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Strongly excessive functions play an important role in the theory of Markov decision prozesses 
and Markov games. In this paper the following question is investigated: What are the properties 
of Markov decision processes which possess a strongly excessive function? A probabilistic 
characterization is presented in the form of a random drift through a partitioned state space. For 
strongly excessive functions which have a positive lower bound a characterizar:ron is given in 
terms of the lifetime distribution of the process. 

Finally we give a characterization in terms of the spectral radius. 

Markov decision process 
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exponentially bounded stopping time 

1. Introduction 

When analyzing (semi-) Markov decision processes and Markov games one often 
applies contraction properties of certain operators in a Banach space:. This tech- 
nique has been introduced by Blackwell [1], using 1) the boundeclness of the 
immediate return in the supremum norm and 2) discounting, which is equivalent to 
a positive probability fl of leaving the system in each state (for all stra.tegies). The 
idea has been generalized by Denardo [2] who weakened the discounting condition 
by assuming a positive probability of leaving the system in N stages (un iform in the 
starting state and the strategy). 

In order to obtain weaker conditions other norms might be used. Korms which 
appear to be useful are of the weighted supremum norm type. First attc:lmpbts in this 
direction have been made by Veinott [12] in case of a finite state ,til)acc and by 
Lippman [7] using a polynomial and a special condition on the tramsition prob- 
abilities. More general approaches have been presented by Lippman [:3’] and by one: 
of the present authors [14]. Hinderer [S] uses a similar techniclue as [lq] 
for finite stage programs. Wijngaard [15, Chapter 51 uses weighteld supremum 
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60 K.M. van Hee and J. Wessels / Markov decision processes 

norms (with an exponential weight function) for analyzing average costs inventory 

problems. 
In this paper we will investigate some properties of the decision processes when 

the transition probabilities satisfy the conditions imposed by the weighted supre- 
mum norm approach. These conditions may be formulated (see below) as the 
existence of a function on the state space which is excessive in a somewhat stronger 
sense than usual (compare Hdrdijk [6]). 

In Section 3 we give a characterization of the existence of a strongly excessive 
function in the form of a random drift through a partition of the state space and in 
Section 4 these properties are related to the lifetime distribution of the process. 

Further we give in Section 5, an analytic equivalent for the existence of a strongly 
excessive function in terms of the spectral radius of the decision process. 

A Markov decision process is determined by a pair (E, g) where E is called the 
state space (supposed to be countable in this paper), !P is a set of sub-Markc. 
matrices (P E 9 is a nonnegative function on .E x E with xiE~ P(i, j)~ 1 for 
all i E E). It is usual to define a Markov decision process as a triple (E, 9, r) 
where I’ is a real function cn E x 9 with the interpretation of a reward function. 
However in this paper we are only dealing with the state space E and the transition 
probabilities 9. 

At this moment we do not require any structure on P but in Section i we make 
an assumption which is fulfilled if we are dealing with the usual law of motion of a 
Markov decision process. Consider a positive function p on E and introduce the 
Banach space V, of all real valued functions v on E which satisfy 

II II v, := sup I 01 vi 
-<<. 

ieE p(i) 

We call 11 l llcL the weighted supremum norm and p a bounding function. The norm 
concept in VP induces a norm for the matrices P E 9, viz. the operator norm 

IIP[l, := sup ~-c(i)-’ C P(i, i)~ (~3 
IEE jEE 

efinith 1, A Markov decision process (E, 9) is called contracting if there exists 
a bounding function k on E and a number 0 < p < 1 such that 

IiPll, G p for all P E 9. 

In [ 141 the contracting dynamic programming model is analysed 
that IIPII, s p < 1 for all P E 9 is ‘equivalent to 

Pp(i) := C P(i, j)p (j) S pp (i) for all P E 9. 
jtzE 

extensively. Note 

or /, =: 1 this condition becomes the usual requirement for excessivity of the 
function p (see ordijk [6]). So our condition is stronger. 
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Definition 2. A bounding function :.: on E is called strongly excessive with respect 
to (E, P) if there is a number p (0 < p < 1) with Pv G pv for all P E SR The number p 
is called an excessivify factor. 

