4. The spectral radius of a Markov decision process (E, P) with respect to
a bounding function p is defined as

1/n

sup lim sup ||P"|,/".
Pe® n-o0
The main result of this section will be: A Markov decision process (E, ?) is
contracting (with respect to some bounding function) if and only if the spectral
radius of (E, ) with respect to some bounding function u is less than one and

sup ||P}],. <oo.
Pe®

The ““only if”’-part of this statement has been proved in the introduction of this
section. The “if”’-part is a trivial consequence of the following theorem.

Theorem 3. If for a Markov decision process (E, P) there is a bounding function u
such that
(i) p*:=suplimsup|P"/"<1,

Pe® n-oo

(i) M =max{l, sug IP||,.} < oo,
Pe

then there is for each € >0 a bounding function g such that
(i) (*+e)i=Pa forallPe?.
(i) wm=<u<Lu forsome constantL.

We shall postpone the proof of this theorem to the end of this section and we
consider some useful lemmas first.

In Lemmas 5 and 6 we tz2asform the assumptions (i) and (ii) of Theorem 3 into
equivalent conditions, which allow us to consider only the bounding function u = e.

Lemma 5. If assumption (i) of Theorem 3 holds, then there is for each 1<A <p*'
a number p, 0<p <1 and for each P € P there is a number bp >0 such that

A"P'u<bpp"u forallPePandn=0,1,2,....
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Proof. Choose A >1 with Ap* < 1. Then

sup lim sup ||A"P"[[/" = Ap*

Pe® n->o

‘Choose p with Ap*<p < 1. Then there is a np for any P with
IA"P"|.<p" for n=np.

Hence bp may be chosen such that
IA"P"||.<bpp" forn=0,1,2,....

Lemma 6. Let the assumptions (i) and (ii) of Theorem 3 hold. Define P* by
P* = {P* | P*(i, j) = M u"'()PG, Hu(j), P P} and A* by A* := AM. Then

Gy T P*(i,j)=1.
i
(i) A*"P*"e<bpp"e.
(i) P*1 <A* ‘v for some bounding function v implies P(u ® v)<A 'u ® v,

where (n O v)(i) = pn()v(i) (and reversely).

Proof. (i) is trivial, (ii) is a consequence of Lemma 5 and the property
P*")G, j)=M""u™ O)P")G, (i)

and (iii) is proved by inspection.

As a corsequence of these two lemmas ii is sufficient for the proof of Theorem 3
to show that: if for some Markov decision process (E, )

(*) Pe<e,
(%) A"P"e<bpp”e forn=0,1,2,...and all Pe P, where 0<p <1<,

then there is some bounding function » such that
A'v=Py forall Pe?.

In Lemma 7 we construct such a bounding function » under an additional assump-
tion. The technique we use is familizr. We show that Howard’s policy iteration
method converges for this Markov decision process (E, ?) with uni: rewards and
discount factor A (cf. Ross [10]). How=ver, we need the extra assumption that the
value function of this Markov decision process is finite. Afterwards, we show that
this assumption is implied by (*) and (%x).

This appears to be the most tedious step in the proof of Theorem 3. From now on
till the end of this section we assume that (*) and (**) hold. Hence A >1 fixed.

Lemma 7. Define vp by vp =3 n-0A"P"¢ and v by v = suppcs vp. If v <00, then
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there is a bounding function v such that
(i) APv<vforall Pe 2P,

(ii) esv=o.

Proof. We start by forrzulating thg policy iteration method for (E, £?) with reward
one in each state: Choose Poe ? and define P,.; recursively for n=0,1,2,...in
the following way. First of all fix a function ¢, : E -» [0, 1) such that
ea(i)=0 if vp,(i)=sup {1 +A(Pvp,)({)},
P

or

0<en(i)<sup{1+(APvp )(i)}—vp, (i) otherwise.
P

Then choose P,.; such that

1+ A(Pps1vp, i)=sup {1 +(APvp, )(i)}— €. (i).
P
The sequence {P,} satisfies vp, <e + AP, vp,. Iterating this equation yields

N-1
k pk NpN
p,< X A"Pn1e+A"Pn.vp, and hence vp, <vp,,.
k=0

Namely,
AP vp, <ANPYbp,(1-p) e <bp,, p"bp,(1-2) e,

which tends to zero for N-o0. Since vp,<v and vp,<vp,_, we obtain:
v = lim, . vp, <v. For the proof of » =APv for all P e 2, note that

vp,.,=€+AP,10p,, =€ +AP,10p, =€+ APvp, —c, forall PeP.