. The contracting condition may be used in the total expected reward case 
and in the total expected discounted reward case, viz. if in the discounted case Q is 
a transition matrix we define a matrix P as PQ where fi is the discount factor 

(OG/3<1). 
In the same way discounted semi-Markov decision processes may be handled by 

defining 

o&i, j) := I* e-“’ dFo(t; i, j), P(i, j) := &(i, j)Q(i, j)= 
0- 

2. Prerequisites and notaths 

A Markov strategy R is a sequence (PO, PI, . . .) of elements of 9. The set of all 
Markov strategies is denoted by J#. 

Since the matrices Pe 9 are supposed to be sub-Markov, it might be desirable to 
extend the state space E to I? by adding a new state x in the following way: 
P(x, x) := 1, P(i, x) := 1 - Cj& P(i, j) for all i E E, for all P E 9. 

All functions on E are exte,nded to functions on I? by defining them 0 in x. (Note 
that a strongly excessive function v on (E, 9) with excessivity factor p satisfies 
pv2Pv on E for all PEP). 

Any starting state i E I? and any R E .& determine a (nonhomogeneous)-Markov 
chain on E and so a probability P iR on (E)” with transition matrix P,, at time n. 
The random variable X, denotes the state at time n. Let Ei,R be the. expectation 
with respect t0 P&R. 

The following lemmas will be used in Section 3. 

Lemma 1. Suppose A c E, i E E, ROc A. Then 

E Pi,RJX, E A] s SUP SUP $ Pj,R[xm E A]. 
n=O R jsA m=O 

Proof. Suppose ie A, since for i EA the assertion is trivial. Let Ro=:(Po, PI, . . . ) 

and define Rk := (Pk, Pk+l 9 , . .). It is easy to verify that: 

Pi,~[XnEAIx~=j]=Pl,R*[x~-kEA] fork=l,...,n ancljEA. 

Note that 

? Pi.&Xn CA] 
a=0 

n=O k=l jtzA 
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Hence 

? &zo[Xn E A] 
n=O 

=j, Xl& A(1 6 I < k)] SUP SUP g Pi,R[Xn-k E A] 
itsA R n=k 

GSUPSUP 2 Pi,R[XnEA]. 
R jeA n’0 = 

Lemma 2. Suppose (E, !Y) is contracting with excessivity factor p < 1. Suppose 
1ca<p-‘. Then there exists a strongly excessive function c for (E, 9) with excez- 
slvity factor cup, such that c maps E into the set (&I 1 E Z}.’ 

Proof. Let b be strongly excessive for (E, 9) with excessivity factor p. Define on E. 
the function c: c(i) := d if &r <b(i)d, &E. Then cu-‘c<bsc. Hence PC< 

aPb s Cypb G cwpc. 

Lemma 2 allows us to consider only exponentials as candidates for strongly 
excessive functions. If there is a strongly excessive function that is bounded away 
from zero the same holds for equidistant grids: 

Lemma 3. Suppose b is a strongly excessive function for (E, 9) satisfying 0 < 6 s 
b(i) for i E E. Suppose p +aS -’ c 1, where (Y > 0, and p is an excessivity factor for b. 
Then there exists a strongly excessive function c for (E, 9)) with excessivity factor 
p +dF, such that c maps E into the set (8 + la Ii= 1,2, . . .I. 

Proof. Define c(i)=S+Za if S+(l-l)c&b(i)<S+ku. Hence c(i)-ash(i)< 
c(i), which implies 

&6P(b+are)spb+aecpc+cwespc +aS-‘c = (p +d’)c 

where e(i) = 1 for all i E E and where we used c 3 Se. 

We now introduce an assumption for 9 which will be supposed to hold 
throughout the rest of this paper. 

. Let PI, P2, . l l E 9 and let A 1, AZ, . . . be a partition of E. Then P 
defined by 

P(i, l ) := Pi(i, ), if ii E Ai 

is also an element of 9. 

A IS the set of integers. 
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This assumption is fulfilled if and only if there is for each i E E a coUection Qi 01: 
(defective) probabilities on E, i.e. Qi c {q 1 q : E + [0, 11, xjEE.q(j)c 1‘1 for all i E E, 

such that P E 9 if and only if P(i, l ) E Qi for all i E E. 

The set Qj can be considered as the set of available actions in statle i. 
In the sequel we will frequently consider a function v on E’ defined by 

for some positive number A and some nonnegative function r on E. If u < 00, then ilt 
may be shown that v satisfies Bellman’s optimality principle: 

var+hPv for all P&R 

The proof of this property is completely analogous to the proof of Theorem 6.1 i rl 
Ross [IO]. For. this proof one only needs, that v is not only the supremum over all 
Markov strategies, but also over a more general class of strategies. The equality cl:f 
both suprema has been proved in [4], under more general conditions. 

Note that A S- 1 is allowed here. 
The following lemma gives the two forms in which we will USC the propert!/ 

v 3 r + APv for the construction of strongly excessive functions. 

Lemma 4. Consider a Markov decision process (E, .9). If there is a fldtn ctioti r 3 0 err 
E such that one of the following conditions holds for all i E E 

(i) v(i) := SUPR Ei,R[xz=O r(X,,)] < 00, r(i)> (1 -p)v(i) and v(i)‘>0 for some 
O<p<l, 

(ii) 2 (i) := SUPR Ei,R [CT=0 A “r(Xn)] < 00 and z(i) > 0, for some A :I I., then there r’s 
C$ strongly excessive function for (E, 91,. 

To prove this note that, by Bellman’s optimality principle v 3 I’ + Pv. Hence 
v 2 (1 -p)v +Pv and therefore pv 2 Pv if (i) is true. Further t 2 r-t A& and SD 
A -‘z 2 Pz, if (ii) holds. 

In the next sections we shall search for functions r 2 0 on E satisfying one of thl;: 
conditions (i) and (ii) of Lemma 4 to prove the existence of strongly excessive 
functions. 

We conclude this section with some conventions. Recall that the unit function on 
E is denoted by e, so e(i) = 1 for all i E E. The characteristic function of some set I”\ 
is denoted by XA, so xA(i)= 1 li i E A and 0 otherwise. 

is e 

In this section it is shown that strong excessivity is related to certain driftin;!, 
properties of the Markov chain involved. 



64 KM. van Hee and .I. Wessels / Markov decision processes 

Theorem 1. (E, g) is contracting, if and only if there exist a partition {Ek 1 k E 
E and numbers a > 1, fl> 1, such that for all R E .I 

f Bi,R[Xil E E&/3 min{l, a1-k) if iE El. 
Fl=Q 

roof. We first prove the “if”- art. Suppose we have a partition of E with the 
properties mentioned in the assertion. Choose g with O< 8 < 1, ~a! P 1. The posi- 
tive functions r and v on E are defined by 

r(i) := (~a)~ if i E & and v(i) := sup f Ei,R[r(Xn)]. 
R n=O 

Then for i E El 

V(i) = SUP c (&CX)k g Pi,R[Xn E &] 
R k&Z n=O 

Gp &(~cu)~+p C (Ea)ka’-k =p(Ea)‘{(Ea - l)-‘+(l-s)-‘j 
&al 

= @(i)((l - ~)-l+ (sa - 1)-l} 

=(1-&r(i) w:+h E<P<l 

Hence, according to Lemma 4(i), we have pv 3 Pv for all PE 9. 
Now the “only if”-part will be proved, hence it is assumed that (E, 9) is 

contracting with excessivity factor p c 1. Without loss of generality, we may assume 
that the strongly excessive function b is equal to a’ for i E El, where {El 1 I E 2) is 
some partition on E and 1 c a <p-' (Lemma 2). Note that pb 2 Pb for all PE 9 
implies for any Markov strategy R = (PO, P1, . . . ) 

(where an empty product is equal to the unit matrix), For i E El this means 

(l-&a”3 C ak E Pi,R[Xn E Ek], 
’ kc2 n=O 

hence 

0 * (1 -p)‘-%u’~ak f 
n=O 

With /3 := (1 -p)-’ this settles the assertion for k 3 1. For k < 1 we apply Lemma 1 
with A ==&: 

00 

c i,lz[Xn E Ek] s SUP SUP E 
n=O Ro je&k m=O 

where the inequality (*) has been used with I = Bi. 
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In the construction of a strongly excessive function in the first part of’ 
e choice of e determines the excessivity factor p0 For t: = Cl’2 the 

constructed p is minimal, viz. 1 - (CR 1’2 - 1)/3-*(a! *” + 1 j-‘. 
(ii) If there is a strongly excessive function b such that b(i)3 6 > 0 for all i E E 

ere is a partition (Ek, k = 1,2,3, . . . } of E, which has the drifting propertv . 
described in Theorem 1. 