This implies vp,,, = APvp,, which gives v =APv.

However, in order to prove v <o we need four more lemmas. By P4 we wili
denote the sub-Markov matrix of the Markov chain with matrix P restricted to A,
i.e.

PA("j) = P(i’])- if i$j€A1

=0 otherwise.

Lemma 8. Suppose for some Pec ?,KeR,icE

Y A"(P"e)(i)=K.
n=0
Then there is for each € >0 a finite subset A of E with
Y A"(Pae)(i)=K —e.

n=0
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Proof (see Ornstein [9] for a similar construction). Choose N with
N
Y A"(P"e)i)=vp(i)—ze.
n=0
It is easy to verify that for each n there exists a finite set A, < E with

(P:\..exi)z(P"e)(i)--éfj'\—,A

Hence A :=|n-o A, has the required properties.

The foregoing lemma says that in some sense restriction to finite Markov chains
is allowed for fixed P. The next lemma shows that the expected number of visits to
state i (discounted with factor A) is bounded as a function of P.

Lemria 9. For all Pc P we have

Pi(A)= Y A"P"(i,i)<(1-p)”! forieE.
n=0

Proof. Assume there is a number € >0 such that for some n
AP (i, i)=p" +e&.

Then, by a standard argument we have
AP (i, )= (p" +e)* fork=1,2,3,....

However, for k sufficiently large: (p"+s)">bpp"k. This is contradictory to
assumption (**). Hence

AP (i, i)sp" forn=0,1,2,....

Lemma 10. Let B < E, such that for some P e P and a real number K :
Eo A"Pge < Ke.

Then we have for the set C = B\ {j}, je E\B:
nzo A'Pte<K'e

where the constant K' is determined by A,p and K. (Note that K =1 and K’
independent of P.)

Proof. Define fori,kcEand AcE:
AP k)= ¥ PG L) P(h,L) - P(l.-1, k)

I],....ln-lEA

Note that sP"(i, k)= P4 (i, k) if i, k € A.
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Consider

n

Y P k)= Zl an_m(f,i)kZBBPm(j,k)+cP"(j,j) for n=0.

keC m=

Hence
®) T AT PRI NP1 T AT T 2Pk}
n=0 keC n=0 n=1 keB
1 o
<;—{1+2 £ PGi) T A" 3 oP G k)]
-p icB n=0  keB

1
s——-—{1+,\ s P(j, i)K}sl“K,
1-p icB 1-p

where the first inequality is justified by Lemma 9, and the second one by the
assumption of the lemma.
Further consider for i € B:

L Pi,k)= Y gP"(i,ix)+ ¥ BPT(i,5) ¥ P""(j, k).
keC keB m=1 keC
Hence

&) T A" T PG k=3 A" T 2P k)
n=0 k n=0 keB

eC

® ad 1+AK
+ X A"sP™(i,j) X A" X P k)SK+AK :
m=1 n=0 keC 1-p
where the last inequality follows from (*), the assumption of the lemma and from
the inequality

Q© [s o}

Y ATRPT(i <A LA™Y gP™TN( k)<AK.

m=1 m=1 keB
Let K''=K+AK(1+AK)/(1—p). Since AK>1, the assertion is now a
consequence of (*) and (**).

Finally we prove in Lemma 11, using Lemmas 9 and 10, that the function v
defined in Lemma 7 is finite. We even prove that this function is bounded. To prove
this, we assume the contrary, i.e. sup;cg v (i) = 0.

Then we construct disjoint subsets of E:A;, A, A3,... and sub-Markov
matrices P,, P, P3, . .. such that

]
Y A"Phe(i)=ar forieA;
n=0
where ai, az, as, . . . is a nondecreasing sequence tending to infinity. With these

Py, P>, Ps, ... we construct 2 Pc ® such that the function vp (see Lemma 7) is
unbounded, which contradicts assumption (**).
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Lemma 11. sup;cg v(i) <.