4. Strong excessivity and exponentially bounded life times 

Since we supposed & P(i, jj~ 1, there may be positive probabilities ff r certain i 

that the process does not exist any more after one step. Hence we can speak of the 
life time T of the process. We say that T 2 n if? X, E E, hence for R = (PO, PI, . . . )I 

PiR[X~EE]=YiR[TZn]=(PoP1.. . P,,-le)(i). . l 

In this section we will investigate the relation between strong excessivity anti 
exponential boundedness of the life time distributions. Exponentially bounded 
lifetimes are well known in statistical sequential analysis (cf. Ferguson [3]). 

Definition 2* (1) The life time T of (E, 9) is said to be exponentiall;v bounded iff 
there exist a real number y (0~ y < 1) and a positive function a on E with for alL 
R&t and&E 

(2) If the function a in Definition 2.1 does not depend on i, the life time T o! 
(E, 9) is said to be uniformly exponentially bounded. 

Remarks. (1) In the case of discounting we have P(i, j) := PQ(i, jj with 0 < p < 1, 
& Q(i, j)G 1. Hence the life time is uniformly exponentially bounded with a(i) = 
l,r=l-p. 

(2) In the case of discounted semi-Markov decision processes we have 

po(i, ij :== Jm e-“’ dFo(t; i, j), PG, ij := pQ(i, ijQ(i, i), C Q(k jjs 1, 
0- i 

Hence the life time is uniformly exponentially bounded if 

(3) In the nondiscounted case we have: if there exist a natural nulnber M and ii. 
real number e >O, such that for all R, i 

i,R [ ~E]sl-&, 

then (E, 9) is uniformly exponentially bounded. 
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Tlteorexm 2. The life time of (E, 9) is exponentially bounded if and only if there 
is a strongly excessive function b on (E, 9) satisfying 0 c S G b(i) for all i E E and 
certain 8. 

roof, We first prove the “if’‘-part assuming pb 2 Pb for P c g with 0 c p c 1, 
b(i)2 S > 0. The assumption implies p”b 2 PO l l l 9 l .1D,-le. Hence for 
anyiE:E,REA 

So the choices y := p and a(i) := b(i)S-’ prove the assertion. 
We now prove the “only if”-part assuming the exponential boundedness of the 

life time T. Define 

R 
[ f Ape(X iE E 

n=O 

-with 1 <A < y-l . Ii is easy to verify that &R[e&)] = Pi,R[ T 3 n]. Hence I s b(i)s 
a(i)(l - ?A)-’ < 00 and therefore by Lemma 4(ii) b has the desired properties. 

Coaetlary. The life time of (E, 9) is uniformly exponentially bounded if and only if 
(E, g) is contracting with a strongly excessive function b satisfying 0 < 8 s b(i) s A 
for all i E E and certain 6 and A. 

roof. The “if’‘-part follows from the first part of the proof of Theorem 2: 

b(i)6 --I G AS-‘, hence a(i) := AS-’ suffices. 

For the “only if”-part we use the construction of the second part in the proof of 
Theorem 2. Then we obtain b with 

lsb(i)sa(l-yh)-’ if a(i)=a for all k E. 

Remark. In the case of a Markov decision process with a uniformly exponentially 
bounded life time, another strongly excessive function may be constructed in the 
following way 

b(i) :=: sup i 
R n=O 

i E E. 

Namelywe have lsb(i)ea(l-y)-‘, (a>l)and 

b(i)= sup f i,R[eWn)j. 
R n=O 

SobyLemma4(i)withO~l-paa-‘(1-~p)we ave that b is strongly excessive, 

with excessivity factor p. 
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5. Strong excessivity and the s 

In this section we will present an analytical characterization of contracting 
Markov decision processes. If (E, 9) is contracting with respect to the bounding 
function p, then IIp/, G p < 1 and consequently /P’$,% p. So we have for a 
contracting Markov decision process that the spectral radii of all P E ‘9 are at 
most p: 

sup lim sup I!P”II:/” e p < 1. 
PO n+oo 

The topic of this section will be the investigation of the reverse proposition. 

Definition 4. The spectral radius of a Markov decision process (E, 9) with respect to 
a bounding function p is defined as 

sup lim sup IIP,,(:/.. 
Pe9 n+oo 

The main result of this section will be: A Markov decision process (E, g) is 
contracting (with respect to some bounding function) if and only if the spectral 
radius of (E, g) with respect to some bounding function JL is less than one and 

sup IIPII, < O”* 
PC9 

The “only if”-part of this statement has been proved in the introduction of this 
section. The “if’‘-part is a trivial consequence of the following theorem. 

Theorem 3. If for a Markov decision process (I?, 9) there is a bounding function r~ 
such that 

(9 P* := sup lim sup IlP” II:/” < 1, 
PEP n-m 

(ii) M := max{ 1, sup IIPllcc) < 00, 
PE9 

then there is for each e > 0 a bounding function 1-2 such that 
(i) (p*+e)&3P~Z forallP&S? 

(ii) F G r_2 G LJA for some constant L. 

We shall postpone the proof of this theorem to the end of this section and we 
consider some useful lemmas first. 

In Lemmas 5 and 6 _we transform the assumptions (i) and (ii) of Theorem 3 into 
equivalent corlditions, which allow us to consider only the bounding function ;U -‘: (E. 

Lemma 5. If assumption (i) of TIaeorem 3 holds, then there is for eat&h 1~ h < p”--’ 
a number p, 0 < p < 1 and for each P E 9 there is a number bp > 0 suc*h that 

A” “pQbpp”g fo a r llP&andn=0,1,2 ,.... 
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proof. Choose A > 1 with Ap* < 1. Then 

sup lim sup llA “P” II:/” = Ap * 
PEB n+aO 

Choose p with hp* <p < 1. Then t ere is a np for any P with 

IlA “P”llF S p” for IZ 3 np. 

Hence bp may be chosen such that 

llA”P”/l,<bpp, for n =Q, 1,2,. . . . 

Lemma 6. Let the assumptions (i) and (ii) of Theorem 3 hold. Define 9* by 
g* :== {P* i P*(i, j) := M-*p-‘(i)P(i, &(j), PE 9) and A* by A* := AM. Then 

(ij C P*(iJ)S 1. 

(ii) A *“P*“e s bppne. 

(iii) P”r S A *-Iv for some bounding function v implies P(p 0 v)~ Awlp 0 v, 
where (p C3 v)(i) := p(i)v(i) (and reversely). 

. Proof. (i) is trivial, (ii) is a consequence of Lemma 5 and the property 

(P*n)(i, j) = Mwnp-‘(i)(Pn)(i, j)p(j) 

and (iii) is proved by inspection. 

to 

As a coysequence of these two lemmas it is sufficient for 
show that: if for some Markov decision process (E, 9) 

the proof of Theorem 3 

0 * Pese, 
( ) ** A”P”eebpp”e for n =0,1,2!, . ..andallP~9.whereO<p<l<A, 

then there is some bounding function v such that 

A%~Pv for all P&? 

In Lemma 7 we construct such a bounding function v under an additional assump- 
tion. The technique we use is familiar. ‘We show that Howard’s policy iteration 
method converges for this Markov de.cision process (E, 9) with unit rewards and 
discount factor A (cf. Ross [lo]). Howj:ver, we need the extra assumption that the 
value function of this Markov decision process is finite. Afterwards, we show that 
this assumption is implied by (*) and (**). 

This appears to be the most tedious step in the proof of Theorem 3. From now on 
till the end of this section we assume that (*) and (**) hold. ence A > 1 fixed. 

y 2) := suppEgp op. If v < 03, then 
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there is a bounding function u such that 

(i) APu G v for all P E 9, 

( J ii es UG 0. 

Proof. We start by formulating thg policy iteration method for (E, 9) with reward 
one in each state: Choose PO E 9 and define Pn+l recursively for n := 0, 1,2, . . . i.n 
the following way. First of all fix a function en : E -9 [0, 1) such that 

or 

en(i) = 0 if vp, (i) = sup { I+ A (Pvp,)(i)}, 
P 

0 < s,,(i) G sup { 1 + (APup,)( - up,(i) otherwise. 
P 

Then choose Pn+l such that 

I+ A (Pn+gpJ(i) 3 sup { 1 + (M%+,)(i)} - en(i). 
P 

The sequence {P,,} satisfies VP, s e +APn+lvpn. Iterating this equation 

v’p, G Nf1 AkP:+le +ANP:+lvp, and hence 
k=O 

up,, G v~,+~. 

Namely, 

A “P~+gp, s .& NP:+lbp,,(l -p)-‘e s bp,,,pNbp,(l -p)-‘e, 

yields 

which tends to zero for N +a~ Since VP, G v and VP, s VP,._, we obtain: 
Y := lim,,, VP, < v. For the proof of v 2APv for all PE 9, note that 

f)&+1 =e+APn+~vp,+I~e+AP,,+~vp~~e+APvp~-En for all1 PER 

This implies VP,,, a APup,, which gives v 3 APY. 
However, in order to prove v < 00 we need four more lemmas. By PA we: wilj 

denote the sub-Markov matrix of the Markov chain with matrix P restricted to A, 
i.e. 