Proof. Let A be a subset of E. We define on A:

[~ o]
va=sup 3 A"Pje.
Pe® n=0
Note that v(i)= ve(i), i € E. First note that if A is finite and sup vg(i)=00, then
SUPicac Vac(i) =00, since assume to the contrary sup;eac va<({)<co. Then using
Lemma 10 we have for j€ A:supicacuij Vacog(i)<o0, and so by induction
SUP;cacua Uacua (i)<oo which produces a contradiction.

Suppose sup;ce v(i)=c0. Fix a nondecreasing sequence a, a», . .. tending to
infinity. Fix € >0. There must be an i;€ E and a P; € ? such that vp (i1)=a, +¢.
Hence by Lemma § there is a finite subset A, such that ije A; and for R;=
(P, Py,...)

Z AnPil'R‘[XOG Al, ey Xn €A1]?a1.
n=0

Consider the process restricted to A7. We have already seen that sup;c a5 vas(i)=
0. Hence there is an i€ A} and a P, € @ such that for R, =(P,, P,,...)

[+ o)
Z l\nP,'z'R2[XoE A‘i, ey Xn €A§]>a2+€
n=_0

and again by Lemma 8 there is a finite subset A, = A such that i€ A, and:

Z A"P,'z‘RJXoEAz, ces X EAz]Baz.
n=0

We may apply the same argument to (A; U A,)". So we find finite sets A;, A,, ...
with state i;€ Ay, i€ A,,...and Py, P,,...€ 2 such that for R, = (Py, Py, .. .)

A

1 ~18
[=]

AnPik,Rk[XoEAk, ey Xn EAk]?ak.

n

Consider a new element Pe P defined by: P(i, j) = Pi(i,]) if i € As. It is easy to
verify that forall k =1,2,3,...

l)p(ik‘)z Zo A"P.-,,_R,‘[Xoe Ag ..., X, € Ak]
Hence

sup vp(ix )= 00,
k

On the other hand we have for all Pe 2: vp(i)< bp/(1 —p) for all i € E. Therefore
sup; v(i)<oco.

The proof of Theorem 3 is a direct consequence of the foregoing lernmas.
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Proof of Theorein 3. Note that we transformed the model as in Lemma 6. So we
have to prove the existence of a bounding function » assuming * and **. Fix £ >0
and define A = (p*+¢)7".

From Lemmas 11 and 8 we have the existence of a bounding function » such that

APv<y forPe@?

and e <v < Le, for some constant L. Hence, by Lemma 6, we have for the untrans-
formed model

P(u®v)<A”'(u®») forall Pe .

Define & := u ® v. Then we have Pu<(p*+¢e)i and p<g <ulL.

6. Some consequences and remarks

(1) In the proofs of Theorems 1 and 2 the assumption on 2 has only been used
for the proof of the sufficiency of both conditions for strong excessivity, not for the
necessity.

(2) In our definition strongly excessive functions are positive. Hinderer [5]
allows the value 0 for b(i). However, the strong excessivity (even if p is not less than
1, as in Hinderer’s case) requires for the system to remain in the set of states with
b-value 0 as soon as this set is entered. Hence, without restricting generality, one
may assume that the state space is left when such a state is entered.

(3) Combination of Theorems 1 and 2 gives the following necessary and
sufficient condition for exponential boundedness of the life time of (E, ?): there
exist a partitioning {E). |k =0, 1, ...} of E and numbers a > 1, 8 =1, such that for
al Re M

[ o}
Y Pir[X. € Ex]<pB min{l, o' ifiel.

n=0

(4) Suppose there are a positive integer N, real numbers M and 8, 0<p <1 and
a bounding function g such that for all Pe 2:

() PusMyu and (ii) P"u<pp.
‘We say there is N-stage contraction in this situation. It is an immediate
consequence of Theorem 3 that for each £ >0 there is a bounding function g such
that

(iii) Pi<(@V+e)u and (iv) pu <g <L, for some L.