PA(i, j) := P(i, j), if i, jEA, 

:= 0 otherwise. 

Lemma 8. Suppose for some P E 9, K E R, i E E 

f A”(P”e)(i)a K. 
n=O 

Then there is for each E > 0 a finite subset A of E with 

$ A”(Ple)(i)k 
n=O 
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Proof (see Ornstein [9] for a similar construction). Choose N with 

f h”(P”e)(i)a VP(i)+. 
n=O 

It is easy to verify that for each n there exists a finite set An c E with 

(Pl,e J(i) * (P”e)(i) - - @ A--“. 
2N 

Hence A := IJ~‘=o An has the required properties. 

The foregoing lemma says that in some sense restriction to finite Markov chains 
is allowed for fixed P. The next lemma shows that the expected number of visits to 
state i (discounted with factor A) is bounded as a function of P. 

Lemnra 9. For all P E 9 we have 

‘I Pi(A) := f h”P”(i, i)S (1 -p)-’ for itz E. 
n=O 

Proof. Assume there is a number e >O such that for some n 

A”P”(i, i)ap” +E. 

Then, by a standard argument we have 

VkPnL(i, i)a(p”+e)k for k = 1,2,3,. . . . 

However, for k sufficiently large: (p” +E)’ > bppnk. This is contradictory to 
assumption (**). Hence 

AnPn(i,i&pn for n =0,1,2,. . . . 

Lemma 10. Let B c E, srdch that for some P E 9 and a real number K: 

n=O 

Then we have for the set C := B u (i), j E E\B : 

:nP n n ce S K’e 
n=O 

where the con,s;tant K’ is determined by h, p and K. (Note that K 2 1 and K’ 
independent of P.) 

roof. Define for i, k E E and A c E: 

Apn(i, k) := C P(i, 11) 0 P&12)* 0 l P(L-1, k)* 
11 1 1.0.. n- SEA 

Note that APT (i, k) = Pi(i, k) if i, k E A. 
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Consider 

1 cP”(jg t->= c cP”-“(j, j) C Bpm(j, k)+cP”(j, j) for ns0. 
kcC m= 1 kcB 

Hence 

0 * iZ A” C #‘(ilk)= Z A"B"(j,j)( l+ t An C Bpn(j,k)} 
n--O &EC n=O n= I keB 

+--{ l+A 1 P(j,i) 2 A” c ,p”(i, k)] 
icB n=O kEB 

where the first inequality is justified by Lemma 9, and the second one by the 
assumption of the lemma. 

Further consider for i E B: 

C cP”(i, k)= C BPn(i, ic)+ i BPm(i,j) C cP”-“(j, k). 
&EC keB /?I= 1 &EC 

Hence 

( ) ** i A” c cP”(i,k)= i A” C BPn(i,k) 
n=O &EC n=O kEB 

l+M 
+ f AmBPm(i,j) i A” 1 cP”(j, k&&t-AK- 

m= 1 n=O &EC l-p ’ 

where the last inequality follows from (*), the assumption of the Iemma and from 
the inequality 

i AmBPm(i,j)sA 2 Am-’ c BPmV1(i,k)sAK. 
m=l m-l ktzB 

Let K’ := K +AK(l +AK)/(l-p). Since AK > 1, the assertion is now a 
consequence of (*) and (**). 

Finally we prove in Lemma 11, using Lemmas 9 and 10, that the function z: 
defined in Lemma 7 is finite. We even prove that this function is b,ounded. To prove 
this, we assume the contrary, i.e. supi,E v(i) = 00. 

Then we construct disjoint subsets of E :Al, AZ, A3, . . . and sub-MarkoIr 
matrices PI, Pz, P3, . I . such that 

z A”Pi,e(i)aak for iEAk 
n=O 

where al, ~2, a3,. . . is a nondecreasing sequence tending to infinity. With these: 

PI, P2r p3, l l 9 we construct a z “c=; P such that the function up (see Lemma 7) is 

unbounded, which contradicts assumption (**). 
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Lemma II. SUpicE V(i)< 00. 

roof. Let A be a subset of E. We define on A: 
a0 

VA := sup 1 AnPie. 
P@s9 ?I=0 

Note that v(i) = vE(i), i E E. First note that if A is finite and sup vE(i) = 00, then 
suPicAc vAc(i) = 00, since assume to the contrary supieAC t)&)< 0% Then using 
Lemma 20 we have for j E A: supiEAC&} vAcu(i}(i)<a, and so by induction 
suPicAC”A VACUA(i)< 00 which produces a contradiction. 

Suppose supi,E v(i) = 00. Fix a nondecreasing sequence ~1,612, . . . tending to 
infinity. Fix E ) 0. There must be an il E E and a PI E g such that v&~)~ al + E. 
Her-he by Lemma 6 there is a finite subset A 1 such that il E A 1 and for RI = 

(Pl, Pl, l l 4 

Consider the process restricted to Af . we have already seen that s1Ppi.A; u#&) = 
00. Hence there is an i2 E A: and a P2 E 9’ such that for R2 = (Pz, P2, . . .I 

Z A “Pi~.RJXO E Af, . . . ,X,EAi]aa2+& 
n=O 

and again by Lemma 8 there is a finite subset A2 c Ai such that i2 E A2 and: 

z A”Pi,,RJXoEA2,. . . ,XnEA2]aa2. 
n=O 

We may apply the same argument to (A 1 u AZ)‘. So we find finite sets Al, AZ, . . . 

with state I l 1 
. 

E A 1, 12 E AZ, . . . and PI, P2, . . . E 9 such that for Rk := (Pk, Pk, . . .) 

z AnPik,Rk[XoEAk,. . . ,X,EAk]at+ 
n=O 

Consider a new element P E 9 defined by: P(i, j) := Pk(i, j) if i E Ak. It is easy to 
verify that for all k = 1,2,3, . , . 

v&)a $ AnPi@* XOEA~, . . . ,XnEAk]m 
n=O 

Hence 

sup v&) = 00. 
k 

On the other hand we have for all PE 9: vp(i)s bpl(1 -p) for all i E E. Therefore 
SUpi v(i)< 00. 

The proof of Theorem 3 is a direct consequence of the foregoing lemmas. 
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roof of Theorem 3. Note that we transformed the model as in Lemma 6. So we 
have to prove the existence of a bounding function v assuming * and **. Fix E > 01 
and define A := @*+E)-‘. 

From Lemmas 11 and 8 we have the existence of a bounding function Y such that 

APv~v for PEP 

and e 6 v s Le, for some constant L. Hence, by Lem:ma 6, we have for the untrans- 
formed model 

P(~Ov)~A-‘(J&V) forallP&? 

Define 6 := p@v.ThenwehavePfiQ*+&)fi and~+%~L. 

6. Some consequences and remarks 

(1) In the proofs of Theorems 1 and 2 the assumption on 9 has only been used 
for the proof of the sufficiency of both conditions for strong excessivity, not for the 
necessity. 

(2) In our definition strongly excessive functions are positive. Hinderer [5] 
allows the value 0 for b(i). However, the strong excessivir:y (even if p is not less than 
1, as in Hinderer’s case) requires for the system to remain in the set of states with 
b-value 0 as soon as this set is entered. Hence, without restricting generality, one 
may assume that the state space is left when such a state is entered. 

(3) Combination of Theorems 1 and 2 gives the following necessary and 
sufficient condition for exponential boundedness of the life time of (E, 9’): there 
exist a partitioning {Ek 1 k = 0, i , . . .} of E and numbers <y > 1, p a 1, s,uch that for 
all R Ed 

f P~,R[X~EE~]GP~~~{~,&~} if iEEl. 
n=O 

(4) Suppose there are a positive integer N, real numbers M and p, 0,~ p < 1 and 
a bounding function p such that for alI P ,= @* 

(i) Pp dlfp and (ii) PNp G pp. 

We say there is IV-stuge contraction 
consequence of Theorem 3 that for each 
that 

in this situation. It is a.n immediate 
E ‘2 0 there is 3 bounding function 6 such 

(iii) Pi s (p1’N + E )p and (iv) p: s c_2 s Lp, for some L. 

owever, it can be proved more stage contraction i lies (iii) an 
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(iv). Namely, it is easy to verify for A := (P1’N + E)-’ that 1 <A < pVN and 

k=O n=O 

for all P&P 

Further we can construct completely analogously to the proof of Lemma 7 a 
bounding function v such that: hPv s v for all PC 9 and 

p~vG.+ whereL:= 
(hM)N -1 1 

AM-1 l-phN’ 

(5) In a decision process one considers contraction properties of a whole set P of 
operators simultaneously. If one only considers one (not necessarily linear) opera- 
tor T in a complete me,tric space X, then N-stage contraction of T implies 
one-stage contraction of T in X with respec, to some other distance. This has been 
shown by Walter [ 131 without using the equivalent of our condition (i). 