However, it can be proved more directly that N-stage contraction imphes (iii) and
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(iv). Namely, it is easy to verify for A = "V +¢) ' that 1<a<p™ and
(AM)" -1 1 }
{TaM=1 TN I*

for all Pe 2

Further we can construct completely analogously to the proof of Lemma 7 a
bounding function » such that: APy < v for all Pe ? and
aMN-1 1

AM-1 1-pAN

0o N-1 0
vpi= ¥ A"P'u= Y AP* T A"P"u<
n=0 k=0 n=0

ps<v<Lu whereL =

(5) In a decision process one considers contraction properties of a whole set 2 of
operators simultaneously. If one only considers one (not necessarily linear) opera-
tor T in a complete metric space X, then N-stage contraction of T implies
one-stage contraction of T in X with respec' to some other distance. This has been
shown by Walter [13] without using the equivalent of our condition (i).

(6) In fact we proved in Lemma 11 that
(*) sup lim sup |P"[l/" < 1

rew >0
implies
s o]
(**) supsup Y, Pfe(i)<vo.

ieE Pe® n=0

However (i) implies, for all 0<p <1, the existence of a positive integer N such
that

(%) sup [PV]. <p.

Pe®
To verify this, assume to the contrary: there is a 0<p <1 such that for all
N=0,1,2,...thereisa Pe? and an i € E such that

PNe(i)>p.

Hence, since P"e(i) is nonincreasing in n we have
=5} N
2. Pe(i)= Y P"e(i)=(N+1)p.
n=0 n=0
And therefore

supsup Y. P"e(i)=o0

ieE Pe® n=0
which contradicts (+*). So we actually proved here that the assumptions (i) and (ii)
of Theorem 3 imp:y N-stage contraction with respect tc the same bounding

function and 1-stage contraction with respect to another (but in some sense
equivalent) bounding function.
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(7) In Veinott [12] a similarity transformation for decision processes was intro-
duced for transient models with a finite state space. This transformation for the
transition probabilities has the form

P*@i,j)= MPE P, w abounding function.
(i)

A lot of properties of the decision process are invariant under this transformation.
Lemma 3 in Veinott’s paper (due to Hoffman) is exactly the same as the: statement
of Theorem 3 for a finite state space and a finite action space. Note however that in
th:: finite case it is obvious that the function v defined in Lemma 9 is bounded.
Furthermore the finiteness of E implies that PNy < pou for all P and some N,
po<1 if the spectral radius of (E, ?) is les- than one. This can easily be used tc
show tiiat (E, ) is contracting (compare Remark 4).

(8) At first glance one might expect that

r := sup sup lim sup {P™(, j)}'/" <1
Pe®ijeE n-o

is a sufficient condition for the decision process to be contracting. The quantity r
may be regarded as a generalization of the concept convergence norm to decision
processes (see Seneta [11, p. 162]). However, we produce a counterexample for this
statement.

Counterexample. E :={-1,0,1,2,3,---},?={P,|n=1,2,3,-- -} where for 1li
n=12,3,--:

() P.(K,K-1)=1 K=1
(i) P.(0,i)=0 i#0, P,(0,6)=p<1landP.(-1,n)=1, n=1,2,3,---

It is easy to verify that if j # 0: P (i, j)=0 for N sufficiently large and

limsup {P°G 0N =p forallicEandn=1,2,3, --.
N -0

Hence r =p. However if u is strongly e¢xcessive with excessivity factor 0<p*<1,
then
(i) p*1(0)=pu(0) hence p*=p
(i) for K =1,2,3,... p**u(K )= u () hence u(K)= w(0)p*)™® and therefore
since u(-1)=u(K) K=0,1,2, ..we have u{—1)=supg (e*) *u(0)= 0.
So there does not exist a strongly excessive function here.
(9) The following 6 assertions for (E, ) are equivalent:
(A) (E, P)is contracting with a strongly excessive function b satisfying 0<6 =
b(i)< A for all i € E and certain é and 4.
(B) (E, ?) is strongly excessive with a strongly excessive function which is
finitely valued.
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(C) For certain N and £ >0
P.r[XneE]<1-¢ forallicE,ReM.

(D) There exist a number € >0 and a finite partition {E; |k =1,..., N} of E,
such that

N
P.-,R[XleU Ek]sl-—e forallieE,l=1,...,N,Re /.
k=1

(E) The life time of (E, %) is uniformly exponentially bounded.

(F) There exist a number p (0 <p <1), a function b on E with 0<8 <b(i)e 4
for certain 8, 4, and a nati:ral number N, such that for all P;,...,PyeP
Py,... ,PNb$pb.
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