(6) In fact we proved in Lemma 11 that 

implies 

( ) ** supsup z P”e(i)ta. 
iel9 Peg n-0 

However (se*) implies, for all 0 <p < 1, the existence of a positive integer N such 
that 

(***I SUE lIpNIle < P= 

To verify this, assume to the contrary: there is a 0 <p c 1 such that for all 
N = 0, 1,2, . . . there is a PE 9 and an i E E such that 

P”e(i)>p. 

Hence, since P”e(i) is nonincreasing in 

f P”e(i)s f P”e(i)a(N + 
n=JO n=O 

And therefore 

sup sup f P”e(i)= 00 
iel3 PEB n=O 

n we have 

l)P* 

which contradicts (+. So .we actually proved here that the assumptions (i) and (ii) 
of Theorem 3 im :y N-stage contraction with respect to the same bounding 
function and l-stage contraction with respect to another (but in some sense 
equivalent) bounding function. 
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(7) In Veinott [12] a similarity transformation for decision processes was intro- 
duced for transient models with a finite state space. This transformation for the 
transition probabilities has the form 

P*(i 9 j) l - ‘(” ‘)‘(j)P E 9 .- 
P(i) 

9 p a bounding fr nction 4 . 

A lot of properties of the decision process are invariant under this transformation. 
Lemma 3 in Veinott’s paper (due to Hoffman) is exactly the same as the.: statement 
of Theorem 3 for a finite state space and a finite action space. Note however that in 
tht: 5nite case Jt is obvious that the function v defined in Lemma 9 is bounded. 
Furthermore the finiteness of E implies that PNp ~pop for all P and some N, 
po(: 1 Ef the spectral radius of (E, @) is les- than one. This can easily be used tcr 
show that (E, 9) is contracting (compare Remark 4). 

(8) At first glance one might expect that 

t := sup sup lim sup {P’“‘(i, j)}‘/” C 1 
Pc9 i,je E n-e0 

is a sufficient condition for the decision process to be contracting. The quantity 10 
may be regarded as a generalization of the concept convergence norm to decision 
processes (see Seneta [l 1, p. 1621). However, we produce a counterexample for this 
statement. 

Counteaexample. E := (-1, 0, 1,2,3, l l l }, 9 = {Pn 1 II = 1,2,3, - l l } ywhere for dli 

n = 1,2,3, l l l 

(i) P&K-l)=1 Kal 
(ii) P,,(O,i)=O i#O, P,,(O,Oi=p<landP,,(-l,n)=l, n=l,2,3,-• 

It is easy to verify that if j # 0: PiN’(i, j) = 0 for N sufficiently large and 

lim sup {P(,N’(i, O)}‘/” =p foralliEEandn=1,2,3;**. 
N--O 

Hence r = p. However if p is strongly excessive with excessivity factor 0 < p* < 1, 
then 

0 i 

( ) ii 

(9) 

p*p (0) 3 pp (0) hence p* 2 p 
for K = 1,2,3,. . . p*“cc (M j 3 th (,I) hence F(K) 2 p (O)(p*)-” and therefore 

since p(-l)ap(K) K =O, 1,2, . . . we have p(-l)a:supK (p*j)-Kp(0)=~, 

So there does not exist a strongly excessive function here. 
The following 6 assertions for (Ej 9) are equivalent: 

(A) (E, 9) is contracting with a strongly excessive function b satisfying 0 c S I 

b(i)< A for all i E E and certain S and 
(B) (E, 9) is strongly excessive with a strongly excessive functicn which is 

finitely valued. 
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For certain N and 6 > 0 

i,R[XNEE]sl-E for all iczE,RdL 

There exist a number 6 > 0 and a finite partition {Ek 1 k = 1, . . . , N} of E, 
such that 

pi,R 
I[ 

Xl E CJ Ek Al-E foralliEEl,I=l,..., N,IZEA. 
k=l 1 

The life time of (E, 9) is uniformly exponentially bounded. 
There exist a number p (0 c p < 1), a function b on E with 0 < 6 < b(J)e 4 
for certain 6, A, and a natl :ral number N, such that for all PI, . . . , PN e i9 
P 1,. . . , P&qb. 
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